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I. AN EXTENSION OF THE CRAMER-RAO INEQUALITY

1.1 Review of the Literature and Summary. Cramer [_6 ~\t p. 474

ff., and Rao [_ 12 ~\ derived independently a lower bound for the mean

square error of an estimate t of a parameter a which appears in a frequency

function of a specified form. This expression, alternately termed the

Cramer-Rao inequality or the information limit, is

(1.1.1) E(t-a) > [E(t) - a] + l~gg-~-l
2

where <f> is the likelihood of the sample. The expression E(o\Ln^/c)a) is

called the information on a and is sometimes denoted by 1(a). Under

rather general conditions it can be shown equal to E(-S ln^/BoT).

The equality in (l.l.l) is reached if and only if

(1.1.2) 4-^ e* V(a) +W(a)

where t and ^. are functions of the observations alone and V(a) and W(a)

are functions of a alone. By the results of Pitman [" 11 ~\ and Koopman

£l0]], the form of (1.1.2) implies that t must be a sufficient statistic.

The fact that this form of the likelihood yields a minimum variance

estimate was first pointed out by Aitken and Silverstone \_ 1 ~\ . If we have

n observations which are independently and identically distributed, the

frequency function of the underlying popvaation must be of the so-called

Pitman-Koopman form,
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(1.1.3) f(x;a) -u(a) h(x) eP(a) g(x)

n

and t must be a function of Z g^) for the equality in (1.1.2) to

hold.

Several extensions of the basic inequality have been derived.

Bhattacharyya £4j| and Chapman and Robbins Q5 J have derived results

which yield more stringent inequalities in certain instances. Wolfowitz

Ql8] has extended the result to sequential sampling situations. Cramer

£7J and Barankin £2J ilave considered joint bounds on sets of estimates

of parameters and Hammersley £9 "2 iias derived a lower bound of the mean

square error of an estimate for the situation in which the parameter to

be estimated can only assume discrete values. Barankin £33 has also

considered lower bounds on the general absolute central moments of the

estimate.

All these results assume that the parameters involved are

constants. Here we shall consider the case where the parameters are

random variables. Thus the lower bound of the mean square error of an

estimate will take into account the variability due to both the obser

vations and the parameters involved. Necessary and sufficient conditions

for equality of the extended inequality are derived. Most unfavorable

distributions, i.e., distributions which maximize the lower bound, are

defined, and several examples are given. Extensions analogous to those

of Bhattacharyya £4] and Wolfowitz £l8j are also considered. Finally.,

bounds on the variance of linear estimates of the mean of the parameter

are derived.
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1.2 Notation. Consider a frequency function f(x|o), where

0 = (0 , 0 , .,., 0 ), the function being specified when 9 is specified.
jl.cz. S

Further, 0 is a random variable having the distribution G(o) defined

over a non-degenerate range A . Let X = (xn, x^, ..., x ) be a random
° s v 1' 2} ' n

sample from a randomly chosen population having the specified frequency

function. Let t, = t,(X) be an estimate of 9 , 1 ^ k ^ s, functionally

independent of 9, . Denote E(t, |9) by y (9) and the conditional likelihood

of the sample by ^(x|0), which in general will be .^ f(x.|o).

1.3 The Continuous Case. If f(x|9) is a density, assume 3^/S9

exists for all 9 in A and lo^/o^ | < H(x) where H and t, H are

integrable over R , the range of X, which is independent of 9 . We have

(1.3.1) 1 = r $to

R
n

and

(1.3.2) yk(0) = r t^dX .

R
n

By the assumptions just made (see Cramer Q6J, p. 66 and p. 475), we

may differentiate under the integral signs in (l.3.l) and (1.3.2) and

obtain

(1.3.3) 0= f *£- dX = f ^p'dX
R k JR k
n n
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and

(1.3A)

R
k

n

/
R

t,. *g£ s^dX .
"k 6Q.

k

Finding expectations of (1.3.3) and (1.3.4) with respect to 0, we have

(1.3.5) 0 =

and

/ J If ** *G<8>
A R
s n

5Vk(9) a\(9)

sM - /ssT"dG(e)= // tk|H^dXdG(9),

A R
s n

By the Schwarz inequality we may write

(1.3.7) // [VVKV^WV]2 ^dX dG(0)n f rio^-l ^dG(e)Sir

A R
s n

1

A R
s n

f f CV9k-E[yk(9a+E(0ka (g^l (todG(9)
J J Ik/
A R

s n
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In view of (1.3.3), (1.3.5), and (1.3.6); (1.3.7) may "be written,1

/:vi J\ 2 o /dfc (°)

k / | k

and if EE£(Bln^/S9 )2|9J f 0, then

Var(tv-9j > ___ .,

o ,^(0)
E '59-

k

Mk~wk' -

k

where 3^(0) =E[(5ln{z(/S9k)2|9]. Since Var(tk-9k) =YE^^Q^ \o\
E |yk(0)-0j, we may write

(1.3.8) EE[(tk-9k)2|9] > E2[>k(9)-9k] +

If Tk(e) = °kJ (1-3.8) may be written

(1.3.9) EE[(tk-9k)2|9] > —A
E &*(•>]

E

2 Î k(0)
E 'ss;—

l^W]

EE symbolizes taking the expectation with respect to X for fixed 9
and then with respect to 9.
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known that

So2
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< K(X), where K(X) is integrable over R , it is well

E = E
a2w
so2

Then we can write 1^0) =E[-S2lnjz(/S021o] in (1.3.8) and (1.3.9). Since
L(9) is called the amount of information, E[l, (9)] may logically be

termed the mean amount of information.

It should be noted that the derivation of these inequalities is

equally applicable to samples from multivariate populations.

1.4 The Discrete Case. Suppose that f(x|9) is a discrete

frequency function whose range, R_, may be finite or denumerably infinite

but independent of 9, . Assume j> is a continuous function of 0, for all

X in R and 9 in A , and that 2 E ... £ S^/59n and E E ... £
n s7 ri k

X.. X_ X X_ X_ X
1 2 n 1 2 n

t, (5^/d9, ) converge uniformly in A . By operations similar to those
K K S

employed in paragraph 1.3, we find

(1.4.1)

and

(1.4.2)

E E o.. E s^ <• <j> —0
x- x0 x k
12 n

E £...£ tk|^^^
Xi X_ X xC
12 n

since the assumptions just made allow differentiation under the summation

signs. By the Schwarz inequality we may write
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fEE... E [VVEk(0)]+E(0k)]2 ^dG(6) \
I Xl X2 Xn

* <

> <

f E E ... £

J X1X2 Xn
||^f ^dG(9)

k

A

E E .

X1X2
2 [vvEk(4E(Vl^we)
Xn k

Following steps analogous to those in paragraph 1.3, we arrive at

(1,3.8) and (I.3.9), for the discrete case.

1.5 Conditions for Equality. The condition under which the

equalities in (1.3.8) and (1.3.9) hold are set forth in the following

three theorems.

Th. 1. If (i) Pr. JE[(tk-9k)2|0] =C]l =1,

(ii) Pr. [yk(9) =c2 ]=1,

(iii) Pr. [©k =c ]=1,

(iv) Pr.
ark(o)
So = c, = 1, and

(v) Pr. [^(9) =c5 ]=1,
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where c., i = 1, 2, ..., 5, are constants, then the equality in (1.3.8)

holds if and only if t. is a sufficient estimate of 9, .
k k

Proof. Under the conditions of the theorem (1.3.8) reduces to

(l.l.l), for which it has been shown by Rao [12 jthat the equality
holds if and only if t is a sufficient estimate of 9 .

Th. 2. If t. is an unbiased sufficient estimate of 9, , then the
k k'

equality in (1.3.9) holds if and only if Pr. \\W =c 1=1, where
Cj. is a constant.
5

Proof. Since tk is an unbiased sufficient estimate of 0., we

have from Rao 12 j,

E[<W2lo] - \w~' •

Taking expectations with respect to 9, we have

(1.5.1) EE[(tk-9k)2|9] ^E^O)"1] .

Now equality of (1.3.9) requires that,

(1.5.2) EEf(t,-9 )2|0l = 1 .Lk k J E^O)]

Combining (1.5.1) and (1.5.2), we have
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or

(1.5.3) E[lk(9)-1 JE[lk(9)] =1.

This can be written

(1.5.4) [^(o)]"1 dfi(o) I
A

/ V
A

^ s

9) dG(9) I = 1

Now by the Schwarz inequality we have

(1.5.5)

2

J Ik(e)*'1 cLG(9)l IJ LJ9) dG(9)> >If dG(O) I=1.
A_ A A

Obviously when the equality holds in (1.5.5) it is equivalent to (1.5.4).

But the equality in (1.5.5) is achieved if and only if for a constant c

independent of 9, c [^(o)]"1'2 = [l^Q)]1'2 with probability one; that
is, if and only if Pr [lk(9) =c]= 1, which proves the theorem.

Before proceeding to theorem 3, we cite the following definition.

Definition. Any pair of $(x\q) and G(9) wherein any one of the

assumptions (i) - (iv) inclusive of th. 1 does not hold for the 9 under

consideration is termed the non-trivial estimation case.

Th. 3. For the non-trivial estimation case the equality in (1.3.8)

is achieved if and only if t is an unbiased sufficient estimate of 9,
k k

which is normally distributed with constant variance equal to 3^(0)" .

Consequently the equality in (1.3-9) is achieved under the same conditions,
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Proof. For the non-trivial estimation case the equality in (1.3-7)

and consequently in (1.3.8) and (l.3«9) is achieved if and only if there

exists a X independent of X and 9 such that,

^•w^HV'

for almost all X in R and 9 in A . Integrating, we have

Xln^ -9kV -| -9kE[yk(9)]+9kE(9k)+Cl(X,9*),

where 0* = (9., 9_, ..., 9. ., 0. ., ..., 9 ). We thus have
l7 2' ' k-1' k+17 ' s

i =C2(X,0») exp i 9kV -I -9kE[yk(9)]+9kE(9k)

This is a special case of the form, found by Pitman 11 J and Koopman

[10 J, wherein t, is a sufficient statistic for 9 . Integrating both

sides of the above equation over R , we have

exp < dX

y

-£ [E(9k)-E(fk(9)) ]jfCg(X,9*) exp(9ktk/\)
R
n

Make the change of variables in the integral,

zi = zi(X)'
tk = tk(x),

X — X« £»• •• •» Xx*"JL^

exp(9j/2X),

where t, (X) and the z.(x) are unique, continuous, and possess continuous
it 1
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partial derivatives. Further the transformation is one-to-one. Then

we have,

exp <
X

[E(9k)-E[^k(9)]] [ c3(Z,tk,9*) exp(9ktk/x) dZdtk =exp(92/2>).
B
n

where Bq is the range of (z,^) =(z±, zg, ..., z ,t^). If we integrate

out Z, we have

9. t. 92
k k k

(1.5.6) f C^(tk,0)e X dtk =e2\
t

\

where bk, the range of tfc, may be taken from - co to co . Then the

left hand side of (1.5.6) is a bilateral Laplace transform of C. (t, ,9)

with argument 9 /\ . Recall that 9. has a non-degenerate range say

71 < Sk ^ 72* Obviously e exists at 9k = y + e and 9 = y - e,

where e1, eg > 0, such that €g + e± < y^ - y . Thus we can apply the

theorem of Widder [l6 ], p. 238, and conclude that the integral in (1.5.6)
converges for 9fc in the vertical strip of the complex plane, y + e

< ©k < 7^ - €2* Th'as we can aPPly toe uniqueness theorem of the

bilateral Laplace transform (see Widder [l6 J, p. 243) and conclude that

C4 ^k'0) =(l/^2ltX) exp(-tk/2X). Therefore, for equality, the frequency

function of t, must be
k

_<vvf
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where obviously X = 31 (9)~ • Further the equality holds regardless

of the form of the marginal distribution of 9. .

It should be noted that though theorems 2 and 3 require that 31.(9)

be a constant, it is not necessary that all the components of 9 occurring

in Ii_(°) "be constants. It is possible, for instance, that the components

of 9 occurring in 31 (9) have a singular multivariate distribution such

that all the probability is located on the hyperplane 3l(9) —constant.

Obviously the sample mean from a normal population with constant

variance satisfies theorem 3r However, it is by no means the only such

estimate. Let

v2
- (lax-0)

f(x|9) = \ e
x v2rtc

2c , 0 < x < OO

where c is a constant, which is the so-called logarithmico-normal

normally distributed with mean 9 and variance c/n, which is the minimum

variance attainable under the extended inequality.

A situation in which a parameter is assumed to be a random variable

is the analysis of variance model II of Eisenhart [8 J. The simplest case

is the one way classification. Here the model is

Xij = "i + €ij'

where x.. is the j observation in the i class. We assume there are

•4-Vi

k classes where the i class has n. observations. Suppose a. and e..
l i ij
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are random samples of size m and N, N = .£, n., from two normally

distributed populations having means \i and zero respectively, and

variances <C and a respectively. Then,

\2
m n.

t = i% j^^ijK5 - (V2rt0£)N
exp <

(x -a )
2£ —iiL-i

ij 2ac

and

(1.5.6) EE(-^f* |«) = ^|, 1-1, 2, ..., m.
e

n.

The ML estimate for a± is a± =( E^ x.jj/n^ i= 1, 2, ..., m. Here

E^Jo^) =a±, and EEC^-^)2 Ja±] =cr2/^, which by (1.5.6) is the minimum
mean square error. Notice the assumption of normality of a. was not

required for equality.

1.6 Most Unfavorable Distributions. In most cases the G(0) is not

known, so the lower bound on the mean square error cannot be found. If

N^O) = 9k, it is of interest to know the greatest value the lower bound

can attain, as well as the set of G(0) which prodv.ees it. To this end

define G*(9) to be a most unfavorable distribution with respect to 9, if

J 1^(9) dG*(9) ±J 1^(9) dG(9) ,
A A

for all G(9) defined over A .
s

If 31(9) has a unique minimum with respect to that subset of the

For an analogous concept, least favorable distributions, see Wald f15 1.
p. 18. L J'
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parameters appearing therein, then a most unfavorable distribution is

one for which the marginal distribution of these parameters is trivial.

It may be that 3^(9) is independent of all parameters so that all G(9)

are most unfavorable distributions. A case in point is the Cauchy

distribution,

where

f(xj9)=i i ,- oo < x < oo
" l+(x-9)2

co
2

n1(0) =£ f (*-e> p- dx =-
J [l+(x-9)2]3 2

Here EE[(t-9) |o] > 2/n regardless of the form of G(9). There are also

cases in which no most unfavorable distribution exists except possibly

when from some prior information A is restricted.
s

1.7 Most Unfavorable Distributions for Some Laplacian Distributions.

M. C. K. Tweedie [ 13, 14 ] has called a distribution Laplacian if it belongs

to the general class of distributions for which the sample mean is a

sufficient statistic for one of its parameters. The general form of such

a distribution's frequency function is

, , x -xq(9 )-9 F(9 )
f(x|91,92) =e d h(x,92).

That is, of course, a special case of the Pitman-Koopman form (1.1.3).

Here we have,
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E[I(91,92)] « J [^O^O^q^O^+OgF-ie^J^O^O^dO^,

where E(x|9 ,9 ) = m(9 ,9 ). If 1(9 ,9 ) has an absolute minimum for

some subset A' of A„, and (9°, 9°) is an element of A', then EJlCo^g)]
> m(9°, 9°)q"(9°) +9°F"(9°), for all (9^ 9g) in Ag. Further, this is

the absolute minimum attainable by El~l(9 , ©p)~|. It is reached when

dG(9n, 9..) =0, for (9., 90) not an element of A'. Thus, we have found

a set of most unfavorable distributions. This result will now be applied

to several specific Laplacian distributions.

Type a. 9_ = 1. This includes the "binomial, Pascal, a::id Poisson

distributions.

(l) Binomial distribution.

and

xln (T^5-)-ln(l-9 )
f(x|91) =e • 1 ,x= 0, 1, 0 4 01 < li

Ql - , ,q(91) = -In (j^~h F^) = ln(. !-©-,_)* ai01#> = Q.^.

I(Q1) ~91(1-91) *
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1(9 ) has a unique absolute minimum at 9 = l/2, so that G*(9 ) =

e(9 -l/2) is the only most unfavorable distribution. Further

E[l(91)]<j: 4N.

(2) Pascal distribution.

1-9

xln(l-91)-rln(-g-i-)
f(x|9x) =e X (*"*), x=r, r+1, ...; 0< 9± ^ 1,

q(9x) = -ln(l-9 ), F(9 )=ln(-^-i ), m(9 )=r/0 ,
1

p

where r is a known fixed positive integer. 1(9 ) = r/9 (l-9 ), which

has a unique absolute minimum at 9 = 2/3. Therefore G*(9 ) = e(9 -2/3)

is the only most unfavorable distribution and E["l(9 )1 ^ 17N/4. It

should be noted x/r is not an unbiased estimated of 0 . If we consider

a = l/91 as the parameter to be estimated, then

-xln(-£U-ln(a-l)
f(x a) = e a'x (x"t) x = r, r + 1, ...,

r-l

1 <> a < 00 ,

q(a) =in(^j-), F(a) =ln(a-l), m(a) =ra.

Following Cramer [6], p. 192, the distribution function

;(x-a) =^ for x < a

for x ^ a.
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and

I(a) =5(iiry •

Here x/r is an unbiased estimate of a. However the expression l(cn)

does not have an absolute minimum in A, i.e., 1 ^ a < 00, but rather

it has a limit of zero as a. —^ co . Thus letting a —> co produces

a most unfavorable situation, which is equivalent to letting 9=0. It

is interesting to note that though 9 = 2/3 was the most unfavorable

situation when estimating 9 , when estimating (X —l/9 we have, in effect,

that 9 = 0 is the most unfavorable situation. Thus we have established

that "most unfavorableness" is not an invariant property.

(3) Poisson distribution.

xln9 -9

f(x|9]_) =e X ± £ , x=0, 1, 2, ...; 0 <i 91< 00

q(9x) = -ln91, F^) = 0^ m^) = 9^

I(01) = l/9r

l(9^) has no absolute minimum in A,, but rather has a limit of zero as

9 —* °° . However, if from some prior consideration we can restrict

9 4. a, then a most unfavorable distribution is G*(9n) = e(9..-a).

Type b. 9 ^ 1, q(9 ) = 9 . Immediately we have q"(9 ) = 0, and
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(l) Gamma distribution.

x 1

•xQl+e2lnei
fUlG^Og) =e ,x > 0, 92 > 0, 0 > 0.

f(91) --mei, i(ei, 92) «J.
Wl

Here l(01, 9g) —£ 0, as Q± —» CO and/or 9g —» 0, but no
p

most unfavorable distribution can be cited unless we assume ©P/9!T ^ a.

(2) Normal distribution (parameters adjusted).

„2 2

-9 x-9 —— 29

f(x|9 ,9 )=e 1 2 2 2 2^. oo < x < OO ,9. > 0,
^ 2*9 d

-CO < Q1<O0 ,

2 -u
where Q = a , Q = -t- , in the usual notation.

a

92
F(9X) =-| and l(91, 9g) =9g.

Here 9 —> 0 establishes a minimum, so that if we can restrict

9 > a, then e(9p-a) is a most unfavorable distribution.

1.8 More Stringent Inequalities. Bhattacharyya [4] has found

greater lower bounds for the mean square errors of estimates in the case
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of constant parameters. This admits of direct extension to the present

case. We can write (1.3.3) and (1.3.4) respectively as

(1.8.1)

and

(1.8.2)

E
'1 Oi

3 SQ-
= 0

-t| = Gov (t.-0., \ %-\Q).o9 x k k' <f> 89, '

By the result of appendix A,

Cov(tk-9k,'ySfc'-'Eco^w?^ie

+ Cov

r k

From which by using (l.8.l) and (l.8.2), we obtain

(1.8.3) E
atk(o)
so,

k
•)=C-<VV? \'>

With suitable regularity conditions on <f> and its derivatives similar to

those cited in paragraph 1.3, we can differentiate (1.3.2) p times and

obtain as in (1.8.3) that

(1.8.4) E
^(9)N
_kv

dO.
(3 ivv \ §= Cov , 0 = 1, 2, # • « * V *
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Define,

JC«3 =C- (? P^^ ],«,?-!, 2, ..., p.
V k k/

Let J=[j^J and J~~ = [japJ, Denote by R0.12 the multiple
correlation coefficient between t -9 and (l/jzS) (djzf/dO, ), (l/^)

(d ^/S9k), ..., (l/jzO (5P^/S9j). Then by a result cited by Wilks [17 ],

p. 42 ff.,

P p fb\(Q)\ fb\ (©)
1L_L . _vl' T«P

oSi a e 1-^—7 e [~m J

0.123...P
Var(tk - 9k)

2
Since R < 1, we may write

Var(tk-Sk) 2jx £ "(^) E\^3r) J*
from which we have

(1.8.5) EE[(tk-Qk)2|e)] i E2(»-k(e) -ok) +

.>
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This is a greater lower bound than that of (1.3.8) since the multiple

correlation between t, - 91 and the above series of variates will be
k k

larger than the simple correlation between t, - 9 and (l/^) (b$/b~Q. ).

This latter correlation is essentially what was used in deriving (1.3.8).

It should be noted that this method of obtaining a higher lower bound

applies only if ^ (9) is non-linear function of 91 and consequently is
k K

not applicable in the unbiased case. As noted in Wilks [17 ], p. 46,

the equality holds if and only if all the probability in the p -1- 1

dimensional space of the random variables lies on the surface,

1.9 The Sequential Case. Wolfowitz [18 ] has extended the

Cramer-Rao Inequality to situations where the sample size is a random

variable depending on the sequence of observations. In our notation his

result is

E(nJ9)E

dYk(o)x2

E(vek)2 > ta(Q)-QJ2 + —
dlnf(xJQ)^2i0

We shall proceed to extend this result to the case where 9 is a random

variable.

Under suitable regularity conditions Wolfowitz has shown,
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«i^i*) =°>
and

(1.9.1) El\KJ '
= E(n|9)E cUnf(x|o)

By definition,

fix J VV V •••' X3) A fCx1|e)ax. - tk(»)

Under the regularity conditions cited by Wolfowitz we may differentiate

under the integral sign and obtain

E(tk •*S* |9) -Cov (tk-9k, ^ |0) --55
k k

The result of appendix A yields,

E

S\(9)
"55!

k

d\(0)

Since the square of the correlation coefficient of any two variates cannot

exceed unity, we have,

2 /SVQ)N If) •VarCvV'
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Var(tk-9k) >

E<^

This may be written

32

2^k(Q)
EU:

E(n|9)E 'dlnf(xlo)
dO,

(1.9-2) EE[(tk-9k)2|9] > E2[yk(9)-9j
^9—

E'

E <E(n|0) ♦ E
dlnf(x[9)

aek

When yv(Q) = 9 , (1.9.2) becomes,

(1.9.3) EE[(tk-9k)2|9] >
E<^ E(n|0)E fdlnf(x|0)A-2

"55
k

These results are valid for discrete as well as continuous distributions.

A simple example of sequential estimation involves sampling from a

binomial population until a specified number of successes, say r, occur«

Here f(x|o) = 0X(l-9)1_x, x= 0, 1, and E(n|o) = r/0. Therefore, for

EE[(t-9)2|9] k
rE

92(l-9)
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This result corresponds exactly to that obtained in paragraph 1.7 for

the Pascal distribution.

1.10 Linear Estimation of E(9). Consider m samples X, =

(x_. , x.p, ..., x. ), i = 1, 2, ,.. m, chosen from a population f(x| 9),
*^»-** i**C^ JL.LX •

1

which are randomly and independently chosen from a super-population of

populations with frequency functions of the form f(x|o). Thus for each

sample X., there is associated an unobserved random variable 9, i = 1,

2, ..., m, with distribution G(19). We seek to find an estimate of

E(9 ), say T, , where 1 4 k ±_ s. It is supposed that for each sample

there exists an unbiased estimate of 9 , namely t, , and we restrict

our discussion to the set of Tv which are linear functions of the t, , that

is,

m i
T, = ,E_ c. t.
k i=l 1 k

where (c.., c_, ..., c ) is a vector of real numbers. If we further
1' 2' ' m

restrict ourselves to unbiased estimates of E(9, ), it follows that
m

.£. c. = 1.
i=l 1

The minimum variance unbiased estimate of E(9 ), T, is found by

minimizing the expression,

Var(Tk) = lh c* Var(\),
m 2

m

with respect to the c's, subject to the restriction .£_, c. = 1. This

yields the normal equations:
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(1.10.1) c. Var( t. ) + X = 0, i = 1, 2, ..., m
1 K.

m ^

±k ci = x>

where X is a Lagrangian multiplier.

Consider now the variance of the minimum estimate T, , found by

solving (l.lO.l). We have

(1.10.2)
s\ m p •Var(Tk) = ±h c. Var(\)

By the result of appendix A,

Var(1tk) =e[ Var(Xtk|9) ]+Var [E^tjo) J,

from which it follows that,

(1.10.3) Var(itk) =EE [(\-\f/Q ]+Var(i9k).

So that (1.10.2) may be written

(1.10.4) Var(T. ) = .2. c. EE ^t.- 0.) lo + Var(0. ) .ZL cf .
k 1=1 i L k k i J ^ k' 1=rl x

Applying (1.3-9) to (1.10.4), we have

(1.10.5) Var(Tk) > X±

EE

'dln^xjo)'
^97

m p+Var(9k) .E^c2,
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the equality being achieved under the conditions cited in paragraph 1.5.

We may apply these results to the analysis of variance model II

cited in paragraph 1.5. To simplify the normal equations above, let

ni = n, i = 1, 2, ..., m. In the notation of this paragraph,

10. = a.,
k 1'

\ =°i =(1=1 xij)/n> i=X> 2> "•> m>

and (l.lO.l) becomes

2

c.(— + 0) + \ = 0,
iv- n a '

.£, c. = 1.
i=l 1

Solving, we have c. = l/m, i = 1, 2, ..., m. Thus

/s m /\ m n

Tk = ^ i=iai>/m = ( iii jiiV/ran'
and

2

Var (T. )=i (— + a2),
k m v n (X '

which equals the lower bound given by (1.10.5).
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II. THE ASYMPTOTIC PROPERTIES OF ML ESTIMATORS WHEN

SAMPLING FROM ASSOCIATED POPULATIONS

2.1 Summary. Cramer [ 24 ], p. 498, points out that the method

of maximum likelihood was proposed as a general method of estimation

by Fisher {_ 27 ] in 1912. However, rigorous proofs of the asymptotic

properties of the maximum likelihood estimators (hereafter called ML

estimators) were not derived until the work of Dugue [25 ], Wald

[32, 33 ], Cramer [24 ], Huzurbazar [28 ], and Chanda [21 ], all of

whom published within the last twenty-five years. Each of these authors

assumed observations from a single population. Neyman and Scott [ 30 ]

and Kraft and LeCam [29 ] have pointed out situations wherein the ML

estimator is not consistent. Their examples involved sampling from a

number of subpopulations with different distributions but with only a

finite number of observations from each of the subpopulations.

Some situations arise where observations do not come from a single

population but from distinct but related populations, related in the

sense that some populations reasonably may be assumed to have some para

meters in common. We call such populations associated. Such situations

may arise, for example, in the combination of results from several experi

ments. The theory developed may also assist in certain problems of

mathematical statistics—it assists in developing the theory for a

generalization of a method of paried comparisons indicated briefly in the

final section of this paper.

In this paper we extend the basic theoz*y on ML estimation to

associated populations obtaining asymptotic results when sample sizes for
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for the associated populations become large in constant ratios. Under

regularity conditions, the ML estimators for parameters in associated

populations are shown to be consistent and asymptotically normal with

2
a variance-covariance matrix as derived. The asymptotic X - distri

bution of -2 In X , \ being the likelihood ratio, holds and, for the

non-null distributions, the parameter of noncentrality is set forth.

We limit consideration to ML estimators that are roots of the

normal equations for the maximization process. The consistency of the

more generally defined estimator can be proved for associated populations

following the approach of Wald f33 ]• Our proof of consistency follows

that of Chanda closely; most of the results for associated populations

are easy generalizations of results for a single population and results

that do not differ essentially from those demonstrations are cited without

proof.

2.2 Notation and Assumptions. Let f.(x., 9) i = 1, ..., m denote

density or probability functions (discrete or continuous) where x. is a

random vector with values over a region R. independent of 9 = (9.,, ..., 9k),

an unknown parameter vector lying in a k-dimensional parameter space SI

f.(x., 0) may hot depend on all of 9 , ..., 9, . Let x.n, ... x. be n.
11 i ic n m, l

l

independent observation vectors on x.. The joint likelihood function is

then

(2.2.1) i = Xx £l f.(xla, 9)
™ n.
m i

and the normal equations are

(2.2.2) i^ =°> r =l, ..., k
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from the maximization of ln^ and hence of <f>.

We make the following assumptions:

(l) For almost all x.eR. and for all QeSl.
11 '

dlnf. d2lnf. d3lnf.
oT-1 ' WST and d9 d9 d<L

r r s r s t

exist for r, s, t = 1, ..., k and i = 1, ..., m.

(2) For all f. which are densities for almost all x.eR. and for every

9€^l,

df. d2f. d3lnf.
(2.2.3) |^| <. F.r(x.), |^-| <! F.rs(x.) and I^V^T I*W*!*

r r s -r s t

where F. (x.) and F. (x.) are integrable over R. and
ir l irs i l

(2-2.4) r H. .(x.) dx, < M,
/ irst i i

R.
i

i = 1, ..., m; r, s, t = 1, ..., k, for all QeSl and where the M. are

finite positive constants. Correspondingly, for all f. which are probability

functions, p
df. d f.

x.eR. r x.eR. r s
11 l i

converge uniformly for all 9e.fl and
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d3lnfi
'd9 d9 d9. I^ Hirst(xi}

r s t

£ H. .(x.) ^ M.
_ irstv 1 1

x.eR.
i i

for all 9eji, r, s, t = 1, ..., k; i = 1, ..., m and where the U± are

finite positive constants. These assumptions will permit the interchange

of order of differentiation and integration or summation.

(3) For all Qesi, the matrix J=fJrs(©) ]with

m r

(2.2.5) Jrs(0) = X± Hi J dlnf. dlnf.

D "So W fi^i
R. r s
l

is positive definite with finite determinant. [Replace C by

R.
l

£ for those f. which are probability functions in (2.2.5) ]• We
x..eR.
i l

m

define p.. = n./N where N = .£.. n .
*i r i=l i

2.3 Consistency. Let 9°esi be the unknown true value of 9. Con

sider the following Taylor's expansion:

dlnf.

(2.3.D ggp-i
d Inf.dlnf.

9 = 9
+ 8iL(°B-°s) ^9-S9T

r s 9 = 9

k d3lnf.

9 = 9'
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where 9' = 9'(x.) depends on x. and is such that it lies within the hypercell

of which 9-9 is the diagonal for all x.. Summing over all observations

of all subpopulations, we see that (2.3.1) implies

(2.3.2) Lr(9) =Lr(9°) En (9 -9°)L (9°) +| £+ 1 (9 -9°)(9+-0°)L +
3=1 s s' rsv 2 s,t=l v s s v t t' rst

where

3_ m ni dlnfia m \ ± dlnf1Q
Lr(Q) =if i=i a=i ~S9— =i=i *i a=i 57 "55— '

r i r

i m > ^lnfia * n ^i • i , d lnfia
Lrs(0) ""N i=l 0=1 59~55 ill ^i a=l (" n7 >59~59

r s l r s

and

rst N i=l a=l d9 d9 69^
rst 9 = 9'

m ni x ^3lnfia
i=i ^i a=i iT 59~59~59T

l rst

and f.(x. ) = f. .
i ia ia

In view of our assumptions, we have

9 = 9'

dlnf.

(l) E( ^e )= 0, r = 1, ..., k; i= 1, ..., m.

d2lnf,m U ±ILL

(2) iii^iE( - 55-55- >= Jrs(e)> r' s = 1> •••' k-
r s



and

/ .3dJlnf.
i

69 69 dO,.
rst
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(3) E j < M±, r, s, t = 1, ..., k; i = 1,

for all 6e.il . Also, from (3), it follows that

n.

i i m 1 1
' rst' - i=l "i a=i n

Further,

d3lnf.^,
; ia

69 69 d9^
rst

9=9

m

m m

i=i *i Ei E±rBt{:t±o? ^i=i"iMi

n.
i 1 /

i=l i a=l n. irstx ia
i

If we let n± »°o , i= 1, ..., m so that n./N = n., then by Khintchine's

Theorem [6 ], p. 253,

and

&• dlnf.

U; n~ 0=1 "55

n.

<2> n7 eg
^ia
69 69

r s

0 = 9

->o,

-> E

0 = 0*"

62lnf.
l

69 d9
r s

9 = 9



(3) ni ch
crlnf,

__~ia
69 60 60.
rst
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^ 57 A. ^t^ieP -p-E[Hirst(xia^] * Mi
0 = 0'

for i = 1, ..., m. Using Slutsky's Theorem [24 ], p. 255, we have

(1) Lr(0°) —> 0,

(2) L (0°) » J (0°), and
s ' rs p. rs "

m

(3) |L +| < i|, u M as a limiting bound in probability.

In other words, given i\ and e, two arbitrarily chosen small positive

m

constants and R, a finite positive constant greater than £ (i M ,

there exists n . = n .(ti, e) such that, for all n. > n . with
oi oi " i oi

m

ni = ^i i=L ni' i = 1' '"> m*

(2.3.3) P[ |Lr(0°)J < t,, |Lrs(0°) -Jrs(9°)| c ti, |LpBt| ^ R] > 1-6.

The likelihood equations for the estimation of 9 are given by putting

L (9) = 0, r = 1, ♦.., k, in (2.3.2). Thus if 9 is the ML estimator of 9,

from (2.3.2),

k k

(2.3.4) £, (9 -9°) L (9°) =L (0°) +| £+ n (0 -0°)(0.-0?) L .,
v J ' s=L v s s' rs rv ' 2 s,t=l v s s t t rst '

I* — lj »••f 1S.0
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—i
By assumption (3), j" exists for all Qesi and, since

[Lrs^e°^ ]""p* Jrs^9°^ f0r s-ufficiently large N> \ =V^± ®» the inverse

natrix [Lrs(°°) J" exists also. Accordingly, from (2.3.4),

k(2.3.5) <sr-ep - ^ yo°)iW) +1 s?t=1 (S.-^xSt^LAv^80'.
r —* jl^ • • •} iCj

where [Lrs(0°) ]=[l>rs(e°) J" ,the latter matrix being one of finite
elements independent of N. Given r\ and e positive and arbitrarily small and

T > R finite, we can choose n .(t), e, T) such that, for all

ni > noi' ni = ^i N' ± = lf '"> m'

(2.3.6) p[ |Jx Lp(9°)LPr(9°) U^l Lp(9°)| |l^(9°) |̂ ,,

IX Lpst L*r(9°) U Jj Lpst ||iF(o°) |<Tfor all r]>1-e.

Obviously for n. > n. , the equations (2.3.5) admit a solution

9=(9X, ..., 9^) such that (6^ -9°), r=1, ..., k, are of the same order

as t], the second term on the right of (2.3.5) being of smaller order than

r\. Thus,

(2.3.7) p [ \Q± - 0° U n, ..., |er - o°l < n]7i - e

for n. > n. , i = 1, ..., m. It follows that there exists at least one
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solution 9 of the likelihood equations which is a consistent estimator of

the vector 9 . That the solution is unique may be proved following closely

on a proof given by Chanda.

We now state two theorems without proof indicating only necessary

modifications of Chanda's proofs.

Theorem 1. The matrix
62lng(
69 69

r s

, where 9 is a consistent estimator

9 = 9

of- 9 and a solution of the likelihood equations, is negative definite

with probability approaching unity as n. = \i. N —*c0. The proof follows

Chanda [21 ], p. 59-60. The only changes required are that now

m / 62lnf
Jrs^ = ill *i "59-59"

\ r s

and we require use of both Khintchine's Theorem and Slutsky's Theorem

where Chanda required the former.

Theorem 2. Of all possible solutions to equations (2.3.5), one and only

one tends in probability to the true parameter vector 0°. The proof of

Theorem 2 parallels that of Chanda [ 21 ], p. 6O-61.

We have now seen that the usual consistency properites of ML

estimators carry over to estimation when sampling from associated populations.

2.4 Asymptotic Normality. We rewrite (2.3.4) in the form

I<VeXs<9°> -IJU ^>\<K* -Lr<e°>> r-1, .... *.
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and in matrix notation

(2.4.1) (L + G) (9' - 9') =
1 1 OJ-nl-?Q!

i=l ^i o=l n~ ~o0
i r

9 = 9"

where 9', 9', and the right-member of (2.4.1) are k-element column vectors,

the latter based on the definition of L (9°) following (2.3.2), and where

L=[Lrs(9°) ]and

G =
1 k /\ (->\

2 til <Qt "6?)Lrst

L and G being k-square symmetric matrices. We have seen that

L >J , J = J
p o ' o

, positive definite, and G —»• 0 (since
9 = 9'

9 ——> 9 and |L | is bounded). Hence, for large n., we may invert

L + G and write

9' - 9°' = (L + G) -1
m "i i dlnfia
i=l ^i a=l n~ "55

1 r
9 = 9

(2.4.2) Vi" (9' - 9°') = (L + G)"1
m

i=i *i a=i
1 Slnfia

T^i
""55"

9 = 9"

Since L > J and G > 0, by Slutsky's Theorem, L + G >J and
p o p * ' p o

(L + G)~ ~^Jn" • Further, by the multivariate form of the Central

Limit Theorem [23 ], p. 113,
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Ui 1 Slnfiam _ 1

A. K oh "59"
9=9

has a multivariate normal distribution with means zero and variance-covariance

matrix

m dlnf. dlnf.

A *i E( "55^ •-55"^ >
9 = 0

o^lnf,m u JJu-±

A "i E( 55-55- >
r s

= J

9 = 9

Applying a Theorem of Chiang [22 ], p. 338, we may state that the

asymptotic distribution of JW (9' - 9°') is multivariate normal with means
-1 -1 -1

zero and variance-covariance matrix J J J = J as
000 o

n = M-.N, i = 1, ..., m, and N -> 00 .

2.5 Asymptotic Distribution of the Likelihood Ratio. Let 6J be a

sub-space of si defining an hypothesis Hu through the relations,

(2.5.1) ^(0) = €?(Q) = ... = t,r(9) = 0, r < k.

We require the functions in (2.5.1) to be such that:

(a) There exist k-r additional functions ^r+ (9), ..., ^ (9) so

that the inverse relationships 9 (?,);> •••> °v(^) exist.
1 k

(b) The first and second order partial derivatives of

£, (9), ..., ^, (9) are uniformly continuous and bounded functions of 9.

(c) The greatest lower bound of the absolute value of the Jacobean

6(£, , ..., £, )/6(91, ..., 0 )is positive.
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The definitions of cj and Hw conforms with those of Wald [ 32 ],

p. 463. Wald considered the distribution of xN(u, EN), the likelihood

ratio statistic for comparing u with sz and wherein E denoted the

observed point in the sample space. Wald assumed that the likelihood

ratio test is uniformly consistent and stated that this would be proved

in a later paper based on weak assumptions on the density function f(x, 9).

(The later proof seems not to have been published.) Based on his assumptions,

Wald proved that

(2-5.2) lim P[- 21n \^(l>,y ^t|9]-Fp[\*(©), t]] =0
N—>oO «• J

uniformly in tand 0where Fr[>N(0), t]is the non-central X2 -distribution
with r degrees of freedom and parameter of non-centrality

(2.5.3) X|(9)=N 11 eP(Q) ^(0)c*(0).

3n (2.5.3), [c*(0) ]= 1=1 m=i 557 55- i^( } ) ~8> 1 = 1# •••s> r? with

[aij(0) J"[cij(0) J"1 and cij(°) ="E< 55^57 ), i, J-1, ..., k.

It was our original intent to generalize Wald's proofs to obtain the

analogous results for associated populations. We do not believe however

that Wald's conditions are in a form readily verified for specific applications

and utilizations of his results. The extensions of theorems on maximum
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likelihood procedures to associated populations do seem straightforward

and the results corresponding to those of Wald should follow quite

directly. We should then obtain, for 6J and HM defined by (2»5»l), for

associated populations that (2.5«2) holds as stated where now only

2developed in previous sections thus redefining X-^O) in (2.5.3). The
o

central X - distribution would of course be implied by (2.5.2) when 9

for which H,. is true.

The asymptotic power functions of test procedures are often used

in comparisons of their properties and one commonly used comparison of two

tests results in the evaluation of their asymptotic relative efficiency.

To obtain an asymptotic relative efficiency, local alternatives to a null

hypothesis, e.g., [ 31 ] are considered. In this way, let 9^ denote a

{*)value of Oeu and let 0 I be a sequence of values of 9 such that

0^ =0" +6 (^)/N wiih lim 5 (o) =6.(w) i=1, ..., k. Under these1 1 J-N ^ ^jq UN 1

conditions,

x|(9)^>2(5)=piqEli|1J1 5i5j^l

and

' -567"
9 = 9^ J

Fr[XN(0)> tJ >Fr[x2(6), t].

e*(0")
Pq

0 = 0"
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From the fact that (2.5-2) holds uniformly in 9, it follows -that

lim

N > oo

|p[- 21nx|(^,EN)< t|o] -Fr[\2(5), t]j=0

f Niuniformly in t and given the sequence < 9 K .

2.6 An Application. Bradley and Terry [20 J and Bradley [ 19 ]

have devised a method of paired comparisons and investigated some of its

t
properties. Positive parameters jt., ..., it , .£, %. = 1 were postulated

to represent the effects of treatments T , ..., T and to operate so that,

if X± is a response to T±,

P(X± > X )= «i/(rt1 + * ).

Let x. = 1 if X. > X. and zero otherwise for the a comparison
XJW X J

of T. and T., a = 1, ..., n.., i, j = 1, ..., t. The likelihood function

for the complete experiment, on the assumption of independence between

comparisons, is

(2.6.1) L(«)= Jlt3Ilc|[ ^iJa/ iJj-L (*! +a/^
#1

i<J

If n. . = n for all i and j, as has been assumed in published work, L(jt) may

be factored

(2.6.2) L(it) =
n

ok.
t t xi(ja - t
i=i j=l *i /ijj-i (*i +V

tfi
1<J
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and standard ML theorems applied for now f(x) may be taken to be the

quantity in braces in (2.6.2). If n.. f n for some i and j, the methods

of this paper for associated populations are required.

Dykstra [26 ], in work as yet unpublished, has considered extensions

of the method for paired comparisons to cases where n.. ^ n, and it appears
ij

that these are the cases required most frequently in practice in consumer

acceptance studies.
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III. A SEQUENTIAL DECISION PROCEDURE FOR COMPARING

SURVIVAL CURVES

3.1 Introduction. In the search for compounds which may have

a useful biological effect, sometimes hundreds of chemicals may be put

forth as possible candidates. In this case a preliminary test procedure

is needed to select the more promising compounds without resort to long

and expensive experimentation. Sequential experimentation immediately

suggests itself because of its property of minimizing the average number

of observations needed to reach a decision. (See Wald and Wolfowitz

[>3].)

The need for such a screening procedure arose at Oak Ridge National

Laboratory in connection with a search for compounds which might furnish

protection against injury caused by irradiation. Preliminary decisions

were to be based on the results of treating mice which had been exposed

to X-radiation with the experimental compounds. The experimentation was

done in groups; five mice being treated with the experimental compound and

five with a control compound, which was either a physiological saline or a

compound of established protective ability. At first the data collected

were the numbers of mice surviving in the control and experimental groups

at the end of a prescribed number of days. The period ranged from four to

twelve days after Irradiation depending on the strain of mice, the radiation

dose, and other factors. This procedure proved unsatisfactory since, due

to the high variability of the life spans of the irradiated mice, it often

happened that in the two groups the animals would all be alive or would all
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be dead at the end of the prescribed time period. Obviously results of

this nature give no information about the relative merits of the two

compounds. To avoid this difficulty, it was decided to stop the experiment

at the death of the median (third) mouse in the control groups. Thus no

pair of groups of mice are wasted, and all pairs give some information.

Of course, a large number of mice surviving in the experimental group tends

to indicate the experimental compound is an improvement over the control,

and a small number tends to indicate the contrary. Groups were treated

successively until the experimental compound was deemed acceptable or not

by a statistical criterion. The acceptable compounds were then subjected

to more exhaustive and exacting experimentation. The rejection of a com

pound was not absolute nor necessarily permanent. If a compound chemically

related to a rejected compound proved effective, the rejected compound was

also subjected to the more exhaustive experimentation.

This sampling procedure was devised and used by Kimball, Burnett, and

Doherty [ 38 J. Their method of analyzing the data is the sequential test

of the double dichotomy due to Wald [42 ], p. 106 ff. This method of

analysis assumes the probability that a mouse survives in the experimental

group at the time the experiment is stopped is constant over the successive

trials. This assumption is not valid since the time, t, of stopping the

experiment is a random variable; and the probability that a mouse survives

depends on the survival curve which in turn is a function of t. Thus, this

probability is itself a random variable and the analysis is not theoretically

sound as is pointed out in [ 38 J.
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Although this .method of analysis'is not rigorously/valid, it did

prove successful in the search for protective compounds. Thus it was

thought to be approximately correct.

Our purpose is to derive rigorously a method of analyzing data

collected by using this sampling procedure. It will involve assuming

specified functional forms of the survival curves of the control and

experimental compounds. We shall limit ourselves to sigmoidal curves,

although the methods set forth can be applied to non-sigmoidal curves.

The new results will be compared to the original method of analysis; and

the OC (Operating Characteristic) function, the ASN (Average Sample Number)

function, and the effect of truncation will be considered.

Although the terminology used will involve specific reference to "mice

surviving," this may be interpreted as referring to any sort of experimental

unit enduring in a prescribed condition.

3.2 Review of Literature. Very little has been written on the

application of sequential methods to testing survival curves. Epstein and

Sobel [37 ] nave discussed related sampling situations in life testing.

However, "their situation differs from the one here in several respects. It

assumes an exponential survival curve and that the exact lengths of life

are recorded. Further, it is not a two sample problem but a test of

hypothesis of an exponential parameter. Therefore, their results do not

apply.

Two major general sequential procedures have been proposed, those of

Rao [4l ] and Wald [42 ]. Rao's procedure involves a fixed limit on the

sample size and is designed to test null hypotheses. While the former
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property is advantageous, the latter is not, since we are not concerned

here with testing whether the experimental and control compounds have

exactly equal median survival times. Rather, we require a decision

procedure for finding experimental compounds with median survival times

appreciably better than the control. Further objections to Rao's procedure

are that its application requires the derivation of certain properties of

the test statistic for the particular case under consideration; and that

general methods of deriving the OC function and the ASN function do not

exist.

On the other hand, Wald's general procedure is admirably suited to our

situation. It is not a test of a null hypothesis, but rather an

acceptance-rejection decision procedure which is what we require here.

Further, the problem of the derivation of the useful distributional properties

of the test statistic has been solved approximately; and general, though

approximate, formulas for the OC function, the ASN function, and the effect

of truncation are available. Thus we shall apply Wald's procedure to this

sampling situation.

3.3 Distribution Theory. Although the distribution of the test

statistic is not needed, we must derive certain distributions related to

the survival curves before we can apply Wald's general theory. This is due

to the peculiarity of our sampling procedure, which, as was stated earlier,

makes certain probabilities random variables. In particular, we require the

unconditional distribution of the number of mice surviving in the experimental

group. We shall proceed to derive this distribution, which will depend, in
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in general, on the form of the two survival curves.

Let p (t) and p (t) be the survival curves for the control and

experimental compounds respectively. Each group consists of 2s + 1

mice, where s is a non-negative integer. Then the distribution of the

time of death of the (y + l)—mouse in the control group is

(3-3.i) h(t)« - - rl[%:$\ [pc(t) f-? [i. ,c(t) y dPc(t),

as is shown by, for instance, Cramer [ 35 ], P« 368.

Now, as pointed out above, we have chosen to stop the experiment at

the death of the median mouse, i.e., (s + l)— . Two reasons for this choice

may be cited:

(1) We are interested in making decisions based on the comparative

sizes of the medians of the two survival curves.

(2) In the cases we shall consider, the sample median time of death

is more efficient than any other order statistic. This statement requires

some explanation and justification. Cramer [ 35 ]> p. 369-> has shown that

the sample quantile, t , of order p, where y is the greatest integer ^
7+1

(2s + l)p, is asymptotically normally distributed with mean equal to T ,

where p = 1 - p (T ), and with variance equal to (l/-p'(T )) l/p(l-p)/(2s+l).
c p c p

The minus sign is required since p (t) is equal to one minus the
cumulative distribution.
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Obviously the coefficient of the radical occurring in the expression

for the asymptotic variance is minimized when Tp equals the mode of the

distribution, and the radical itself is minimized when p = l/2, that is,

when T is the population median. Thus, when the underlying distribution

is unimodal and symmetric (as, indeed, our final model specifies), the

T will be both the median and the mode if we choose our order statistic

to be the sample median. Since in general using the more efficient

statistic leads to the more powerful test, it is thought that this method

of sampling yields a test more powerful than one based on any other order

statistic.

For the sample median, (3«3.l) becomes

(3.3.2) h(t)dt =-(2s^): [pc(t) ]s [1-pc(t) ]s dpc(t) .
(s.)

From this we obtain the distribution of 9 = p (t), which is

(3.3.3) dG(9;A, s) =(2s +l)l
(si)'

Pe_1 (0) 1 - P. Pe*1 (©)

pJp/^O) ]<19

P^P^O)]

for U < 9 4. L, where U > 0 and L < 1. Depending on the ranges of p (t)

and p (t) either Pr(0 = U) or Pr(9 = L) may be finite. The .A. appearing in

(3.3.3) is a parameter vector whose elements are functions of the parameters
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appearing in the two survival curves. This vector will measure in some

sense the deviation between the two curves. When p (t) = p (t),_/V

assumes its null value, A*> and (3.3.3) becomes

(3.3A) cLG(0; A*, s) =(2S +*)l 9S(1 -9)S d9 ,0 jl 0 z. 1,
(si)2

that is, 9 has a Beta-distribution. When the group size is one, s = 0, and

9 has a uniform distribution.

If we let a be the number of mice surviving at time t in the r—

experimental group in a sequence of groups, the conditional distribution

of a is binomial with parameter 9. The unconditional frequency function

is

1 a 2s-a- +1

(3.3.5) f(ar; A, s) = /2s +l"\ f 9r(1 -9) r dG(9; j\, s),

wrn
where a = 0, 1, 2, ..., 2s + 1. When p (t) = p (t), we have from (3.3"1*-)

that

,0 , ,n, (s + a ): (3s - a + l)l
(3.3.6) f(a;M s) = /2s + l\ (2s + I*' E E

r 1 (s!)2 (4s +2)1

a = 0, 1, ..., 2s + 1,

this result being completely independent of the forms of the survival curves.

The frequency function (3«3«6) is symmetric and is more dispersed than the
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corresponding binomial with parameter of one-half. This extra-binomial

dispersion results from the increased variability introduced by the

variate 9. Of course, when s = 0, f(a ;A*, s) reduces to the simple

binomial.

When A =j= A*, f(a ;A , s) will depend on the form of the

survival curves, so that we must assume specific forms of p (t) and p (t)

to obtain the distribution of a explicitly.

The reader should note that the derivation of f(a ;A, s) outlined

above requires that each control group be associated with only one experi

mental group, since otherwise the probabilities derived are not interpretable

in the frequency sense. Further, it can be seen that if several experi

mental groups are to be compared simultaneously with only one control, any

serious departure of the control value from its expectation might lead to

a set of simultaneously incorrect conclusions.

3.4 Requirements of the Survival Curve. The results of the previous

paragraph are completely general, that is, there is no restriction as to

the types of survival curves being considered. We shall now formulate some

requirements for survival curves which will make the test practicable from

both the statistical and biological points of view.

The forms of p (t) and p (t) will be required to satisfy the following

conditions:

(l) The vector A reduces to a scalar, that is, there is a single

parameter X occurring in the unconditional distribution of a which

measures the deviation of p (t) from p (t). In all the cases which we shall

consider, this requirement means that we must assume either that the scale
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parameters occurring in p (t) and p (t) are equal, or that the location

parameters occurring in p (t) and p (t) are equal. We shall assume the

two scale parameters are equal, since this is the more reasonable biological

assumption. Further, this is analogous to the assumption of equal variances

in the application of the two sample t test. If one of these assumptions

is not made, the application of Wald's sequential analysis requires that the

resulting nuisance parameter be integrated out with respect to an optimum

weight function. This introduces serious complications into the procedure.

(2) The parameter X has a meaningful interpretation for the experi

menter, since the decision procedure will involve his choosing alternate

values for X . In particular, it is required that X be monotonic

function of p (m ), where m is the median of p (t); since the experimenter

is usually interested in making decisions based on relative values of the

medians.

(3) The forms of p (t) and p (t) are theoretically legitimate from
€ C

the biological point of view. This means that the survival curves should

be sigmoidal, and perhaps also, skewed to the right. Further, if p(t) has

a range with a lower limit, b, then we require that p'(b) = 0.

(4) The decision procedure resulting when requirements (l), (2), and

(3) are satisfied leads to tractable results, so that it may be easily

applied.

Aside from (3), these requirements are also needed for non-biological

applications of the procedure. The principal results presented here shall

be based on all four requirements.

3.5 General Statement of the Decision Procedure. Decisions regarding
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the acceptance or rejection of a particular experiment compound depend

on the possible values of p (m ). Wald's procedure ([42 ] p. 78 ff.)

requires that the experimenter choose two numbers p_ and p., where

1/2 ± pQ - 1and 0 ^ p £ 1/2, such that:

(1) when Pe(™ ) •= V-,> the experimental compound is appreciably

less effective than the control,

(2) when p .£ p (m ) -c pn, the difference between the two curves

is considered negligible, and

(3) when p (m ) £ p the experimental compound is considered

appreciably better than the control.

These three intervals are termed in order, the zone of preference

for rejection, the zone of indifference, and the zone of preference for

acceptance. Since X is required to be a monotonic function of p (m ),

these zones may be defined in terms of \ and \ corresponding to p_

and p.. respectively.

Next the experimenter decides on the probabilities of errors which will

be tolerated. The probability of rejecting the experimental compound when

Pe(mc) = P0 is denoted by a, and the probability of accepting the experimental

compound when p (m ) = p , is denoted by 3. The choice of a and B uniquely

determines two real numbers, A and B, which are used in the decision procedure.

The test statistic defined by Wald is

m m f(ar; X,, s)
(3.5.1) ^ z(ar) =^ log f(a . x s) , ar =0, 1, ..., 2s +1;
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where log denotes a common logarithm. At each stage of the experiment

(i.e., at the m— trial for each positive integral value of m), the
m m-1

cumulative sum, £ z(a ), is computed. If log B ^ £ z(a ) <£ log A
m

an<i r5-, z(a ) > log A, the experimental compound is rejected. If
m

log B -^jEj z(ar) 4. log A, an additional trial is performed. If

m-1 . m
log B< ^ z(ar) < log A and ^ z(a )^= log B, the experimental

compound is accepted. The process of repeating trials could conceivably

go on indefinitely, but it has been shown ([42 ], p. 157 ff.) that the

probability is one that the procedure will terminate at some finite m.

In spite of this, it may happen that testing a given compound will lead to

a large number of trials. Thus, for economic or other reasons, it may be

necessary to stop the trials before a decision is reached by the above rule.

If we truncate the procedure in this way, say at the m— trial, the experi-

m

mental compoiyind is rejected if £ z(a ) > 0 and it is accepted if
m

T^ z(ar) z. 0. This truncation will affect the values of the probabilities

of errors Involved, making them larger than the stated values. This change

will be investigated in paragraph 3.15.

Although A and B are uniquely determined by a and 8, simple general

expressions for them have not been found. Wald [42 ], p. 44 ff., recommends

approximating A by (l - B)/a and B by B/(l - a). Then the true probabilities

of errors of the first and second kind respectively do not exceed their

prescribed values, a and p. Further, the use of these values causes a slight

increase in the ASN function.

3.6 The f(ar; X,s) when p(t) =e"15^""1^ . The first three Tequirements
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for the survival curve cited in paragraph 3.4 are satisfied if we let,

and

Pc(t) = 1, t ^ bc ,

-k(t-b f
pc(t) = e , t i bc ,

pe(t) =1, t ^ bg ,

-k(t-b )2
P.(t) = e , t ^ b ,

where k, b , and b are all constants greater than zero. The scale

parameter k is assumed equal in the two curves in order that only one

parameter, X, = -/k~ (b - b ), occur in the distribution of 9. Further,

"c =\ + 'kl/g '

and

so that

f v -[(in 2)1/2 - XJPe(mc) = e L> J

X= (in 2)1/2 - \ - In p£(mc) [ ,-oo c X± (in 2)l/2

Obviously X is a monotonic function of p (m ), so that X and p (ra )

are in one to one correspondence.

Though otherwise satisfactory, this form of survival curve leads to
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an intractable expression for f(a ; X, s). Therefore its derivation

will merely be outlined. The derivation is divided into three cases

depending on whether X = AQ > 0, X = X* = 0, or X = X ^ 0.

Case 1. X = XQ > 0, (pe(m )= pQ > l/2). Following the

derivation indicated In paragraph 3-3,

and

dG(l; Xq, b) =h_exp(_ X2)U +1, a+1),

dG(9; X0, s) = (2s + 1)1

(si)2

-[(- in 9)1/2 +X,]
s+1

1 - e
[o in 0)1/2 +Xj

1 +
v0 dO

(- In 9)
J

So that in order to derive f(a ; \Q, s), we must evaluate the integral:

f a 2s-a +1
I 0 r (1 - 0) r
0

[-[<- m9)1/2 +xj

1 - e

[(- in 0)1/2 +xj

2 s+1 <

1 +
v0

(- in 9)w

"Following Pearson [40 ], vi, we let

IX(P, *) =[B(p, q)]"1 J t5"1 (1-t)^1

d£
9 '

dt .
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To evaluate this integral, we make the change of variable x = (- In 9)

and expand the two binomial expressions occurring in binomial series.

1/2

Completing the square on the quadratic exponents puts the integrands in

3
the form of normal densities, so that we have finally,

(2s + 1)1 /2s+l\ 2!!"ar+1s /2s-a +1>f(ar; XQf s)
C)

(-1) i+j

; W W/cjj
c..

1J

^/cij-ij g^yy 2V j
r 1/2

Q, — V/» J_j • # • • liSfl

where

Further

C..=s + a +i + j + l, and D. = s + j + 1.
10 r J

f(2. +1, x0, .) - w x20 (s +1, s+1) +JSiiil! £ (j') M)J

3w<e let

J(x) =(i/JST). J"
-00

e"t2/2 dt.
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xoVcJ- V/Cj

where

C- = 3s + j + 2.

Case 2. A.= \* = 0, (p (m ) = 1/2). This implies p (t) = p (t) so

that dG(0);-.\*, s) is the Beta-distribution and f(a ; >*, s) is given by

(3.3.6).

Case 3» \= Xx <C 0, (pe(m )= p, «<£. l/2). Similar to case 1,

have

- a.-

dG(9; \ , s) = 0, 1 > 9 > e

1 (sl)2 | J

[( m 9)1/2 +
^

s+1

Proceeding as in case 1, we obtain

1 + 172
(- In 9)

0 4 9 <t e

d9

9

we



*r x \ (2s + 1)1

(8ir

X2D,(C..- D.)/C,
0 jv lj j" lj

'U
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(2s +i)i ^"V1 » ,
~r^r iS° *

r2s-a +1

HO-"1

X^(DJ+1)2/Cit3 2^(0^- Dj)
+ T7p* it172

'id

•^(Dj+1)
-372

a = 0, 1, ..., 2s + 1.

Easy application of Wald's procedure requires specific numerical

results for f(a ; X, s) for various values of X• But as can be seen, explicit

results are quite difficult to compute except when s = 0. Therefore, this

model was discarded.

0

Assuming p(t) = sech k(t - b), t > b, also leads to intractable results

for the distribution of f(a } \, s). Therefore, we turn to a model which does

not satisfy exactly all the requirements cited above, but does lead to tractable

results for small group sizes.

3.7 Discussion of the Logistic Curve. We consider now the density

P(t) =
^JTo

sech

V3

n•) - 00 z. t < 00 ,

where a > 0 and \i may be positive or negative. The graph of the cumulative

distribution of this density, which is called the logistic curve, has been

extensively investigated by Winsor [44 ]. He has shown that the mean and

variance are p. and a respectively, and that
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E(t-n)2n+1 =0, n= 0, 1, 2, ...,

and

E(t-u)2n =3n(22n- 2) a2n Bq, n=1, 2, 3, ..-:

where B is the Bernoulli number of order n. When n = 2, [jt. = 21a /5,

and the kurtosis is

-^ „_6
72 ~ 2 " 5 " 5 :

^2

Since 7p > 0, the logistic density is leptokurtic, that is, sharply

peaked relative to the normal density. Like the normal density the

logistic density is symmetric and Winsor has shown that the logistic curve

is practically Indistinguishable from the integrated normal curve the same

mean and variance.

If we assume the survival times of the mice have a logistic density,

the corresponding survival curve is

p(t) = 1/2
It ft-\X1 . tanh -2- (i=£)

V3 ° *(t-n)/j3ff
<=o Z. t -C 0°

-L*t*€

An immediate objection to the model is that it assigns finite

probabilities to negative survival times. If we attempt to circumvent this

difficulty by truncating the distribution at t = 0 and adjusting the multipli

cative constant accordingly, the A which is involved In dG(0;A, s) does

not reduce to a scalar. Therefore the distribution was left untruncated. This
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objection is not too serious for two reasons.

(l) The probability that t is less than zero is quite small when

[x/a is large. Specifically, we have

Pr(t < 0; u/0) =

1+e
itu//3a

so that when \x/a = 2, Pr(t < 0) = 0.027; and when u/ct = 5, Pr(t < 0) =

0.0001. Thus this probability goes to zero quite rapidly as n/a becomes

large.

(2) The procedure based on this model is relatively insensitive to

the form of sigmoidal curve assumed. This property will be Investigated

extensively in paragraph 3«H.

On the other hand, this form of survival curve does possess many

desirable properties. It has the property that Lim Jp'(t)I =0.
t —>°° L '

Further, it leads to a general expression for f(a ; X, s) which can be rela

tively easily tabled for s = 0, 1, 2. The distribution of a also possesses

certain symmetry properties which aid in the computations involved In finding

the 0C and ASN functions. Therefore, we shall investigate this model

extensively.

3.8 Derivation of f(a ; u, s) for the Logistic Model. Let

p (t) = , - 00 -i o < 00 ,
e

1+e

and

*(t-nj/y3&
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p (t) = , - ©o -C t £. co .

Letting 9 = p_(t), we have,
e'

which, upon making the change of variable in the distribution of the

median time of death, i.e., (3.3.1), gives the result corresponding to

(3.3-3); namely,

l-9\*l(s+l)[e(2itA2/73)(s+l)Jn
9

(3.8.1) dG(9;A, s) =(2s+l)'- x jj ^4^- ,M2 '[.^^^j^ ^^

0 4. 0 4 1,

where -A- = [>1»X2] =[CT6/0C^ ("V^V^]• ^ either nc =[i^ or
cr = a . the vector A- reduces to a scalar which is a monot6nic function
c e'

of p (n ). As was pointed out in paragraph 3.4, it is more reasonable to

assume a = a , and this leads to
e c'

dG(e; u, j.tssQ -^ _2!Ji=lf «,, 0*e *1,
(S!)2 (l-u)2S+2 fu_ +e 12S+2

[l-U J
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2itx2//3~

we shall write the distribution of a as a function of either u or p,

where u = e = p (n )/ [1 -p (u )]. In the following discussion
e c ' u ^e" c

i
r

where p=P6(nc).

The distribution of a for the logistic model, which we denote by

fL(ar; u, s) is found from (3.3.5) to be,

, s+a 3s-a +1(3.8.2, fl(v u< ., .j™» f»\ ^ r«y ' d8 ,
1' V*rA Jo I1"^8]

ar = 0, 1, ..., 2s+l.

The integral in (3.8.2) is functionally related to the integral form

of the hypergeometric function, and MacRobert [ 39 ], p. 297, shows that the
4

integral is equal to

(3.8.3) B(s+ar+l, 3s-ar+2) ^ [2s+2, s-te +1, 4s+3, (u-l)/u ]

when |(u-l)/u | <£ 1, which implies u 7 l/2.

Since 2F± [a, B, y, z]=(l-z)"a ^ [a, y-B, y, z/(z-l) J, (see
[ 39 ], P. 297), we may write for (3.8.3)

(3.8.4) B(s+ar+l, 3s-ar+2) u2s+2 ^ [2s+2, 3s-a +2, 4s+3, 1-u]

4
Some authors omit the subscripts from before and after F when denoting

the hypergeometric function.
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Substituting this result into (3.8.2), we have

(3.8.5) fT(a ; u, b) ={2?±i>l /23+1^ B(S«.+1, 3s+V2) u8+1
(sI) U

. 2FX [ 2s+2, 3s-a +2, 4s+3, 1-u ], u > l/2, a = 0, 1, ... 2s+l.

Unfortunately the hypergeometric function has not been tabled for the

arguments in which we are interested, so this expression is not immediately

useful.

Let us return to (3.8.2) and make the transformation x = 0/(l-9) in

the integral appearing there. This gives

00 s+a

(3.8.6) fT(a ; u, s) =i^iili /2s+1\us+1 r x r toLvV "' °' f ts2 u / 7~^s+l77T2sT2 '(si) I / (x+1) (x+u)
a / ntS 0

From this form of the integral it can easily be shown that

(3.8.7) fi/ar' u' s^ =fL(2s+ar+l; if1, s),

by letting x = l/y in the integral occurring on the right. This relation

permits us to use (3.8.5) for finding f (a ; u, s) when 0 < u •£ l/2. Since

u = p/(l-p), (3.8.7) implies that

(3.8.8) *i/V p' s^ =fL(2s+ar+l; 1-p, s) .
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This relation reduces considerably the computations involved in tabling

the distribution of a .
r

Returning to (3.8.6), we see that the integrand is a rational function

whose denominator has only negative zeros and is of degree 4s+3, while the

numerator is at most of degree 3s+l. Therefore, we may apply the theorem

of appendix B, and write the integral in (3.8.6) as

(3.8.9)
1

2iti

s+a -(2s+2)
\ r (z+u) lnzdz

2s+l
(z+l)

1

2*1

-u

s+a -(2s+l)
5 r(z+l) lnzdz

2s+2(z+u)

where C . and C are small disjoint circles with centers at -1 and -u, and

the integrations are performed in a positive direction with respect to the

centers.

Making use of the integral representation of the derivative of a function

(see [ 39 ], p. 70), we may write (3.8.9) in the form,

(3.8.10)
,2s

l2iTT dz2s

(
S+arr A v-(2s+2),
; (z+u) v 'lnz

z = -1

,2s+1

(2s+l)l . 2s+l
dz

: (z+1) lnz

By Leibniz's formula, this equals,

-u
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s+a

/_ o _,v „ J 1 d3z r d . dm /^ %-(2s+2)
(3'8-ll) " ,.,.z. 1 TTkiiT —J- 7k mZ —(z+u)

j+k+m=2s dzj dzk dz

j+k+m=2s+l

. s+a .

1 dJz r d lnz dm , .%-(2s+l)
jlklml . j .k ,m Kz }
° dz° dz dz

z = -1

z = -u

where the summations are taken over all the non-negative integers, j, k,

and m, subject to the restrictions noted under the summation symbols.

To evaluate (3.8.11) we need the following expressions,

f.

(3.8.12) *

. s+a

d^z r
dzJ

. s+a

dJz r

\
J

dz

(s + a )l s+a -j
- (-1) , j ^ 0= _x (s + ar - j)l

z =

(s+a )1

(s+a
-u r

s+a -j s+a -j

r u r , j £ 0,



f
d In z

A kdz

(3.8.13) <

din z

A kdz

d In z

A °dz

d In z

dz^

V

Ik

= - (k - 1)1 , k > 0,
z = -1

= - (k - 1)1 u" , k > 0,
z = -u

= iti ,
z = -1

= In u + iti

z = -u

Um , A x-(2b+2)
—— (z + u) v

(2s + m + 1)1
2s+m+2 > m - >

(3.8.14) J

dz

Si (Z +d-^D
m

dz

= -1 (2s + l)'. (l - u)

\m
(-I)"1 (2s + m)l

= -u (2s) 1 (l - u)2s+m+l
m > 0.



75

Consider now the terms of (3.8.11) which are generated when k = 0

in the two triple sums. Using the expression just derived, we may write

these terms in the form of two simple summations,

(3.8.15)

a +m-s

( x \x ) ,h ?S (-1) r (2s+m+l)l 1^s+ar;. ^ni ^ ^__j_. (a^+m.sj, (2s+l)I ^_u)2s+m+2

a +m-s-l
r2s+l / 1j r (2s+m)l 1

+(iti +In u) J^ (2s-m+l)l ml (ar+m-s-l) l'(2s)l (!,u)2s+m+l

Since the integral is a real number and all other terms in (3.8.11) are

real, the coefficient of i must be zero, whereupon the negative of the first

summation must equal the second summation. Thus the first summation may be

used as a factor of the coefficient of In u.

Using this result together with the results of (3.8.12) - (3.8.14) in

(3.8.11), we find from (3.8.6), that

s+1

(3.8.16) fT(a : u, s) =
Lv r'

/2s+l\ (s+a )1
u

V a J f ,\2 " /., N2s+1
V *y (si) (1-u)

(lfey
I

s+a

(2s+l) u

z

j+k+m=2s
k^O

s+a +j
(-1) (2s+m+l)l

jlmlk
m(s+ar-j)l (1-u)

j+k+m=2s+l
k^O

s+a +j+m

(-1) r
jlmlk

(2s+m)1

(s+ar-j)l



/. %m j+k
(1-u) uu

+{i^7
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• s+a +m

2 (-1) r (2s+m+l)l ^ 1
m=0 (2s-m)lml (ar+m-s)l '(l-u)m

In u

u > 0, and a = 0, 1, .,, 2s + 1.

This expression has been used to derive explicit formulas for f-(a ; u, s),

for s=0, 1, 2. The results appear in appendix C. These formulas in

turn were used to derive f,(a ; p, s) for p at intervals of one-tenth.

The latter numerical results appear in TPable 1, where the tabling makes

use of the symmetry relation (3.8.8). When p = l/2, f,(a ; p, s) reduces

to (3»3»6), and the numerical result is given in Table 2.

For s > 2, (3.8.16) becomes quite cumbersome since for each value

of a , the fT(a ; p, s) contains 2(2s + l) (s + l) terms (a few of which

vanish). Thus for s = 3, the number of terms for each a is thirty; and

since the range of a then has eight distinct values, two hundred and

forty terms must be evaluated to determine fT(a ; p, 3), a = 0, 1, 2, ... 7«

Thus for larger values of s, it may be simpler to evaluate fT(a ; p, s) by
h r

using (3.8.5) with the series expansion of the hypergeometric function on

a high speed computer. Of course, if the hypergeometric function were to

be tabled for the appropriate arguments, tables of f (a ; p, s) could be
L r

computed directly from them using (3«8«5)

3.9 A Linear Approximation to the Survival Curve. Though we have

results which are easily applied, they are strictly appropriate only when

the underlying distributions are of the logistic form. It "Would be of some
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Table 1

TABLE OF f_(a ; p, s) FOR s = 0, 1, 2,

s = 0

P 0 0.1 0.2 0.3 0.4

fL(o; p, o) 1.0000 0.8160 0.7172 0.6379 0.5672 fLd; i-p, 0)

fL(i; p, o) 0.0000 0.1840 0.2828 0.3621 0.4328 fL(o; i-P, 0)

s = 1

fL(o; p, i) 1.0000 0.6729 0.4958 0.3714 0.2761 fL(3; i-p, 1)

fL(i; p. i) 0.0000 0.2441 0.3162 0.3355 0.3269 fL(2; i-p, 1)

fL(2; p, i) 0.0000 0.0682 0.1425 0.2065 0.2592 fL(i; i-p, 1)

fL(3; p, i) 0.0000 o.oi48 0.0455 0.0866 0.1378 fL(o; i-p, 1)

s = 2

fL(o; p, 2) 1.0000 0.5610 0.3498 0.2222 0.1391 fL(5; i-P, 2)

fL(i; p> 2) 0.0000 0.2936 0.3241 0.2911 0.2373 tL(ki i-p, 2)

fL(2; P, 2) 0.0000 0.1050 0.1942 0.2405 0.2528 fL(3; 1-P, 2)1

fL(3; p, 2) 0.0000 0.0314 0.0908 0.1512 0.2026 fL(2; 1-p, 2)

fL(^; p. 2) 0.0000 0.0077 0.0332 0.0730 0.1222 fL(i; 1-p, 2)

fL(5; p, 2) 0.0000 0.0013 0.0079 0.0220 o.o46o fL(o; 1-P, 2)
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interest to know the extent to which the probabilities of errors of the

first and second kind are, altered when the results just obtained are

applied to populations having distributions other than the logistic.

In other words it would seem advisable to derive the distribution of a
r

for a sigmoidal curve satisfying the requirements of paragraph 3-^ and

then to compare the results with those for the logistic curve. Unfor

tunately, as was seen in 3«6, all attempts at the derivation for sigmoidal

curves other than the logistic led to intractable results. As an alternative,

we turn to a linear approximation to the survival curve.

Any survival curve, p(t), possessing derivatives of all orders at

its median, m, may be expanded in a Taylor's series

f+\ °? (i)/ \ (t - m)1
P(t) = i§o p w —il~

If we neglect all but the linear term, we have an approximation to the

survival curve, p*(t), where

P*(t) =1, t^ m+^SJ >

p*(t) =1/2 +p'(m) (t -m), m+-±rj^) ±t±a-̂ y

P*(tJ =0, t > m -0 ], v
, 2p'(m)

The approximation has the same median and the same slope at the
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median as p(t). However, it has a finite range, since the underlying

density Is the uniform. We proceed to investigate this approximation.

3.10 Derivation of f(ar; p, s) for the Linear Model. Define

P (t) and p (t), such that

p£(t) =1, t-t bc -|

pj(t) =1/2 -k(t -mc), mc -I 6t 4, mc +|

kP*(t) =0, t > mc +I

and

p*(t) =1, t <_ m6 -|

p*(t) =1/2 -k(t -m£), me -| ^t 4: m£ +|

P*(t) =0, t >m£ +| .

We have let p£(ne) =V'e(\) = -k, k > 0, since this is equivalent to

letting the scale parameters be equal in the logistic case.

Since m is the median,
c '

/ \ k
p*(m ) = 1, m t_ m - -
6 c ' c e 2

p*(mc) =1/2 -k(mc -m£), mg -§ c mc 4 m£ +|

p*(mc) =0, mc > m£ +I .
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We let X = k(m - m ), -1/2 <L \ < 1/2, so that X = p (m ) - 1/2.
t C € C

Three cases must be considered, X = X0 > 0, X = X* = 0, and X = X-. ^ 0.

Case 1. X = Xq > 0 (p (m )= pQ > l/2). The probability that

9 = 1 is equal to the probability that t in (3.3>2) is less than m - k/2.

Integrating (3»3.2) from m - k/2 to m - k/2, and making the change of

variable 9 = p (t), we have

dG(l; Xn, s) = I (s + 1, s + 1)
u x0

As in (3.3.3), we have

dG(0; XQ, s) =(2S +l)l (9 -XQ)S (1 -9+A0)S d8, X 40^1,
(sl)

and

dG(9; X0, s) = 0, 0 < X0.

Indicating the distribution of a when a uniform density is assumed by

fjjfajj Xq, s), we have

2s+l\ 1 a 2s-a +1

i/„ •'"fu(V V s) =( ) f e r(i -e) r dG(e' V s)-
a
r

For a < 2s + 1, this becomes
r '
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Vvv •> -^^ M } °V.> 8"ap <°-V M*\J2-•(..)« VaJ/
0

If we expand the binomial expressions containing in binomial series, the

integral may be expressed as a sum of incomplete Beta functions, and we have

(3-xo.) f„,v .. ,0, -!*tfL Qk £|Q Q(.l)t ^

. B(3s-ar-j+2, s+ar-i+l) I (3s-ar-j+2, s+ar-i+l) ( ,
*0

Si ™~ Ui X • • • • « £-S 4

Similarly, for a = 2s+1, we have

(3.10.2) fu(2s+1; s, ,0) =y-i, s+1) +JSg£ ,1, £ QQ (-1)1 aJ+J

. B(s-j+l, 3s-i+2) I- (s-j+1, 3s-i+2)
-l-Xq

Case 2. X = X* = 0 (p (m ) = p = l/2). This implies p (t) = p (t)

so that dG(0; \*, s) is the Beta-distribution and f(a ; x*, s) is given by

(3-3.6).

Case 3. X = X, < 0(p (m ) = p < l/2). Proceeding as in case 1, we

have,
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dG(0; x , s) = 0, 1 + X = 0 ^ 1,

dG(9; \±, s) = i£*I±£i (o - A1)"(l - 9 + A-jT d9, 0 ^ 9 ^ 1 + X^(2s+l)l

(si)'

and

dG(0; \x, s) = I (s + 1, s + 1)

Further,

(3.10.3) fy(0; Ax, s) = I (s+1, s+1) + (2s+l) , s s /s\ /s

(-D',\2 i=0 j=0
(si) i' v<3

. A1i+,j B(s-j+l, 3s+i+2) I1+A (s+j+1, 3s-i+2),

and

(3.10.4) f (a ; X, s) = ^
(si)

(2s+l) 1 /2s+l\ f, s
i^O j=0 < 's\ /s\ f i\3 ^i+j(-DJ X"

LH/ ^

. B(s+ar-j+l, 3s-ar-i+2) I1+ ^ (s+ar~j+l, 3s-ar>i+2) ^ ,

a = 1, 2, ..., 2s+l.

By comparing (3.10.1) with (3.10.4) and (3.10.2) with (3.10.3), we

can easily show that
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Table 2

TABLE OF f (a ; p, s) FOR s = 0, 1, 2

s = 0

P 0.2 0.3 0.4 0.5

V0' *>> °) 0.7550 0.6800 0.5950 O.5000 tjjiH 1-P, 0)

fn(l; p, 0) 0.2450 0.3200 O.4050 O.5000 fn(0; i-p, 0)

s = 1

V0' P' 2) 0.5518 0.4241 O.3030 0.2000 V3'* 1-p, 1)

fy(i; p, l) 0.2662 0.3023 0.3151 0.3000 fn(2; 1-p, 1)

*\j(2; P, i) 0.1433 0.2015 0.2578 0.3000 fyU; 1-p, 1)

^(3; P, i) 0.0387 0.0721 0.1240 0.2000 %(o; 1-p, 1)

s = 2

fn(0; p, 2) 0.4333 0.2826 0.1626 0.0833 V5' 1-P, 2)

fyd; p, 2) 0.2495 0.2570 0.2307 O.1786 V' 1-P, 2)

V2; p, 2) 0.1796 0.2249 0.2467 0.2381 fy(3; 1-P, 2)

V3' P, 2) 0.0967 0.1499 0.2018 0.2381 fD(2; 1-P, 2)

V^; p, 2) 0.0347 0.0691 0.1191 O.I786 fy(l; 1-P, 2)

fy(5; P, 2) 0.0062 O.OI65 0.0391 0.0833 ^(o; 1-P, 2)
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fU(V 0' s) = fU(2s "ar + 1; "V s)

and consequently that

(3.10.5) W P' s) =V2S "ar + 1; X'P' S^*

This symmetry relation has been used together with the formulas just

developed to compute the values of f. (a ; p, s) shown in Table 2. The

result for p = l/2 in Table 2 is the general result for p (t) = p (t).

3.11 Robustness of the Procedure with Respect to the Form of the

Survival Curves. Box and Andersen [ 34 ], p. 1, state two properties

which statistical criteria should possess; namely, they should (l) "be

sensitive to change in the specific factors tested," and should (2) "be

insensitive to changes, of a magnitude likely to occur in practice, in

extraneous factors." The first property is related to the power of a test,

and the second property they have called "robustness."

In our situation we are interested in the relative size of the medians

of the control and experimental curves. We are not, however, particularly

concerned with whether or not the two curves are of the logistic form.

Thus the possible difference in medians is the "specific factor under test,"

and the forms of the curves are the "extraneous factors." We defer the

discussion of the first property until a later paragraph, i.e., 3.13,

since the power curve (or OC curve) of a test which is not robust is

meaningless when the assumptions regarding the underlying distribution do

not hold.
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Our discussion of robustness goes beyond that of [ 34 J, in that

we shall investigate the effect of a change in form of the survival curves

on both a and p. Box and Andersen consider only the effect on a. We shall

assume an underlying uniform distribution and compute approximations to

actual probabilities of an error of the first kind, a*(a, 8), and of the

second kind, B*(a, p), when the logistic analysis derived In paragraph 3.8

is applied. The a*(a, B) and P*(a, p) will depend on the choice of pQ, p1

and s, as well as the prescribed a and p. Since the linear survival curve,

in a broad sense, departs further from the logistic than any sigmoidal curve

we would expect to encounter in practice, small deviations of a*(a, p) and

B*(a, B) from a and B respectively would imply that the procedure based on

the logistic model is robust.

We can find approximations to 0*(a, p) and B*(a, p) by using Wald's

general method of deriving an approximation to the OC curve ( [42 J, p. 158

and 160). We outline this method briefly. Let z, the test statistic, obey

the following three assumptions:

(i) E(z) exists and is not equal to zero.

(ii) There exists a S > 0, such that Pr(eZ < 1 - 5) > 0 and

Pr(ez > 1 + 5) > 0.

(iii) For any real h, E(ehz) = g(h) exists.

Then, by Lemma A. 1. ( [42 ], p. 158), there exists one and only one h =f 0,

such that

(3.11.1) E(ehz) = 1.
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In general, the distribution of z depends on a parameter, say 9, so that

the solution to (3.11.1) is a function of 9, i.e., h = h(9). Using this

solution, we may write,

(3-ii-2) L(e) - Ah(9) _;h(9)

where L(9), the operating characteristic function, is the probability

of acceptance when 9 is the true value of the parameter. If 9_ and 9

are the values of 9 which define the zones of preference for acceptance

and rejection, it follows that,

hl
(3.11.3) P=L(01) '=. -| I-i- ,where h± =h(©1),

A -1 - B 1

and

1 Bh°(3.11.4) a = 1 - L(9 ) *=. x " \ , where h = h(9 ).
A°-B°

In the usual case, h = -1 and hQ = 1, and A = (l - p)/a and B = p/(l - a);

so that (3.11.3) and (3.11.4) reduce to identities.

In our case, we have that z(a )=log j~ f_(a ;p., s)/f (a ;pQ, s) 1,

5
The symbol *=. denotes "is approximately equal to."
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where a is distributed with frequency function, fTT(a ; p, s). Then

(3.11.1) becomes

2s+l

(3.11.5) aio
r

fL(\t P]/ s)
fL(ar; pQ, s)

Mp7)
fu(V V s) =1' 7 =°' 1#

For the values of p and p with which we deal, the three Conditions

cited above hold, and we can find the two pertinent solutions to (3.11.5);

namely, h = h(p ) and h = h(p ). From (3.11.3) and (3.11.4), we have

hl
1 - (—)

(3.11.6) p*(a, P) *=.

and

(3.11.7) «*(a, P) *=.

hl hl
(k£) _(JL)

hQ

(i^) -1
v a '

,

16^ 6 h°(i±) _(_£_)

We have found by numerical methods the roots to (3.11.5) for

p = 0.4, p = 0.6 and p1 = 0.3, p = 0.7; for s= 0, 1, 2, These roots

are listed in Tables 3 and 4 along with the approximate values of a*(a, p)

and p*(a, p) for particular values of a and p found by using (3.11.6) and

(3.11.7). Additional values of a*(a, p) and p*(a, p) may be found by
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Table 3

TABLE OF 0*(a, p) AND P*(a, p)

FOR pQ = 0.6, Pl = 0.4; AM) s = 0, 1, 2.

s = 0, hQ = - h± = 1.44

a a*(a, p) P p*(a, p)

0.05 o.oi4 0.05 o.oi4

0.10 o.o4i 0.10 o.o4i

0.20 0.120 0.20 0.120

0.05 0.016 0.10 0.039

0.10 0.039 O.05 0.016

0.10 0.045 0.20 0.109

0.20 0.109 0.10 0.045

s = 1, hQ = - 1^ = 1.22

0.05 0.027 0.05 0.027

0.10 0.064 0.10 o.o64

0.20 0.156 0.20 0.156
0.05 0.028 0.10 0.063

0.10 0.063 0.05 0.028

0.10 0.067 0.20 0.149

0.20 0.149 0.10 0.067

s = 2, hQ = - h± = 1.15

0.05 O.O38 0.05 0.038

0.10 0.074 0.10 0.074

0.20 O.169 0.20 0.169

0.05 0.034 0.10 0.073

0.10 0.073 0.05 0.034

0.10 0.077 0.20 0.164

0.20 0.164 0.10 0.077
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substituting the tabled values of h and h In (3.11.6) and (3.11.7). Two

symmetry properties which hold when pQ = 1 - p were found useful in

computing these tables. These are:

(1) hQ = -h ,and

(2) o*(a, p) = p*(p, a).

The first relation follows directly from applying to (3.11.5) the symmetry

properties of fL(ar; p, s), i.e., (3.8.8), and of f (a ; p, s), i.e.,

(3.10.5). The second follows from using the first relation in (3.11.6)

and (3.11.7).

The results of Tables 3 and 4 point up the relative ihsensitivity

of the procedure to the form of the survival curve. In fact, they indicate

that the logistic model is conservative relative to the uniform with

respect to the probabilities of the two types of errors. Further as s

increases, the deviations between the prescribed and actual probabilities

decrease; and when pQ and p are chosen farther apart these deviations also

decrease slightly. Though the results of Tables 3 and 4 pertain to cases in

which the pQ and p1 are chosen symmetrically about one-half, additional

calculations indicate that an asymmetric choice yields results close to

those tabled.

The curves which we considered in paragraph 3.6 were sigmoidal with a

range which had a finite nonnegative lower bound and an infinite upper bound.

This kind of range is more realistic than either the uniform, which has a
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finite range, or the logistic, which has a range infinite in both

directions. Intuitively, it seems that for these underlying distributions

the true a will fall between the a and a*(a, p) shown in Tables 3 and 4

and the true p will fall between P and P*(a, P)• Thus it seems that the

analysis based on the logistic model is slightly conservative when the

underlying distributions are of the form of those discussed in paragraph 3.6.

Although this procedure is robust when the underlying distributions

are uniform, results for a particular case indicate that the underlying

sample exponential distributions will yield probabilities of errors greatly

different from their nominal values. This is not surprising, since the

exponential curve is uniformly concave. Thus, particularly in the vicinity

of the median, the exponential is worse than the uniform as an approximation

to the logistic.

3.12 Comparison of the Original Analysis to the Logistic. The test

statistic proposed in [. 38 J is

x /. Ny
/"& N /1-P

(3-12.1) z(a )= log ' 1 »' 1
r \?o/ V-pQy

a (s+l) s(2s-a +l)
r r

where x = -^—= , y = —^— , and a = 0, 1, ,.., 2s+l. In the
2s+l ' * 2s+l ' r , , ,

particular case treated in [38 ~\, pn = 1 - p, =0.6 and s= 2, so that

(3.12.1) yields
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z(0) = 0,3522

z(l) = 0.1761

z(2) = 0.0000

z(3) = -O.1761

z(*0 = -0.3522

z(5) = -O.5283.

The prescribed probabilities of errors were a = p = 0.10.

Using the methods of the previous paragraph, we can find the

approximations to the true probabilities of errors, i.e., a'(0.10, 0.10)

and P'(0.10, 0.10), when the underlying distributions are of the logistic

form. Obviously the three conditions on the z(a ) hold when a is
r r

distributed with frequency function, fT(a ; p, s), so there exist unique

solutions to the equations,

5 z(a )h(p )
£n e r ' fT(a ; p , 2) = l,

a =0 Lv r' y' '
r '

where 7= 0, 1, and pQ = 1 -p = 0.6. These solutions are h(0.6) = 2.43

and h(0.4) = 0.l6. Substituting these results in (3.11.3) and (3.11.4),

we have

a'(0.10, 0.10) = 10 ,- = 0.004,
1 + 9 5

and

qo.i6
p'(o.io, 0.10) = —y lA = 0.587.

1 + 9
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Thus, when the logistic model holds and the original analysis is

used, the probability of rejecting an experimental compound with Pe(m )~

0.6 is 0.004 and the probability of accepting an experimental compound

with p (m ) =0.4 is 0,587. One might think that a great number of errors

of the second kind would result from using this analysis. However, this

is not necessarily the case. In the application cited in [38 J, most of

the compounds tested had very poor protective properties, so that very

few were accepted. Thus, relatively few errors of the second kind were

made and the apparent gross underestimate of the true P did not result in

an excessive amount of testing on poor compounds. In other types of

screening experiments, however, the underestimation of P might be more

serious.

Sometimes, in this experiment, a compound which had been rejected

at the screening stage was later subjected to more exhaustive tests;

usually because it belonged to a family containing one or more known pro

tective compounds. In no case did such a compound prove to have useful

protective properties. This is reasonable in view of the apparent small

magnitude of the true value of a.

3.13 The OC Function. The operating characteristic (0C) function,

L(p), is the probability of acceptance when P6(™) =P« wald [42 ],

p. 160, cites the following approximation to L(p),

An(p) .
(3'13-1} L(P) '- An(p) .Bh(p) >
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where h(p) / 0 is the unique solution to the equation,

2s+l

(3.13.2) 2.
s a =0

r

fL(V Pi' S)
h(p)

fL(ar; p, s) = l.

This approximation Is subject to the three conditions cited in paragraph

3-11.

When p = p' such that E ,(z) =0, that is, when condition (i) cited

in paragraph 3.11 does not hold; we have (see [42 ], p. 176), that,

(3.13.3) L(p') '=. _log_A.

log A - log B

As before, to evaluate (3.13.3), we let A = (l - p)/a and B = p/(l - a).

We have considered the case where p- = 1 - p. = 0.6 and a = P = 0.10,

s = 0, 1, 2. This situation permits several simplifications in using the

above formulas. Because of the symmetry property, (3.8.8), h(p) =

- h(l - p) and consequently L(p) *=. 1 - L(l - p). Here p' = l/2, so that

L(l/2) = l/2. These results hold whenever pn = 1 - p and a = p. The

approximations to L(p) are shown for intervals of one-tenth in Table 5. No

differences among the h(p) for s = 0, 1, 2, were detected at the level of

accuracy attained in these calculations. The values of h(pO shown here may

be used for computing L(p) for other values of a and p. A graph of L(p) was

made from Table 5, and appears in Figure 1.

These results show that the procedure is quite powerful. Further, it
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Table 5

TABLE OF THE OC AND ASN FUNCTION

FOR p_ = 0.6, p = 0.4; a = p = 0.10; AND s = 0, 1, 2

E (n)
P

p h(P) L(p) s = 0 s = 1 s = 2

0.0 - CO 0.000 8.1 3.2 2.0

0.1 - 5.5 0.000 12.9 4.4 2.7

0.2 - ZM 0.001 18.7 6.2 3.7

0.3 - 2.10 0.010 28.9 9.5 5-7

0.4 - 1.00 0.100 48.3 15.7 10.4

0.5 0.00 0.500 66.0 21.4 12.7

0.6 1.00 0.900 48.3 15.7 10.4

0.7 2.10 0.990 28.9 9.5 5.7

0.8 3.44 0.999 18.7 6.2 3.7

0.9 5-5 1,000 12.9 4.4 2.7

1.0 00 1.000 8.1 3.2 2.0
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apparently possesses the requirements concerning the OC function cited

In [42 J, p. 32; namely that,

1 - L(p) ^ a for all p ^ pQ,

L(p) ^ P for all p ^ p .

We have shown that those requirements hold for the particular case

considered to the order of approximation of (3.13.1). Intuitively, it

seems that this should be true in general. If these requirements did not

hold for a particular choice of p~ and p , an optimum weight function would

have to be found, and the entire procedure would be considerably more

complicated.

3.14 The ASN Function. The average sample number (ASN) function,

E (n), is the average number of trials needed to reach a decision. When

the three conditions cited in paragraph 3«H hold, Wald gives the approxi

mate formula (see [_k2 ], p. 172),

(3.14.1) E(n) *=. L(p) log B+[l -L(p)] log A ^
E [z(a )1p L. \ r' J

in which the usual approximations for A and B may be used.

When p = p', such that E , [z(a )J = 0, an approximation to E ,(n)
ST "** Sr

is given by (see [42 ], p. 176),
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(3.14.2) E^,(n) =-lQg Blog A

,'&VJ
P'

P'

We have used (3»l4.l) and (3.14.2) together with the results for

L(p) shown in Table 5 to approximate E (n) for the cases where p = 1 - p =

0.6, a = P = 0.10, and s = 0, 1, 2. The numerical results appear

in Table 5 and a graph made from those values appears as Figure 2. The

symmetry relation,

(3.14.3) Ep[B<aP>] =-El-p[z(ar)]

where p0 = 1 - p1, was found useful in computing these results.

An examination of Table 5 shows the following interesting approximate

relation:

(3.14.4) E (n) *=. 3E (n)
s = 0 p

*=. 5E (n)
n P

S = 1 * S = 2

In other words, the average total number of mice used appears to be

independent of the group size for s = 0, 1, 2. This is in contrast to the

double dichotomy, where using larger groups always increases the E (n)

(see [42 ], p. 102 and p. Il6).

The question arises as to what group size is optimum with respect

to some statistical criterion. In formulating a criterion we may neglect

the 0C function, since it is apparently insensitive to group size, for
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s=0, 1, 2; and also the average total number of mice used, since this

is apparently invariant for s = 0, 1, 2. Thus, we may define an optimum

group size as one which minimizes the average time needed to reach a

decision, that is, s is said to be optimum if it minimizes E (n) . E (t).

Now for the logistic survival curve E (t) is equal to u. for all s, so

that this criterion reduces to finding the s for which E (n) is a minimum.

For s = 0, 1, 2, group sizes of five (s = 2) achieve a minimum uniformly

in p. However, it is not clear whether the largest feasible group size

is always optimum according to this criterion. Further Investigation of

the criterion for various values of p and p as well as for larger group

sizes would be needed. Even if it were proved that the largest feasible

group size were always optimum, considerations other than statistical might

dictate a smaller group size.

As we have noted, using the usual approximations for A and B decreases

the probabilities of the errors, and consequently increases the E (n).

The method of Wald [42 ], p. 65, could be used to find closer approximations

to E (n) than those given in Table 5.

3.15 The Effect of Truncation. Although Wald [42 ], pp. 151-152,

has shown that the probability is one that the test procedure will eventually

terminate, it is sometimes desirable to set a definite upper limit, say n_,

on the number of trials. If, by the usual rules, no decision is reached by

th n0 n0
the nQ trial, we reject if Z z(a ) > 0 and we accept if Z z(a ) 4: 0.

This truncation increases the probabilities of errors of the first and second

kinds from the nominal values to values which we denote by a(n0) and P(nQ).
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Wald [42 ], pp. 63-64, has derived a general method of deriving

upper bounds for a(n„) and P(n0); namely,

(3.15.1) a(nQ) ± a+J (7g) -§ {y±),

where

(3.15.2) 71 = -V^O Eo[ z(ar} ]

-oC2^]

and

(3.15-3) 72 =
log A-nQ EQ[z(ar) ]

no °olzK)']

(3.15.4) p(nQ) ^ p+§ (yk) - $ (yj

where

(3.15.5) 73 =

and

logB-n0E1[z(ar)]

1*0 CT1 [ z(ar) ]

f,^ n0 El [ 2(ar} ](3.15-6) 7^ = :

&L [»<S> ]

E. and a. denote the expectation and standard deviation, respectively,

when p = p., i = 0, 1.
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Table 6

UPPER BOUNDS ON C*(nJ AND p(nj

FOR pn = 0.6, p = 0.4; a = p = 0.10; AND s = 0, 1, 2.

s = 0 s = 1 s = 2

Upper Bound Upper Bound Upper Bound

n0 on a(nQ), p(nQ) n0 on a(nQ), p(nQ) no on a(nQ), p(nQ)

3 0.591 1 0.591 - -

5 0.481 - - 1 0.477

10 0.433 - - 2 0.427

15 0.396 5 0.392 3 0.390

25 0.339 - - 5 0.332

30 O.316 10 0.312 6 0.310

45 O.265 15 O.261 9 0.259

50 0.252 - - 10 0.245

60 0.229 20 0.228 12 0.223

75 0.203 - - 15 0.197

100 0.173 - - 20 O.167

198 0.122 64 0.122 38 0.121
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The results of truncation of the procedure when pQ = 1 - p =

0.6 and s= 0, 1, 2, for various values of nQ are shown in TaMe 6.

Because of the symmetry relation (3-14.3), the relation,

°0 [z(ar}] =al Cz(ar} J

and the fact that log A = - log B, we have 7^ = - y1 and 7 = - y^.

Thus by the summetry of the normal distribution the bounds given by

(3.15.1) and (3.15.4) are identical.

Table 6 has been arranged such that the total number of mice used

is nn trials is equal for s= 0, 1, 2. An inspection of Table 6 shows

that the effects of truncation apparently depend on the total number of

mice used and not on the group size, at least for s = 0, 1, and 2. The

last row of entries in Table 6 is for n„ = 3 Max E (n). Wald recommends
P P

this choice of nQ, stating that, in general, it will not affect a and p

greatly. The statement is certainly verified in Table 6. However, for

screening tests this choice of nQ is usually impracticable.

3.l6 An Illustration of the Procedure. We shall apply the logistic

analysis developed in paragraph 3.8 to the data collected by Doherty,

Burnett, and Bhapira [ 36 ]. Each trial was performed as follows s Ten

male mice of the C_H strain, each ten to twelve- weeks old and each weighing

twenty to twenty-four grams, were randomly divided into two groups of five.

One group was injected intraperitoneally with a saline solution and one

with the experimental compound. Ia this instance, each mouse of the experi

mental group was treated with 30.0 mg (190.O uM) of cysteine hydrochloride.
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Ten minutes after injection the ten mice were simultaneously exposed to

800 r of X-radiation. The two groups were observed until the third

mouse in the control died. The number of mice surviving in the experi

mental group was then counted, and the decision was made to accept, reject

or continue sampling. The trials were continued sequentially until a

decision was reached.

In terms of our notation, s = 2 and the probabilities of errors

were chosen to be a = p = 0.10 with the zones of preference determined by

pQ = 1 -P1 = 0.6. Using Table 1, we find

z(0) =-z(5) = log fL(0; 0.4, 2) -log fL(0; 0.6, 2) = 0.48o6

z(l) = -z(4) = log fL(l; 0.4, 2) -log f (1; 0.6, 2) = 0.2882

z(2) =-z(3) =log fL(2; 0.4, 2) -log fL(2; 0.6, 2) = O.0961.

Further ln(a/l - p) = - ln(p/l - a) = 0.9542. The results of the decision

procedure for cysteine hydrochloride are summarized in Table 7.

Table 7

The Decision Procedure for Cysteine Hydrochloride

z(a )
r

•O.0961

-0.4806

-0.4806

Zz(a )
r

-O.O961

•0.5767

-1.0573

Decision

Since -0.9542 < -0,0961 < 0.9542

continue sampling

Since -0.9542 ^ -O.5761 < 0.9542

continue sampling

Since -1.0573 < -0.95^+2,

accept the compound
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3.17 Possible Extensions. The most obvious need for further

work on this problem is with regard to the computing of tables of

fT(a ; p, s) for larger values of s. Probably the most practicable way

of accomplishing this is to use (3*8.5) in conjunction with a high speed

computer. Such tables, together with similar ones for fy(a ; p, s),

would permit further studies to be made on the robustness of the procedure.

Then the ASN function could be computed for further values of s, and the

generality of the approximate relation (3.14.4) (concerning the invariance

of the average total number of mice used) could be ascertained.

The possibility of a stopping time based on an order statistic

other than the median could be considered. As was pointed out in paragraph

3.3, it is thought that this will lead to a procedure less powerful than

the one we have considered. The ASN function might also be affected

adversely.

Probably the easiest and most useful extension is to apply this

sampling method to nonsigmoidal survival curves, in particular, to the

simple exponential. Preliminary work on this indicates that ifchis general

ization is quite simple and leads to numerical results differing appreciably

from those for: underlying logistic distributions.

3.18 Summary. Part III investigates methods of analyzing data

collected by using the sampling procedure proposed by Kimball, Burnett,

and Doherty [ 38 ]. The method of analysis which is based on logistic

survival curves was found to be best with regard to practical and theoretical

considerations. It is shown that the procedure is relatively insensitive

to the form of the sigmoidal curves assumed. The OC function, the ASN

function, and the effects of truncation are investigated for particular

cases. An illustration of the procedure is given.
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VI. APPENDICES

Appendix A. The Covariance in Terms of Conditional Expectations.

Let U = (u,, u2, ..., u.) and V = (v ,v?, ..., v.) be random

variables. Assume p = p(U, V) and q = q(U, V) have finite means and

variances. Then we have

(i) Cov(p, q) = EE(p.q|V) - EE(p|v) EE(q|v) .

But,

Cov(p, q|v) = E(p.q|v) - E(p|v) E(q|v) ,

from which, taking expectations with respect to V, we have,

E[cov(p, q|v) ]=EE(p q|v) -e[e(P|V) E(q|V) ].

Substituting this result in (i) gives

(II) Cov(p, q) =E[cov(p, q|v)] +e[e(P|v) .E(q|v)] -EE(p|v) EE(q|v) ,

(ill) Cov(p, q) =E[cov(p, q|v)] +Cov[e(p|v), E(q|v) ]. Q.E.D.

Appendix B. A Complex Integration Theorem.

Theorem (cited without proof by MacRobert [39 ], p. 74, problem

37). I^t P(z) and Q(z) be polynomials of degree m and n respectively,

where m ^ n - 2, and let Q(z) have no positive or zero real roots. Then,

CO

0
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where X denotes the sum of the residues of P(z)ln z/q(z),

(0 <i amp z <i 2rt) at the zeros of Q(z).

Proof: Integrate f(z) = P(z) In z/q(z) around the contour of

Figure 3, consisting of:

(1) the x-axis from r to R ,

(2) the large circle |z| = R,

(3) the x-axis from R to r,

(4) the small circle |z| = r.

Consider the integral along (4) which as r >0, is 2«i times

the residue of f(z) at z = 0. By a theorem cited in [ 39 ], P« 57, this

integral is equal to - 2«i Lim z f(z), if this limit exists. We may
z—>0

write,

m k,

(i) Lim |z f(z)| = Lim
jzj [in z[ jkjp \z 1

S - j|z—>0 z—*0 ,Z_ B.z
J=0 j

m k © iwhere P(z) = ^Eq A^z and Q(z) = S B.zd. Now, on (4), we have,

(ii) |z| = r,

(iii) |ln z| = |in r + 101 ^ |ln r| + 0, where 0 •= © «£. 2«,

. . . m v m , . k

(iv) Ik=o V I* k=0 K^ > and

(v) Ifio^l £ |BQ| -j^ iBjIrJ .

When r is small enough the expression on the right hand side of (v) is

positive, since B ^ 0. Applying (ii) - (v) to (i), we have
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Figure 3.

The Contour of Integration.

UNCLASSIFIED
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Lim |z f(z)
z kO

(r(|lnr| +0) j^ |AJf1
z Lim J n x^—-i
r >0 IbJ - ,E, |BjrJo. -jSi IV

In the limit*, the summation in the denominator goes to zero and the

summation in the numerator to |AQ|; so that if we assume AQ £ 0, we may

write,

Lim |z f(z)| 4. —— Lim
•0 |bJ r »0

IAn I

0'

Applying l'Hopital's rule, we have

(|ln r| + 0)

(1/r)

Lim

z >0
\z f(z)| 4 01

Lim (-r) = 0.
|B0I r >0

When AQ = 0, the inequality follows a fortiori. Therefore Lim
r 1 z—*°|-z f(z) I =0, and the integral along (4) of f(z) is zero as r >0.

Consider now the integral along (2), which, as R » oo t is the

negative of 2«i times the residue of f(z) at infinity. By [ 39 ], p. 58,

this integral is equal to 2iti. Lim jz f(z) 1,if this limit exists.
Z >M I- J

Proceeding as above, we may write,

(vi) Lim |z f(z) |= Lim
z In z

m >

oo ©O n 1



On (2), we have

(vii) |z| =R,
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(viii)

(ix)

(x)

|ln z| = |ln R + 101 ^ |ln R| + ©, where 0 6 G 4 2n,

I ^ Vkl <= Jo K\ **> and

I jloV^I ^ |Bnl ^-]h |B,| Hj -

When R is large enough the expression on the right of (x) is positive,

since B ^ 0. Applying (vii) - (x) to (vi), we may write,

Lim |z f(z)| ^ Lim
Z >oo R >oo

[ (|1°H| *°\3o Kl R'
|Bn| R-- jg |Bj| RJ

Dividing numerator and denominator by R , we have

Lim |z f(z)| <L Lim
z ^e» R >o°

m Jc-n+l(in R+ 0) ^ |aJ K

|B I - *zt |B,| RJ_n1 n1 j=0 ' j1

In the limit the denominator goes to |B |, so we may write,

Lim |z f(z)| <i —— Lim <J
Z *Oo B R >oo

1 n1

(|ln R| + 0)

Since n > m + 1, the denominator becomes infinite in the limit and we may

apply l'Hopital's rule, which yields,



116

Lim |z f(z) | 4. Lim

t A m k—f
|BJ R—»oo IR( j^ IaJ (n - k - l)Rk"n)z—>oo

9ri

Multiplying numerator and denominator by R , we have

Lim |z f(z)| ^ -i
z >oo

Lim 1
<A K\Bk+1)2

(k|, 1^1 (n -k+1) R"+k+1)B R—>oc
n1

Since the denominator is an infinity of higher order than the numerator,

the expression on the right goes to zero, and the integral along (2) > 0

as R ^00 .

Therefore, as r —* 0 and R >°°, the Integral along the entire

contour may be written as

2*1 yf

(1)

P( z) In z dz

(3)

P(z) In z dz
—Q&)

Now (l) is on the branch amp z = 0 and (3) is on the branch amp z = 2n,

so we have

J Qtx72*i fc = P(x)
In x dx +

oo

and I Sfcl dx - #

0

f P(x)(ln x + 2iti)dx,
J oTxl
CP

Q.E.D.
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Appendix C. Explicit Formulas for fT(a ; u, s) for a = 0, 1, ... 2s+l,

and s=0, 1, 2.

The following formulas are derived from equation (3.8.16).

Case 1. s = 0 (Groups of size l).

(1 - u)

fL^' »*0) = - rh - t~2 ^u
(1 - u)

Case 2. s = 1 (Groups of size 3).

* fn. -,\ U 3(tt - 3) 60 1f (0; u, 1) =-—3 i u 1: tt) - -—-2+t
(1 - u) I (1 - u) u

fL(l; u, 1)

4. 12
1-u /.. \2(1-u)

JL J 54 + 36(2 + 3u) , 6
/-, \3 I 1 - u /, \2 u(1-u) (1 - u)

In u

18
rrr-TJT

8 . 10 1 _
- ——— + ————— in u
i-u ,_ v2 r

(1 - u;

"Recall: u = p/(l - p) for all 0 <c p < 1.



f (2; u, l) = —u r-
L (1 -u)3
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^5(1 - 3u)
1-u

36(2 + 3u )

(1 -u)2
33

18

"(l~^uT - 3 +
12 10

1-u /. s.2
(1 - u)

In u

2^ ,„,„ . „ 3>fT(3; u, 1) =-±—? 21^ +3uc) +12(2 +3u^) +
(1 -u)3 I 1-u

(1 - u)'

12

1-u
'3-^2-+ 5

1-u /- \2
(1 - u)

Case 3. s = 2 (Groups of size 5).

1 u~

26u

In u

fT(0; u, 2) =i 5(u - 5) + 6o(2u + 5) + 1260
2 (1 -u)3 u2(l - u) u(l -u)2 (1 -u)3

+ 84o(4 + 5u) 2_ 5040
(1 -u)4 u3 (1 -u)3 4--3Tr^ry +^-7^ In u

f (i.„ ?\ _ 15 u" J 5(u - 5) 770 , 350(3 - 5u)fT(l, u, 2) -— - ^ < ( _u) - - + 3
(1 - u) (1-u) (1 - u)J

280(4 + 5u ) _1 60

(1-u) u (1 - u)
2.JL+-^ 42

1 _U '(1 -u)2 (1 -u)3
In u



fT(2; u, 2) = 60 -3u

(1 - u)5
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125 . 65(2 + 5u) , 245 (-3 + 5u)
3^T*^' (1-u)2 2 (1-u)3

.,. 70(^ + 5u3) , 1 , 5 24 126 , 224
" (1 - u) ,- x2 " ,_ x3

v (1-u) (1 - u)

126

(1 - u)*
In u

f h. „ ^ _ 300 u3 77(1 - 5u) 47(2 + 5u ) . 63(3 - 5uJ)fL(3'u'2)-^T^p5ir^T- 2(i_u)2 + 2(1_u)3

. lk(k + ^ ) . X3T + l
5 BO""1" (1 - u)

60 210 , 280

1 - u (1 - u)2 ' (1 - u)3(1 -11)

fL(4; u, 2) 900 uJ

(1 - u)5

4. lLL±J*£l +g9u
3777^ 2°

126

(1 - u)
In u

19(-1 +5u2) , 37(2 +5u3) , 77(-3 +5uU)
^ - * 6(1 - u)2 12(1 - u)3

+ n~nu
5 20 105

2 - ir-niT+ 2(1. u
56

♦-^(1 - u)* (1 - u)J (1 - u)
In u
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=lg6o u3 J 319(1 - 5u3) 107(2 +5u^) 13(3 - 5^)
"(1-u)5 504(l-u) " 84(1 -u)* +12(l_u)3fT(5; u, 2) =

(4 + 5u6) 17 ix2
? 70

3(1 - u)

+ n~nrr

JJG:ccw

8/14/58

5 + 5 21 28

2(1 - u)2 3(1 - u)3 (1 - u)4
In u
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