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I. AN EXTENSICN OF THE CRAMER-RAO INEQUALITY

1.1 Review of the Literature and Summary. Cramer [:6 1, p. 47h
ff., and Rao [12 ] derived independently a lower bound for the mean
square error of an estimate t of a parameter ¢ which appears in a frequency
function of a specified form. This expression, alternately termed the

Cramer-Rao inequality or the information limit, is

2

[aE(t) :!’
(1.1.1) B(t-0)? > [E(t) - o]? + —2 |

2
E(aén )

SN
where ¢ is the likelihood of the sample. The expression E(d1ng/dx)” is
called the information on & and is sometimes denoted by I(). Under
rather general conditions it can be shown equal to E(~821n¢/aog).

The equality in (1.1.1) is reached if ard only if
_ t v(a) + w(a)
(1.1.2) g=¢ e

vhere t and ¢l are functions of the observations alone and V() and W(o)
are functions of & alone. By the results of Pitman [rll ] and Koorman
[10], the form of (1.1.2) implies that t must be a sufficient statistic.
The fact that this form of the likelihood yields a minimum variance
estimate was first pointed out by Aitken and Silverstone [:l ]. If we have
n observations which are independently and identically distributed, the
frequency function of the underlying population must be of the so-called

Pitman-Koopman form,
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(1.1.3) f(x;0) = u(@) h(x) oF() &(x)

and t must be a function of g(xi) for the equality in (1.1.2) to

n
&
hold.

Several extensions of the basic inequality have been derived.
Bhattacharyya Eh] and Chapman and Robbins ES :[ have derived results
which yield more stringent inequalities in certain instances. Wolfowitz
|:18] has extended the result to sequential sampling situations. Cramer
[7_] and Barankin EE:[ have considered joint bounds on sets of estimates
of parameters and Hammersley E9 :[ has derived a lower bound of the mean
square error of an estimate for the situation in which the parameter to
be estimated can only assume discrete values. Barankin E 3] has also
considered lower bounds on the general absolute central moments of the
estimate.

Al]l these results assume that the parameters involved are
constants. Here we shall consider the case where the parameters are
random variables. Thus the lower bound of the mean square error of an
estimate will take into account the variability due to both the obser-
vations and the parameters involved. Necessary and sufficient conditions
for equality of the extended inequality are derived. Most unfavorable
distributions, i.e., distributions which maximize the lower bound, are
defined, and several examples are given. Extensions analogous to those
of Bhattacharyya [_4_] and Wolfowitz [ 18] are also considered. Finally,

bounds on the variance. of linear estimates of the mean of the parameter

are derived.
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1.2 Notation. Consider a frequency function f(xIO), where
0= (Ol’ 02, crey Os), the function being specified when © is specified.
Further, © is a random variable having the distribution G(©) defined

over a non-degenerate range A_. Iet X = (xl, Xy eeey xn) be a random

2’

sample from a randomly chosen population having the specified frequency

function. ILet t, = tk(X) be an estimate of 6,

independent of 6, . Denote E(tklO) by Yk(g) and the conditional likelihood

n
of the sample by #(X|0), which in general will be 15 f(inO),

1< k £ s, functionally

1.3 The Continuous Case. If £(x|0) is a density, assume 6¢/89k

exists for all 6 in A_ and [34/30, | < H(X) where H and t, H are

integrable over Rn’ the range of X, which is independent of Ok. We have

(1.3.1) 1= f¢dX

R
n
and.
(1.3.2) Y, (0) = ftk¢dx .
R
n

By the assumptions just made (see Cramer [:6:], p. 66 and p. 475), we
may differentiate under the integral signs in (1.3.1) and (1.3.2) and

obtain

(1.3.3) o—_-f %g— dX = f a%n $ax
K
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and
3y, (0)
k _ d _ oln
(1.3.4) "5-5;—- = f ‘Gk 5‘2—}; aX = f tk Bfo—ki ¢d.X .
R R
n n

Finding expectations of (1.3.3) and (1.3.4) with respect to 6, we have

(1.3.5) 0= ff %Qlﬂégiaxm(o)

k
A R
VS n

and
R} 4 (o)

3v () Bln
6 k _ 5—-—---dc}(o = ¢dx ag(e).
woe () - [ = [
A

s

By the Schwarz inequality we may write

(1.3.7) ff -o -E 1// (o) +I9, ) 2 4ax ac(oe) f f(géfi) : ¢ax ac(e)
A R

S n

ff [t,-0,-E [y, (0)]+E(0,]] (%g—xl:-é) gdx dc(e)
A R

5 n




1k

In view of (1.3.3), (1.3.5), and (1.3.6); (1.3.7) may be written,®

2 oy, (6)

and if EE[(aln;ﬁ/aok)e[g'[ # 0, then

o avk(o)
Var(t, -0, ) >

kK k' 2 5T, (o]

vhere I () = E[(aln¢/ack)2|o]. Since Var(t,-0,) = EE[(tk-Ok)‘?IO] -

Ez[]k(o)-okj, we may write

d¥, (0)

E2(O:k( )
k

(1.3.8) EE[(tk-Ok)EIO] > Ezﬁrk(o)-ok] +

E[r,(e)]

If yk(o) =6, (1.3.8) may be written

(1.3.9) EE [(tk-Ok)‘?[O] >

S
e[ (e)]

1 EE symbolizes taking the expectation with respect to X for fixed ©

and then with respect to 6.
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2
when [ELQ-} < K(X), where K(X) is integrable over R, it is well

302
known that
2. 2
E dln lQ = F _ bS) lné Ig
18] 2
k a@k

Then we cen write Ik(O) = E[¢821n¢/80i|9] in (1.3.8) and (1.3.9). Since
Ik(O) is called the amount of information, E[Ik(O)] may logically be
termed the mean amount of information.

It should be noted that the derivation of these inequalities is
equally applicable to samples from multivariate populations.

1.4 The Discrete Case. Suppose that £(x|0) is a discrete
frequency function whose range, R

1

Assume ¢ is a continuous function of Ok for all

s may be finite or denumerably infinite

but independent of @

k.
X in Rn and O in As’ and that X Z ... Z 8¢/80k and X X ... X
X X X X, X X
1 "2 n 1 "2 n

tk(8¢/80k) converge uniformly in A_. By operations similar to those

employed in paragraph 1.3, we find

(1.4.1) T ... % aén g =0
xl x2 xn k
and
dY, (0)
oln _ k'L
(1014-02) }Zc i coe }Z{ tk ok ¢ = go';'—""
12 n

since the assumptions Jjust made allow differentiation under the summation

signs. By the Schwarz inequality we may write
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,[- il iz... in [tk-Ok-E[v%(O)]+E(Ok)]2 dac(e) .
A
s

. J j( S % ... 2
X, X X
y 12 n
S

V4

e\
L]

172 n k

J[ b2 P » [tk-Ok-E[yk(O)]+E(Ok)] g%ﬁé $ac(e)
X, X X
A

Following steps analogous to those in paragraph 1.3, we arrive at

(1.3.8) and (1.3.9), for the discrete case. -
1.5 Conditions for Egquality. The condition under which the

equalities in (1.3.8) and (1.3.9) hold are set forth in the following

three theorems. \

Th. 1, If (1) Pr. E{(tk-Ok)glO] =c, 3 =1,

(ii) Pr. zyk(o) =c, ] =1,

(iii) Pr. [0 = ey ] =1,

(iV) Pr. 5-6——- = Cl}‘ = l, and -

(v) Pr. [Ik(O) = ¢ ] =1,
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where c;, 1 =1, 2, ..., 5, are constants, then the equality in (1.3.8)
holds if and only if tk is a sufficient estimate of Ok.

Proof. Under the conditions of the theorem (1.3.8) reduces to
(1.1.1), for which it has been shown by Rao [ 12 ] that the equality
holds if and only if tk is a sufficient estimate of Ok.

Th, 2, If tk is an unbiased sufficient estimate of Ok’ then the
equality in (1.3.9) holds if and only if Pr. [Ik(o) = ¢ ] = 1, where
c. is a constant.

5

Proof. Since tk is an unbiased sufficient estimate of Ok

have from Rao [ 12 },

, we

2 -1
E[(tk-Ok) |o] =1(0)7 .
Teking expectations with respect to O, we have
2 -1
(1.5.1) EE[(tk-Ok) Io] =E[IK(O) ] .
Now equality of (1.3.9) requires that,
(1.5.2) EE|(t, -0 )elo =,
[ k 'k ] E[Ik(o)]
Combining (1.5.1) and (1.5.2), we have

E[Ik(o)'l ] = 2

2[1,(0) | ’
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or
(1.5.3) | E[Ik(@)'l J E[Ik(o)] = 1.

This can be written

(1.5.4) Jf [Ik(o)]'l ac (o) ]( 1,(6) (o) = 1.

A
s - s

Now by the Schwarz inequality we have

I

l.

(1.5.5) frk(o)”l a6(o) fIk(@) ac(e) s > fdG(o)

A A A
5 5 5

Obviously when the equality holds in (1.5.5) it is equivalent to (1.5.4).
But the equality in (1.5.5) is achieved if and only if for a constant c¢
. -1/2 _ 1/2
independent of o, e5 [Ik(O)] = [Ik(O)]

is, if and only if Pr [Ik(Q) = c5] = 1, which proves the theorem.

>
with probability one; that

Before proceeding to theorem 3, we cite the following definition.
Definition. Any pair of ¢(X|6) and G(6) wherein any one of the

assumptions (i) - (iv) inclusive of th. 1 does not hold Ffor the 6, under

consideration is termed the non-trivial estimation case.
Th. 3. For the non-trivial estimation case the equality in (1.3.8)

is achieved if and only if tk is an unbiased sufficient estimate of Ok

which is normally distributed with constant variance equal to Ik(O)-l.

Consequently the equality in (1.3.9) is achieved under the same conditions.
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Proof. For the non-trivial estimation case the equality in (1.3.7)

and consequently in (1.3.8) and (1.3.9) is achieved if and only if there

exists a ‘A 1independent of X and 6 such that,

oln

A Y = tk—Ok-E[Vk(O)]+E(Ok),

for almost all X in Rn and © in AS. Integrating, we have

g2

. X
Xng = 0.t - —= -OkE[\Vk(O)]+OkE(Ok)+Cl(X,O*),

where % = (0

1’ ©

s wees O 15 O qs eees os). We thus have

2
1 °
¢ = cg(x,o*) exp T ¢ Ot - =

-0, E [yk(o)]+okE( 6,)

This is a special case of the form, found by Pitman { 11 ] and Koopman

[ 10 ],‘wherein tk is a sufficient statistic. for Ok. Integrating both

sides of the above equation over Rn’ we have

e
exp Tk [E(Ok)-E(Vk(O)) ] f CQ(X,Q*) eXP(Qk’Ck/X Jax = exP(Qi/E »).

R
n

Make the change of variables in the integral,

2 = zi(X), i=

- l’ 2’ e 0oy n“l,

where tk(X) and the zi(X) are unique, continuous, and possess continuous
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rartial derivatives. Further the transformation is one-to-one. Then

we have,

o
exp ;\13 [E(e,)-E [\Vk(o)]] f Co(Z,4,,0%) exp(0,t, /2) azas, = exp(@i/zx),

B
n

where B is the range of (Z,tk) =(zl, Zpy eees Zo 1 tk). If we integrate

out Z, we have

2
Okt %
X o
(1.5.6) f 0, (t,,0)e at, = e ,
Py

where bk, the range of tk’ may be taken from - 00 to o0 . Then the
left hand side of (1.5.6) is a bilateral laplace transform of Ch(tk’o)

with argument Ok/x . Recall that Ok has a non-degenerate range say
o, /2)

k -— ——
71 < Ok L7 Obviously e exists at Ok = + €. and Ok = 72 - €

™4
-‘. -
where €y €2 > O, such that € + € < 7o 7y Thus we can apply the

2}

theorem of Widder [ 16 ], P. 238, and conclude that the integral in (1.5.6)
converges for Ok in the vertical strip of the complex plane, 7, t €

< Ok £ 2% 62. Thus we can apply the uniqueness theorem of the
bilateral laplace transform (see Widder [ 16 ], Pe. 243) and conclude that
C), (tk,o) = (1/ Vann) exp(-ti/ex). Therefore, for equality, the frequency

function of t, must be

k
2
N T Taw
h(t, [6,) = e s -~ ® Lt & oo s
S - .



where obviously X\ = Ik(O)_l. Further the equality holds regardless

of the form of the marginal distribution of Ok. ‘
It should be noted that though theorems 2 and 3 require that Ik(O) !
be a constant, it is not necessary that all the components of © occurring ‘
in Ik(O) be constants. It is possible, for instance, that the components
of © occurring in Ik(O) have a singular multivariate distribution such
that all the probability is located on the hyperplane Ik(O) = constant.
Obviously the sample mean from a normal population with constant
variance satisfies theorem 3, However, it is by no means the only such

estimate. Iet

_ (lnx-0)2

1 2c
e

s 0 < x ¢ @ )

£(x|9) =
x\/2nec
where ¢ is a constant, which is the so-called logarithmico-normal
distribution (see Cramer [ 6 ], p. 220). Then, t = igi lnxi/n is
normally distributed with mean © and variance ¢/n, which is the minimum
variance attainable under the extended inequality.
A sitwation in which a parameter is assumed to be a random variable

is the analysis of variance model II of Eisenhart [ 8 ]. The simplest case
is the one way classification. Here the model is

’ xij = ai + eij’

where X, is the jth observation in the ith class. We assume there are

J

k classes where the ith class has n, observations. ©Suppose Q, and ei

1 J



ez

k
= 1§1
distributed populations having means u and zero respectively, and

are random samples of size m and N, N oy, from two normally

variances dg and ci respectively. Then,

12
m n. (x,,-a,)
(W/2nce) ij oa¢
and
31nd O
(10506) EE(- lai) = '—2 ) 1= l, 2, s0 0, me. |
3 L |
i € |
. . n
The ML estimate for a, is Q, = ( ng xij)/pi, 1=1,2, ¢ss, m. Here
A _ ~ 2 '_ 2 . - -
E(Q, |a,) = oy, and EE[(q;-0,)%|e,] = o7 /n,, wbich by (1.5.6) is the minimm
mean square error. Notice the assumption of normality of @, was not -

i
required for equality.

1.6 Most Unfavorable Distributions.2 In most cases the G(@) is nct
known, so the lower bound on the mean square error cannot be found., IF
\Yk(o) = 6., 1t 1s of interest to know the greatest value the lower bound
can attain, as well as the set of G¢{0) which produces it. To this end

define Gi(o) to be a most unfavoratle distribution witk respect to o, if

A .
8

f L(0) aax(o) gf I.(e) aa(e) ,
A ,

for all G(Q) defined over A_.

If Ik(O) has a unique minimm with respect to that subset of the

For an analogous concept, least favorable distributions, see Wald [;15 ],
p. 18.




parameters appearing therein, then a most unfavorable distribution is
one for which the marginal distribution of these parameters is trivial.
It may be that Ik(O) is independent of all parameters so that all G(9)
are most unfavorable distributions. A case in point is the Cauchy
distribution,

f(x|e) =

Tt ,-® ¢ x ¢ oo ,

3
l+(x-0)2

where

@

1(0) = 21 jf _(e0)®
i [1+(x-0)%]3

I
B

Here EE[(t-O)2|O] > 2/n regardless of the form of G(©). There are also
cases in which no most unfavorable distribution exists except possibly
when from some prior information AS is restricted.

1.7 Most Unfavorable Distributions for Some Iaplacian Distributions.
M. C. K. Tweedie [ 13, 14 ] has called a distribution Iaplacian if it belongs
to the general class of distributions for which the sample mean is a
sufficient statistic for one of its parameters. The general form of such

a distribution's frequency function is

-xq(9,)-0, F(e.)
f(xlol,02) = e TR h(x,Oa).

That is, of course, a special case of the Pitman-Koopman form (1.1.3).

Here we have,



2L

i

" Y " ( 3
E[I(Ol,Qa)] J/“ [m(6),8,)a" (6, }+6,F (Ol)]g\Ol,Oz,dQIdOz,

A2

where E(xlOl,Oz) = m(Ol,Oz). If I(Ol,OE) has an absolgte minimum for

some subset A! of A, and (Oi, OZ) is an element of A}, then E[I(Olggz)]

2 2 2
> o O " o O. 11 o F )
> m(Ol, 02)q (ol) + O F (91), for all (ol, 02) ir A,. Further, this is

the absolute minimum attainable by E[I(Ol, 02)]. It is reached when

dG(Ol, 02) = 0, for (ol, 02) not an element of Al. Thus, we have found

e set of most unfavorable distributions. This result will mow be applied
to several specific Iaplacian distributions.
Type a. 02 = 1, This includes the biromidl; Pascal, azd Polisson
distributions.
(1) Binomial distribution.
xlin (—9—~)-1n(1-9 )
I-6] 1

, Xx=0,1, 0 & 6.

f(x[Ol) =e .

<1,

a(e,)

e
1 N » [y FIPR Y
-ln' (-l—:g—"}.? F(gl) = ln(‘l“ol)_g mi@lll = Q"L.f'
1 .

and,

il

I(gl) o,(1-6.) °




25

I(Ol) has & unique absolute minimm at 6, = 1/2, so that> G*(Ol) =

e(Ol-l/Q) is the only most unfavorable distribution. Further
E[I(ol)] 4 uw.

(2) Pascal distribution.

1-0
xln(l-Ol)-rln( 5 )
1 ,x-1
f(xIOl) = e (L) Xx=r,r+1, ..o 0 ¢ 6, € 1,
1-6

“1a(1-0,), £(6)) = 1a(=), u(0,) = r/ey,

a(e;)

where r is a known fixed positive integer. I(Ol) = r/Oi(l-Ol), which

has & unique absolute minimm at 6, = 2/3. Therefore G*(Ol) = €(91-2/3)

is the only most unfavorable distribution and E[I(Ol)) 4 1TN/4. Tt

should be noted x/r is not an unbiased estimated of Ol. If we consider

a = l/O:L as the parameter to be estimated, then

(0
e-xln(a:i-) -1n(c-1)

x-1
f(x|a) = ) X=T, T4, .,
1¢a < @,
(04 (
. qla) = ln(&_—l—), F(a) = 1n(a-1), m(@) = ra.

3 Following Cramer [6 ], p. 192, the distribution funection

_JO for x « a
e(x-a) "{l for x > a.
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and

() =&'(§-—1T .
Here x/r is an unbiased estimate of . However the expression I(a)
does not have an absolute minimum in Al’ i.e., 1 ¢ @ ¢ OO, but rather
it has a 1limit of zero as @& —> a0 . Thus letting ¢ —> ©0 produces
a most unfavorable situation, which is equivalent to letting Ol = 0. It
is interesting to note that though Ol = 2/3 was the most unfavorable
situation when estimating Ql, vhen estimating @ = l/Ol we have, in effect,
that Ql = 0 is the most unfavorable situation. Thus we have established

that "most unfavorableness" is not an invariant property.

(3) Poisson distribution.

xanl-Ol

f(x[@l)=e %,x=o, 1, 2, v005 0 € 6, OO

q_(Ol) = -1n@,, F(Ol) =0, m(Ql) = 0,,

I(Ol) = 1/91.

I(Ol) has no absolute minimum in A., but rather has a limit of zero as

l’

Ql-——) QO . However, if from some prior consideration we can restrict

©, < a, then a most unfavorable distribution is G*(Ol) = e(Ol—a).
Type b. 6, #1, q(Ol) = 0,. Immediately we have q”(Ol) = 0, and
— "
I(Ql, 92) = O,F (ol).
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(1) Geamma distribution.

x1

f(xlOl,Oe) = e » X > 0,0, >0,0 > 0.

0, -1
-x01+921n01 )

F(Ol) = -1n@,, I(@l, 02) =

F—JOI\)I P
-

Here I(6,, 6,) — 0, as 6, — © and/or 6, — 0, but no
most unfavorable distribution can be cited unless we assume 02/05 < a.

(2) Normal distribution (parameters adjusted).

Oi - x2
-QlX—Qe -—2- e 292
f(x|e,,0,) =e ;-0 < x C00,0, >0,
172 2
2:192
-0 <« gl < m b4
2 ~H . R
where 02 =0, Ol ==, in the usual notation.
Iof
%
F(Ol) =5 and I(Ql, 02) =6,.

Here 02 —> 0 establishes a minimum, so that if we can restrict
92 > @, then €(92'8') is a most unfavorable distribution.
1.8 More Stringent Inequalities. Bhattacharyya [br] has found

greater lower bounds for the mean square errors of estimates in the case
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of constant parameters. This admits of direct extenslon to the present

case. We can write (1.3.3) and (1.3.4) respectively as

(1.8.1) E (% gg— lo) =0

k
and
oY, (0)
k _ 1 9
(1.8.2) TO—}:—— = Cov (tk-Qk, a 5% IO).

By the result of appendix A,

Cov(t, -6, , %%L ) = E[Cov(tk-Ok, % —éfé) lo\l

k k .

+ COV[E(tk-OKIO), E(% %ng |o)] .

From which by using (1.8.1) and (1.8.2), we obtain

oY, (6) <
(1.8.3) E<<——15—-->= Cov(t, -0, , % %éL ).

oOk %

With suitable regularity conditions on ¢ and its derivatives similar to
those cited in paragraph 1.3, we can differentiate (1.3.2) p times and

obtain as in (1.8.3) that

Py (o) B
(1.8.4) E —-——kB— = Cov (%, -6, % f—% , B=1,2, ve., Ds
BOk oOk
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Define,
.ay 8
109 19
JCLBSCOV\Z—%,Z £, B=1,2 ..., p
\ 00 09
. k k

Let J = [T z) and 57 = [3%). Denote vy R the multiple

0-12...p

correlation coefficient between t, -0, and (1/¢) (agf/é@k), (1/4)

(5 ¢/80k), ceey (1/8) (5P¢/BO£). Then by a result cited by Wilks [ 17 ],

p. k2 £f.,
p » [ (o) /3Py (o)
L E\=sgr—) Bi—epp—/ 3%
2 _ of1 B2 X N
0.123...p
Var(tk - Ok)
Since R2 < 1, we may write
0.123...p & Y

2%, (0) ()

PP k k oB
Var(t, -6, ) > % E E J,
o™ &1 pE1 <aoi aoi

from which we have

(1.8.5) EE[(tk-Ok)2|Q)] > Ee(\yk(c) -6,) +

P
¥, (0) v, (0)
G -G

D
oA

T



This is a greater lower bound than that of (1.3.8) since the multiple

correlation between tk - Ok and the above series of variates will be

larger than the simple correlatior between t, - 6, and {(1/4) (8¢/5®k).

This latter correlation is essentially what was used in deriving (1.3.8).

It should be noted that this method of obtaining a higher lower bound
applies only if va(O) is non-linear function of Qk and consequently is
not applicable in the unbiased case. As noted in Wilks [ 17 ], p. 46,
the equality holds if and only if all the probability in the p + 1

dimensional space of the random variables lies on the surface,

B,
oy BoR1 % (NN g
t -0 Elp (0)] + B(e) = & 2 3 AN T

1.9 The Sequential Case. Wolfowitz [ 18 ] Las extended the
Cramer-Rao Inequality to situations where the sample size is a random
varigble depending on the sequence of observations, In our notation his

result is

av ()
2 . 12 B,
E(t,-6,)° > [\yk(@)-gk] + — .
E(n!O)E‘L —-——-J——51n§ézlg> i@J

We shall proceed to extend this result to the case where © is a random

variable.

Under suitable regularity conditions Wolfowitz has shown,
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X
and
0o 2 / 2
(1.9.1) E[ %ﬂé> le} =E(nIG)Ei’ ‘/\@-r%éi‘p—)) lo}
ok X

By definition,

@ J
jé v/“ tk(xl, X wees xj) 15 f(inQ)dxi = 'Yk(O).
R

J

Under the regularity conditions cited by Wolfowitz we may differentiate

under the integral sign and obtain

¥, (0)
(tko%‘:é]o)=00v kk,é—lgélo= :

The result of appendix A yields,

| DY, ()
E[B%—] Cov(t, -6, g%l—;ﬁ).
.|

Since the square of the correlation coefficient of any two variates cannot

exceed unity, we have,

BV’ (Q) ~
2 k oln
E —55——{> £ Var <?Qk,> . Var(tk-Ok),
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and

2
E 10-0—1{—- h

2
E {E(n|0)E <alnf(x ) 1o

) 2

Var(tk-O

%

This may be written

2 BWR(O)
E —562-—

2
E ¢(E(n]6) + E <%LQ—)->]Q

(1.9.2) EE[(tk-Ok)EIO] > Eg[wk(o)-ok] +

When Vk(O) = Ok’ (1.9.2) becomes,

(1.9.3) mE((t,-0)%0 ] > L —
E{ E(n|0)E (dlnfé’; Q’> B

These results are valid for discrete as well as continuous distributions.
A simple example of seguential estimation involves sampling from a

binomial population until a specified number of successes, say r, 0CCur.

Here f£(x|0) = Ox(l-Q)l-x, x =0, 1, and E(n|@) = r/0. Therefore, for

\Y(O) =0,

1 -

EE[(t-0)%]0] 2

. i
: <92(1-g)>
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This result corresponds exactly to that obtained in paragraph 1.7 for
the Psscal distribution.

1.1C Linear Estimation of E(Ok).
), i =1, 2, ... m, chosen from a population f(x]iO),

Consider m samples Xi =

(xil’ Xips *ees xini
which are randomly and independently chosen from a super-population of

populations with frequency functions of the form f£(x|9). Thus for each

. R . i .
sample Xi’ there is associated an unobserved random variable "0, i =1,

2, ..., m, with distribution G(iO). We seek to find an estimate of
E(Ok), say Tk’ vhere 1 £ k »« s. It is supposed that for each sample
there exists an unbiased estimate of iOk, namely itk, and we restrict
our discussion to the set of Tk vwhich are linear functions of the itk, that
is,

T, = % c lt

where (c Chp e++y C ) is a vector of real numbers. If we further
1’ -2 > m
restrict ourselves to unbiased estimates of E(Qk), it follows that
2

The minimum variance unbiased estimate of E(Ok), fk’ is found by

UaI ] - - C, var t ) 3

m

with respect to the c¢'s, subject to the restriction iél c, = 1. This

yields the normal equations:
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(1.10.1) e Var(ltk) + N =0,1i=1,2, .., m

where A is a lagrangian multiplier.
Consider now the variance of the minimum estimate fk’ found by

solving (1.10.1). We have
A m /\2 i

] = .
(1.10.2) Var(Tk) 12 ¢ Var( tk)
By the result of appendix A,

i _ i Lol
Var('t,) = E[ Var( t,[6) ] + Var [ B( t [6) ],

from which it follows that,

(1.10.3) Var(itk) = EE [(itk-iok)z/g ] + Var(iQk).

So that (1.10.2) may be written

Ay B o2 i 1,42 W o2
(1.10.4) Var(Tk) = ;5 e EE[j\ by - ok) |o ] + Var\Ok) i3 e] -
Applying (1.3.9) to (1.10.4), we have
a2
m : m
o 1 /\2
(1.10.5) Var(Tk) > 5 5 + Var(Ok) 12 8 s
dng(X, [e)
1
2R R &)
oo
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the equality being achieved under the conditions cited in paragraph 1.5.
We may apply these results to the analysis of variance model II
cited in paragraph 1.5. To simplify the normal equations above, let

n.=n, i=1, 2, ..., m. In the notation of this paragraph,

1, -
Qk—-ai,
1 ~
t, =0, = ( jél xij)/n, i=1, 2, , I,
and (1.10.1) becomes
02
~ € 2
ci(——+ oa) + X =0,
m N
oo ¢, =1,
I

Solving, we have gi =1/m, i =1, 2, ..., m. Thus

and

N § €
Var (Tk) = E-( ~+0

which equals the lower bound given by (1.10.5).
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II. THE ASYMPTOTIC PROPERTIES OF ML ESTIMATORS WHEN

SAMPLING FROM ASSOCIATED POPULATIONS

2.1 Summary. Cramer [ 2L ], p. 498, points out that the method
of maximum likelihood was proposed as a general method of estimation
by Fisher [:27 ] in 1912. However, rigorous proofs of the asymptotic
properties of the maximum likelihood estimators (hereafter called ML
estimators) were not derived until the work of Dugue [j25 ], Wald
( 32, 33 ], Cramer [ o4 ], Huzurbazar [ 28 ], and Chanda [ 21 ], all of
whom published within the last twenty-five years. Bach of these authors
assumed observations from a single population. Neyman and Scott [ 30 ]
and Kraft and LeCam [:29 ] have pointed out situvations wherein the ML
estimator is not consistent. Their examples involved sampling from a
number of subpopulations with different distributions but with only a
finite number of observations from each of the subpopulations.

Some situations arise where observations do not come from a single
population but from distinct but related populations, related in the
sense that some populations reasonably may be assumed to have some para-
meters in common. We call such populations associated. Such situations
may arise, for example, in the combiﬁation of results from several experi-
ments. The theory developed may also assist in certein problems of
mathematical statistics--it assists in developing the theory for a
generalization of a method of paried comparisons indicated briefly in the
final section of this paper.

In this paper we extend the basic theory on ML estimation to

associated populations obtaining asymptotic results when sample sizes for
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for the associated populations become large in constant ratios. Under
regularity conditions, the ML estimators for parameters in associated

ropulations are shown to be consistent and asymptotically normal with

a varience-covariance matrix as derived. The asymptotic X2 - distri-

bution of -2 In X, N\ being the likelihood ratio, holds and, for the

non-null distributions, the parameter of noncentrality is set forth.

We limit consideration to ML estimators that are roots of the
normal equations for the maximization process. The consistency of the
more generally defined estimator can be proved for associated populations
following the approach of Wald [j33 ]. Our proof of consistency follows
that of Chanda closely; most of the results for associated populations
are easy generalizations of results for a single population and results
that do not differ essentially from those demonstrations are cited without
proof.

2.2 Notation and Assumptions. Iet fi(xi, 9) i=1, ..., m denote
density or probebility functions (discrete or continucus) where x; is a
random vector with values over a region Ri independent of © = (Ol, ceey Ok)’
an unknown parameter vector lying in a k-dimensional parameter space 31
fi(xi, ©) may hot depend on all of 0y +eoy O Iet x5, «.. xini be n,

independent observation vectors on xi. The joint likelihood function is

then
m B
(2.2.1) g = & o fi(xia, o)
and the normal equations are
(2.2.2) Ang _ 5 o1, ...,k

0
r
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from the maximization of 1ng and hence of ¢.
We make the following assumptions:
(1) For almost all x;€R; and for all GeQ,

alnfi aelnf. 531nf

i i
S o6 M 5S6Se
r r s r. s t

exist forr, s, t =1, ..., kand 1 =1, ..., m.
(2) For all £, which are densities for almost all xieRi and for every
ee s,

o, Bzfi a3lnfi
(2.2.3) 557l < Pi(x;), I5gs5] € Fipglx;) and |53 3, | < Hy e (%))
r r S - S

where F, (x,) and F,_ (x.) are integrable over R. and
ir'Ti irs' i i

(2.2.4) J/“ Hirst(xi) ax, & M,

R,
i

i=1, ..., my1r, s, t=1, ..., k, for all 0efl and where the Mi are

finite positive constants. Correspondingly, for all fi which are probability

functions, 5
5 o and 5 o1
00 ' 36 06

xieRi r xieRi r s

converge uniformly for all 0§l and
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53lnfi
lsgrsgssgt | 2 By g(xs)

Where

Hipstl®g) < M
x.€R
i~i

for all e, r, s, t =1, ..., k; 1 =1, ..., m and where the M, are
finite positive constants. These assumptions will permit the interchange
of order of differentiation and integration or summation.

(3) For all Ges, the matrix J = [_Jrs(g) ] with

_ o dlnf, Olnf,
(2-2-5) Jrs(O) b iél lJ'i f 1 1 f_ d.x_
09 Q0 i i

Ri r s

is positive definite with finite determinant. [Replace u/” by

R,
1
L for those f, which are probability functions in (2.2.5) ]. We
X,€R,
iTi
m
define p, = ni/N vhere N = %, n,.

2.3 Consistency. Let 6%est be the unknown true value of ©. Con-

sider the following Taylor's expansion:

alnfi alnfi k ° Belnfi
(2.3.1) R T _ 0 * sél(os - Os) 36 00| _ A0
r r 0 =0 r s |@ =0
3 1ns

1 (o] (o] i
+ = L, . (e -07)(e, -0 ) ~ o S5o—
2 s,t=1 s s’ % t Or OS Ot 0 =g
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where @' = O'(xi) depends on x, and is such that it lies within the hypercell
of which © - ° is the diagonal for all X, - Summing over all observations

of all subpopulations, we see that (2.3.1) implies

k k
_ (o] (o] (o] 1 o] (o]
(2.3.2) Lr(o) - Lr(Q ) - oy (Qs-os)ers(o ) + 2 s§t=l (Os-os)(gt-ot)Lrst

where
alnf alnfia
L.(e) = 110@1 % 1—1“1 O,éln %
n 2
m n, Inf, m i o lnf .
L_(6) =- % N O e
rs N 1—1 aél SO 50 1—1 aél ni Or Os
and 3
n;,  o”lnf
rst N —l aél 59 00 50 0 =g
3
: m l ) lnfia
= B oél n SOrBOSBOt o= o

and fi(xia) = £

In view of our assumptions, we have

dlnf,
(l) E("E‘o—i)-—-o,r:l, o0y k; i=l, eo oy m.
r

2
alnfi)_

(2) igl“ B - sgs5-
Ir S
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[ 2w,

(3) E \ 86—36—36; ;,}-< Mi’ ry, s, t=1, ..., k; i=1, ..., m
r s

for all et . Also, from (3), it follows that

m ny 53lnf. m
sL I s l i )
ILgp! € & M aél n, | 36,36 6 <iE M oél n, Hyret(X
r s t
0 =0
Further,
m
1B Wy Bl Bpge(nig) 1< g8 w2

If we let n,—> °©, 1 =1, ..., m s0 that ni/N = Wy, then by Khintchine's

Theorem [ 6 ], p. 253,

n, alnf

(1) < N —— 0

n, oél r ° P ’

0=0
3%1ne

(@) = 2 W“ O E

ny ©_00 p 30 90 o b

0 =0

and
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n 331ns n
1 1 1Q 1 i
(3) n, o1 33050, <o &1 Hiret(X10) 5 BBy gy (Xyg)] <My
=9

for i =1, ..., m. Using Slutsky's Theorem [ 24 ], p. 255, we have
o
(l) Lr(O ) T-) 0,
o o
(2) Lrs(O ) — JrS(O ), and

m
(3) L. | < 42 1y M; as a limiting bound in probability.

In other words, given n and €, two arbitrarily chosen small positive
m
constants and R, a finite positive constant greater than igl ui Mi »

there exists n_, = noi(n, €) such that, for all n;, > n; with

oi

m
n; =, i% n,, 1=1, sss, m,
(2.3.3) P[_lLr(o°)j ey 1,067 =3 ()] ¢, [Tl < R] > 1 - €.

The likelihood equations for the estimation of € are given by putting
Lr(Q) =0, =1, +os, k, in (2.3.2). Thus if & is the ML estimator of O,
from (2.3.2),

(2.3.4) : (6 -6%) L_ (°) =1 (e°) + % lzi (0 ~e°)(8,-¢2) L

i &1 9%/ Lpg r 2 s,t=1 ‘'s s’* 't t’ "rst’

r = l, teuy k.
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By assumption (3), 71 exists for all Gesn and, since

o o . -
[ Lrs(O ) J-5ﬁ Jrs(O ), for sufficiently large N, n, = w; N, the inverse

i

matrix [ijS(OO) ]-l exists also. Accordingly, from (2.3.h4),

(2.3.5) (8_-67) =

k k
Oy, Pr/ .0 1 5 _a°Y(8 _a° pr, .o
Z, LP(O L (07) + 5 s’,:t=1 (9S os)(eJG ot)[ zlLPs,cL (o )],

r=l, ..., k,

where [ 17°(°) ] = 1., ]™*, the latter matrix being ome of finite
elements independent of N. Given n and € positive and arbitrarily small and
T > R finite, we can choose noi(q, €, T) such that, for all

- n. > n

., 0, =p,. N, i=1, .o., m
N 0i? B4 “1 p) ) » Wy

k k
(2.3.6) P[I oE LP(QO)LPI‘(QO) |ép§1| LP(QO)I TP | < 1,

k k
pr/ .0 z pr. O . -
IpélestL (O)l—péll Lpstl L7 (%) | < Tforallr] >1 - ¢
Obviously for n; > D, the equations (2.3.5) admit a solution

Q= (6i, ceey 65) such that (6; - Og), r=1, ..., k, are of the same order
as 7, the second term on the right of (2.3.5) being of smaller order than

n. Thus,
(2.3.7) PG, -0 ] <y eeny [6,-00 <0 ]a-ce

for n, >n i=1, +.., m. It follows that there exists at least one

io’
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solution o of the likelihood equations which is & consistent estimator of
the vector 6°. That the solution is unique may be proved following closely
on a proof given by Chanda.

We now state two theorems without proof indicating only necessary

modifications of Chanda's proofs.

2
Theorem 1. The matrix Bglng s where © is a consistent estimator
r s A~
6 =0

of ¢ and a solution of the likelihood equations, is negative definite
with probability approaching unity as n, =M, N —> . The proof follows
. Chands, [_21 ], p. 59-60. The only changes required are that now

n 1nt,
Isl0) = Ty |- 36.36_ )

and we require use of both Khintchine's Theorem and Slutsky's Theorem
vhere Chaende required the former.
Theorem 2. Of all possible solutions to equations (2.3.5), one and only
one tends in probability to the true parameter vector Oo, The proof of
Theorem 2 parallels that of Chanda [ 21 ], p. 60-61.

We have now seen that the usual consisterncy properites of ML
estimators carry over to estimation when sampling from associated populations.

2.4 Asymptotic Normality. We rewrite (2.3.4) in the form

A 0 (o] 1k A Oyv/A A0 _ (o] _
g (6 -0)L_ (67) - 5 s§t=1 (os-os)(ot-ot)Lrst . Lr(O )y r=1, ..., k,
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and in matrix notation

| . 5 1 Blnf
(2.5.1) (L +a) (6" - 0') = 15 My aél —g-;-—

o =¢°

where 8', ©', and the right-member of (2.4.1) are k-element column vectors,
the latter based on the definition of Lr(Oo) following (2.3.2), and where

= [LrS(QO) ] ana

N

L and G being k-square symmetric matrices. We have seen that

[\ Ao

k PaN o
t§1 (gt - Ot)Lrst J ’

Lo, 9, = JIO _ positive definite, and G —> 0 (since

6 ? 6° and 'Lrstl is bounded). Hence, for large n,, we may invert

L + G and write

dlnf

n
2, Oyy — -1 | @ i 2 ic
(2.4.2) VN (8" - ®) = (L + @) | T u, Q,élﬁ oo o
i T le=o9

Since L-? Jo and GT 0, by Slutsky's Theorem, L + G T;»Jo and

(L + G)-l —?Jo-l. Further, by the multivariate form of the Central

Limit Theorem [ 23 ], p. 113,
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n. dlnf
m 1 1 i
12 THy o /= S
ni r O=Oo

has a multivariate normal distribution with means zero and variance-covariance

matrix
2
m olnf, Jlnf, m O 1lnf
. u, E( = . =) =- | .2 u, B L) =J_ .
i=1 i 00 R i=1 M1 36_0e o
r S O=O° r S8 O=OO

Applying a Theorem of Chiang [ 22 ], p. 338, we may state that the
asymptotic distribution of N (8' - ¢°') is multivariate normal with means
1 -1 1

zero and variance-covariance matrix JO- JO JO = Jo- as

n, = uiN, i=1, .e., my and N —— Q0.
2.5 Asymptotic Distribution of the Likelihood Ratio. ILet w3 be a

sub-space of $¢ defining an hypothesis H, through the relations,

(2.5.1)  €1(0) = €(0) =...= €5(8) =0, r < k.

We require the functions in (2.5.1) to be such that:
(a) There exist k-r additional functions §r+l(0), caoy Qk(Q) S0
that the inverse relationships 6, (§)) eeey Ok(ﬁ) exist.
(b) The first and second order partial derivatives of
Ql(o), ceey gk(O) are uniformly continuous and bounded functions of .
(c) The greatest lower bound of the absolute value of the Jacobean

B(&l, cee, gk)/a(oly cooy Ok) is positive.
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The definitions of «» and H,, conforms with those of Weld [ 32 ],
p. 463. Wald considered the distribution of )\N(L.), EN), the likelihood
ratio statistic for comparing « with St and wherein EN denoted the
observed point in the sample space. Wald assumed that the likelihood
ratio test is uniformly consistent and stated that this would be proved
in a later paper based on weak assumptions on the density function f(x, 0).
(The later proof seems not to have been published.) Based on his assumptions,

Wald proved that
.
(2.5.2)  lim {P[- 2ln xy(w, B < t | 0] - 7 [xg(0), tJ}:O
N—

uniformly in t and © vhere Fr[:kg(O), t ] is the non-central X2 - distribution

with r degrees of freedom and parameter of non-centrality

(2:5.3) @) =1z I &6 o), (0.
In (2.5.3), [E *(O) ] = [ ng Bﬁq a, (9) ]: b, @ = l:: eeey Ty With
Pq Ol Om 1m

Belnf)

[°13(°) ] = ["13(9) ]"1 and ¢, ,(0) = - K( 50—1565 3=1, voe, k.

It was our original intent to generalize Wald's proofs to obtain the
analogous results for associated populations. We do not believe however
that Wald's conditions are in a form readily verified for specific applications

and utilizations of his results. The extensions of theorems on maximum
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likelihood procedures to associated populations do seem straightforward
and the results corresponding to those of Wald should follow quite
directly. We should then obtain, for « and H defined by (2.5.1), for

associated populations that (2.5.2) holds as stated where now only

0 3% 1n £,
ciJ(O) = JiJ(O) = 2 W E T‘S"‘oi OJ

developed in previous sections thus redefining xﬁ(o) in (2.5.3). The
central X2 - distribution would of course be implied by (2.5.2) when @
for which H  is true.

The asymptotic power functions of test procedures are often used
in comparisons of their properties and one commoniy used comparison of two
tests results in the evaluation of their asymptotic relative efficiency.
To obtain an asymptotic relative efficiency, local altermatives to a null
hypothesis, e.g., [ 31 ] are considered. In this way, let ©¥ denote a

value of O€w and let { ON } be a sequence of values of © such that
. , :

o) = o:‘.;’+ 61N(w)/1v with N]in;m 5;q(@) =8;(w) 1 =1, ..., k. Under these
conditions,
k k P q
2 2,y _ L T dEP(0) ) - % 0
O = X)) = & B B L 88 e | 0 o | 0 Spy(09)
T lo=0" J lo=0¢v
and

P [220), t ] —— 7 [23), ¢ ] .
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From the fact that (2.5.2) holds uniformly in @, it follows that

um {P[- 210 A3(w,E) < tle ] - F_[¥(s), t]} =0

uniformly in t and given the sequence { ON } .
2.6 An Application. Bradley and Terry [ 20 ] and Bradley [ 19 ]
have devised a method of paired comparisons and investigated some of its
t
£ iél n, = 1 were postulated

ceny 'I't and to operate so that,

properties. Positive parameters Tig wony T

to represent the effects of treatments Tl’

if Xi is a response to Ti’

P(Xi > Xj) = ni/(ﬁi + ﬁJ).

Let Xy, = 1 if X; > X,

of Ti and TJ’ A=1, «oe, nij’ i, =1, ..., t. The likelihood function

and zero otherwise for the QFh comparison

for the complete experiment, on the assumption of independence between

comparisons, is

n
t ot 1 %0, 8 43

(2.6.1) L(xn) = 15 5% o ny / 1T4=1 (r, + nJ) .

If n;y=1n for all i and J, as has been assumed in published work, L(x) may

be factored

n t t *ijo t
(2.62)  L(n) = gn | gm gm w0/ ey

J#1 i<

(ni + nJ)
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and standard ML theorems applied for now f(xa) may be taken to be the
quantity in braces in (2.6.2). If Dy # n for some i and j, the methods
of this paper for associated populations are required.

Dykstra [:26 ], in work as yet unpublished; has considered extensions
of the method for paired comparisons to cases where niJ % n, and it appears
that these are the cases required most frequently in practice in consumer

acceptance studies.
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III. A SEQUENTIAL DECISION PROCEDURE FOR COMPARING
SURVIVAL CURVES

3.1 Introduction. In the search for compounds which may have
a useful biological effect, sometimes hundreds of chemicals may be put
forth as possible candidates. In this case a preliminary test procedure
is needed to select the more promising compounds without resort to long
and expensive experimentation. Sequential experimentation immediately
suggests itself because of its property of minimizing the average number
of observations needed to reach a decision. (See Wald and Wolfowitz
[43]0)

The need for such a screening procedure arose at Oak Ridge National
Laboratory in connection with a search for compounds which might furnish
protection against injury caused by irradiation. Preliminary decisions
were to be based on the results of treating mice which had been exposed
to X-radiation with the experimental compounds. The experimentatioq was
donebin groups; five mice being treated with the experimental compound and
five with a control compound, which was either a physiological saline or a
compound of established protective ability. At first the data collected
were the numbers of mice surviving in the control and experimental groups
at the end of a prescribed number of days. The period ranged from four to
twelve days after irradiation depending on the strain of mice, the radiation
dose, and other factors. This procedure proved unsatisfactory since, due
to the high variability of the life spans of the irradiated mice, it often

happened that in the two groups the animals would all be alive or would all
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be dead at the end of the prescribed time period. Obviously results of
this nature give no information about the relative merits of the two
compounds. To avoid this difficulty, it was decided to stop the experiment
at the death of the median (third) mouse in the control groups. Thus no
pair of groups of mice are wasted, and all pairs give some information.

Of course, a large number of mice surviving in the experimental group tends
to indicate the experimental compound is an improvement over the control,
and a small number tends to indicate the contrary. Groups were treated
successively until the experimental compound was deemed acceptable or not
by a statistical criterion. The acceptable compounds were then subjected
to more exhaustive and exacting experimentation. The rejection of a com-
pound was not absolute nor necessarily permenent. If a compound chemically
related to a rejected compound proved effective, the fejected compound was
also subjected to the more exhaustive experimentation.

This sampling procedure was devised and used by Kimball, Burnett, and
Doherty [ 38 ]. Their method of analyzing the data is the sequential test
of the double dichotomy due to Wald [ 42 ], p. 106 ff. This method of
analysis assumes the probability that a mouse survives in the experimental
group at the time the experiment is stopped is constant over the successive
trials. This assumption is not valid since the time, t, of stopping the
experiment is a random variable; and the probability that a mouse survives
depends on the survival curve which in turn is a function of t. Thus, this
probability is itself a random variable and the analysis is not theoretically

sound as is pointed out in [ 38 ],
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Although this method of analysis is not rigorously-valid,. it did
prove successful in the search for protective compounds. Thus it was
thought to be approximately correct.

Our purpose is to derive rigorously a method of analyzing data
collected by using this sampling procedure. It will in&olve assuming
specified functional forms of the survival curves of the control and
experimental compounds. We shall limit ourselves to sigmoidal curves,
although the methods set forth can be applied to non-sigmoidal curves.

The new results will be compared to the original method of analysisg and
the OC (Operating Characteristic) function, the ASN (Average Sample Number)
function, and the effect of truncation will be considered.

Although the terminology used will involve specific reference to "mice
surviving," this may be interpreted as referring to any sort of experimental
unit enduring in a prescribed condition.

3.2 Review of Literature. Very little has been written on the
application of sequential methods to testing survival curves. Epstein and
Sobel [:37 ] have discussed related sampling situations in life testing.
However, théir situation differs from the one here in several respects. It
assumes an exponential survival curve and that the exact lengths of life
are recorded. Further, it is not a two sample problem but a test of
hypothesis of an exponential perameter. Therefore, their results do not
apply.

Two major general sequential procedures have been proposcd, those of

Rao [ 41 ] and Wald [ 42 ]. Rao's procedure involves a fixed limit on the

sample size and is designed to test null hypotheses. While the former
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property is advantageous, the latter is not, since we are not concerned
here with testing whether the experimental and control compounds have
exactly equal median survival times. Rather, we require a decision
procedure for finding experimental compounds with median survival times
appreciably better than the control. Further objections to Rao's procedure
are that its application requires the derivation of certain properties of
the test statistic for the particular case under consideration; and that
general methods of deriving the OC function and the ASN function do not
exist.

On the other hand, Wald's general procedure is admirably suited to our
situation. Tt is not a test of a null hypothesis, but rather an
acceptance-re jection decision procedure which is what we reguire here.
Further, the problem of the derivation of the useful distributional properties -
of the test statistic has been solved approximately; and general, thoughk
approximate, formulas for the OC function, the ASN function, and the effect
of truncatioa are available. Thus we shall apply Wald's procedure to this
sampling situation. |

3.3 Distribution Theory. Although the distribution of the test
statistic is not needed, we must derive certain distributions related to
the survival curves before we can apply Wald's general theory. This is due
to the peculiarity of our sampling procedure, which, as was stated earlier,
makes certain probabilities random variables. In particular, we require the

unconditional distribution of the number of mice surviving in the experimental -

group. We shall proceed to derive this distribution, which will depend, in
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in general, on the form of the two survival curves.

let pc(t) and pe(t) be the survival curves for the control and
experimental compounds respectively. Each group consists of 2s + 1
mice, where s is a non-negative integer. Then the distribution of the

time of death of the (7 + l)EE-mouse in the control group 1g7

(3-31) n(e)as = - 882 ML [ (1) 2977 1. p (6) |7 any(4)
as is shown by, for instance, Cramer [ 35 ], p. 368.

Now, as pointed out above, we have chosen to stop the experiment at
the death of the median mouse, i.e., (s + 1)53 » Two reasons for this choice
may be cited:

(1) We are interested in making decisions based on the comparative
sizes of the medians of the two survival curves.

(2) In the cases we shall consider, the sample median time of death
is more efficient than any other order statistic. This statement requires
some explanation and justification. Cramer [ 35 J, P 369, has shown that
the sample quantile, t7+1’ of order p, where 7 is the greatest integer <«

(28 + l)p, is asymptotically normally distributed with mean equal to TP,

where p=1 - pc(Tp), and with variance equal to (1/-pé(TP)) J/p(1-p)/(2s+1).

1The minus sign is required since pc(t) is equal to one minus the
cumilative distribution.
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Obviously the coefficient of the radical occurring in the expression

for the asymptotic varidance is minimized when Tp equals the mode of the
distribution, and the radical itself is minimized when p = 1/2, that is,
when Tp is the population median. Thus, when the underlying distribution
is unimodal and symmetric (as, indeed, our final model specifies), the

TP will be both the median and the mode if we choose our order statistic
to be the sample median. Since in general using the more efficient
statistic leads to the more powerful test, it is thought that this method
of sampling yields a test more powerful than one based on any other order
statistic.

For the sample median, (3.3.1) becomes

¢ 1)t
(3.3.2) h(t)at = - -—-f;i)-z— EXORK [1-2,(8) ]® ap (%) .

From this we obtain the distribution of © = pe(t), which is
. _ s _ |s
(3.3.3) as(o;a, s) =282 DL Jp 15 -1 (q) ] 1 - | e (0)

(st) cl “e c

pol 2. 7() ] a0

HARRRON

for U ¢ © <« L, vhere U > Oand L < 1. Depending on the ranges of pe(t)
and pc(t) either Pr(@ = U) or Pr(6 = L) may be finite. The A appearing in

(3.3.3) is a parameter vector whose elements are functions of the parameters
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appearing in the two survival curves. This vector will measure in some
sense the deviation between the two curves. When pc(t) = pe(t),JAL

assumes its null value, /\ ¥, and (3.3.3) becomes

(3.3.4) ac(e; Ax, ) = -(—2-3”—1’—%—)-'— °(1-90)°da0, 02 0 21,
(st)

that is, © has a Beta-distribution. When the group size is one, s = 0, and
© has a uniform distribution.

If we let e, be the number of mice surviving at time t in the ri'-E
experimental group in a sequence of groups, the conditional distribution
of a. is binomial with parameter 6. The unconditional frequency function
is

2s=a- +1

1
(3.3.5) f(aj A, 8) = Cs +§ f oar (1-0) T ag(e; A, s),
ar 0 .

where a_ =0, 1, 2, ..., 28 + 1. When pe(t) = pc(t), we have from (3.3.%)

that

(s + ar)! (3s - a_ + 1)

(3.3.6) £(a_; A*, s) = @ +> (2:(3 +)%): - ) ’
st s + 2)!

a
r

a. = 0, 1, ..., 28 + 1,

this result being completely independent of the forms of the survival curves.

The frequency function (3.3.6) is symmetric and is more dispersed than the
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corresponding binomial with parameter of one-half. This extra-binomial
dispersion results from the increased variability introduced by the
variate 0. Of course, when s = 0, f(ar;_ﬁL*, s) reduces to the simple
binomial.

When /v 4+ A, f(ar;./\ , 8) will depend on the form of the
survival curves, so that we must assume specific forms of pc(t) and pe(t)
to obtain the distribution of a. explicitly.

The reader should note that the derivation of f(ar;_ﬁL, s) outlined
above requires that each control group be associated with only one experi-
mental group, since otherwise the probabilities derived are not interpretable
in the frequency sense. Further, it can be seen that if several experi-
mental groups are to be compared simultaneously with only one control, any
serious departure of the control value from its expectation might lead to
a set of simultaneously incorrect conclusions.

3.4 Requirements of the Survival Curve. The results of the previous
raragraph are completely general, that is, there is no restriction as to
the types of survival curves being considered. We shall now formulate some
requirements for survival curves which will make the test practicable from
both the statistical and biological points of view.

The forms of Pe(t) and pc(t) will be required to satisfy the following
conditions:

(1) The vector /U reduces to a scalar, that is, there is a single
parameter A occurring in the unconditional distribution of a. which
measures the deviation of pe(t) from pc(t). In all the cases which we shall

consider, this requirement means that we must assume either that the scale
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parameters occurring in pe(t) and pc(t) are equal, or that the location
parameters occurring in pe(t) and pc(t) are equal. We shall assume the

two scale parameters are equal, since this is the more reasonable biological
assumption. Further, this is analogous to the assumption of equal variances
in the application of the two sample t test. If one of these assumptions

is not made, the application of Wald's sequential analysis requires that the
resulting nuisance parameter be integrated out with respect to an optimum
weight function. This introduces serious complications into the procedure.

(2) The parameter )\ has a meaningful interpretation for the experi-
menter, since the decision procedure will involve his choosing alternate
values for A . In particular, it is required that A\ be monotonic
function of pe(mc), vhere m_ is the median of pc(t); since the experimenter
is usually interested in making decisions based on relative values of the
medians.

(3) The forms of pe(t) and pc(t) are theoretically legitimate from
the biological point of view. This means that the survifal curves should
be sigmoidal, and perhaps also, skewed to the right. Further, if.P(t) has
a range with a lower limit, b, then we require that p'(b) = O.

(4) The decision procedure resulting when requirements (1), (2), and
(3) are satisfied leads to tractable results, so that it may be easily
applied.

Aside from (3), these requirements are also needed for non-biological
applications of the procedure. The principal results presented here shall
be based on all four requirements.

3.5 General Statement of the Decision Procedure. Decisions regarding
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the acceptance or rejection of a particular experiment compound depend
on the possible values of pe(mc). Wald's procedure ([ 42 ] ». 78 £f.)
requires that the experimenter choose two numbers Py and Pys where

1/2 < P ¢ 1and 0 ¢ p; £ 1/2, such that:

(1) when pe(mc) < P,, the experimental compound is appreciably
less effective than the control,

(2) when P, < pe(mc) ¢ Py, the difference between the two curves
is considered negligible, and

(3) when pe(mc) Z P, the experimental compourd is considered
appreciably better than the control.

These three intervals are termed in order, the zone of preference
for rejection, the zone of indifference, and the zone of preference for
acceptance. Since A\ 1is required to be a monotonic function of pe(mc),
these zones may be defined in terms of .XO and Xl corresponding to Py
and pl respectively.

Next the experimenter decides on the probabilities of errors which will
be tolerated. The probability of rejecting the experimental compound when
pe(mc) = P, 1s denoted by @, and the probability of accepting the experimental
compound when.pe(mc) = Pys is denoted by B. The choice of @ arnd B uniquely
determines two real numbers, A and B, which are used in the decision procedure.

The test statistic defined by Wald is

fla,; Ay, )
fla.; Ay 8)

m m
(3.5.1) 21 z(a.r) = I log s 8,.=0,1, «o., 28 + 1
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where log denotes a common logarithm. At each stage of the experiment
(i.e., at the 2 trial for each positive integral value of m), the
m m-1
cumulative sum, 3 z(ar), is computed. If log B < I z(ar) < log A
m
and rél z(ar) Z log A, the experimental compound is rejected. If

m
log B Z.rél z(ar) < log A, an additional tridal is performed. If

m-1 m
< <
log B< I, z(ar) < log A and % z(ar) < log B, the experimental

compound 1s accepted. The process of repeating trials could conceivably

go on indefinitely, but it has been shown ([ 42 ], p. 157 £f.) that the
probability is one that the procedure will terminate at some finite m.

In spite of this, it may happen that testing a given compound will lead to
a large number of trials. Thus, for economic or other reasons, it may be
necessary to stop the trials before a decision is reached by the above rule.
If we truncate the procedure in this way, say at the mEE trial, the experi-

m
mental compound is rejected if rél z(ar) > O and it is accepted if
m

2 z(ar) < 0. This truncation will affect the values of the probabilities

of errors involved, making them larger than the stated values. This change
will be investigated in paragraph 3.15,

Although A and B are uniquely determined by & and B, simple general
expressions for them have not been found. Wald [:42 J, p. 44 £f., recommends
approximating A by (1 - B)/a and B by B/(1 - @). Then the true probabilities
of errors of the first and second kind respectively do not exceed their
prescribed values, @ and B. Further, the use of these values causes a slight
increase in the ASN function;

2
3.6 The f(ar; A, s) when p(t) = e-k(t-b) . The first three requirements
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for the survival curve cited in paragraph 3.4 are satisfied if we let,

Pc(t) =1, t < bc )
-k(t-bc)2
Pc(t) =€ P) t 2 bc P)
and
p (t) =1, t £,
-k(t-bé)g
Pe(t) =€ ’ t 2 bc )

vhere k, bc’ and b€ are all constants greater than zero. The scale
parameter k is assumed equal in the two curves in order that only one

parameter, N\ = vk (b_ - b ), occur in the distribution of ©. Furtker,

m =b + (ln 2)1/2
c c kl72

and

22 - )

p(m) =e ,
so that

1l/2
A= (1 2)1/2 { R e P e

Obviously A 1is a monotonic function of pe(mc), so that A and pe(mc)
are in one %o one correspondence.

Though otherwise satisfactory, this form of survival curve leads to
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an intractable expression for f(ar; %, 8). Therefore its derivation
will merely be outlined. The derivation is divided into three cases
depending on whether A = A, > O, A= A*=0, or A= A, 4 0.

Case 1. ) = 7\0 > 0, (,Pe(mc) =D, > 1/2). Following the
derivation indicated in paragraph2 3.3,

ac(1; Ao’ 8) = )\2)(5 +1, s +1),

Il-exp( -

and

-1 -1m 0t ;xo]e )

'
_ (2s +1)! 1-e ]

dG(e; N, 8) =
o’ 8 (s1)2

2 | s41
- .[(' in 9)1/2 + 7‘0] ) Ao a0
e 1+ T2 (6

,040<1,
(- 1n @)

So that in order to derive f(ar; Ao 8), we must evaluate the integral:

1 2
a 2s-a_+1 - [(- 1n 0)1/2 + XO] °
[ of (1 -0) r 1-e
0
2 +1
N RO X a0
e 1+ - .
(- 1n O)l 2 °

2Follow:l.ng Pearson [ 40 :], vi, we let
x

I (p, @) = [B(o, 0] f 2 (1 - 52 e,
0




To evaluate this integral, we make the change of variable x = (- 1ln 0)1/2

and expand the two binomial expressions occurring in binomial series.
Completing the square on the quadratic exponents puts the integrands in

3

the form of normal densities, so that we have finally,

2s ~a +l .
! -
£(a_; Ay 8) = (2s + 1)1 /2541 Cs a «») s (-1)*d

r 2
(s!) a
r
)
. "D (C;47Dy)/Cyy - 2% /Clj 2/% X4(C; 5D, - 2D,
ci. € AV 172 )
’ “13 13
a. = 0, 1, ..., 28,y
where
C..=s+a_+1i+Jj+1,and D, =s + J+ 1.
1ij r J
Further

I
£(2s + 1; Xy s) = I, _ - xg (s +1, s+ 1)+ Q—(—SS—"’:;%L—)— j‘io L<'j) (-1)7,

3We let

X 2
7 (x) = (1/527) f et /2 g,
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-AxD,(C'-D,)/C! 22, . :
e 03I [e- e (i% D,) X 2D, >} ’
<3 (c:,)

where

Cy=3s + 9+ 2.

Case 2. A= )* =0, (pe(mc) =1/2). This implies pc(t) = pe(t) 80
that dG(Q); »*, s) is the Beta-distribution and f(ar; \*, s) is given by
(3.3.6).

Case 3. )\ = Al < 0, (pe(mc) =p, < 1/2). Similar to case 1, we

have

-2

aG(6; A, 8) =0,1 20 > e 1

N 1/2 2| s
46(0; 7\1, o) = M 1 e [( 1n ©) + Al]

(s1)2

_ [( - 1n 0)1/2 . )‘1]2 s+1

Proceeding as in case 1, we obtain



66

, , 2s-a +l1 g 2s-a_+1\ /8 .
f(a “ A , S) - (23 + l). (25 + l). 5 r ,Z r ) < )(-l)l"'J

2
- 2°pn,.(c,.--D,)/cC, 2 2 ;
(O AR % N R N Rl(DJ+l) /Cij QJEhl(Ci;f DJ) -15)1(D3+1)

+ >
1/2 172 ’
Cyy oy C{

e

ar=0, l’ seey 25+l.

Easy application of Wald's procedure requires specific numerical
results for f(a.r,' A, s) for various values of \ . But as can be seen, explicit
results are quite difficult to compute except when s = O. Therefore, this
model was discarded.

Assuming p(t) = sechzk(t -b), t > b, also leads to intractable results
for the distribution of f(a.r; A, s). Therefore, we turn to a model which does
not satisfy exactly all the requirements cited above, but does lead to tractable
results for small group sizes.

3.7 Discussion of the logistic Curve. We consider now the density

X sech® —-E(—t-—é-—E) “00 Lt L oo

4 3o U

p(t) =

where ¢ > O and p may be positive or negative. The graph of the cumulative
distribution of this density, which is called the logistic curve, has been
extensively investigated by Winsor [44 :[ He has shown that the mean and

variance are | and 02 respectively, and that
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2n+l _

E(t-p) 0, n=0,1, 2, «va

and

2n 2 2
E(t-p) = 3n(2 2 2) ¢ 2 Bn: n=1, 2, 3, .0,

where Bn is the Bernowlli number of order n. When n = 2, Ky, = 2lch/5,

and the kurtosis is

Since 75 > 0, the logistic density is leptokurtic, that is, sharply
peaked relative to the normal density. Like the normasl density the
logistic density is symmetric and Winsor has shown that the logistic curve
is practically indistinguishable from the integrated normal curve the same
mean and variance.

If we assume the survival times of the mice have a logistic density,

the corresponding survival curve is

p(t)=1/2[1-tanhL(t;“]= = moo Lt 4 oo .

o 2
J3 Lo (8-1) /35
An immediate objection to the model is that it assigns finite
probabilities to negative survival times. If we attempt to circumvent this
difficulty by truncating the distribution at t = O and edjusting the multipli-

cative constant accordingly, the JAL which is involved in dG(O;J\, s) does

not reduce to a scalar. Therefore the distribution was left untruncated. This



objection is not too serious for two reasons.
(1) The probability that t is less than zero is quite small when

n/o is large. Specifically, we have

1

Pr(t < 0; u/o) = ——— ,
l+ejm/[§.EI

so that when p/o =2, Pr(t < 0) = 0.027; and when p/o = 5, Pr(t < 0) =
0.0001. Thus this probability goes to zero quite rapidly as u/o becones
large.

(2) The procedure based on this model is relatively insensitive to
the form of sigmoidal curve assumed. This property will be investigated
extensively in paragraph 3.11.

On the other hand, this form of survival curve does possess many
desirable properties. It has the property that Lim p'(t)} = 0.

t—>
Further, it leads to a general expression for f(ar; X\, s) which can be rela-
tively easily tabled for s = O, 1, 2. The distribution of a, also possesses
certain symmetry properties which aid in the computations involved in finding
the OC and ASN functions. Therefore, we shall investigate this model
extensively.

3.8 Derivation of f(ar; u, s) for the Logistic Model. ILet

1
pe(t) = ] - o0 <L t

1+eﬂ(t'“e)/j§ae

and



1
3
1+eﬂ(t'uc )/ W/?oc

Pc(t)= - o0 4Lt 4 oo .

letting © = pe(t), we have,

J30
_ € l-0
tER Y 5y ln(O)

which, upon making the change of variable in the distribution of the
median time of death, i.e., (3.3.1), gives the result corresponding to

(3.3.3); pamely,

[e(EﬂAZ/E(S+l)]G_-_Q> )\1(s+1)
(3.8.1) ao(o;/, s) = {281 . i ST -
(st) [eemz/ﬁ(%) 1, 1]25+2

0 £60 ¢1,

where /\ = [)\1, A 1= [oe/oc, (ue-uc)/oc:]. If either p =mp_ or

O, =0 the vector /\. reduces to a scalar which is a monotonic function

of pe(p.c). As was pointed out in paragraph 3.4, it is more reasonable to
assume 0_ = oc, and this leads to

. s+l S¢1_0)2
ac(0; u, s) = (2s*L) u o (1-0) a0, 0 ¢ 0 <1,

(s!)2 (1-u)2$+2 [u + 0 ]2s+2

l-u
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2ﬁ)2//§

where u = e = pe(uc)/ [ 1l - pe(uc) ]. In the following discussion
we shall write the distribution of a. asa function of either u or p,
where p =p_(k ).

The distribution of a, for the logistic model, which we denote by

fL(ar; u, 8) is found from (3.3.5) to be,

s+a 3s-a_ +1
1 r r
. _ (2s+1)!  /2s+1 1 0  “(1=0)
(3.8.2) fi(a;u, 8) ===~ ST Se - 19
() a ) ® 2 - ity )
r 0 u

a, = 0, 1, ..., 2s+1.,
The integral in (3.8.2) is functionally related to the integral form
of the hypergeometric function, and MacRobert [ 39 ], p. 297, shows that the
integral is equal to4

(3.8.3) B(s+ar+l, 3s-ar+2) [ 2s+2, s+a _+1, bs+3, (u-1)/u ]

2Fl

when |(u-1)/u | « 1, which implies u > 1/2.
Since 2Fl [a} B} 7, Z ] = (l'z)-a 2Fl [a; 7'6, 7s Z/(Z-l) ], (see
[ 39 ], p. 297), we may write for (3.8.3)

2s8+2

(3.8.4) B(s+ar+1, 3s-a +2) u o1 [ 2s+2, 3s-a_+2, 4s+3, 1 - u 1.

4Some authors omit the subscripts from before and after F when denoting
the hypergeometric function.
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Substituting this result into (3.8.2), we have

(3.8.5) f (a G 8) = (25+l)! <:if+i:> B(s+a +1, 3s+8 +2) u®
(s.

F, [ 2s+2, 3s-a_+2, ks+3, 1-u |, u > 1/2, a. =0, 1, ... 28+l
Unfortunately the hypergeometric function has not been tabled for the

arguments in which we are interested, so this expression is not immediately

useful.

Iet us return to (3.8.2) and make the transformation x = /(1-0) in

the integral eppearing there. This gives

2 ! 2
(3.8.6) fL(ar; u, 8) = ((:+§) QM) f( +l)2=;+1( < )2s+2 :

From this form of the integral it can easily be shown that

(3.8.7) f

-1
aj; u, s) = fL(2s+ar+l; u -, s),

by letting x = l/y in the integral occurring on the right. This relation
permits us to use (3.8.5) for finding fL(ar; u, 8) when O < u < 1/2., Since

u = p/(1-p), (3.8.7) implies that

(3.8.8) fL(a 5 P, 8) = fL(2s+ar+l; l-p, s)
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This relation reduces considerably the computations involved in tabling
the distribution of a..

Returning to (3.8.6), we see that the integrand is a rational function
whose denominator has only negative zeros and is of degree 4s+3, while the
numerator is at most of degree 3s+l. Therefore, we may apply the theorem

of appendix B, and write the integral in (3.8.6) as

s+a. -(28+2) s+a -(28+1)
1 z T (z+u) 1nzdz 1 z  T(z+1) 1nzdz

(3.8.9) - 5= -
2ni (z+1)2s+l 2ni (z+u)25+2

-1 -u

where C_l and C_u are small disjoint circles with centers at -1 and -u, and
the integrations are performed in a positive direction with respect to the
centers.

Making use of the integral representation of the derivative of a function

(see [ 39 ], p. 70), we may write (3.8.9) in the form,

2s s+8
(3.8.10) - 2::, (-1-2—5 z r(Z+u)'(2$+2)an}
' 4z z = -1
2s+1 s+a
- 2 T(g+1) (@), .
(2s+1)! 2s+1 _
dz z = =-U

By Ieibniz's formula, this equals,
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J r .k m
(3.8.11) - = Tl L (ze)~(2542)
J+k+m=2s T dz dz dz 2 = -1
s+a
5 1 ady ¥z % (z41)"(25%1)
- JTRim! 3 z+
J+k+m=2s+1 dz dz dz

where the summations are taken over all the non-negative integers, Jj, Xk,
and m, subject to the restrictions noted under the summation symbols.

To evaluate (3.8.11) we need the following expressions,

s+a
// J r (s +a)! s+a_~J
g—z__‘_ = (S + a _rj)t ("l) r ) J =z 0
azY |z = -1 T :
(3.8.12) ¢
djzs+ar (s + ar)l sta -3 s+a -J
= (s + ar — ,j)ﬁ (-l) u 2 !j Z O)
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dlinz =-(k~-1)! , k » 0, .
dzk zZ = -1
aIn 2 = (x-1ru™, x> o,
d.zk zZ = =Uu
(3.8.13) <
doln 2 =ai
z° |z = -1
o
d—l_n—i = 1n u + ni
\ dz0 zZ = =u
m 1
-(2s+2 (28 +m + 1)! N
/d__ (z + u) (2s+2) = ' )2s+m+2 ,m >0,
dz z=-1 (2s+1)! (1 -u
(3.8.11+)<
a- -(28+1) 0 (=1)" (2s + m)! S0
— (z+1) - 25+m+1 = -
Kdz z=-u (2s)! (1 - u)
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Consider now the terms of (3.8.11) which are generated when k = O
in the two triple sums. Using the expression just derived, we may write

these terms in the form of two simple summations,

25 | )ar+m-s (
, . -1 2s+m+1) ! 1
(3.8.15) - (S+ar)' i méo (2s+m)! m! (a_+m-8)! (28+1)! 2s+m+2
r (1-u)
a_-+m-s-1
25+l (-1) T (2s+m) ! 1

+ (i + 1nw) By t55SRTTTET (e Fm-s-1)1 (281 SoimrL
r (1+u)
Since the integral is a real number and all other terms in (3.8.11) are
real, the coefficient of i must be zero, whereupon the negative of the first
- summation must equal the second summation. Thus the first summation may be
used as a factor of the coefficient of 1n u.

Using this result together with the results of (3.8.12) - (3.8.14) in

(3.8.11), we find from (3.8.6), that

2s+1 (s+a_)! o1
(3.8.16) fy(a;u, s) = | 5 Be+l
r (st) (1-u)

s+arf+
1 X (-1) (25+m+1) ! 1 .
"< (Tmu) J+k+me2s e Yt (1.0)8
sta s+ar+j+m
r X (-1) (2s+m) !
(25+1) u J+k+m=2s+1 ' :

k40 Jimik (s+a_-J)!
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g+a +m
1 1 (-1) T (28+m+l)! 1

(1-u)™® uJ+k * (1-u) | w=0 (2s-m)!m! ,(ar+m-s)! ‘ (1-u)™®

1n u ’

u 7 0, and a, = 0, 1, «+» 28 + 1.

This expression has been used to derive explicit formulas for fL(ar; u, 8),

for s = 0, 1, 2. The results appear in appendix C. These formulas in

turn were used to derive fL(ar; P, 8) for p at intervals of one-tenth.

The latter numerical results appear in Table 1, where the tabling makes

use of the symmetry relation (3.8.8). When p = 1/2, fL(a.r; P, s) reduces

to (3.3.6), end the numericael result is given in Table 2. .
For s > 2, (3.8.16) becomes quite cumbersome since for each value

of &, the fL(ar; P, s) contains 2(2s + 1) (s + 1) terms (a few of which

vanish). Thus for s = 3, the number of terms for each a. is thirty; and

since the range of a, then has eight distinct values, two hundred and

forty terms must be evaluated to determine fL(ar; D, 3), a, = 0, 1, 2, «os T

Thus for larger values of s, it may be simpler to evaluate fL(ar; P, 8) by

using (3.8.5) with the series expansion of the hypergeometric function on

a high speed computer. Of course, if the hypergeometric function were to

be tabled for the appropriate arguments, tables of fL(ar; P, 8) could be

computed directly from them using (3.8.5) -
3.9 A Linear Approximation to the Survival Curve. Though we have

results which are easily applied, they are strictly appropriate only when

the underlying distributions are of the logistic form. It ¥ould be of some
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Table 1

TABLE OF fL(ar; p, s) FOR s =0, 1, 2.

b 0 0.1 0.2 0.3 0.4

fL(O; p, 0) | 1.0000 | 0.8160 | 0.7172 | 0.6379 | 0.5672 fL(l; 1l-p, 0)

fL(l; p, 0) | 0.0000 | 0.1840 | 0.2828 | 0.3621 | 0.4328 | £ (0; 1-p, O)

fL(O; p, 1) | 1.0000 | 0.6729 | 0.4958 | 0.3714 | 0.2761 | £_(3; 1-p, 1)
fL(l; p, 1) | 0.0000 | 0.2441 | 0.3162 | 0.3355 | 0.3269 fL(2; 1l-p, 1)
fL(e; p, 1) | 0.0000 | 0.0682 | 0.1425 | 0.2065 | 0.2592 fL(l; 1-p, 1)

fL(3; p, 1) | 0.0000 | 0.0148 | 0.0455 | 0.0866 | 0.1378 fL(o; 1-p, 1)

fL(O; p, 2) | 1.0000 | 0.5610 | 0.3498 | 0.2222 | 0.1391 fL(5; 1-p, 2)
fL(l; p, 2) | 0.0000 | 0.2936 | 0.3241 | 0.2911 | 0.2373 | £, (4; 1-p, 2)
fL(2; P, 2) | 0.0000 | 0.1050 | 0.1942 | 0.2405 | 0.2528 fL(3; 1-p, 2)
fL(3; p, 2) | 0.0000 { 0,031k | 0.0908 | 0.1512 { 0.2026 fL(E; 1-p, 2)

£.(%; p, 2) | 0.0000 | 0.0077 { 0.0332 | 0.0730 | 0.1222 fL(l; 1-p, 2)

. fL(5; p, 2) | 0.0000 | 0,0013 | 0.0079 | 0.0220 | 0.0460 fL(O; 1-p, 2)
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interest to know the extent to which the probabilities of errors of the
first and second kind are. altered when the results just obtained are .
applied to populations having distributions other than the logistic.
In other words it would seem advisable to derive the distribution of a.,
for a sigmoidal curve satisfying the requirements of paragraph 3.4 and
then to compare the results with those for the logistic curve. Unfor-
tunately, as was seen in 3.6, all attempts at the derivation for sigmoidal
curves other than the logistic led to intractable results. As an alternative,
we burn to a linear approximation to the survival curve.

Any survival curve, p(t), possessing derivatives of all orders at
its median, m, may be expanded in a Taylor's series
)i

p(t) = £, p\ M@ Loml

If we neglect all but the linear term, we have an approximation to the

survival curve, p*(t), where

1
P*(t):—‘l, t4m+-2-1—),—(1—n-7-,

i

p*(t) =1/2 + p'(m) (t - m), m + -5%7(5) 4 t ¢m - 5Ty

1
* = - -
p (t,-) 0, t>m 2p' (m

The approximstion has the same median and the same slope at the
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median as p(t). However, it has a finite range, since the underlying
density is the uniform. We proceed to investigate this approximation.
3.10 Derivation of f(ar; D, 8) for the Linear Model. Define

pc(t) and pe(t), such that

k
* = - —
Pc(t) 1, t < m, - 3
k k
% = - - - —-
pc(t) 1/2 - x(t mc), m, -3 ¢t em +3
p*¥(t) =0 t >m + k
c ’ c 2
and
k
3 = - —
pe(t) 1, t<m -5
p*(t) =1/2 - k(t - m_) m -% ¢t cm +5
€ e’ e 2 = = e 2
*(t) = 0 t >m_+ l{- .
€ ’ e 2

We have let pé(mc) = pé(mc) = -k, k > 0, since this is equivalent to
letting the scale perameters be equal in the logistic case.

Since m, is the median,

k
3 = - -
Pe(mc) 1, m . m 5

Il
=
~
o
t
w
~~
B
Q
]
B
m
~
.
B
]
UMy
N
B
IN
B
+
=

p*(m )

k
p¥(m ) =0 m m o+ = .
e(c) ’ > 2
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I

We let X = k(me - mc), -1/2 < X < 1/2, so that X\ pe(mc) - 1/2. -

I

Three cases must be considered, A = Ag >0, A= X*=0,and X\ =1 <0.
Case 1. X =X, > O (pe(mc) =p, > 1/2). The probability that

© =1 is equal to the probability that t in (3.3.2) is less than m, - k/2.

Integrating (3.3.2) from m, - k/2 to m, - k/2, and making the change of

variable 0 = pc(t), we have

ac(1; Ao g) =I (s+1, s8+1).

%

As in (3.3.3), we have

a6(0; Ay 8) = 2L (0 L5 ¥ (16w )P a0, Ay £ 0 <1,

(st)2

and

ac(e; Ao s) =0, 0 ¢ Ay

Indicating the distribution of &, when a uniform density is assumed by

fU(& i Ny s), we have

1"
2s+1\ 1 a. 23-ar+l
fU(ar; Ag 8) = . j’ 0 (1 -09) aG(0; Xy, 8).
r 0

For a. < 2s + 1, this becomes




' 28-a_+1
fU(a'r; 2o? s) = (25 + l) Qs+l> Oar(l-o) s a.r+ (O"\o)s [(1_0)4_)0]2

If we expand the binomial expressions containing in binomial series, the

integral may be expressed as & sum of incomplete Beta functlons, and we hsve

(3.10.1) £ ( ; s, ) - (25 + l)' 28+l S . i+j
Ut ® o (s1)? 1Z0 J=O ) <j> (-1° Ay

. B(3s-a.r-j+2, s+a.r-i+1) Il""o (3s-ar-J+2, s+ar-i+1) ,

a = o, 1, ..., 28.
Similarly, for a = 2s+1, we have

' 8 s 8 8
(3.10.2) fU(zs+1; 8, Xo) = IAO(s+l, s+l) + (—2-:‘—;‘-%5 1Z0 350 ( ) ( )(-1)i +J

. B(s-j+1, 3s-i+2) I_l_’\ (s-j+1, 3s-i+2)}.
0

Case 2, A = A¥ =0 (p (m ) =p =1/2). This implies pc(t) = pe(t)
so that dG(6; )*, s) is the Beta-distribution and f(a_j 2\*, s) is given by
(3.3.6).

Case 3. A = %y < O(pe(mc) = < 1/2). Proceeding as in case 1, we

Py
have,
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dG(o;xl, 8) =0, 1l+x, <0 ¢1,

1

ac(e; Ay s) —(—?-:-23—;— (o -Al)s(l -6+ Al)s 46, 0 £ 0 ¢ 1+ Ay,
and
ac(o; g 5) = I_Al(s +1, 5 +1).
Further,

. _ (2s+1): 8 5 (8)/° J
(3.10.3) fU(O, ’\1’ 8) = I )\l(s+1, s+l) + (:)2 igo J§O< )( )(-l)

AL B(s-g41, 3s+is2) L, (84341, 3s-i42),
1
and
! 8 3
(3.10.4) £ (a; Ay, 8) = V?S’f:)” C“j 2 Jio )O (-1) 31
s!
J
. B(s+ar-j+1, 3s-ar-i+2) Il+)\l(s+ar':'+l’ 3s-ar-i+2) ,

a. = 1, 2, ..., 2s+l.
By comparing (3.10.1) with (3.10.4) and (3.10.2) with (3.10.3), we

can easily show that
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Table 2

TABLE OF fU(ar; p, s) FOR s =0, 1, 2

s =0
D 0.2 0.3 0.4 0.5
£,(03 », 0) | 0.7550 | 0.6800 | 0.5950 o.5odo fU(l; 1-p, 0)
fU(l; p, O) | 0.2450 | 0.3200 | 0.4050 | 0.5000 fU(O; 1-p, 0)
s =1
fU(o; p, 1) | 0.5518 | 0.4241 | 0.3030 | 0.2000 fU(3; 1-p, 1)
£,(1; », 1) | 0.2662 | 0.3023 | 0.3151 | 0.3000 £,(25 1-p, 1)
fU(e; P, 1) | 0.1433 | 0.2015 | 0.2578 | 0.3000 fU(l; l-p, 1)
fU(3; p, 1) | 0.0387 | 0.0721 | 0.12%0 | 0,2000 fU(o; l-p, 1)
s =2
fU(O; P, 2) | 0.4333 | 0.2826 | 0.1626 | 0.0833 fU(s; 1l-p, 2)
fU(l; p, 2) | 0.2495 | 0.2570 | 0.2307 | 0.1786 fU(h; 1-p, 2)
fU(2; Py, 2) | 0.1796 | 0.2249 | 0.2467 | 0.2381 fU(3; 1-p, 2)
fU(3; P, 2) | 0.0967 | 0.1%99 | 0.,2018 | 0.2381 fU(E; 1-p, 2)
fU(u; P, 2) | 0.034%7 | 0.0691 | 0.1191 | 0.1786 fU(l; l-p, 2)
fU(5; Py, 2) | 0.0062 | 0.0165 | 0,0391 | 0.0833 fﬁ(D; 1-p, 2)
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fU(ar; o’ 8) = fU(2s -a_ +1; -\ s)
and consequently that
(3.10.5) fU(ar; p, §) = fU(zs -a_ +1;1-Dp, s).

This symmetry relation has been used together with the formulas Just
developed to compute the values of fU(ar; P, s) shown in Table 2. The
result for p = 1/2 in Table 2 is the general result for pe(t) = pc(t).
3.11 Robustness of the Procedure with Respect to the Form of the
Survival Curves. Box and Andersen [ 3k ], p. 1, state two properties -
which statistical criteria should possess; namely, they should (1) "be
sensitive to change in the specific factors tested," and should (2) "be
insensitive to changes, of a magnitude likely to occur in practice, in
extraneous factors.” The first property is related to the power of a test,
and the second property they have called "robustness."
In our situation we are interested in the relative size of the medians
of the control and experimental curves. We are not, however, particularly
concerned with whether or not the two curves are of the logistic form.
Thus the possible difference in medians is the "specific factor under test,"
and the forms of the curves are the "extraneous factors." We defer the -
discussion of the first property until a later paragraph, i.e., 3.13,
since the power curve (or OC curve) of a test which is not robust is

meaningless when the assumptions regarding the underlying distribution do

not hold,
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Qur discussion of robustness goes beyond that of [ 34 ], in that
we shall investigate the effect of a change in form of the survival curves
on both @ and B. Box and Andersen consider only the effect on ¢. We shall
assume an underlying uniform distribution and compute approximations to
actual probabilities of an error of the first kind, o*(a, B), and of the
second kind, p*(c, B), when the logistic analysis derived in paragraph 3.8
is applied. The o*(a, B) and B*(ct, B) will depend on the choice of py, Py
and s, as well as the prescribed & and B. Since the linear survival curve,
in a broad sense, departs further from the logistic than any sigmoidal curve
we would expect to encounter in practice, small deviations of a*(c, B) and
B*(a, B) from & and B respectively would imply that the procedure based on
the logistic model is robust. .

We can find approximations to a*(a, B) and B*(c, B) by using Wald's
general method of deriving an approximation to the OC curve ( [ T ], p. 158
and 160). We outline this method briefly. Iet z, the test statistic, obey

the following three assumptions:

(i) E(z) exists and is not equal to zero.
(11) There exists a & > O, such that Pr(e®* < 1 - 8) > 0 and
Pr(e® > 1 +8) > O.

(iii) For any real h, E(ehz) = g(h) exists.

Then, by Lemma A. 1. ( [ L2 ], p. 158), there exists one and only one h # O,

such that

(3.11.1) E(e
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In general, the distribution of z depends on a parameter, say ©, so that

the solution to (3.11.1) is a function of 6, i.e., h = h(6). Using this
p)

solution, we mey write,

Ah(O) -1

(3.11.2) L(e) °‘=.
Ab(0) _ gh(o)

where L(©), the operating characteristic function, is the probability
of acceptance when © is the true value of the parameter. If OO and Ol
are the values of O which define the zones of preference for acceptance

and rejection, it follows that,

Ahl -1
(3.11.3) B =1L(e)) "= T 7~ , vhere h, = h(Ol),
11
A~ <B
and
h
1-809
(3.11.4%) =1 - L(Ol) ‘=. ———— , vhere h, = h(OO).
0 0 ‘
A~ -B

In the uswal case, h, = -1 and ho =1, and A= (1 - B)/aand B = B/(1 - a);

1
so that (3.11.3) and (3.11.4) reduce to identities.

In our case, we have that z(ar) = log [:fL(ar; P, s)/TL(ar; Po» s) J,

5The symbol ‘=. denotes "is approximately equal to."
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where a. is distributed with frequency function, fU(ar; P, 8). Then

(3.11.1) becomes

h
25+41 £ (a i p), 8) (,)

1. ¥
(3 5) a =0 fL(ar; Py s)

fU(ar; P, s) =1, y =0, 1.

For the values of PO and Py with which we deal, the three conditions
cited above hold, and we can find the two pertinent solutions to (3.11.5);

nemely, h, = h(pl) and h, = h(po). From (3.11.3) and (3.11.4), we have

h
(3.11.6) p(a, B) ‘=, = R
By T (B
0 1-¢
and
h
-
(3.11.7) ax(a, B) ‘=. T A .
1 0 8 0
-B
&) =

We have found by numericel methods the roots to (3.11.5) for
P, = 0.k, Py = 0.6 and p, = 0.3, py = 0.7; for s = 0, 1, 2, These roots
are listed in Tables 3 and 4 along with the approximate values of a*(a, B)
and B*(q, B) for particular values of @ and B found by using (3.11.6) and

(3.11.7). Additional values of a*(a, B) and p*(Q, B) may be found by



88

Table 3
TABIE OF o*(a, B) AND pB*(c, B)

FOR p, = 0.6, P, = O.4; AND s =0, 1, 2.

s =0, by = - o = 1.0k
Q or(a, B) B B*(a, B)

0.05 0.01k4 0.05 0.01k4

0,10 0.0k1 0.10 0.041

0.20 0.120 0.20 0.120

0.05 0.016 0.10 0.039

0.10 0.039 0.05 0.016

0.10 0.045 0.20 0.109

0.20 0.109 0.10 0.045

s =1, hy = - h) =1.22 ‘
0.05 0.027 0.05 0.027 T
0.10 0.064 0.10 0.064

0.20 0.156 0.20 0.156 }
0.05 0.028 0.10 0.063 l
0.10 0.063 0.05 0.028 |
0.10 0.067 0.20 0.149

0.20 0.149 0.10 0.067

8§ =2, hy=-h =1.15

0.05 0.038 0.05 0.038 |

0.10 0.074 0.10 0.074

0.20 0.169 0.20 0.169

0.05 0.03k4 0.10 0.073 i
0.10 0.073 0.05 0.034

0.10 0.077 0.20 0.164 )
0.20 0,16k 0.10 0.077
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Table 4
TABLE OF o*(a, B) AND p*(a, B)

FOR p, = 0.7, p, = 0.3; A s =0, 1, 2.

s =0, hy=-h = 1.4

a ' o*(a, B) B px(a, B)
0.05 0.016 0.05 © 0.016
0.10 0.043 0.10 0.043
0.20 0.124 0.20 0.124
0.05 0.016 0.10 0.040
0.10 0.040 0.05 0.016
0.10 0.0k47 0.20 0.114
0.20 0.114 0.10 0.047
s =1, hy = - hy =1.17
0.05 0.031 0.05 0.031
0.10 0.071 0,10 0.071
0.20 0.165 0.20 0.165
0.05 0.032 0.10 0.070
0.10 0.070 0.05 0.032
0.10 0.074 0.20 0.159
0.20 0.159 0.10 0.074
s =2, hy = - hy =1.115
0.05 0.036 0.05 0.036
0.10 0.079 0.10 0.079
0.20 0.176 0.20 0.176
0.05 0.037 0.10 0,078
0.10 0.078 0.05 0.037
0.10 0.082 0.20 0.172
0.20 0.172 0.10 0.082
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substituting the tabled values of h, and b, in (3.11.6) and (3.11.7). Two
symmetry properties which hold when Py = l - p, were found useful in

computing these tables. These are:

(1) hy =-h), and

(2) a*(a.v B) = B*(B) (1).

The first relation follows directly from applying to (3.11.5) the symmetry
properties of fL(ar; p, 8), i.e., (3.8.8), and of fU(ar; p, s), i.e.,
(3.10.5). The second follows from using the first relation in (3.11.6)
and (3.11.7).

The results of Tables 3 and 4 point up the relative insensitivity
of the procedure to the form of the survival curve. In fact, they indicate
that the logistic model is conservative relative to the uniform with
respect to the probabilities of the two types of errors. Further as s
increases, the deviations between the prescribed and actual probabilities
decrease; and when Py and p, are chosen farther apert these deviations also
decrease slightly. Though the results of Tables 3 and 4 pertain to cases in
which the 12 and p, are chosen symmetrically about one-half, additional
calculations indicate that an asymmetric choice yields results close to
those tabled.

The curves which we considered in paragraph 3.6 were sigmoidel with a
range which had a finite nonnegative lower bound and an infinite upper bound.

This kind of range is more realistic than either the uniform, which has a
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finite range, or the logistic, which has a range infinite in both
directions, Intuitively, it seéms that for these underlying distributions
the true & will fall between the @ and a*(Q, B) shown in Tables 3 and 4
and the true B will fall between B and 5*(a, B). Thus it seems that the
analysis based on the logistic model is slightly conservative when the
underlying distributions are of the form of those discussed in paragraph 3.6.

Although this procedure is robust when the underlying distributions
are uniform, results for a particular case Indicate that the underlying
sémple exponential distributions wiil yield probabilities of errors greatly
different from their nominal values. This is not surprising, since the
exponential curve is uniformly concave. Thus, particularly in the vicinity
of the median, the exponential is worse than the uniform as an approximation
to the logistic.

3.12 Comparison of the Original Analysis to the Logistic. The test

statistic proposed in [ 38 J is

1-p
(3.12.1) z(ar) = log <_p0>

ar(s+l) s(as-ar+1)'
wherex=——2-s—+l—, y=—m——-, anda.r=o, 1, +.., 25+1, Inj:.he

perticular case treated in [ 38 ], P,b=1-p = 0.6 and s = 2, so that

(3.12.1) yields
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z(0) = 0.3522
z(1l) = 0.1761
z(2) = 0.0000

z(3) = -0.1761
z(4)

-0.3522

-0.5283.

z(5)

The prescribed probabilities of errors were @ = B = 0.10.

Using the methods of the previous paragraph, we can find the
approximations to the true probabilities of errors, i.e., «'(0.10, 0.10)
and B'(0.10, 0.10), vhen the underlying distributions are of the logistic
form. Obviously the three conditions on the z(ar) hold when ar is
distributed with frequency function, fL(ar; D, 8), so there exist unique
solutions to the equations,

% eZ(ar)h(ipy)

where y =0, 1, and p, =1 - p, = 0.6. These solutions are h(0.6) = 2.43

and h(0.4) = 0.16. Substituting these results in (3.11.3) and (3.,11.k4),

we have
1
a'(0.10, 0.10) = —533 0.00k4,
1+9°
and
0.16

B'(0.10, 0.10) = "'”2'6fI6 = 0,587.
1+9°°
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Thus, when the logistic model holds and the original analysis is
used, the probability of rejecting an experimental compound with pe(mc) =
0.6 is 0.004 and the probability of accepting an experimental compound
with pe(mc) = 0.4 is 0,587. One might think that a great number of errors
of the second kind would result from using this enalysis. However, this
is not necessarily the case. In the application cited in [:38 ], most of
the compounds tested had very poor protective properties, so ‘that very
few were accepted. Thus, relatively few errors of the second kind were
made and the apparent gross underestimate of the true B did not result in
an excessive amount of testing on poor compounds. In other types of
screening experiments, however, the underestimation of B might be more
serious.

Sometimes, in this experiment, a compound which had been rejected
at the screening stage was later subjected to more exhaustive tests;
usually because it belonged to a family containing one or more known pro-
tective compounds. In no case did such a compound prove to have useful
protective properties. This is reasonable in view of the apparent small
magnitude of the true value of Q.

3.13 The OC Function. The operating characteristic (o¢) function,
L(p), is the probability of acceptance when pe(mc) = p. Wald [ k2 ],

p. 160, cites the following approximation to L(p),

h(p)
. A -1
(3-13-1) L(P) = Ah(:p) _ Bh(p) ’
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where h(p) # O is the unique solution to the equation,

I
)

( 2s+1 fL(ar; P> s) h(p)
3.13.2) 5 : f.(a_; p, s)
&r=0 fL(ar; Pgs s) L' r

This approximation 1s subject to the three conditions cited in paragraph
3.11.
When p = p' such that Ep'(z) = 0, that is, when condition (1) cited

in paragraph 3.11 does not hold; we have (see [ 42 ], p. 176), that,

(3.13.3) L(p') *=. log A .
log A - log B

As before, to evaluate (3.13.3), we let A = (1 - B)/x and B = B8/(1 - ).

We have considered the case where pj =1 - p, = 0.6 and @ = B = 0.10,
8 =0, 1, 2. This situation permits several simplifications in using the
above formulas. Because of the symmetry property, (3.8.8), h(p) =
- h(1 - p) and comsequently L(p) "=. 1 - L(1 - p). Here p' = 1/2, so that
L(l/2) = 1/2. These results hold whenever Py = 1l - pl and @ = 8, The
approximations to L(p) are shown for intervals of one-tenth in Table 5. No
differences among the h(p) for s = 0, 1, 2, were detected at the level of
accuracy attained in these calculations. The values of h(p) shown here may
be used for computing L(p) for other values of @ and B. A graph of L(P) was
made from Table 5, and appears in Figure 1.

These results show that the procedure is quite powerful. Further, it




Table 5
TABIE OF THE OC AND ASN FUNCTION

FOR p, = 0.6, P, = O4; ¢=p=0.10; AND s=0, 1, 2

Ep(n)

p h(p) L(p) s =0 s =1 8 =2
0.0 - 0.000 8.1 3.2 2.0
0.1 - 5.5 0.000 12.9 L.} 2.7

. 0.2 - 3.4k 0.001 18.7 6.2 3.7
0.3 - 2.10 0.010 28.9 9.5 5.7
0.4 - 1.00 0.100 48.3 15.7 10.4
0.5 0.00 0.500 66.0 21.h4 12.7
0.6 1.00 0.900 48.3 15.7 10.4
0.7 2.10 0.990 28.9 9.5 5.7
0.8 3.4k 0.999 18.7 6.2 3.7
0.9 5.5 1.000 12.9 bk 2.7
1.0 00 1.000 8.1 3.2 2,0
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Figure 1.
The OC Function for
P, =0.6, p,=0.4; a=8=0.10
and s=0,1,2.




apparently possesses the requirements concerning the OC function cited

in [ 4 ], p. 32; namely that,

1-1L(p) £ aforallp > P,

L(p) 2 pforallp < p, .

We have shown that those requirements hold for the particular case
considered to the order of approximation of (3.13.1). Intuitively, it
seems that this should be true in general. If these requirements did not
hold for a particular choice of P, and Py, &n optimm weight function would
have to be found, and the entire procedure would be considerably more
complicated,

3.14 The ASN Function. The average sample number (ASN) function,
Ep(n), is the average number of trials needed to reach a decision. When
the three conditions cited in paragraph 3.11 hold, Wald gives the approxi-

mate formula (see [ 42 1, ». 172),

L(p) log B + [ - L(P)] log A
E, [z(a.r) ]

(3.1%.1) Ep(n) ‘=,

in vhich the usual approximations for A and B may be used.
When p = p', such that Ep, [z(a.r) ] = 0, an approximation to Ep,(n)

is given by (see [ 42 ], p. 176),
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_log B log A
EP' [22(8'1') J

(3.14.2) EP,(n) =

We have used (3.14.1) and (3.1%.2) together with the results for
L(p) shown in Table 5 to approximate Ep(n) for the cases where py =1 - p, =
0.6, @ =f = 0,10, and s =0, 1, 2. The numerical results appear
in Table 5 and a graph made from those values appears as Figure 2. The

symnetry relation,

(3.14.3) B [2(e) ] =-5 _[z() ]

where po 1l - Py, was found useful in computing these results.
An examination of Table 5 shows the following interesting approximate

relation:

(3.14.4) Ep(n) o =, 3Ep(n) - ‘=, 5Ep(n) s .

In other words, the average total number of mice used appears to be
independent of the group size for s = 0, 1, 2. This is in contrast to the
double dichotomy, where using larger groups always increases the Ep(n)
(see [ 42 ], p. 102 and p. 116).

The question arises as to what group size is optimum with respect
to some statistical criterion. In formulating a criterion we may neglect

the OC function, since it is apparently insensitive to group size, for
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. Figure 2.
The ASN Function for
pp=0.6,p,=0.4; a=B=0.10
and s=0/1,2.
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8 =0, 1, 2; and also the average total number of mice used, since this
is apparently invariant for s = 0, 1, 2. Thus, we may define an optimum .
group size as one which minimizes the average time needed to reach a
decision, that is, s is said to be optimum if it minimizes Ep(n) . Ep(t),
Now for the logistic survival curve Ep(t) is equal to uc for all s, so
that this criterion reduces to finding the s for which Ep(n) is a minimum.
For s = 0, 1, 2, group sizes of five (s = 2) achieve a minimum uniformly
in p. However, it is not clear whether the largest feasible group size
is always optimum according to this criterion. Further investigation of
the criterion for various values of pO and Py as well as for larger group
sizes would be needed. Even if it were proved that the largest feasible
group size were always optimum, considerations other than statistical might
dictate a smaller group size.
As we have noted, using the usual approximations for A and B decreases
the probebilities of the errors, and consequently increases the Ep(n).
The method of Wald [:h2 ], p. 65, could be used to find closer approximations
to Ep(n) than those given in Table 5.
3.15 The Effect of Truncation. Although Wald [ 42 ], pp. 151-152,
has shown that the probability is one that the tesﬁ procedure will eventually
terminate, it is sometimes desirable to set a definite upper limit, say ny»
on the number of trials. If, by the usual rules, no decision is reached by
th Do Do
the n, ™" trial, we reject if 2 z(ar) > O and we accept if %, z(ar) < 0,
This truncation increases the probabilities of errors of the first and second

kinds from the nominal values to values which we denote by a(no) and S(no).
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wald [ 42 ], pp. 63-64, has derived a general method of deriving

upper bounds for a(no) and B(no); namely,

(3.15.1) ofng) ¢ a+§ () - T (r),

where

(3.15.2) 7 = - 1 B =(ep) ] ,
5oL 2(a,) ]

and

log A-n. E [ z(a_) ]
(3.15.3) 7y = e

Bg °o[ z(a_) J

(3.15.4) Blny) ¢ B+ (n) -7 (73) p

where

log B -n. E | z(a_ )
(3.15.5) 75 = o Bl =) ] ,

‘ITO c,]_ [z(ar) ]

and
n. E [z(a )J
0 "1 r
(3.15.6) 7)+ = - .
Jo, e ]
Ei and o denote the expectation and standard deviation, respectively,

when p = Py» i=0, 1.
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Table 6
UPPER BOUNDS ON a(no) AND B(no)

FOR p, = 0.6, p, = 0.4; o =p = 0.10; AND s =0, 1, 2.

s =0 5 =1 s =2
Upper Bound Upper Bound Upper Bound
ny | on afny), B(ny)|| ny | on alny), B(nQ) ny | on angy), B(ng)
3 0.591 1 0.591 - -
5 0.481 - - 1 0.477
10 0.433 - - 2 0.k27
15 0.396 5 0.392 3 0.390
25 0.339 - - > 0.332
30 0.316 10 0.312 6 0.310
ks 0.265 15 0.261 9 0.259
50 0.252 - - 10 0.245
60 0.229 20 0,228 12 0.223
75 0.203 - - 15 0.197
100 0.173 - - 20 0.167
198 0.122 6l 0.122 38 0.121
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The results of truncation of the procedure when Py = 1 - p, =
0.6 and 8 = 0, 1, 2, for various values of n, are shown in Table 6.

Because of the symmetry relation (3.1%.3), the relation,

A [z(ar) ] =0y [Z(ar)]

and the fact that log A = - log B, we have 7N, =" and 73 == 7
Thus by the summetry of the normal distribution the bounds given by
(3.15.1) and (3.15.4) are identical.

Teble 6 has been arranged such that the total number of mice used
is n, trials is equal for s = 0, 1, 2. An inspection of Table 6 shows
that the effects of truncation apparently depend on the total number of
mice used and not on the group size, at least for s = 0, 1, and 2. The

last row of entries in Table 6 is for n, = 3 Max Ep(n)° Wald recommends

0
this choice of ey stating that, in general, iz will not affect ¢ and B
greatly. The statement is certainly verified in Table 6. However, for
screening tests this choice of I, is usually impracticable.
3,16 An Tlustration of the Procedure. We shall apply the logistic
analysis developed in paragraph 3.8 to the data collected by Doherty,
Burnett, and Shapira [ 36 ]. Each trial was performed as follows: Ten

male mice of the C_H strain, each ten to twelve-weeks 0ld and each weighing

3
twenty to twenty-four grams, were randomly divided into two groups of five.
One group was injected intraperitoneally with a saline solution and one
with the experimental compound. In this instance, each mouse of the experi-

mental group was treated with 30.0 mg (190.0 pM) of cysteine hydrochloride.
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Ten minutes after injection the ten mice were simultaneously exposed to
800 r of X-radiation. The two groups were observed until the third

mouse in the control died. The number of mice surviving in the experi-
mental group was then counted, and the decision was made to accept, reject
or continue sampling. The trials were continued sequentially until a
decision was reached.

In terms of our notation, s = 2 and the probabilities of errors

were chosen to be & = B = 0,10 with the zones of preference determined by

Pop=1-p = 0.6, Using Table 1, we find

z(0) = - z(5) = log fL(O; 0.4, 2) - log fL(O; 0.6, 2) = 0,4806
z(1) = - z(4)

z(2)

it
[

log fL(l; 0.4, 2) - log fL(l; 0.6, 2) = 0,2882

0.0961.

i

- z(3)

i

log fL(2; 0.4, 2) - log fL(z; 0.6, 2)

Further 1n(a/1 - B) = - 1n(B/1 - @) = 0.9542. The results of the decision

procedure for cysteine hydrochloride are summarized in Table 7.

Table T

The Decision Procedure for Cysteine Hydrochloride

T a z(ar) Zz(ar) Decision

1 3 -0.,0961 -0.0961 Since -0.9542 ¢ -0,0961 < 0.9542
continue sampling

2 5 -0.4806 -0.5767 Since -0.9542 < -0.5761 < 0.9542
continue sampling

3 5 -0.4806 -1.0573 Since -1,0573 < -0.9542,

accept the compound
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3.17 Possible Extensions. The most obvious need for further
work on this problem is with regard to the computing of tables of
fL(ar; P, s) for larger values of s. Probably the most practicable way
of accomplishing this is to use (3.8.5) in conjunction with a high speed
computer. Such tables, together with similar ones for fU(ar; D, s),
would permit further studies to be made on the robustness of the procedure.
Then the ASN function could be computed for further values of s, and the
generality of the approximate relation (3.14.4) (concerning the invariance
of the average total number of mice used) could be ascertained.

The possibility of a stopping time based on an order statistic
other than the median could be considered. As was pointed out in paragraph
3.3, it is thought that this will lead to a procedure less powerful than
the one we have considered. The ASN function might also be affected
adversely.

Probably the easiest and most useful extension is to apply this
sampling method to nonsigmoidal survival curves, in particular, to the
simple exponential. Preliminary work on this indicates that this general-
ization is quite simple and leads to numerical results differing appreciably
from those for underlying logistic distributions.

3.18 Summary. Part IIT investigates methods of analyzing data
collected by using the sampling procedure proposed by Kimball, Burnett,
and Doherty [ 38 ]. The method of analysis which is based on logistic
survival curves was found to be best with regard to practical and theoretical
considerations. It is shown that the procedure is relatively insensitive
to the form of the sigmoidal curves.assumed. The OC function, the ASN
function, and the effects of truncation are investigated for particular

cases. An illustration of the procedure is given.
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VI. APPENDICES
Appendix A. The Covgriance in Terms of Conditional Expectations.
Iet U = (ul, Ugy eesy ui) and V = (vl, Vs eees vj) be random
variables. Assume p = p(U, V) and q = q(U, V) have finite means and

variances. Then we have

(1) Cov(p, q) = EE(p.q[V) - EE(p|V) EE(q]V) .

But,

Cov(p, q|V) = E(p.q|V) - E(p|V) E(a|V) ,
from which, taking expectations with respect to V, we have,
B[ cov(p, alv) ] = EE(p a|V) - B[ E(2|V) B(a|V) ] .
Substituting this result in (i) gives
(11) cov(p, q) = E[cov(p, q[V)] + E[E(p|V).B(a|V)] - EE(p[v) EE(q|V) ,

(111) Cov(p, q) = E[Cov(p, qlv)] + COV[E(pIV), E(q[V) ] Q.E.D.

Appendix B. A Complex Integration Theorem.
Theorem (cited without proof by MacRobert [ 39 ] s D« T4, problem
37). let P(z) and Q(z) be polynomials of degree m and n respectively,

where m <« n - 2, and let Q(z) have no positive or zero real roots. Then,

o°

[ #ge--r




112

where A  denotes the sum of the residues of P(z)ln z/Q(z),
(O ¢« amp z < 2n) at the zeros of Q(z).

Proof: Integrate £(z) = P(z) 1n z/Q(z) around the contour of
Figure 3, consisting of:

(1) +the x-axis fromr to R ,

(2) the large circle |z| =R,

(3) the x-axis from R to r,

(%) the small circle |z| = r.

Consider the integral along (%) which as r—— 0, is 2ni times
the residue of f(z) at z = 0. By a theorem cited in [ 39 ], p. 57, this

integral is equal to - 2xi Lim z f(z), if this limit exists. We may

z —0
wrilte,
m
k
|z| |1n 2z} | Z) Az
(i) Lim |z £(z)| = Lim = f]?:oAk ,
z—> 0 2 —>0 Ijig_o szl

m -
where P(z) = w=0 Akzk and Q(z) = jgo B.zY. Now, on (4), we have,

J
(i1) |z| = =,
(i11) |Inz| = |Inr + 16| < |Inr| + 6, where 0 £ 6 < 2x,
(1) | Zo a2l 2 (2, Ia]e®, ana
() | Zo Bl 2 Il - E I3yled

When r is small enough the expression on the right hand side of (v) is

positive, since B # 0. Applying (ii) - (v) to (i), we have
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Figure 3.
The Contour of Integration.
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m
1
r(|in r| +06) .2, |4, |8
Lim |z £(z) | ¢ Lim —10 1
z—s30 r—0 |BO| - & ilerJ |

In the limit, the summation in the denominator goes to zero and the
summation in the numerator to | AOI; so that if we assume AO % 0, we may

write,

4| (| rf +6)

z—>0 B, r—0 (1/r)
Applying 1'Hopital's rule, we have

|2,
Lim |z £(z)| ¢ —— Lim (-r) = 0.
z——0 IBOI r——0

When Ao = 0, the inequality follows a fortiori. Therefore Lim
z —0
{-z f(z)} = 0, and the integral along (4) of f(z) is zero as r——0.

Consider now the integral along (2), which, as R—> oo, is the
negative of 2ni times the residue of f(z) at infinity. By [39 ], p- 58,

this integral is equal to 2xi. Lim z f(z)} s 1f this 1imit exists.
z—> oo
Proceeding as above, we may write,

m
z| {ln 2 z zk
|z] |1n 2| | ,Z, A
(vi) Lim lz £(z)| = Lim \

Z—> 02 z-_)oo I Jgo BJZJI
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On (2), we have

(vii) |z| =R,

(viii) |ln z| = |In R+ i6] « |In R| + 6, where 0 < © < 2nx,
. n k o k
(ix) | o Az | £ 1Zo IAkl R, and

0 | o3l 5 I3, - 5yl ®

When R is large enough the expression on the right of (x) is positive,
since B # 0. Applying (vii) - (x) to (vi), we may write,

m k+1
(|lin R| + 0) .=, |A | R
Lim |z £(z)| ¢ Lim ko

Z—3 00 R—> o0 3. | " - };3 IBJ| gJ

Dividing numerator and denominator by Rp, we have

(In R + 0) |Ak| g+l

Lim |z £(z)] ¢ Lim — .
7 A= B|- .5 Is]®™

Z

In the 1imit the denominator goes to IBn], so we may write,

(|1n R| + @)
k-n+l

Lim |z £(z)| ¢ Lim
Z—3 oo |Bn] R—> oo k;o |Ak|

Sincen > m + 1, the denominator becomes infinite in the limit and we may

apply l'Hspital's rule, which yields,
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k+l-n
‘ |a | ®
Lim lz £(z)] ¢ —— Lim ﬁ ko My .
z—9 0 |B,| R—yo° | R( _Z_‘._O|Ak| (n - k - 1)RD)
Multiplying numerator and denominator by R2n’ we have
k+l
o Iyl 7
Lim |z £(z)] Lim YN ]
Z2—> oo B, R—>o° k=0 IAk] (n-Xk+1)R )

Since the denominator is an infinity of higher order than the numerstor,
the expression on the right goes to zero, and the integral along (2) —> 0
a8 R—— o0 .

Therefore, as r —> 0 and R——> o2, the integral along the entire

contour may be written as

Q(z) Q(z)
(1) (3)

ori /e - f P(z) 1n z dz . f P(z) 1n z dz )

Now (1) is on the branch amp z = O and (3) is on the branch amp z = 2=,

80 we have
00 0 ‘
eni £ = f Q%(-:%- 1n x dx + f P(x)(lg(§)+ 2ni)dx,’
o~ R

P(x) _
and f T &= £ . Q.E.D.
0
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Appendix C. Explicit Formulas for £(asu, &) fora_ =0, 1, ... 25+,
and 8 =0, 1, 2.

- The following formulas are derived from equation (3.8.16).
Case 1. s = O (Groups of size 1).

£,(0; u, 0) = ==+ —L o 1oy

l-mu (l _ u)2

f(l;u, 0) = - —2— - 4 1n u
L 1l -1u (l _ u)2

Case 2, 8 = 1 {Groups of size 3).

2

- 60 1
» £ (0; u, 1) = L 3(u ?:)- + —=
i ’ (l - u)3 u{l - L) (l - u)2 u2
12 2 5
+ - ln u
1 -u) [1-u (1-u)2]
e (1 u, 1) = 2 sk, 36(2+3u) , 6
r %
L (l - u)3 l-~u (l - u)2 u

18 ' 8 10
+r——_71-u [1-1_u+(l-u‘2]lnu

lRecall: u = p/(1 - p) forall 0 < p < 1.
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2 2
fL(25 u, 1) = —Y 5 h5§1 - 3u) _ 36§2 + 3u2) - 33 i
(1 - u) - (1 - u)

+ 18 3 + 12 10 1
(l-ui - l—u-(l_u)2 o

2 2 3
£(3; u, 1) = —F— 21('1 o ), 222 3u) o,
(1 - ) (1 - )

Case 3. s = 2 (Groups of size 5).

3 2
£.(0; u, 2) =%. u 5(u” - 5)  60(2u + 5) , _ 1260

(1-wd @ -w w1-w? @-uw3

8ko(k + 5u) |, 2 5040 1 b 3
t ——— 3 b ey - 1
(1 - u) u (1 - u)3 [E 31 - u) " 2(1 - u)2:l .
3 _
£ (1 u, 2) =2 v 5(u-5) __ 770 _, 350(3 - 5u)
L R e (N N P

2 —
_ 280(4 + 52 ) . _;_ . 60 s |2 21 56 ho 11
(1 - u) u (1 ~u)

BT PR E
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60 u3 125 65(2 + 5u) = 245 (-3 + 5u2)
f.(2; u, 2) = + +
L (1 - )’ {_3(1 “W o aiw? 2 (1w

. To(k + 5u3) L1, 5 1.2k 126 ook
(1 - u)H u_ (1 -u) (1 - u) (1 - u)2 (1 - u)3

3 2 3
£.(3; u, 2) = 300 u {j77(1 - 5u) _ 47(2 + 5u7) . 63(3 - Su”)

(1 -w)° | 2= ) 2(1 - w)? 2(1 - u)3

N
1% + 5u’) 137 1 60 210 280
‘4—-1—'—65*1-11 ['5+1-u' ¥

(1 - u) (1-u? (1-u3

_ 126 1n u
(1 -u)

, T7(=3 + 5u")
12(1 - u)3

(1 - u)S 8(1 - u) 6(1 2

-u)

3 2 3
£ (4 u, 2) = 900 u {jl9(-l + 5u7) |, 37(2 + 5u”)

R 5ui) , 2
3(1 - w)

+T1_-—J[§'(l-u)+2(1-u)2-Zl-u)3+(1-u)u}lnu}
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£.(5; u, 2) = 2280 u’ 319(1 - 5u) _lo7(2 + 5u) L 1303 - 5u”)
-’ ’ (l _ u)5 5014-(1 - U.) 8)4'(1 - U.)2 12(1 - u)3
(b 5u6) _ AT WP
3(1 - w)* 70
" ) 2 N ) 21 N 28 _ 3 1n u
Lo P C Y o e N G

JJGscew
8/14/58
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