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Summarg;

In order to achieve ths high exhaust gas temperatures, which are
desirable if the full poténtial of nuclear fission as an energy source
for rocket propulsion is bo be realized, it seems essential that the
‘fissionsble mwaterisl be maintained in a gaseous mixiure with the pra~
‘pellant. It is then necessary to separate the Tissioneble material
from the propellant before discharging the latter, minme tha xoes of
fisslonable materlal is prohibitive otherwise., ~ .

This report pr&sents an analy@ical evaluation of the characteristics
of a vortex tube which achieves the desired separation by means of a
centrifugal field. Propellant is fed intoc the tube tangentially, at
 the periphery, and diffuses radially inward through & cloud of fission-
able gas, picking up the fission heat as it goes. The fissionable gas
is held against this redial prepellant flow by the centrifugal vortex
- field generated by the tangentially enbering propellant,

The analysis involves several assumptions, the most important of

- which are that the flow is laminar anpd that it is inviscid. A set of

. non-linear Tirst order differential equations is obbtained which is
gufficient to describe the fissionable gas concentration; temperature,
and pressure distributions in the tube. These equations have been inte-
grated numerically for a very wide range of conditions.

The analysis predicts that the vortex tube is capable of maintain-
ing rather high concentrations of fissionable gas, such that the density
of the fissionable gas is of the same order as that of the propellant,
with negligible loss of the fissionable gas, and with ratios of propellant
exit temperature to entrance temperature up to ten. The permissible pro-
pellant mass fiow is found to be dependent principally on the entering
tangential Mach number of the propellant. The permissible mass flow per
unit of tube length is independent of the tube diameter, thus a large -
number of smell tubes, £illing a given volume, have a much larger mass
flow capacity than a single tube of the same volume. For an inlet tangen-
tial Mach number of unity, the permissible mass fiow is of the order of
0,01 pounds per second per foobk of tube length.




A set of experimentis, designed to verify the most important assumptions
of the analysis, is suggested. The Tirst of these is a room temperature
experiment intended to verify that vortex strengths approaching those implied
by the analysis can actually be obtained with the low mass flow rates which
are permitted by the diffusion process. Contingent upon the success of this
first experiment, a second experiment using a mixture of hydrogen and some
beavy gas such as mercury vapor or lodine is suggested for verification of
the actual separation process.

A discussion of the performance characteristics of the vortex tube as a
rocket propulsion device is also presented. Some numerical examples are given
to indicate the order of magnitude of the various interedting parameters;
however, these should not form a basis for judgement of the performante, since
no attempt at optimization has been made. More critical studies of the nuclear
and performance aspects of the device are being initiated at (RNL, and will be
the subject of a later report.

g
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Introduction

The performance of a rocket engine is for most purposes characterized
by its thrust per unit mass flow rate, or specific impulse. Although it
depends somewhat on the pressure-expansion ratio and details of the rocket
motor, the specific impulse is principally depsndent on the stagnation tem-
- perature of the exhaust gas and its molecular weight. It is proportional
to the square root of the ratic of the temperature to the molecular weight.

The potential advantages of nuclear fission as an energy source for

- rocket propulsion are thus twop. First, since the propellant is not required:
to react chemically, it may be chosen to have a low molecular weight. Second,
since the energy release in a nuclear reaction occurs at an extremely high
energy level, the stagpation temperature of the exbaust gases may al least
in principle be very high.

The advantages of low molecular weight may be realized by choosing hydro-
gen, or some readily dissociated substance such as methane or ammobia, as the
propelliant. However, in order to take advantage of the high potential astagne-
tion temperatures it seems essential that the fissioning material be mixed
with the propellant in the gaseous state, so that the bulk of the fission energy
is transferred directly from the fission fragments to the gaseous propeliant.

It is readily demonstrated by simple order-of-magnitude calculations that
in order to add large amounts of emergy in this way it is necessary to have
rather high concentrations of fissionable material in the gas. If it is then
assumed that the mixture of propellant and fissionable material is exhausted,
the loss of Tissionable material is so high as to be prohibitive. It is there-
fore necessary to separate the fissionable materiael from the hot exhaust gas
before discharging it.

The purpose of the present report is to describe a method of achievingfthe
necessary High concentrations of figsionable material in the gas, and the neces-
sary separation of the fissionable material. It consists essentially of a
vortex tube, in which the fissionable material is held by the centrifugal field
while the propellant gas diffuses through it, picking up the fission heat as it
moves inward. The propellant gas, and encugh fisgionable material to make up
losses, enter the tube tangentiaslly at the periphery, as shown in Fig. 1. The
propeilant then paesses spirally inward, through the fissionable material, and
leaves the tube near its center, through a copvergent-divergent nozzle st one end.
The heated gas does not come in contsct with the walls, except in the nozzle,
s0 that the process seems superior to one in which a more or less homogeneous
fisslonable-material-propellant mixture is passed through a critical system, then
through a separation device.,

A,




The bulk of the present study consists of a theoretical analysis of
the separation-heating process, based on an idealized model which is a
first spproximation to the physical situation. The priancipal objectives
are to discover the most important parameters governing the process, and
establish their ranges; therefore the principal results will take the form
of relationships between thess parameters,

In order to help give a feeling for the significance of these results,
the performance of the vortex tube as a rocket propulsion device will be
discussed, and some numerical exampies given., It should be ewphasized, how-
ever, that these examples are in no sense optimum, and should not serve as
g basis for judgment of the performance of the system. This judgment can
be made only on the basis of thorough nuclear and systems studies. Thus
the present study may be regarded as a rather complete evaluation of the
fluid mechanical characteristics of the heating-separation device, while
the nuclear and systems analyses are later steps in an overall evaluation
of its performance.

From another point of view, the study way be regarded as an investigation
of a flujd-mechanics problem which is interesting in itself, quite apart
from 1ts applications to rocket propulsion.



Analysis of the Hesting-Separation Process

The flow in the vortex tube is compressible, with strong diffusion and

- high rates of heat addition. It is in general a three-dimensional flow
process, and may be turbulent. Thus, in order to make any progress in analyz-
" ing it, some assumptions.must be madea The following have been taken as a

- workable set. : Lo : ‘

1. The flow is assumed tc be two-dimensionel, with complete uniformity
along the axis of the tube. To make this assumption compatible with
the flow of propellant through the system, the propellsnt is con-
gidered to be withdrawn from the tube at some radius, r , at which
the fissionable materisl concentration is low enough to make the losses
reasonable. The propellant is assumed to enter uniformly st the
periphery, r,, although it would in fact have to be introduced in
Jets, as in glgn 1,

2. The flow is sssumed laminar. This assumption is quite possibly in
error; however, it is felt to be necessary at the present time.
The validity of this assumption and its importance probably can be
avaluated only experimentally, although some arguments will be given
in its defenseb

3,  The flow is assumed inviscid. Again this is felt to be necessary at
present. An estimate of the validity of the assumption will be given
for laminar flow.

&, It is assumed that fission fragment heating of the gas is local, i.e.,
that the range of fission fragments in the gas is small compared te
characteristic lengths for the system. This sssumption seems to be of
marginal valldity9 but is probably not critical.

5. It is assumed that the molecular concentration of fissionable material
is much less than that of the propellant. This is true for all systems
considered. ‘
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Nomenclature:

-10~

The principal notation used in the analysis is as follows:

Cpl

i

L]

]

il

1

1]

]

i

i

1]

i

1

specific heat at constant pressure of light ges
specific heat at constant pressure of heavy gas

effective hard-sphere diameter for collisions between
light and heavy gas molecules

binary diffusion coefficient
dimensionless diffusion parameter, defined by Eq (23)
dimensionless heat generation parameter, defined by Eq (11)

energy added per unit volume and per unit time by fission in
gas mixture

enthalpy of gas mixture

Boltzmann's constant

mass of light gas molecule

mass of heavy gas molecule

tangential Mach number, based on speed of sound in light gas
radial Mach number, based on speed of sound in light gas

mass flow of propellant per unit length of vortex tube



molecular concentration of light gas

.
i

n, = molecular copcentration of heavy gas

total molecular concentration

=
i

® vpartial pressure of light gas

Py & partial pressure of heavy gas

Py = pressure of gas mixture.

Q - energy reléase per fission
r % radial coordinate

R o gas constant for light éas

T ® gas temperature

u 2 diffusion velocity of light gas

1
v, = diffusion velocity of heavy gas
u, ¥ mass averaged radial velocity
vO 5 mass averaged tangentisl velcocity

W g ratio of densities of heavy and light gases




P

oG ~12-

Y & ratio of specific heats for light gas

A = coefficient of heat conduction for gas mixture

i)
l_l
i

density of light gas

density of hesvy gas

R
[xV)
i

density of gas mixture

R
o
]

1) # neutron track length (neutrons/area/time)

WP ® relative mass flow capacity per unit vortex tube length

Subscripts:

On independent variable (r or r¥)
c - exit from tube
p - periphery of tube
m - point of maximum w

On dependent variables
0 - value for gas mixture
1 - value for light gas
2 - value for heavy gas

Buperscripts:

* - quantity divided by its value at point of meximum w.



kMathematical formulation:

13

With the assumption of zero viscosity, the eguations governing a binary
t1 |

- gas mixture may be written as follows:

- Congervation of specie,
dn,  ny d(uor)

T 14 -
Yoar Y T & + T g (rmyyy) =

Conservation of tangential momentum,

vor = constant

Congervation of radial momentum,

2

duo vb

T e o — B .
r

%%
0 dr dar

o

Congervation of energy,

dH dp
0 . 0 d
Pot™ a7 - %oF Tar = T - g (rd)

where

s AL+ Tlmpeymw + mécpgnauz> + KK (uy - ualf

drop

(1)

{2)

(3)

Here Kg is the thermal diffusion ratio. This term is negligible and will be
ped . ‘ ;
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Diffusion equation,

2

o a [™ oy (my - my) 4 apg 1 ar
ny =Yy o= - Do e nn) n o thE o O
17 ' 0 ofo Po :

Again the term involving KT is negligible and will be dropped.

Equation of state,

p; = nkT i = 0,1,2 (6)

The momentum, energy, continuity, and diffusion equations will now be
considered in turn and put in a form suitable for integration.

Momentum equatioms:

A reference radius, r_, will be defined for future convenience as that at
which w, the density ratio, has its maximum value. Then using the subscript m
to denote values at this radius, Bg (2) way be written, v.r = v, r , and

0o Om™m
Eq (3) becomes,

2

u duo - (Vo’mrm) £ - —— EEQ (7)
Odr r3 PO dr |

Multiplying Eg (1) by my and adding the equations for 1 = 1 and 1 = 2, we get

by using the fact that m.n u, + m,n,u, = 0, the continuity equation for the
17171 2272

mixture, namely

dap
0 Fo a
W oFE tr oar (Tug) = 0
or
au dp
=2 =24 Z oo, (8)
0 Po



- which bhas the solution,

FbuOr = POmuOmrm = constant (83)~

Using EBq (8) to eliminate duo/dr from Bq {7), we get after some manipulation,

- (R B)at)

Now
Po
T

]

(1+w)

Hence,

& 2/, 7 1 .
z ”(‘1:5){(‘@‘) 4 Mem"-%'i(lw}'[l«»@% -—ag?] e R +'w}3

Py Po |

where M., =2ndM are the radial and tepgentisl Mach numbers at r_, based on
Uom and vg agg the speed of sound in the light gas:; ¥ is the ratgo of gpecific
heats for ,ge light gas. Finally, the equation may be written as,

2 .

dp‘ : T T : ap, | 2/M 2%
r 70 2 m m T 0 YPom rm
po ar tm 7 T T ,Fb dr Po th

It will appesar later that M

j rm/th < 10‘3, and the last term in the braces is
therefore quite small.: , ; ' '
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Denote by an asterisk any quantity divided by its value at T B8
¥ = r/rm. Neglecting the swall term, Eq (9) then becomes,

r* :
T (10)

Energy equation:

The factor G in Eq (4) represents the fission heat source. It may be
written as

G = n20f

where 0. is the fission cross section for the heavy gas, @ is the neutron {Flux)
track length, and @ is the energy release per fission. It will be assumed
that these guantities are independent of r. The enthalpy, Hb, may be written
as; '

5 o= o.m 1+ w cp2/cpl
0 pl 1+ w ’

but since the molar specific heats of the two gases are of the same order of
magnitude,

L L

hence,




If ¢ . is assumed constant, Eq (%) may then be written in terms of the teme
peragure as follows: ~

a [»T }g 1 % o
Pocpl dr pouocpl

a A ar ‘
T ar [” Poiolor & Pootor pou < (ml 1711 " M2 Bptp) ] .1

the term in Kp being neglected, Again referring all quantities to r = T
this becomes, ’

d A i P en’en (f@g )}
- r¥ -~ 4 p¥TE X -
dr* { (OOmuOmrm pl ar¥ € on® Om e cpl
where¥ ‘ . f¢Q 2m m ’ (11)
o lPOm ~

¥The negative sign in the definition of g_1is due to the definition of
velocities as positive if directed outward. Thus, Yom is inherently
negative, : ' '




(2)

Now according to Euchen's formula,

i

A = For - 5\,

hence

A ]
POmuOm?mel

(97 - S)u
thbmuOmrm

This quantity is of the order of 10mh Tor the systems of interest, while
other quantities in the equation are of order uunity, hence conduction is

negligible. Omitting the conduction {third) term, and using Eg (10), we
get,
2 c u,
d [ T ] ( tim ( p2) Pon'om 4 _
—— = Y= 1) —= « gr¥*nX + {1 « (r*T¥nXuk)
¥ , ¥ B
dr* 11 + w r*3 &yt T2 Cpl f’OmuOm dr TR

This is the final form of the energy equation as it applies to the
present problem., It may be put in a more convenient form by eliminating
the derivative of w from the left side and collecting the derivatives of
T from left and right sides., Thus, the density ratio, w, may be written,

X
. - W, Ny, . nET
m —— = - s
1l R

whence
* ¥ *
A Q) - e 231 e 10
ar¥ T m pg ng dr* T* Qr* p¥ dr¥ ’

(12)



~ and using Eq {10) to eliminate the po term,

a ' “2 r# AT¥ 2 1+w g
g (L) = [n*dr** B e - ¥ Moy ]". (23)
The left side of Eq (12} way now be expanded as follows,
__c}_ﬁ[fT* ]g T* 1At w - TN
*|T T w (1+w)° ™ &* T, 02 n;gdr*
;,r X7 | |
M;e:m _f‘g__“__ | | (14)

*5 l + ¥ pg

The ﬁerlvatlve of T¥ may be separated from the rlght hand slde of Eg (12), as:
follows: ,

a . aT* a ' :
sox (r¥Tagut) = Tofud mmo X gy (roguy) (15

Sl * ZIZI: ;
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Substituting Egs (1%) and {15) in Bg (12) and collecting coefficients of the
derivatives we get,

1 arx { ™ ( i °p2> Conzm

T% Fpk :
% dr (1 er)2 Cp1 (oOmuOm

r*lgug'r* }

T h¥ %
ny dr (1 + w)2 “p1 Con®om

dn¥ c 2.,
1 2 W 2 2m2m . d
{ T*’} - (l - £ ) T* E {r* 1511%) =

(16)

. 2
Y .1 Y ETE UM
{ Y I ¥ w pg %3 - gy

Finally, it is desirable to eliminate ug,/ugy, in favor of quantities
which have more readily understandeble physical significance. Let ’”'(l and
7’12 be the mass flows of light gas and heavy gas per foot of tube length. Then

1

K&

- erm‘olm(u()m + ulm)

i

My

- 27”111(0211&(u()m + u2m) ’
and

a el

wim © 7 ¥ omYom?

hence



Thus,

. (1;;.%;,)

Yom _ P\ M/
u'i»Z’m WZ ‘

- .y
Py o

Now by agsumption 1,

M. jom. = w_, where w_ is the density ratio at the
W ] . 20004 < c J
exit’ radius, T Thils

iOg - . 1 LS ; k (1?}
oy 1- Wc; Yin

Using this relation, and noting that 'ng/p()m = wﬁ/{l«wm) Bg (16) becomes,

C o \f ¥ 1o~ w ju :
1 ar* T ( o2 )( m Y c m) }
= + {1 = ; TEnXQETH
% , ; \
T* dr {(l—!«w)z c ’ l+wm l«é»wc 2 e

dn¥ < v\l -w /v ;
1 B2 § w ( ga)( m ){ c m), 4 s
- — %y &« {1 J TH e { r¥nFufls (18]
% * ; . 1 ! ¥ b S 2 ?
o3 dar (1 + w)? } | C’pl kW 1+ LR dr 2 2

; .
=) ¥-1 ™ 'néT* )’th
r*ﬁy

- gmr*n?“’f

One expression relating the derivatives of T*,n%} and r*n%ug has thus been
cbiained from the snergy equation. Two additiciial expressicns relating

these derivatives will be obtained from the diffusion equation and the con-
servation equation for the heavy gas.




Conservation eguation for the heavy gas:

From Eq (1), for i = 2,
S (rnu,) = - ru fi% - i (19)
ar ‘Tt 0 dr " "2 & . 7

From Eq (8), since Po = mn +m,

2 M) iR (s dnl+mgffg):
uor dr PO dr mln1 + m?zm2 1l dar dr
B 1 ( W R )
= o= ” Rasmad bt amans 3
1l +w nl dar n2 dr

and substitution into Eg (19) yields

Y21 g () = - Ao L Mo 1 1M
uorn2u2 ar 2 14+ w ne dr 1+ % nl dr



L

Referring all guantities to T » and using the squaticn of state to eliminate
ny in terme of temperature and pressurs '

' . * % ¥
O DT i v L U W 1 (eI rxam
u ug ngug dar¥ Tl 4w nf's Ix VT w | p¥ dr¥  TEAr¥ )

Finally, using Eqs (10) and (17) to eliminate dp"’oﬁ"/dr* and ugm/u()m’

Fp ‘ ‘ ‘ v |
alr¥pfu*y) L+ e ey I P I - ] | SONS
ar¥ T T 1l-w, e n ugn? g " 14w T* &r* " pf dr®

This e:):pression may be used to eliminate the derivative of r*ngug from
Eq (18). f ‘

A simple relation exists between u%u uf, and w, since Eq (19) may be
written as

2 (o) + g (mgig) = 0

or

: rne(uc + ue) = const.
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Referring all quantities to their values at r , and using Eq (17), we get

Using the expressiouns for w andf?o, this then becomes

u% 1w for
Eg = _-_7‘“1 i . (21)

Diffusion eguation:

Dropping the term involving KT’ and using the fact that n2<< By,
Eq (5) may be written,

U, = U = o« D {—JL in——]-:.,..l.. ffé*(fgwl)( 1 )_—:]‘-_‘ dpo} .
1 2 12 nl dr ng dr ml 1+ w dr

Noting that Py = nlkT and u, = =~ wu,, this becomes,

e a2 (% 1), 2 Po a1 ¥
2 T4er 3} | m 1+ w Py dar Tdr r



e

Referring all quantities to r , and using Eqs (10) and (17),

‘  , 2
P LU i )(%{(k@_il) Mo
2 Ty, § 1 - vé/wm r¥ 1+ w /¥R
T+w | & '@ oF

This is the third relation between the derivatives of T*, n¥, and r¥pfug.

The diffusion coefficient:

The simple theoretical result for D,,, based on hard-sphere collisions,
will be used, partly for the sake of si city and partly for lack of infor-
mation about the(gﬁteraction potentisls for the molecules of interest. One
such formula is, ,

, . 1
¥T{m, * )2
o 3 I T
1 = 2 27m.m
8nod12 172

vwhere 4., is the effective hard-sphere diameter for cqllision. Since B, =
po/kT, nis becomes, ‘

| 1 |
| 32 | 2 3/2
R 1 A




* A 2%’“«

Now the dimensionless group Dl?./rmu’Om becomes

1
D = . 3/2
= - 3 /2 1\, 1“;)2 T 7x3/2
*
m Om (am)t/? mi/ 2(1?2 "o/ TulomPom PO
We write this as,
Dy N T*E/Q
=T ¥
Tn"om m pO
where 1
3 1 5/2 m)\2 g 26
L o= "3 17_1/2( /22 (l+5”) — (23)
(2™) B %2 2 Iaxrin(’imp()m
Now
- 1k
I'mmompOm/ To = “nonPon 1+ ?;; m,
and
Wl +7772 = " 2TP oty o Dence
cu o from LWy 1ok MAL'Ye
m Om~0Om’ "m 2 l+wm ml 271‘l+wm my
Thus ,
1
=, 1/2 1/2 1 , 1/2
b = 5(2”} ! 1 +ﬂ) 2 () (24)
m [¢) d?,e m, 1+ v, /}7/1,



Solution for the derivatives of n* and T*:

Equations {18), {19), and {20) glve three linear algebraic equations
relating the derivatives of T, n¥, and r*n¥u%. These may be sclved for
the derivaetives of T* and n%, and the resulling two expressions, together
with BEq (10), give three first-order non-linear differential equations, ‘
which may be integrated numerically. Thus, substituting Eq (20} in Eq (18),
and collecting the coefficients of the derivatives, ’

c W
r¥ gP* 1 pe m
T*dr*{ 2 * (l-cl)(l-&w
, (1 +w)* P

o dng { v _ (1;0;92) L | r*n"z(‘ug}

n* dr*

Equations (22) and (25) may now be written in the following form,

o I aTe s df
1T &% T 1 @X T “

.
¥ g rx 903

T g% T ﬁg dr#* u’ce




28
where,
v, - ; ¥ -
a, = —= + (1 cpg)( n r¥nXuX [} U }
= ' - 7T = YV W T T ¥ "
1 (1 + w)e Cpl 1w 22 1+ L us 1+ w
b (l sz) Vi rnsag W (26)
- - ¥ : - 2
1 Cpl 1+w 1+ w (1 + w)2
*2_ . 2
r¥*en# . c W Yy M
cg = - gy O A S N £ - B udnir me
1 T* Y L+w c T+w 0 K2 ®
pl T
¥ - : !'-
. . ;L,Pgr*ug 1 Wc/wm (1) (.Tg. N ﬁ) J'Mimm
2 Xgm‘ T*572 14w my PXCe
The derivatives may then be written,
r* ax S "GPy (27)
* * -
™% dr 8y bl
3 -
px S5 Gy - €y g
n¥ dr¥ = a. - b. (28)
2 1 1

Equations (10), (27) and {28) may be integrated numerically.

Eq (10) will be repeated here.
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For convenience,
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The relations needed to complete the above set of equations aré,
oY = %-E-:‘i——: 2 | (@9)
m ,
ut = 1/p {30)
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The parameters which must be specified, and which govern the process, are

'%é’M Vi and w All of the quantities with asterisks are by definition
equal t0 unity et tﬁe radius r = r_(or r* = 1) vhere w is a maximum. The
initial conditions for Egs (10), (B7) ana (28) are therefore specified, and
the 1ntegrat10n can proceed numerically from r* = 1; however, the parameters
%ﬁ 5 ‘and w  are not all independent, if w is to have a maximum at r¥ = 1.
is w1£T be shown in the next sectlona

Maxima and Minima of w:

Because of the fact that the absolute value of w enters Eq (26), rather
than just the ratio of w to its value at some point in the tube, it is neces~
sary to specify the magnitude of w at some value of r¥., This specified value
of w is an important parameter, since it effectively determines the flgslonable
material concentration in the tube. In order that the specified value of w .
should be as accurate a measure of the average megnitude of w as possible, it
has been defined to be the maximum value of w which occurs in the tube., However,




since the variation of w with r¥ can be found only by numerical integration

<of Eqs (10), (27) and {28), it is - possible to specify the maximum of

w only if it occurs at r¥* = 1, the initial point. In this section, conditions
will be obtained which are necessary and sufficient for the occurrence of ‘&
maximum of w at v¥ = 1.

The condition that dw/dr = O is, from Eg (13),
*
ve OB opx oape o2 14w
* * * * 7 b N
nX dr T* dr L HOTR

Using Egs (27) and (28) to eliminate the derivatives, this becomes,
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c, = - T (1 +w) + =+ =y tn e (33)
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Thus, the condition for zero sliope of w at r¥ = 1 is,

(1 -w /)2 +w)
Xam ~ cmem m . (Bh)
XMim(.lI.l']t"}\'(l*‘wc)

Equation (34) gives the value ofi?’ such that w shall have zero slope at r¥* = 1.
With this value, s becomes , '

pgr¥*uk (my/m, - 1) m
2 0 2/ 71 2 1
C!2 o= Xth \i :-["’_;372'*— (l + W) "——’fﬂr +( BZ + W) 1,*2T*] ) (35)

and this expression replaces the corresponding one of Egqs (26).



It is interesting to inquire whether there are points other than r¥ = 1

at which Eq (33) is satisfied. Substituting Eq (34) in Eq (33), ve get,

¥ Fpek ,
ey POFT 1 (338)
1+ ~T*1/2 r*ei , r
Now from Eg (31),
uX 1 - vﬁ/w
wx = - 7
us 1 w& L
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hence, Eq{33a) reduces to
1o~ w ju
I i ‘ l p
1 -w /w T*l/a =T ‘ : (36}
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which is the condition to be satisfied if there is to be a point of zero slope
of w other than at r¥ = 1., Since T¥ and w are not known as functions of r¥%
before the equations are integrated, it is not possible to give the points of
zero slope of w exactly; however, it is clear that if BEg {36) is to have a root
for r¥< 1, then the derivative of the left side with respect to r¥*, svaluated

at r¥ = 1, must be less than that of the right side, while the reverse is true
if there is to be a root for r¥>1.




It was found by integrating the equations that 1f there is a root for
r¥>)1, then w is a maximum at r* = 1, while if there is a root for r¥*¥<1,
w ig a minimum at r¥ = 1, The behavior of w is shown quelitatively for
these two cases in Fig. 2. Clearly, the minimum slope of T¥ versus r¥*
which is permissible if w is to have z meximum at r¥ = 1 is such that the
curve of the left side of Eq (36) versus r¥ is tangent to that of the right
side at r*¥ = 1. From Eq {36), this condition is

aT* | L
dr* | o . 1 -
From Eq (27),
2
aT* ” gm{:L + wm) + (¥ - l)th (1 + wm) N
dr¥ r*:l"l+(l~;2?.)w L-w /vy o
m A
Pl l+w
Solving for gm,
c 1 -w /w
] _ P2 c’ m 1 { 2
gm(max) = h[.l - <l b Cpl) Y TTE W ] T+w, Y- l)th (37)

The value of g given by Eg (37) is to be interpreted as the meximum value,
for given w_and M, , which sllows v to have a maximum at r¥ = 1. If is
less than this valie, w/w_ will behave as in Fig. 2b, if Eq (36) has a root
for r¥>1. However, if Eq (36) does not have a root for r*>1, w/w_ %ill decrease
continuously for r¥>l., n '

This rather complicated behavior of the density ratio can perhaps be better
understood by re-writing the diffusion eguation in terms of w. 8Since w/wm =
ngT*/p%, we have

* *
rray _orx Y rxape px O%
w dr¥ DS dr¥ © T% dr¥ = py  dr¥
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Now using Eqs (21) and (23), the diffusion equation.LEn,(EQ)] may be written:

| ] | |
W 1+ w m, JM % 3w
e (R ) R
ﬁ m . 1 T P

The first term in brackets on the right represents the vortex field, or rather
its effect on the diffusion process, while the second represents the combined
effects of the heavy and light ges concentrations. The influence of the rsdial
mass flow is contained in, , which is inversely proportionsal tc the mass flow
rate per unit of tube lengtﬂ Wl{see {Bq G4)}

The physical significance of Eq (22a) may be most easily seen by studying
its form for three physical situations: the first with constant T and no
radial mass flow, the second with constant T%* and radial mass flow, and the
third with both strong temperature varlatlon end radisl mass flow.

If the mass flow rate is zero,xQ’ is infinite @ee Eq (Qh)] and Bg (22&)
reduces to

m M?
¥ dw (' 2 _:9 Y tm,
r*QT*

Now if T* is constant,; this immediately integrates to:
/% | ﬁ
ey - o] (29 (1 3 )

Thus, for this case w decreases verytrapidly, and monotonically as r¥* decreases
from r¥ = 1, as shown in Fig. 3, case 1. ‘
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Next, suppose T* is atill counstant, but4%& ig not zero. Then unless w is
very small, i.e. about equal to w; the quantity in braces in Egq (222) must
be equal to a positive constant, say C, which increases as?/) increases. Now
at r¥ = 1, dw/dr* has been set equal to zerc, hence the first term is just
equal to C for r¥* = 1, As r¥* decreases from unity, the Tirst terw increases,
hence\dw/dr* must become positive, while as r¥% increases, the first term
decreases, and dw/dr* must become negative in order that the sum of the two
terms may remain equal to C, Thus, the radial mass flow produces a simple
maximum in w as shown in Fig. %, case 2.

Finally, consider the case in which there is both radial mass flow and sub-
stantial heat addition, which results in a decrease of T% as r¥* increases.
The sum of the two terms in braces in Eq (22a) may still be considered roughly
a constant, since T*1/2 varies rather slowly compared to the first term in the
braces. This first term depends on both r¥* and T¥, If T* varies slowly
engugh so that the product r¥27% increases monotonically as r* increases, the
behavior of w is substantially the same as that of case 2, However, if T¥
decreases more rapidly than r¥e increases, the first term increases with r¥*
instead of decreasing, and dw/dr must increase as r¥ increases. If r¥ is
increased enough, dw/dr becomes positive, and very large, because as T¥ de-
creases, the propellant deunsity,; and therefore the fissionable material density
(since w=l) increase. The latter increase leads to a high rate of heat addition,
which accelerates thé decrease of T* with r¥*, and the effect multiplies. Thus
w first decreases, then increases very rapidly as shown by Fig 3, case 3.

Whether the system behaves as in case 2 or as in case 3 depends on vhether
T% varies more rapidly than r*2 for some r¥ greater than unity. Now the
variation of T* with r¥ is proportiomal to g,, at least for r¥* near unity, thus
as gy 1s increased from zero, the bebavior of w will change from that of the
second case to that of the third., The value of g, at which this change in
behavior takes place will be denoted gm(crit)o

In summary, the conditions which must be satisfied in order that w have a
maximum point at r¥ = 1 are that cs be given by Eg {35) and that gm be less
than the value g (max) given by Eq (37). If gy is between g (max) and gp(erit)
w will behave as shown in Fig 3 for case 3, If g is less than gplerit), w
will behave as shown for case 2.

M,
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© Method of Integration:

Equations (10), {27), (28), (29), (30), (31), and (32), with Bq (33) for
Cps, are in such a form that they may be integrated quite readily by a high-
speed digital computor. Since only the first derivatives of T¥* and nf are
easily aveilable, a simple forward-difference scheme was used, and the de31red
precision obtained by means of a small interval.

Beginnlng at the initial poinkt, r* = 1 where ng'm T* = p¥ x59§ = ug = ud o= 1
and w = w,, the guantities ; ‘ .

(v*/og)dog/dex ,  (r*/T)arx/arx ,  (r+/p¥)apg/dr+

were compubed, Values of ng, T¥ and pg were then estlmated,at the next value
of r* by the relation,

* B
1ia '
Vi T Yy e’q{ T T (28)

where y = , T*, p§ With these values, Pg, ug, *, and w were then estimated.
The derivatives at The end of the interval were theh computed from these values,
and final values for each of the above derivatives were obtained by averaging

the estimated values with the corresponding values at the begimnning of the interval.
The final values of ng, T* and p% were then computed by Eq (38), using these
average derivatives. This procegure was repeated for each 1ncrement in r¥®,

An interval of Ar¥ = 0.005 was used for all the calculatlons. In order to
estimate the errors, one case was run with ap interval of 0.01l. Since the
results for the quantities of interest agreed to within one percent, it was con-
cluded that the accuracy was sufflclent for engineering purposes.

Parameters of the heatingwseparation‘processz

t,w,g,andw wers
specified, The integration then proceeded from r¥ = ] toWard small r*, The
integration was stopped when w equalled w_, and the value of r* at which this
pccurred was called rﬁo For all of the cdlculations w, = 0.0001 was selected.
This figure implies & loss of 0.0001 pounds of fissionable material for each
pound of propellant expended. It could be reduced to 0.00001 without gualita-
tively altering the results. , :

Por gach integration of the differential eguationg, M



The perameters which remain are then M, ; w , and . For any particular
set of these, the integration gave the varistion of u¥, T*, 3,»and w with
r*, for r* in the range where w was less than or squal to LA

In order to interpret the results in terms of real systems it is necessary
first to select the value of r* which is to represent the periphery of the tube,
i.e. r¥. Bach solution for a given set of My, wy and g, allows a range of
values  of r¥, and the overall characteristics of the sygtem depend strongly
on rf. The 8alues of r4§ have been chosen for the cases where g > g {crit) so
as to include the entire range of r* for which w< w_. By refergnce to Fig. 3
it may be seen that r¥ is the value of r¥* at which W/, becomes unity again ss
r¥ is increased from tnity. For the cases where gm< gm(crit), r¥* has been
selected as the value of r* at which w = 0.1 wp. It #ill be sebn later that
this choice gives approximately the maximum overall temperature ratio, from
tube exit to periphery.

For a given value of r¥, the tangential Mach number, M, , and the heating

parameter, g., both referged to the fluid conditions at tﬁg tube periphery,
may be compu%ed. From the definition of the Mach number,

VOP

Myp = 7T
(XRT.p)
Using Bq (2), this becomes,



Similarly, from the definition of g,
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The physical significance of My, is of course clear. It is gimply the
velocity of the entering fluid divided by its sonic velocity. Other things
being equal, the strength of the vorfex field increases as Mtp‘increaseso '

From Bg. (40), it iz clear that g, measures the ratlo of the heat
generation rate by fission per unit of tube length to the heat capacity
of the fluid flowing through the tube, per unit length and per unit time.
It is therefore a direct weasure of the temperabture ratio across the tube;
from periphery to core. In the process of integration, gy, was fixed, and
for each r> a value of g, was computed, from Eq. {41). This value of _
determines the relationship necessary between the parameters of Eq. {8Q) in
order that the heat generation rate be that which is implied by the resuliant
tempersture ratio, TC/T . : : '
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A relatlionship between the mass flow rate per unit of tube length,jv”,
and the other parameters is implied by BEgs {24) and (34). EBquating these
and solving forﬂ%, we get

1/2

s 2 b2y 1/ ']é:me yT |
o, - AEH— Eomo (l“";;r) (ml - 1-) vy P (42)

de

where

Since T l/E/T*l/2 Tml/e, the mass flow rate depends on T,» My » and con-
sti?ts Beterm¥ned by the light-heavy gas combination. It is proportional to

m tm'

It is important to note thata%i is the mass flow capacity per unit of tube
length, and that it is independent of the tube size. Thus, a large number of
small diameter tubes filling a given volume have a much higher mass flow capacity
than one large tube of the same volume. This is felt to be one of the most im-
portant results of the amnalysis.

In order to estimate the critical size of a system composed of vortex tubes,
it is necessary to know the aversge densities of the light and fissionable gases
in the vortex tube. These may be obtained by averaging over the density distri-
butions given hy the integration.

A



1f r*g is the exit dimensionless radius and r* is the peripheral dimensionless
~radius, and it is assumed [, is comstant for r#& r#, and has the value Pyg - then
the ratio of average light gas densit:y to that at he periphery 19 3
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If it is mssumed that w is very small for r¥ r:f ; the average density
. ratio W, defined as w % P'Q/ Py is given by,

W , ‘ '
P o) [ e e
rp Fl , Op rg ; : | k

The gverage density of the fissianablé gas in the tube is then given by

Go = ¥ (%} P - | ! (5)
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In summary, the following parameters are significent in specifying the
overall performance of the heating-sepsration process: the overall tem-
perature ratio, TC/T s the overall pressure ratio, pOc/POpﬁ the peripheral
tangential Mach number, Myp, the outliet-to-peripheral radius ratio,,rc/rp,
and the relative mass flow capacity per unit of tube length, W . The coupling
between the filuid-mechanical and nuclear characteristics of the system 1is
expressed by the average fissionable-species-to-propellant-density ratio, w,
the average-to-peripheral propellant density ratio, Pljplp, and the heating
parameter, 8p2 which is essentially a statement on the required neutron track
length.

Results:

The principal results of the analysis take the form of relationships
between the overall-performance and nuclear-coupling parameters and the
gspecified parameters, Vs th, and [ however, it is difficult to under~
stand these relationships without a prior understanding of the physical aspects
of' the heating separation process, Accordingly, before these principle results
are presented, the variation of the several physical parameters with r¥ will be
presented for gome typical values of the specified parameters. Because of the
large number of possible combinations of the specified parameters, these results
can be only exemplary.

The calculations have been done for a combination of hydrogen as the light
gas and plutonium as the heavy gas. The quantities involved in the integration
which depend on this choice, and the assigned values arve: ma/ml = 119.5,

Cyn/Cpr A 0.008, ¥ = 1,3L. The value of ¥ was selected as a reasonable mean
pe El .
for the temperature range of interest.

The density ratio, dimensionless temperature, and dimensionless fusl concentration:

The somewhat complicated behavior of w, which has been discussed qualitatively
at some length in the section "maxima and minima of w", is shown quantitatively in
Figs lYa and bb, for typical values of My, and wy. For g, < gyplcrit), (Fig h4a), w
has a simple maximum, and falls off quite rapidly for r* both greater than and
less than unity. This simple maximum results from the fact that for By < g (crit),
the vortex field strength decreases monotonically as r increases. If, on the
other hand, the rate of heat addition is large enough, i.e. gy > g (crit) the
rapid increase in density as r increases causes the field strength first to decrease,
then increase again as r increases. In these cases, w increases again as the field
strength increases, as shown in Fig 4b.
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The variation of T#* ig shown for the same values of M s and
‘Figs O5a and 5b. For g < g {crit), T* varies vather slow Ty mNear r¥ e l,
where w/w, is near unity, T* increases steadily; however, as r¥ becomes
smell, and v becomes smell, T¥# decreases beceuse the propellant expands
toward the center of the tube. Similarly, if r¥ were carried to large
~enough values, T* would increase a&s r¥* increased for r* > 1.

For gy > g,(crit), the variation of T# reflects the fact that W/ 18
- of order unltv for all r¥ > 1. ™ continues to decrease as r¥* innreases,
and in fact for g% near g {crit), T* decreases very rapidly as w increases
rapidly. As has been pointed out previously, these two effects reinforce
 each other, since as the temperature decreases, the derivative of w in-
 creases, which gives a higher rate of heat addition and decreases T* further,

, The variation of the dimensionless fissionable-species concentratlon with '

. r* is shown in Fige 6a and 6b for the cases discussed above. For g, {crit),
n% is very similar to w (compare Figs 6a and ha), while for gy > g crlg?

large variations in propellant density, which result from the 1arge varlatinns
in T*, cause a rather extreme variation of n¥ near the periphery of the tube
for values of g, near gp(crit).

The valldity of the analysis for these extreme cases where gm is near
gylerit) will be discussed in & later section.

All of the sbove results have been for w, = 1.0 and Mgy = 0.7. The in-
fluence of wy on the distribution of w is shown in Fig 7. The effect is small,
'even when w is changed by a factor af 20. f '

On the other hand, Fig 8 shows that My, hes & very strong {nfluence on the
distribution of fissionable moterial. As Mp, is increased, w varies more rapidly
sbout its fixed waximum, w_. This is due to the fact that the vortex field

R " i
strength increases with Mgp.

Dependence of the performance parameters on the choice of r*:

Because any velue of r¥ may be chosen to represent the periphery of the tube.
Tfor a given set of Mims Wgs 8y each choice Ffor these parameters yields a wvery
wide range of possible physical systems. In order to make the resuiis as con-
crete as possible, r¥ bas been chosen as follows. For g,< (crlt), r§ has bean
taken as that valiue of r* which gives the largest T /T The variation of T /T

with the cholice of r§ is shown for these cases in Flg 8y together with that ofp
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POc/Po . For g, > gm(crit), rf has heen selected to include the entire region
of r¥* gn which w < wp. This choice also yields the largest value of TC/T
consistent with the requirements that w < wy as shown in Fig 9b. It is true
that if, for example, a temperature ratio, TP/Tc = 0,7 is desired, it may be
obtained for any of the values of gm/gm(max) shown in Fig 9b, by choosing r§
suitably; bovever, the presentation of the results would have hescome very
cumbersome had all such possibilities been included, and it is felt that the
above somewhat arbitrary choices for r% show the general characteristics of
the heating-separation process to best advantage.

The dependence of the peripheral Msch number, Myp» on the choice of r¥*
is shown in Fig 10. For g, < gm(crit), Mgp Qdecreases as r¥ increases, re-
flecting the decrease in tangential veloci%y as r increases. For g, > gm(crit),
Myp increases as r¥ increases. This reversal is due to the more rapid decrease
in temperature, and hence, in the velocity of sound, for these cases, the
velocity of sound actually decreasing faster than the tangential velocity.

Another performance parameter of considevable interest is P , the relative
mass flow capacity per unit of tube length. Figure 11 shows that it increases
with r¥* for gﬁ both grester than and less than g (crit), though much more
rapidly for the former. It should be noted thst %?e actual mess flow per unit
of tube length,%”i, is proportionsl to 1P times TP 2, Therefore, the very rapid
rise inP for g, /g (mex) = 0.51 implies a correspondingly rapid increase in%f
only if T is held constant. If T, is held constant, TP decreages as TP/Tc

decreases, and/¥) actually decreases somewhat as rg increases.

Dependence of the nuclear-coupling parameters on the choice of r;:

The quantities which are needed in computing the criticality of a system of
vortex tubes are the average fissionable-species and propellant densities. The
ratio of average-to-peripheral propellant densities is shown as & function of
r% in Figs 12a and 12b, together with the ratio of average-to-maximum of the
density ratio, w. Both of these parameters are rather insensitive to r% for
8n < gp(crit), with the maximum ¥/w, occurring for a somewhat smaller ¥¥* than
that for maximum TG/T . Thus, if the largest possible value of ﬁ/wm vere de-
sired, rather than the largest T./Tp, v} would be modified somewhat. For
&m > gm(crit), both w/wm and Pl/ D are more sensitive to the choice of r¥
than for gy < gplcrit); however,  here the maximum of W/w, occurs roughly at
the same value of r¥ as the maximum of T_ /T . The density ratio, 0 /Plp’ de-
creases steadily as r¥ increases. This is 8imply a reflection of tﬁe increasing
ratio of average temperature to peripheral temperature,



Finally, the parameber g, which essentially determines the required .

peutron track length; is shown in Figs'l3%a and 13b. It increases rapidly

with r% for gy > gplerit), reflecting the higher rate of heat release

 demanded by the higher temperature ratios. For B < gm(crit), decreases

as r¥* increases, instead of increasing, even though the temperature ratio

 {increases with r3{. This is reasonable, since &p is propertlonal to nﬁp
times ¢, and n,, decreases as r% incremses.

- The overall temperature ration

Of the several performance paramebers, the overall temperature ratio is
perhaps the best measure of the performance of the syatem, at least for rocket
applications. Therefore, it has been selected as a basic variable for presen-
ting the results. Its dependence on the heating perameter will Pirst be shnwnp
then all other performance parameters will be referred to it.

A curve of T /T vergus gm/gm(max) for constant My and w, has two branches,
corresponding to the two cases, g < gmicrit) and gn >vgm(cr1t), as shown in
Fig 1%, Modest temperature ratics can be obtained on either branch; however,
in order to obtain values of T /T less than about 0.3 it appears essential

that gm e greater than gp{crit). There appears to be no limit to the tempera-
ture ratio obtainsble by approaching gm{crlt) from above. Although the end-~
points of the curves for &n < gm(crit) were not very well defined by the cal-
culations, it is believed that the end points as shown are approximately correct.
That there is & minimum obtainable Tg/T for g, < gplerit), and not for gy >
gm({crit) is due to the sudden rise ih w near the periphery in the latter case,

and the lack of it in the former. This rise in w gives a high fuel concentration

near the periphery which leads to a very rapid temperature variation, and the
smell values of T/T. shown for gm > gylcrit). For gn < gylerit) on the other
hand, w decreases steadily to the peripheryy giving a very gradual temperaturs
variation. ,

From a comparison of Figs 1k a, b and ¢, it can.be seen that the varlation
of T /T with g,/gn(mex) is more rapid as Mg, incresses. This is due to the
more abrupt variation of the concentration profiles with 1ngre331ng Mip» which
in turn is due to the hlgher vortex fleld gtrength.
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The overall pressure ratio:

As the overall temperature ratic is a measure of the performance of
the vortex tube as & heating-separaticon device, the overall pressure ratio
is a measure of the penalty pasild for the separation, The pressure drop
results, of course, from the resistance vhich must be overcome by the pro-
pellant in diffusing through the heavy gas; therefore, the more dense the
heavy gas cloud is, the larger the pressure drop may be expected to be.
That this is true mey be seen from Figs 15 &, b and c.

It may also be seen that the pressure ratio decreases as T /T decreases.
This is due to increased expansion of the gas toward the center of the tube
as the temperature rise increases.

The pressure ratio also decreases as is increased, because of the
increasing vortex field strength, which tengs to concentrate the propellant
near the periphery of the tube, as well as the heavy gas.

The peripheral Mach number:

Although M, was specified in carrying out the cslculations, the parameter
which is of interest in an actual system is Mgy, the Mach number st the
periphery, since it is the Mach unumber at whicg the propellant enters the
vortex tube.

The variation of with T _/T. is shown in Fig 16 for various values of
Myp. The dependence of %hls relationship on w, was found to be small, and
so is not shown.

As T /T is decreased, larger values of Mi, are required to give a speci-
fied value of My since the velocity of sound a? the periphery becomes smaller
compared to that at rj. Another interpretation of this same effect is that if
T is held constant, larger values of Mip are required to generate a given
vortex field strength (or given th) as g decreases. Thug, for a given vortex
field strength, larger pressure drops mus% be maintained in the inlet nozzles
as T,/T. is decreased, These pressure ratios must be combined with those shown
in Fig 15 to obtain the effective pressure ratio across the entire system.

|
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The relative mass flow capacity:

Of squal importanceyto the temperature ratio is the mass-flow capacity
of the vortex tube, which actually determines the total tube length required
Tor a given total mass flow or thrust. : ' :

The vortex tube is rather unusual, in that the mass flow capacity per
unit of tube length is independent of the tube diameter. This fact cannot
be too strongly emphesized. It means that the mmss flow capacity pexr unit
of tube volume, which is a messure of the system size for a given mass flow,
is inversely proportional to the tube diameter, within limits to be indicated
in the wext section. ? S

From Fig 17, it may be seen that the relative mass flow capacity per unit
of tube length increases as My, increases. It is in fact nearly proportional
to Mgy. The dependence on temperature ratio is not so clear, sinceP must be
multiplied by T 1/2 to obtain the actual mass flow capacity per unit of fube
length. If Tp gs held constant, and T, increased, the mass flow capacity in-
creages; however, a simple computation with the aid of these curves will show
that if T. is held constant, while TP is decreased, the mass flow capacity
actually decreases slightly.

Numerical values of?%i, the actual mass Tlow capacity per unit tube
length, will be given for some sample cases in & later section {see Eq 42).

The exit~to—peripheral'radius ratio:

In all of the preceding results, it is implied that w is reduced to a
emall valwe, w., at some radius, r,, within the tube, and that the propellant
leaves the tube at this radius, with only a very small amount of heavy gas. As
was mentioned previously, w. = 0.0001 was selected for all of the present cal-
culations. ~

The resulting values of the exit-to-peripheral radius ratio are shown in
Fig 18. As might be expected, this ratic increases as My, increases, since
the concentration profiles become more abrupt as My, increases. It also in-
creases as T /TC increases, because heating of the propellant increases its
radial velocity, which tends to sweep the heavy gas toward the center of the
tube, '
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From the standpoint of the overall performance of the vortex tube as a
rocket propulsion device, the significance of rc/r is that it sets an upper
limit on the ratio of exit nozzle throat radius to tube periphersl radius.
Referrving to Fig 1, it is clear that if the throat to tube radius ratio, say
rt/r ; is greaster than rc/r » the cloud of fissionable material will be swept
frow the tube. If ry/rp is less than rc/rp, the results of the calculations
are in some sense conservative, since then; the actual value of w in the
exhaust nozzle may be somewhat less than w,. For a given set of separation
parameters, the mass flow capacity of a vortex tube is simply@WiLj where L
ig the tube length, and the throat radius is determined by this msss flow,

A lower limit on the tube radius is then set by the fact that r, must not be
less than ry. Numerical examples of this relationship will be given in a
later section.

Nuclear coupling parameters:

In order to estimate the critical size of a system of vortex tubes it
is necessary to know the average fissionable and light gas concentrations
in the vortex tubes. These way be obtained from w/wm, the ratio of average
to maximum density ratios, and Pi/Plp’ the ratio of average to peripheral
propellant densities.

The dependence of ﬁ/wm on T /Tc, Wy and My, is showan in Fig 19. For
given wy and My, if gp > gm(cri%), there is & value of T /Tc which gives
the largest W; because of the large region of r¥* with low w which occurs in
the cases with small T./T  (see Fig 4b). Also, W/wy, decreases as My, in-
creases, because of the more rapid variation of w with r¥ as M., increases.
The cases with gy < gy(crit) bave lower values of W/wy than those with
By > gm(crit) because the former do not have the extended region of high w
which occurs in the latter near the periphery.

The density ratio depends principally on the temperature ratio, as may
be seen from Fig 20. As T /‘I‘C decreases, the averagéd density in the tube de-
creases compared to that a% the periphery. There is also a small effect of
Mim and wp, which is due to the fact that increasing either of these decreases
POc/pOpf hence lowers the average density compared to that at the periphery.

The final nuclear coupling parameter is g _, which is a measure of the
neutron track length required to give the heat addition rate implied by the
specified value of g, . It depends very strongly on the temperature ratio,
and somewhat less on M, and wy, 8s may be seen from Fig 21. The actual
requirements placed on the neutron track length ¢ (see Eq 40) are somewhat
masked by the fact that 8p is also proportional to np /T . As T /Tc is reduced,
for a given value of T, nop increases very rapidly i% TE/TP is gmall (see

il
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Fig 6b), Thusg ¢ does not increase as rapidly as it appears to from Fig 21.
Again, the reason g for the systems with gy < gm(crmt) falls far below that
for the systems w1tg {crit) is that np, for the former is much less
than that for the latter (see Fig 6). Representative numerical values for
¢ will be given later in examples. , ﬁ

Discugsion of the Principal Assumptions

and Proposal for Experimental Verification

The two most important sssumptions involved in the preceding analysis
of the vortex heating-separation process are that the flow in the tube is
laminar and that it is inviscid. Of these, the most critical is the first.
It will be shown that if the flow is leminar, the neglect of viscous effects
is probably not serious; however, if the flow is turbulent, the effect of
the turbulent mixing on the separation process cannot be predicted at present.

The purposesof the present section are: {1) to present an argument which
indicates that it is not obvious that the flow will be turbulent; {2) to give
an estimate of the viscous effects for laminar flow; and (3) to propose a
series of experiments designed to check the assumptions in a logical order.

Stability of the flow in the vortex tube:

The gas flow in the vortex tube is of & type with which there is no
previous experience, and there seems to be no sensible criterion based on
Reynold's number which will give an indication as to whether the flow will
be leminar or turbulent. Since the propellant must be introduced through .
small Jjets, ms in Fig 1, it seems, 1ntu1t1vely, at first sight that the flow
will in all probability be turbulent,

However, the heating effect in the tubes should tend to stablilize the
flow, that is, prevent its becoming turbulent. This may be seen by remembering
first that the trapsition from laminar flow to turbulent flow occurs when in-
ertial forces in the fluid become large enough so that a random fluctuating
motion can exist despite the dissipative, or damping, effect of viscous forces.
In fact, the Reynold's number has been characterized as the ratic of inertial
to viscous forces. Now in the vortex tube there is an additionsl stebilizing
force which will help to prevent the formation of random fluctuations, at least
in the radial direction. This is the body force which results from the vortex
field and the temperature gradient. In order to move a small element of fluid
instantanecusly from some radius to another radius where the temperature is
lower and the demsity higher, a buoyant force must be overcome, which may =id
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in suppressing turbulﬁgse. This effect, or its inverse, has been termed
"Taylor instability”. The general principle is that the interface
between two fluids of different densities is destabilized by an accelera-
tion toward the denser fluid, and stabilized by an acceleration toward
the less dense Tluid. In the present case, there is an extremely larg
acceleration toward the center of the tube (of the order of 10° to 10
times the acceleration of gravity). It therefore seems quite possible
that the flow may be laminar in the cases where the temperature increases
rapidly toward the center of the tube.

Estimate of viscous effecis:

It is clear that viscous shear forces at the periphery of the vortex

tube will tend to cause the actual tangential velocity, and hence the
actual vortex field strength, to be less than that predicted by the pre-
ceding calculations, which assume that viscous effects are negligible.
In order to estimate this effect, it will be assumed, as in the separation
calculation, that the flow is laminar. It will be further assumed that the
entering fluid is introduced uniformly over a cylindrical surface which has
8 dimensionless radius r¥ = a, where a < rﬁ, as shown in Fig 22.

The equat%g?,expressing congervation of angular momentum of the fluid
may be written ’

rlo*

<o
W s

2
av v dv dv
a';'g’f'f‘*'*%’{ 2t & - } (46)
PO 0 dr r

where the notation is the same as has been used previously.

This equation may be made dimensionless by dividing Vo by the tangential
velocity of the entering jet, Vis and dividing r by T Thus,

* * -
ar¥e T dr r*?

= rd

d(vo/vj) X (VO/VJ) P dQ(vo/vJ} L1 d(vO/vj) (VO/vj)
dr* ¥ Fbuorm
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and Eq (46) finally becomes,

d(vo/vj) Vo/vj 2 Tl *_{dg(vo/vj)

ar® + =

d(vo/vj) (V / )
r¥ Wl(l-W ) (87)

+ ..%‘...
¥* ®
dr*e T dr I_*Q

It can be seen immediate%%rthat the parameter which measures the effect
of viscosity on the system is 1/2@24. If it is large, then we have,

a(v./v.) /V : :
0
_._..a}—_’?.‘l. + ....._......‘2_. = O , : : (&8)
or v.r = const. This means that the angular momentum of the fluid is con-

served as it moves radially. On the other hand,ﬁifﬂﬂi/aﬁziis?Small, we have,

2 :
a (VO/Vj) L1 d(vO/v.) ) Vo/Ve - | : (19)
dr*e r¥ dr*é r*ﬁ ‘

The magnitude on% is set by the binary diffusion process, as expressed
by Eq (42). A formula %or the viscosity of a gas mixture is given in Ref (5).
Assuming the hard-sphere model for moleculsr collisions, that m2> > My s and
that np < < oy, this expression may be reduced tO‘

N
R
N

‘/M‘ :::/{l ; | ‘ (50)
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where

molecules,

To the same approximation as used in Eg (SO)a/ll is given by,

sy = ()i

Now taking the value ofﬂ%& given by Eq (he),O%&/QﬂﬂL way be written,

M1 d (m2

1
2T

1|1 +0.56

2

dip

d (m
2 m

d2

“Sonvw4

is the viscosity of the light gas, d; and d, are the effective
hard-sphere collision diameters for light and heavy molecules, and d
the effective hard-sphere diameter for collisions between light and

is

eavy

(51)

(52)

1
1 +0.ll-l6°~°2- WP

L. dlE B

Assuming that the quantity in braces is of order unity, i.e. Wp is not too
large, and that T*¥ and r¥* are of order unity, it is clear that” for and

Puor U gas,ﬁvﬁ/QEDuis of order 100 . Since W varies between 1/4 and 1,
7%&/2021varies from about 25 to 100.

Thus Bq (48) is a good approximation to the flow if r* is less than a,
the dimensionless radius at which the fluid is introduced, and in this region
the flow is essentially inviscid., However, if r¥ is greater than a,ﬂU{] is
effectively zero, and Eq (49) applies. In this region, viscous forces are
dominant, while in the region of r¥* less than a, inertial forces are dominant.

Y



The viscous torque tending to retard the vortex flow is therefore due
to the shear layer between r* = a and r¥ = r¥. Its magnitude may be esti-
mated from Eq (49), the solution of which is, -

: 1
Vol = AY* A

#

‘ ﬁ ' ¥
where Al and Ap are cogstants. Clearly vo/vj O at r*¥ = Jc'p‘9 hence

*2

v v. (a) T :

o_Yo 8 | ( D ) '

— - T : (55)
Y Y3 rge" a2 \ 7 ' ‘

where v.(a) is the actual tangential velocity at the dimensicnless radius, a,
where the fluid is introduced. '

Now v.(a)/v, may be determined by equating the torque exerted on the
fluid in the tub&, by the entering fluid, to the torque caused by shear at
the peripliery. Thus, :

v.{a) dv : ~
¢ 0 _ 0 * :
a%lva (1 - ) Mg | ele sy (54)
J T |
From Eg (55},
d(vo/v.) _ ‘vo(a) on
dr* Tt Ty *2 2 *
i X -
‘ rs | J T, é



Substituting in Eq (54), and solving,

vo(a) N7 (55)
Vs Mm@ SR

From Eq (55), two points are clear. First, if & approaches ¥, vo(a)/v
becomes small, and the effectiveness of vortex formation is poor. Secohd,;
for a given ratio of r#/a, the effectiveness is improved as@%i/Q@%‘increases.
This is shown in Fig 23.

For the range 0f7%&/2@1& of interest, i.e. from 25 to 100, the effec~
tiveness of vortex formation predicted by this simple wodel is adequate.

A more general conclusion which can be drawn from the simple analysis
is that the effectiveness of vortex formation is determined by the magnitude
of %%i/z?;u. This quantity must therefore be considered an important simi-
larity parameter in any experimental study of vortex heating-separation devices.

Buggestions for experimental verification of the analysis:

As has already been mentioned, the principal questions which reguire
experimental investigation involve the nature of the flow in the tube, and
may really be reduced to one gquestion. The question is whether or not it is
poseible to create a vortex field of the strength required to achieve separation,
with the low wmass flow rates which are required by the diffusion process.

Except for the unknown effect of heat addition on the flow stability, this
question can be answered by a simple experiment which involves no diffusion.
The experiment should be so designed that three similarity requirements are
satisfied. First, in order to insure dynamic similarity between the experiment
and the actual vortex tube, the inlet Mach numbers should be the same. Second,
the Reynold's number, based on some tube dimension, such as its dismeter,
should be the same. Finally, the mass flow rate per unit of tube length divided
by the dynamic viscosity, i.e.?%&/EnxL, should be the same for the experiment
and the actual device. In order to verify the strength of the vortex field it
should be sufficient to measure the radial pressure distribution, say at a
closed end.



If the result of this experiment iz negative, in the sense that the
vortex field is much wesker than is predicted by theory, it must be con-
sidered inconclusive, because of the possible stabilizing effect of heat
addition. Thus, should the result be negative, it is suggested that the
stabllmzlng effect of a positive density gradient (1n the dlrectlon of
increasing radlus) be studied.

At present it appears very difficult to simulate, in an experiment,
the volume heating which is expected to produce such o density gradient
in the actual vortex reactor. However, there iz a possibility of pro-
ducing a stabilizing density gradient by adding a heavy gas to the light
gas in the tube, and choosing the mass flow rate of light gas and its
entrance Mach number so that the concentration of heavy pgas decreases
rapidly from the periphery of the tube toward the center. For example;
if, in Fig. 7, the value of r¥ corresponding to the tube periphery is :
taken as 0.9, then for large values of w_, a considerable favorable density
gradient is produced. It is of course necessary that separation of the
heavy and light gases bs cbtained before this stabilizing effect can
occur; however, a very heavy gas {for example tetraethyl lead) might be
used, to make the separation possible at lower vortex sbtrengths. -

If the result of the viscous experiment is favorable, then it is
"suggested that the next logical step is to attempt to effect the separa-
tion itself. For this second experiment, some mixture of gases such as
hydrogen and mercury vapor, or hydrogen and iodine vapor, might be suitable.
A complete formulation of the separation experiment must await the results
of the viscous experiment; however, two limitations should be noted.

First, unless s volume heat source can be incorporated into the
experiment, the concentration profiles obtainsble will be limited to the
type shown in Fig. {6a) for g, < {crit). The more extreme concentration
variation shown in Fig. (6b) resul g%s from the heatlng'@ffec :

Second; success in obtalning the type of concentration @rofmle shown
in Fig. (633 will not guarantee that the more extreme profiles shown in

Fig. (6b) (and the associated high temperature ratios) are also obtainable.
Viscous effects may be expected to be most important near the periphery of
the tube, just where the most extreme concentration variation occurs for
the high temperature ratic cases. Thus, it appesrs that experimentsl proof
of the feasibility of obtaining temperature ratios greater than sbout 3 can
be obteined only by 1ncorporating 2} vclume heat source into the separation
experiment. :
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Performance and Criticality Kstimates

The significance of the results obtained from the preceding analysis
of the heating-separation process may perhaps be better revealed if incor-
perated into the performance analysis of a vortex-cavity reactor for
rocket propulsion. In the present section the characteristic performance
parameters of the rocket are calculated in terms of the parameters derived
from the separation analysis and from the nuclear configuration. To be
definitive, such an analysis would have to include an optimization of the
entire system for some mission, and this would imply a detailed study of
many aspects of the vehicle configuration, as well as those of the power
plant. The intent of the present analysis, however, is much more wmodest;
it is simply to provide a physical feeling for the several parameters
which characterize the performance of the vortex tube as applied to rocket
propulsion.

To this end, the requirements imposed on the reactor system by the
overall heat balance, and by criticality, will be estimated. The weight,
thrust-to-weight ratio, neutron flux and various other parameters will
then be given for some representative examples.

It is assumed in these computations that the reactor core consists of
8 cylindrical bundle of vortex tubes such as that shown in Fig. 1, the
diameter being equal to the length, L, of an individual tube. Both graphite
and beryllium oxide will be considered as moderators. In those cases where
the temperature ratio, T /T » is such that heat must be added to the pro-
pellant, by fissionable materlal, before it enters the vortex tubes, it will
be assumed that the fissionable material not contained in the tubes is
uniformly dispersed in the moderator. Some reduction in overall size and
weight should be possible by concentrating this solid fuel in as small a
volume as possible, but this refinement will not be considered here. On
the .‘basis of the results of Ref. 7, the volume fraction of moderator in the
core will be taken as 0.h.

Heat balance:

Since the gas in the vortex tubes 1s essentially transparent to
penetrating radiations, it may be assumed that all radiation originating
in the tubes deposits its energy in the moderator. This is eguivalent to
assuming that some fraction, £, of the total heat generated by fission in
the gas is actually deposited in the gas. Now if the fraction of the total
reactor core volume occupied by the gas is 8, ¢g and ¢ are the average
neutron fluxes in the gaseous and solid regions, n2¢ and Ty, are the
respective mean fissionable material concentrations, and ¢ Org and Ufg



are the fission crosg-sections in the gaseous and solid regions, a simple
heat halance gives,

e (& ) = ﬁgngg refs L (56)
cps» p 6(1 - g)nEgUfg¢ + (1 - ﬁ)nzsdfs¢s | '
« As “é is decreased T /T increases, and & maximum attainable value of
TC/T is $8ached when n2 In this case,
TC ﬁﬁs j 7
£ (mmx) = 1+ 22 i-% . | (57)
C
P 3 |
Because of dissociation, Cpg depends rather strongly on Pge and T It incresses

with increasing T, and decreasing poc. The dependence of Tc(max)7T on p,. and
T. is shown in Fig. 2k, for &= 0.90. It should be noted that even though the
vortex tube itself is capabie of very large temperature ratios, (see Fig. 1k)
thiz limitation imposed by the heat deposition from penetrating radistions limits
a real system tc moderate temperature ratios. This limitation applles, to some
extent, to all gas-phase fiasion heating devices.

Criticaelity:

Estimates of the critical size of the reactor bave been obtained from two
group, two region calculations for a completely raflected cylinder. 8 he calw
culations were dene on ORACLE using e three group, three region~c0dé modified
for two groups and two reglops, and a reflector savings program*.

The reactor core was taken to be a clean homogeneous mixture of moderator,
plutonium and hydrogen. The proportiorsof the latter two were determined from
the separation analysis. Fast fission was neglected and the resonance escape
probablllty was taken as unity.

The thickness of the beryllium reflector for each reactor was selected
to mlnlmize the combined core &nd reflector weight.

* These calculations were done by P. G. Lefyatis and M. L. Nelson.
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The fission cross section of plutonium has a marked resonance at s
neutron energy of 0.3 electron volts, which coincides with the mean
thermal neutron energy (Maxwell distribution) for a temperature of 233OOK.
Thus, the neutron tewperature has an important effect on the critical mass
for the systems considered here. It was assumed that the neutron temperature
was egual to the moderator temperature, which in turn was teaken equal to Tp.

Performance:

For the present purposes, the performance of the vortex tube reactor
may be characterized by the specific impulse, the total thrust, and the
ratio of thrust to reactor (core and reflector) weight.

The specific impulse will be taken as,

1
P ¥y T2
T =2 21 RT 1 - 2 , (58)
sp g K‘l ¢ Poc

where g is the gravitational constant, and P, is the atmospheric pressure
at the exit of the rocket nozzle.

The overall thrust of the critical assembly of vortex tubes is
given by: \

F = NLg Wzllsp (59)

where L is the length of the tubes, N is the number of tubes, and 7 is
the mass flow per unit of tube length. Now the productﬂ%}.is related
to the nozzle throat radius by the simple relation,

ML = ’Trri A \¥RT, (60)
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The quantity r /r ¢ 1s the ratio of nozzle throat radius to ‘the radius at
which w is equal to w, in the vortex tube. Thus, rt/r can be assigned
any value less than unity. With 'bhis expression forﬂl I., Bq (59) becomes,

r :
ML = mg(}—s) 3. ]/JRTG CL+

; - | fj‘ w N\
F o= m,i (;i) /2c [TRT, (1+ l—;—*—) Nelop (}’S‘)

Now %PNL/S is the reactor core volume, which equals ’ﬂ‘L3 /4 for a square
cylinder; hence,
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It can be seen from Eg (63) that the thrust of the vortex reactor is
actually limited by the size of the ares which can be provided at the
back face of the reactor for the exhaust nozzles, witbout a2llowing the
Pissionable material tc be blown out. This ares is precisely,

r, 2
b

The thrust is alsoc proportional to the pressure, p_, but independent
of T . The ratio r_/r. is of course determined by the diffusion
procéss in the tubes. "It depends principally on th, increasing as
M., increases.

Equation (63) contains the factor (r /r ) , which may have any
value from zerc to unity. Thus, for a glvsn “set of vortex tube parameters
and critical size, the thbrust may have any value from zerc to that given
by Eq (63) for ry/r. = 1. As ry/r_ is increased, the number of tubes in
the reactor is increased, each tube decreasing in diameter. This may be
seen by equating Egs (59) and (62) and solving for N. We get,

¥ o
YT A fRT. /r \%/r\?
. ¥-1 le e (e [t
A K6+ 2> g Cizl (rp) (-rc) . ()

For s given set of vortex tube parameters, 4@ and rc/rp are fixed. Then
for fixed Poc and T , the number of tubes is proportlcnal to (r /r

The neutron track length required to gilve the heat release rates
implied by these performance estimates may be determined from Eg (40),
which gives,
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It can be seen from Bg. {41) that gp s oughly proportlonal Lo {T. /T % s SO
¢ is essentially proportional to T o1 (rt rc)~ Since ¢ 1g xncreases as
Te 1&&?6&5@83 increases guite raplﬁly with T.. The Proportxona&ity to
(ry/r.)? simply refisc ctg the fact that the total propellant mass flov rate is
properticnal to (rt/r )=

Numerical examp}e3°

1t nan been mentioned previcusly that the temperature ratloy T / 5 is the
mogat 1mportant parameter in determining the characteristics of the vortex tube .
On the other hsnd the fissionsble materisl concentration determines the overall
size and weight of the reactor. Accordingly, examples have been selscted with
two representative values of T /pr and three values of w,. The exii pressure
has been taken as 100 atm@spherms for all cases, so0 W, is nearly a direct
measure of the fuel concentration 1n the ges phase.

Caaes i, 2, and 3 have T /T w 1. 56. This temperature ration corresponds
to about half the heat being added to the propellant by solid fuel elements,
and half by the vortex tubss. The temperature leaving the solid reactor, T,
hes been set at the upper limit for graphite fusl elements, nsmely L§500R 3
hence, the chamber temperature, T, is TO20°R. This is of the same order as
the chamber twmperature for contempgrary chemical rocket motors (eg. liguid
O, and JP-b give T, ~= 6300°R ).

Cases b, 5, and 6 hava the largest values of T / possible for T = 10,000°R .,
They rapresent systems with chawber temperaiures can51gerably bigher tgan the
best obtainsble with chemical rocksts. At the same time, the temperatures
entering the vortex tubes are considerably below the limits for graphite or the
refractory metals. These systems have sll fissionable material in the gas phase.




Some characteristics of these reactors are shown in Table I. The values
for beryllium oxide moderated reactors are shown in parentheses. The first
few guantities listed are characteristic of the vortex tube itself, hence are
independent of the moderator used,

Although the reactor weighta (corg plus reflector) are very high for fuel
concentrations of the order of 0.5x10% cm“3, they are quite reasonable 1f the
concentration can be increased to about 5.0x101%m~3. These higher fuel con-
centrations imply high pumping pressures, however. For case 3, Pop is 493
atmospheres or 7320 psi. The pumping pressure must be taken as about twice

this figure, to allow for the pressure drops in the inlet nozzles and solid
reactor. It should be noted that the increase in average fuel concentration,

T,, by a factor of 10 from case 1 to case 3 requires only a little more than
doubling of the pumping pressure. This increase is due to the higher pressure
drop caused by increasing wp. To achieve the same concentration increase by
raising the generasl pressure level with constant wy, it would be necessary to
increase the pumping pressure tenfold, to about 4000 atmospheres. The berylilium
oxide moderated reactors are in all cases lighter than the corresponding graphite
moderated reactors. This is due to the smaller neutron slowing down and diffusion
lengths in beryllium oxide as couwpared to graphite.

Although the reactor weights are rather high, the thrust-to-weight ratios
are also quite high if rt/rc is near unity. It may, however, be more realistic
to take rt/rc a little less than unity, to allow for three dimensional flow
effects in the long, thin, vortex tubes. If rt/rc is taken as 0.5, for example,
the beryllium oxide moderated reactor described in case 3 has a thrust of
325,000 1bs., and a thrust-to-weight ratio of 61. The latter figure is somewhat
lower than that for a chemical system; however, the specific impulse is at least
twice that of the best chemical rockets. 1In order to give this performance the
reactor would contain 3,300 vortex tubes, each 0.68 in. in diameter. The
average neutron flux would be 0.65x1017 neutrons/sec cme .

It seems from comparison of cases 3 and 6, for example, that as T is
increased, the critical size, and weight, of the reactor increase. This effect
is due to a lower average fuel concentration in the higher temperature reactor.
The gas-phase fuel concentrations, Tp,, are about the same in the two cases, but
the lower - temperature reactor contains considerable solid fuel.,

Finally, it must be emphasized again that these results are only exemplary.
It is obvious that reactor weight is a very important parameter in these systems;
therefore, a detailed criticality analysis must be made before definite conclusions
can be drawn as to the advisability of further development of the vortex tube for
rocket propulsion.
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Cage
Nurber ,
Parameter 1 2 3 k 5 6
T 1.56 ~1.56 1.58 .05 %05 .05
v 0.5 1.0 5.0 . 0.5 1.0 %.0
Mo 1.0 1.0 1.0 1.0 1.0 1.0
T s R 7020 7020 7020 10,000 10,000 10,000
TP’OR 1500 4500 | k500 : 2,470 - 2,k70 2,Lk70
pgc,:atm oo - 100 3 100 100 - 100 100
Dop? LM 713 231 558 I St 338
T /T 0.65 0.8 . 0.6 0.59 T0.59 0.58
T 0.3% .35 75,36 TT0.56 T 0.55 0.5k
&, 0.96 T0.96 . 1.50 56 - )
7 Ib/sec £t 6.0198 ~0.0198 TT0.0198 0.0121  0.0121 0.0121
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%Tﬁble 1 - Numerical Examples of Vortex Tube Reactors
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