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NUMERICAL ANALYSIS, PROGRAMING, AND BASIC MATHEMATICS

THE BOLTZMANN EQUATION

K. Fan J. J. Andrews

A function / (x,y) has been proposed by Kofink as the nth approximation to the so

lution of a form of the Boltzmann equation. Since Kofink's proofs are incomplete, the pro

posed approximation has been examined in detail and proofs have been supplied. In par

ticular, the definition of the functions / presupposes certain properties of the zeros of

auxiliary functions G2 . These properties are established and, in fact, sharpened by

showing, among other things, that the positive zeros A. of G, and those, u., of the

Legendre polynomial P~ , satisfy A. > ft, > A_ > ... > A > fi . Itis shown that Kofink's

expressions for coefficients a, occurring in the definition of the / are valid only when the

parameters a and c appearing in the Boltzmann equation satisfy inequalities 0 < c < 1,

0 < a < 3(1 —c), whereas somewhat simpler expressions for a. and a. are valid when

0 < c < 1, a = 0, or when c = 0, 0 < a < 3.

NORMED LINEAR SPACES AND MATRICES

K. Fan

In a joint paper with Glicksberg, several types of rotundity of the spheres in normed

linear spaces are studied. As a departure from notions of uniform convexity, and local

uniform convexity, found in the literature, a number of related properties are defined and

examined in terms of their mutual relations and various consequences.

The theory of nonnegative matrices is known to have important applications to the

criticality theory of reactors. A topological method related to the Brouwer fixed-point

theorem has been applied in the proof of certain known properties of nonnegative matrices,

and this method has revealed several new properties of such matrices.

Some of the properties of nonnegative matrices have been generalized in the following

way: Continuous functions /. and g. (1 £ i <, n) are defined over an (n —l)-dimensional

simplex S, where each /. is convex on S and nonpositive on the z'th face of 5, max /. (x) > 0
1 A '

for all x e S, each g. is concave and positive on S. An equilibrium point x is one for which

there exists a real A, called an equilibrium value, such that g. (x) = A/, (x) for all i. It can

be shown that there is a unique equilibrium value A and a unique equilibrium point x. The

W. Kofink, Studies of the Spherical Harmonics Method in Neutron Transport Theory. I. The Re
lation Between P and Causs Quadrature Solutions of the Milne's Problem, ORNL-2334 (May 27,

L~
1957); //. Behavior of the Solution of the Milne Problem with Anisotropic Scattering for L, ORNL-
2358 (July 1957).

2K. Fan and I. Glicksberg, Proc. Natl. Acad. Sci. U.S. 41, 947 (1955).
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value A is characterized by certain minimax and maximin relations, known to hold in the

linear case, and further natural generalizations are found to carry through.

Closely related to nonnegative matrices are the so-called M matrices, whose inverses

are nonnegative. More precisely, the diagonal elements of an Mmatrix are positive, along

with all principal minors, and the off-diagonal elements are nonpositive. If a, /3, and y are

subsets of the indices, and A(a) denotes the principal minor of a matrix A formed by those

rows and columns whose indices lie in a, with A(a) = 1 when a is the null set, define

A(anp~) A(any) A(finy) A(auj3uy)
<£>(A;a,R,y) = .

f/ A(a)A(p)A(y)A(a.npny)

It can be shown that if A and B are both M matrices, and A < B, then

<t>{A;a,p,y) £ $(B;a,/3,y) £ 1 ,

and the theorem can be generalized to functions similar to <J> but defined over a larger

number of sets. Also, Szdsz's inequalities for positive definite Hermitian matrices are

shown to be valid for M matrices and their inverses. The &th term of these inequalities is

the product of all £-rowed principal minors raised to a power necessary for homogeneity.

MATRIX NORMS

A. S. Householder

Because of their many applications in numerical analysis, a systematic study of matrix

norms has been under way for some time. First to be considered was their application

to questions relating to the convergence of iterative methods ' and to the localization of

eigenvalues. Next, they were used to obtain rigorous bounds for computational errors in the

solution of the systems of difference equations used to approximate certain differential

equations.

Similar bounds have been obtained for still other partial difference systems, and the

same methods turn out to yield one of the factors required for the estimation of truncation

error. In fact, if A is the matrix of the system in which each unknown is the value of the

dependent variable at a lattice point, then in many cases certain norms \\A~ || can be cal

culated explicitly, or at least bounded, as a function of the number of lattice points, and

this quantity enters as a factor into both types of error: truncation error and the error

generated by the computation itself. These bounds are intrinsic to the matrix A and hence

to the particular system of algebraic equations being solved, and make no reference to any

particular method of solving. They represent limits of achievable accuracy in solving, by

whatever method, the system under consideration.

3A. S. Householder, On Norms of Vectors and Matrices, ORNL-1756 (Aug. 26, 1954).
4A. S. Householder, On the Convergence of Matrix Iterations, ORNL-1883 (May 18, 1955).

A. S. Householder, Generated Error in the Solution of Certain Partial Difference Equations,
ORNL-2230 (Dec. 12, 1956).
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For any system Ax - h, and in terms of any preassigned norm, the product

yM)=IWI ll^'ll

has been defined to be the "condition" of the system referred to that particular norm. For

whatever matrix and whatever norm, y ^ 1, but a large y signifies in general that when any

particular routine is applied for solving the system or inverting the matrix, then the norm of

the error can be expected to be correspondingly large. Most direct methods of solving a

system require the formation of a sequence of matrices L., L_, ... , each of some simple

form, and such that the product ... L-L . A = R is itself of some simple form. It is im

portant that none of the transforming matrices L. have a large value of y, since, if it does,

there is danger that the transformed system will be poorly conditioned. These consider

ations provide certain explicit guide rules for selecting the matrices L., the rules being

consistent with accepted rules of thumb while being more explicit and more rigorously

grounded.

The above remarks indicate some of the applications of matrix norms, but in the course

of making these and other applications it became necessary to develop the theory more fully

than is done in the literature. When a suitable postulational definition is used, it can be

shown that any norm is associated in a certain way with a certain convex body in the com

plex Euclidean w-space, and conversely. Thus a complete geometric characterization is

available. It is readily shown that for any matrix A, a norm of A cannot be less than the

spectral radius (the maximal modulus of the eigenvalues), but that there exist norms whose

value for a particular A is as close as may be desired to the spectral radius. In fact, for a

large class of matrices this minimum can be achieved. Any such norm is called "minimal"

for the given matrix, and the associated convex body is "minimizing." It is easily shown

that the spectral radius has certain convexity properties over the class of all matrices for

which a given convex body is minimizing, and the question arises, then, of otherwise char

acterizing these matrices. This has been done for all convex bodies of two particular

classes. One is the class of all ellipsoids, and the matrices represent a certain generali

zation of normal matrices. The other class is of convex bodies that are, in a sense,

generalized polyhedra, and the matrices turn out to be closely related to stochastic ma

trices. They are, in fact, except for a diagonal matrix multiplier, all similar to nonnegative

matrices, such as are applied by Birkhoff and Varga in their recent discussion of criti

cal ity theory.

LINEAR EQUATIONS AND THE INVERSION OF MATRICES

A. S. Householder

A large fraction of all scientific computation reduces, implicitly or explicitly, to the

solution of systems of linear algebraic equations or the inversion of matrices. This is an

6G. Birkhoff and R. S. Varga, /. Soc. Ind. Appl. Math. 6, 354-77 (1958).
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elementary problem when the system is small, but for large systems it is easily possible to

lose all significance through the buildup of rounding errors. Many methods for solving the

problem have been published, some obviously identical in principle, some quite different,

at least in appearance. Some appear to be well adapted to systems of special form only;

some seem to be general. It is important to have a diversified library of routines for

solving systems of equations, but it is essential to make an intelligent selection of the

methods to be coded. Unfortunately, the literature is extensive and chaotic, and except for

counting of operations, there is little besides intuition and experiment to guide the se

lection.

A fairly exhaustive, critical survey of known methods has been under way. Some of the

results of the survey have been published or are being published (see "Publications," this

report). Also, a program for revising and adding to the library of matrix routines is under

way, both for the Oracle and for the IBM-704 and IBM-709. The following account summa

rizes a few of the conclusions to date.

Methods based upon infinite iterations will probably decline in popularity, even for

solving the extremely large, sparse systems which arise in the solution of partial differ

ential equations. Generally speaking, the rate of convergence declines as the size of the

system (the fineness of the mesh) increases. However, for high precision it may be de

sirable to first apply a direct method and then improve by a few iterations. Also, there is

always the possibility that new and more rapidly convergent methods will be discovered,

especially for systems of special form.

On the other hand, ra-step iterations, such as the method of conjugate gradients, may be

advantageous, especially for systems for which some approximate solution may be available

in advance. These methods represent a certain compromise between the direct methods and

the infinite iterations, in that, like the latter methods, they provide a sequence of approxi

mations that approach the true solution (apart from rounding errors), whereas they are

closed and yield the true solution (apart from rounding errors) after a finite number of steps.

All known direct methods can be classified as "analytic" and "synthetic," although

the classification represents the point of view rather than the basic formulas employed.

One of the synthetic methods is the method of "modification," based upon an identity due

to Woodbury, and it turns out to include as a special case the method of "tearing," or

"diakoptics," advocated by G. Kron, although the fact is by no means clear from Kron's

writings. It appears that the method can be spectacularly successful for particular sparse

systems, but it is not clear that it could be useful in general.

Another synthetic method is the escalator method, in which the inverse of a matrix of

order n is obtained in terms of the inverse of a submatrix. It is easy to see that such a

method could be very useful in particular cases. As a general method, however, it has

nothing to recommend it. Moreover, it has the serious drawback at present that no way is
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known for appraising the stability of the method a priori (its sensitivity to rounding errors),

and there is even reason to suspect that an a priori appraisal cannot be made.

The analytic methods include the classical methods of elimination, and all reduce to

the following: A sequence of matrices, L., L_, ... , is formed such that the product

• • • L ~ L , A — R

is of some easily invertible form. Naturally, the matrices L. must themselves be easily

invertible. Also, operation upon A instead of A is carried out if this seems more con

venient.

The following choices are known to be possible: each L. is orthogonal, and R is upper

triangular; each L. is lower triangular, and R is orthogonal by rows; each L. is lower tri

angular, and R is upper triangular; each L. differs in one column from the identity, and R

is diagonal and is possibly the identity. The same process can be applied to the matrix

CA, where C is any nonsingular matrix, possibly A when A is not positive definite, or

possibly some known approximation to A~ .

In simple elimination each L. is lower triangular, and R is upper triangular. The sta

bility of this method as applied to a positive definite matrix A was established in a well-

known paper by von Neumann and Goldstine, and for other matrices they recommend pre-

multiplication by A . This was suggested because they failed to establish stability

otherwise, although the number of operations required is approximately doubled.

It appears, however, that when A is not positive definite the same degree of stability

can be secured by taking the matrices L . to be orthogonal. A method of this type has

already been coded and used on the Oracle, but with the matrices L. as plane rotations.

Since n(n —l)/2 rotations are required in general, this method is rather costly in terms of

the operational count. It turns out, however, that orthogonal matrices of somewhat more

general character can be employed. These are of the form / - 2ww , where w is a unit

vector, and, at most, n - 1 of these are required. This permits a substantial reduction in

the number of operations and is considerably more economical than the method of forming

A A and eliminating. The reduced operational count should not only save time but also

reduce the sources of rounding errors. An auxiliary advantage of the orthogonal transfor

mations, in general, lies in the fact that if the columns of the matrix are prescaled to unit

norms or less, these norms remain invariant and no rescaling is required up to the point of

inverting R. This is especially important for a fixed-point machine.

THE EIGENVALUE PROBLEM

A. S. Householder

The method for computing the eigenvalues of a symmetric matrix in use on the Oracle

(the Givens method ) was first developed at ORNL and is now in wide use in computing

W. Givens, Numerical Computation of the Characteristic Values of a Real Symmetric Matrix,
ORNL-1574 (Feb. 19, 1954).
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laboratories both here and abroad. A detailed error analysis has provided rigorous error

bounds, and from all points of view the method can probably be regarded as unsurpassed.

The situation is rather different with respect to nonsymmetric matrices, where the

problem is considerably more complicated. A survey of methods known for this problem led

to some rather striking and unexpected conclusions. In most methods for the explicit ex

pansion of the characteristic polynomial, the derivation (in more or less disguised form) is

from a method of Krylov's, which makes use of the fact that the coefficients satisfy a

system of equations with the matrix made up of the columns

v, Av, A v, ... ,

where v is an almost arbitrary vector. Such a system, however, will be more or less ill-

conditioned according to the choice of v, and no way is known for ascertaining in advance

how well or how poorly conditioned the system may be. This is the case for symmetric as

well as for nonsymmetric matrices. On the other hand, the Givens method starts out, though

in a disguised manner, to generate the equations for the coefficients of the polynomial, but

never solves them completely. It proceeds only to the point of replacing the original matrix

by a similar one of much simpler form, and the stability of the method seems to be due to

the fact that the characteristic polynomial is never required explicitly.

The methods of the class considered can all be described as follows: If the iterated

vectors v. can be made columns of a nonsingular matrix V, then the coefficients of the char

acteristic polynomial are elements of a vector / which satisfies

Vf=Anv ,

and all methods amount to methods of reducing the matrix V to some simpler form, possibly

triangular, possibly even diagonal. Hence they require the formation of a matrix L such

that V = LR, where R is triangular or diagonal. In that event it turns out that L~ AL is

then subtriangular, possibly even tridiagonal, and the characteristic polynomial can be

obtained from it by a simple recursion. But to do so amounts ultimately to the formation of

R~ L~ = V~ anditsmultipl icat ion by A" v; hence if V is il l-conditioned the errors can

be great. On the other hand there is evidence that if L is orthogonal and one works directly

with the determinant of L~ AL - A/, the computations may be stable. This is precisely the

method of Givens when A is symmetric. For the nonsymmetric case he has also suggested

the formation of the orthogonal matrix L as a product of plane rotations. However, here, as

in the case of matrix inversion, operations can be saved by selecting matrices of the form

/ —1ww , w w —1.

8A. N. Krylov, Izvest. Akad. Nauk S.S.S.R. Otdel. rrue.ru 1931, 491-539.
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CHARACTERISTIC VECTORS OF SYMMETRIC MATRICES

A. C. Downing D. J. Wehe

Experience at ORNL and elsewhere has revealed difficulties in obtaining accurate

characteristic vectors for symmetric matrices. This appears to be especially true for those

of tridiagonal form. There is no known error analysis for any of the many methods proposed

in the literature.

An experimental comparison of the Givens method, presently used at ORNL, with that

of Wilkinson has been started. Each of these can be considered as employing one cycle

of an inverse power iteration but using different initial estimates.

GENERAL PROGRAMING ACTIVITIES

An important part of the programing effort of a computer installation is the preparation

of general-purpose programs which are not directly related to any specified problem, but

which are capable of improving programing efficiency, and therefore the usefulness of a

computer, or which are related to a wide variety of problems to which ihey may be applied

by a suitable choice of parameters. This section is devoted to a description of the pro

grams of the first kind, on which work has been done during the period of the report.

Programed Arithmetic. - The Oracle is a fixed-point machine without provision for

automatic floating-point operation. Therefore such operations must be programed. Inter

pretive routines which interpret machine orders for (40,40) and (28,12) floating-point

numbers have been available for some time. A similar routine for (40,40,40) floating-point

complex numbers has been completed and debugged but has not yet been added to the

Compiler library. An (80,40) double-precision floating-point routine has been written but

has not been completely debugged. The three-address (8,32) floating-point system has

been extended to include additional operations, resulting in the super "B" code. Several

sets of programed arithmetic have been added to the Compiler library; they are listed

under "Special Codes."

Oracle Compiler. —Most programing is not done in the raw language of a computer,

but in a language which is translated by a compiler and translator into machine code.

Compiling programs include simple assemblers, floating-address and symbolic assemblers,

and, more recently, algebraic translators.

In the past, several subroutine locators and compilers had been used to some extent

in Oracle coding. Early in the period of this report, the present Oracle Compiler, planned

and written by M. E. LaVerne of the Neutron Physics Division with the cooperation of

9R. H. Dykaar and C. D. LaBudde, The NYU Matrix Codes, NYO-6484 (March 15, 1956).

10J. H. Wilkinson, Computer J. 1, 90 (1958).
UMath. Semiann. Prog. Rep. Feb. 28, 1957, ORNL-2283, p 9-10.



MATHEMATICS PANEL PROGRESS REPORT

members of that division and the Mathematics Panel, was completed and placed in general

service. That it has proved useful is shown by the fact that almost all current coding for

the Oracle is being done in its language, which is similar in appearance to machine code

but differs in important respects. An earlier version of the Compiler was planned and

written by R. R. Bate, USA, while he was associated with ORNL.

A programmers' manual for the Oracle Compiler has been prepared by the Mathematics

Panel from working papers used in the preparation of the Compiler. The manual contains

information on the use of the Compiler and a glossary of programing terminology that in

cludes terms peculiar to Oracle Compiler programing.

Subroutine Library. - Since considerable time, effort, and skill go into the preparation

of a program for a computer, the library of prepared programs forms an important adjunct of

any computer installation. In the case of the Oracle, this library, excluding engineering

test routines, may be divided into three main categories: complete self-contained pro

grams, service routines, and items in the Compiler library. Additions to these categories

are listed under "Special Codes."

In order for the subroutines in the library to have value, the programmer must have

detailed information concerning each program. In order to assure that reports on such

routines meet certain minimal standards, a subroutine committee, consisting of A. C.

Downing, N. M. Dismuke, R. R. Coveyou, and A. A. Grau, was formed to supervise the

issuance of such reports. In general, reports for subroutines are written by the contributor

of the program. In order for a report to be acceptable, the program must have been tested

with reasonable thoroughness, and the report must have good literary form and must con

tain a comprehensive and complete description of the function and use of the program.

The reports for mathematical codes contain a discussion of the methods employed and an

analysis of error. Flow charts and the code in compiler language are usually included.

These reports have been issued to personnel on the Oracle distribution list, and are re

vised and reissued as required. Reports are now available for practically all items in the

Compiler library.

Reports of some older subroutines have been rewritten and reissued. Obsolete library

codes have been discarded.

Conversion Routines. - The new input-output system with which the Oracle was

equipped in June 1957 permitted a revision of the input and output conversion codes used

by the Oracle. First, the input or output information can be expressed in a notation much

nearer the usual algebraic notation, in many cases the same notation; second, output can

be obtained by a single character punch or record order, which permits the development of

routines where the entire binary-to-decimal conversion process is done in the free com

puting time available between punches or recordings.

M. E. LaVerne et al., Programmers Manual for the Oracle Computer, ORNL CF-57-8-92
(Aug. 23, 1957).
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COMPILER REVISION

J. Harrison

In 1957, the preparation of a compiler which would meet more satisfactorily the needs

of Oracle programmers was initiated. New features comprise an optional typewriter edit of

the private library, seven additional shorthand items, optional format for the final program

edit, optional arrangement of the final program, which will eliminate transfers from the end

of one item to the beginning of another, and conversion of (40,40) floating-point numbers.

Included will be a more extensive error monitoring system with correction facilities. Key

words will be required only through the last nonzero one. Absolute addresses will be used

when correcting items. Items from the private library, the public library, or paper tapes

may be corrected and stored on the private library tape, or used only for the present com

piling, or both. An item may be corrected and placed in the private library, and it may be

simultaneously modified with different corrections and stored for use in the present com

piling. If words are added or deleted from an item, the addresses will be changed accord

ingly. There will also be a correction check feature which compares the word to be cor

rected with the word the programmer expects to correct.

At present the nearly completed first segment provides for monitoring the private

library, loading paper-tape items and correction tapes, computing length of alphameric

items, checking for key-word errors, correcting items, and adjusting addresses of corrected

items.

Plans for the revised Compiler provide for an unlimited number of shorthand items and

automatic counting of all key words.

Compiler Program. —One new device written for the Compiler is a correlator for code

and storage addresses. As implied, this scheme manufactures a list for every item con

taining the relative address of each word, along with the memory address of that word.

Extra words are distinguished by adding 100, 200, or 300 to the relative address. This

list is needed for correcting items, adjusting addresses, and changing required cross-

reference addresses.

Another feature is a method for measuring the length of items. The item is loaded

without a transfer of control into the memory where pseudo subroutine entries have pre

viously been generated. These entries transfer back to the code, with the address of the

first word following the item in the accumulator, so that the length of the item may be

calculated.

The Compiler employs numerous subroutines such as the versatile Duplex Do-AII

(00 E58), which operates on one or two lists simultaneously, and the List Edit (00 FFF),

which searches a list for a portion of a given word.

A drive-sorter subroutine has been written which picks an item to be corrected off the

proper drive. Other subroutines convert numbers to alphameric, modify item and block

numbers for outputting, and move lists up or down a required number of places.
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ORACLE BINARY INTERNAL TRANSLATOR (ORBIT)

J. J. Andrews J. Harrison A. A. Grau

The Oracle Compiler, though it has demonstrated its utility, is limited in the following

ways:

1. Coding involves much repetitive labor that is capable of automation.

2. It is rarely possible for the proposer of a problem to code it, because he is gener

ally not conversant with the highly technical coding language employed.

3. Considerably more time is required to code a problem than to flow-chart it, whereas

the coding time could be much less. In addition, much time is taken in tracking down

errors in machine code that have little to do with the intrinsic logic of the problem.

These and similar considerations have promoted a wide interest in methods of auto

matic programing. Among these methods, the ones receiving most attention are algebraic

coding systems. Leading examples are FORTRAN (formula translation) and IT (internal

translation).

Since an automatic programing system for the Oracle would clearly be an important

asset, consultation was held by members of the Panel with J. W. Carr III of the University

of Michigan in November 1957. As a result, a decision was reached to construct a trans

lator for the IT language, first used by A. J. Perlis of the Carnegie Institute of Technology.

This language is in use on a number of machines, and the method of translation, con

sisting in the processing of successive pairs of characters, is both simple and capable of

easy extension to more elaborate schemes.

The IT language is independent of machine language and facilitates the programing of

mathematical problems directly from flow charts. The instructions of the IT language are

statements of several types. These correspond in a natural way with the processes found

in flow charts. They include the following:

1. substitution statement - essentially a formula where the result of performing the oper

ations in the right member is to be substituted for the variable on the left;

2. iteration statement —necessary in the writing of loops;

3. linkage statement —since the statements are normally executed in the order in which

they are written, a linkage statement is used to interrupt this sequence; the interrup

tion may be conditional, in which case it depends on whether a stated equality or in

equality holds;

4. input statement;

5. output statement;

6. halt statement;

7. extension statement - permits a call for the execution of a subroutine before the re

sumption of the normal sequence of statements.

In the ORBIT version of IT, a "continue" statement has been included to permit a

shortening of the final machine code in some cases.

10
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Sets of flow charts for IT translators for other machines were consulted; among these

a set obtained from Ohio State University for the IBM-650 proved very useful. The original

flow charts for ORBIT required extensive revision when it was found that memory require

ments were excessive. The program is at present about 90% complete; many short pro

grams have been successfully translated into compiler language. Because of the memory

limitations, a revision is needed which will provide memory space to accommodate other

desirable features. The flow charts for this revision have been written.

A programmers' manual is in preparation and will be in final form at the time the sys

tem is ready for release. It is planned to inaugurate the new programing system with

lectures, where the features of the system will be explained.

ORBIT SUBROUTINES

M. Feliciano G. C. Caldwell E. L. Cooper A. A. Grau

The ORBIT system consists of the main translator program and a series of compiler

items which are incorporated into the subject programs as needed in the process of com

pilation. They may be classified into (1) input and output, (2) arithmetic and special

functions, and (3) service items.

The input and output subroutines are activated by the corresponding statements in

IT language and require a definite alphanumeric format.

The arithmetic subroutines were established to equip ORBIT with the necessary tools

to permit the use of (8,32) floating-point operation. Consideration was also given to the

use of binary integers in exponentiation and in conversion to and from (8,32) floating-point

numbers. The special functions include some of the elementary functions. At present the

question of the most appropriate choice of more functions to be used by ORBIT is under

close scrutiny.

The service subroutines include the error stop, which directs the machine to type the

operation and operands yielding an inadmissible result. The statement linkage item, as

the name implies, provides for the execution, in machine language, of linkage statements

appearing in the program written in IT language.

COMPILER LIBRARY LINKAGE

N. M. Dismuke

Early in the development of ORBIT it seemed reasonable to attempt to include a large

portion of the Compiler library in the extension list for the translator. However, a review

of the linkage employed by the library routines made clear the necessity for maintaining

separate libraries for programmer and ORBIT coding.

The Compiler library is composed of more than 300 routines, of which possibly half

would be useful ORBIT extensions. A fine enough classification to enable the ORBIT

program to conveniently code the linkage would require almost as many linkage types as

11
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routines to be classified. A coarser classification of linkage is possible if its purpose is

to convey information to programmers. For the latter purpose about half the routines fall

into a dozen linkage categories.

SYMBOLIC ASSEMBLY PROGRAM

J. J. Andrews A. A. Grau

As an intermediate step between the present Oracle Compiler and ORBIT, a symbolic

assembly program for the Oracle was planned. A substantial part of the code has been

written and tested. This program would permit programing for the Oracle by use of sym

bolic addresses and mnemonic symbols for operations and pseudo operations. The floating

addresses are desirable because of the decrease in bookkeeping that their use effects, and

the use of mnemonics is advantageous to many programmers, especially new ones.

Because interest shifted to the possibility of constructing a translator for the IT

language without such an intermediate program, work on the symbolic program was sus

pended to permit work on the translator.

CURVE-PLOTTER P RIN T-OR-GRAPH OUTPUT SYSTEM (POGO)

A. H. Culkowski C. T. Fike A. A. Grau

POGO consists of various routines which enable a programmer to code for alphameric

curve-plotter output and yet change to any other type of output with ease and with no addi

tional coding. Output via typewriter will be equivalent to curve-plotter output in virtually

every respect. One frame of single-spaced curve-plotter output will be tantamount to

exactly one page of double-spaced typewriter output or a half page of single-spaced out

put, if the margins are set for a width of 51 characters.

Basically, if curve-plotter output is wanted but it is not desirable to wait for the re

turn of curve-plotter prints while debugging, the debugging may be carried on via console

typewriter or off-line printer. On the other hand, even if extensive reports via typewriter

are the primary aim of a code, a quick curve-plotter print in advance of extensive typing

may prove of value.

There are three basic POGO orders which are interpretive "type" orders for the curve-

plotter and which simulate machine output orders via paper tape.

To facilitate changing from one mode of output to another, there is the POGO output

changer. It is not a closed subroutine, but may be compiled along with the master program

by a suitable reference to it, or it may be obtained in Servi-seer form at the console.

The POGO carriage positioner is an aid in determining the x and y coordinates of the

first line of a frame or the number of carriage returns down and the number of spaces over

from the left-hand margin for the first line of typewriter output. Use of this routine allows

for synchronization of curve-plotter frames and printed pages.

12
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At present two decimal output subroutines (08B and 08D) have been rewritten in POGO

form and are available as items 28B and 28D. It is anticipated that other output sub

routines of frequent utility will be rewritten in the POGO convention.

Figures 1 and 2 illustrate the type of compatible output possible with POGO coding.

THE CURVE-PLOTTER PRINT-OR-GRAPH OUTPUT SYSTEM

(POGO)

Arline Culkowski

C. T. Fike

A. A. Grau

General Description and Purpose. The curve-

plotter print-or-graph output (POGO) system of

coding is designed to make programmed alphameric

curve-plotter output interchangeable with print

output via typewriter with very little modifica

tion. One frame of single-spaced curve-plotter

output will be equivalent to exactly one page of

double-spaced typewriter output if the margins

are set for a width of 51 characters, or a half-

page of single-spaced typewriter output.

Use of the POGO Output Changer Item 280, will

make the necessary changes to convert from curve-

plotter output to the equivalent in paper tape,

magnetic tape, or console typewriter.

POGO coding will be desirable where it is

convenient to have a flexible output of this kind.

If, basically, curve-plotter output is wanted but

it is not desirable to wait for the return of

curve-plotter prints while debugging, the debug

ging may be carried on via console typewriter or

off-line printer. On the other hand even if ex

tensive reports via typewriter are the primary

aim of a code, a quick curve-plotter print in ad

vance of extensive typing may prove of value.

Basic POGO Output Orders. There are three basic

POGO output orders which are interpretive "type"

orders for the curve plotter, each of which simu

lates a machine output order via paper tape. In

the POGO system all output must be programmed

using these orders which are a particular type of

subroutine entry, and are written as follows:

1. Interpretive 84 order: w-2: ffOOO 00284

w-1: 84aaa 43 w

2. Interpretive 88 order: w-2: ffOOO 00288

w-1; 88aaa 43 w

3. Interpretive 8c order: w-2: ffOOO 0028c

w-1: 8caaa 43 w

POGO Output Changer Item 280. The POGO Output

Changer Is a convenient means of changing the mode

of output of a program coded to use POGO output.

It is not a closed subroutine and may be compiled

along with the master program by a suitable refer

ence to it. It is also available in serviseered

form for use at the console.

In using the POGO Output Changer, transfer is

made to the left of relative address 000 of Item

280. On the console typewriter will be typed:

Output(p=0 m=l t=2 c=3):-

and the computer will stop with the keyboard hot.

At this time aO, 1, 2, or 3 followed by a space

will be inserted from the console typewriter,

where:

0 = printer via paper tape
1 = printer via narrow magnetic tape

Fig. 1. Example of POGO Output by Peripheral Printer. (Reduced 38%).
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THE CURVE-PLOTTER PRI HT-OR-GRflPH OUTPUT SYSTEM
CPOGOD

Arline Culkowski
C. T. Fike
A. A. Grau

General Description and Purpose. The curve-
plotter print-or-graph output CPOGOD system of

i*3 vMMJtZ-4^••1*M •!

output uia typewriter with very little modifica
tion. One frame of single-spaced curve-plotter
output will be equivalent to exactly one page of
double-spaced typewriter output if the margins
are set for a width of 51 characters, or a half-
page of single-spaced typewriter output.

Use of the POGO Output Changer Item 280, will
make the necessary changes to convert from curve-
plotter output to the equivalent in paper tape,
magnetic tape, or console typewriter.

POGO coding will be desirable where it is
convenient to have a flexible output of this kind.
If, basically, curve-plotter output is wanted but
it is not desirable to wait for the return of
cjrve-plotter prints while debugging, the debug
ging may be carried on via console typewriter or
off-line printer. On the other hand even if ex
tensive reports <jiq typewriter are the primary
aim of a code, a ojuick curve-plotter print m o&-
•tanr.t of evtensive typing may prove of Molve

Basic POGO Output Orders. There are three basic
POGO output orders which art interpretive "type"
orders for the curve plotter, each of vrfuch simu-
lates a machine output order uia paper tape. I
the POGO system all output must be programmed
using these orders which are a particular type of
subroutine entry, and art written as follows

1. Interpretive 8H order: w-2 ffOOO 0028*
w-1 8*1000 13 w

2. Interpretive 88 order w-2 ffOOO 0028*
w-1 88aaa *3 w

3. Interpretive 8c order w-2: ffOOO 0028<
w-1 Scaaa 13 w

POGO Output Changer Item 280. The POGO Output
Changer is a convenient means of changing the mod<«
of output of a program coded to use POGO output.

POGO Output Changer Item 280. The POGO Output
Changer is a convenient means of changing the mode
of output of a program coded to use POGO output.
It is not a closed subroutine and may be compiled
along with the master program by a suitable refer
ence to it. It is also available in serviseered
form for use at the console.

In using the POGO Output Changer, transfer is
mode to the left of relative address 000 of Item
280. On the console typewriter will be typed

0utput(p»0 m=l t*2 c»3D:-
and the computer will stop with the ke^
At this t a 0, 1, 2, or 3 followed

>ard hot.
" space

where
0 * printer via paper tape
1 • printer <jiq narrow mognetic tape

Fig. 2. Example ol POGO Output by Curve Plotter.
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DESIGN OF FIXED-POINT ITERATIONS

A. C. Downing

In the application of the methods of functional iteration to the solution of nonlinear

problems, the accuracy of a theoretically convergent iteration depends ultimately upon

the rounding errors committed during the final cycle of the iteration. In designing the com

putational algorisms for performing such iterations, the usefulness of an important property

of fixed-point digital computers has been generally overlooked. This property is the

ability to perform exact addition modulo one or two, even though overflow occurs.

The recursion relation for a functional iteration can always be written in the form

fv+i=fv + pVv)s(fv) ,

where the residual p(f' ) tends to zero as v increases without bound. The rounding errors

in p(/v)<g(/„) may be minimized in a large class of problems by computing

\2kP(fv)\g(fv))2-k ,
provided it is known a priori that |p(fj) | <2~k. The previous iteration always provides
a lower bound for k. In this manner it is possible to continue the iteration until the in

terval of uncertainty of the final / is minimal. For second-order iterative procedures in

a binary computer with /3 places to the right of the binary point, one can therefore always

obtain

|/v-/(exact)|^2-^-' +0(2-2/3) .

Each of the applications mentioned below is a second-order iteration.

The calculation of 2 p(fv) may be carried out by single-precision fixed-point methods

whenever p(fv) is a sum of terms, each of which is at most quadratic. In most computers,

repeated division will yield a double-length quotient for a single-precision divisor. Such

terms are readily included in the sums defining the residual p(f ) .

As a simple example, consider the calculation of the cube root of a, usin g Newton's

method. The algorism may be carried out in the form

(x^2T«-— 2-)-'

.2Here

{[:

'v+1

a

x
P(xv) = xv • «(*„)=•

3x

1

)-*

It has been shown that this technique can be used to improve an approximate inverse

of a matrix or a set of approximate characteristic vectors of a matrix. In each of these

problems the correction term p(fv)g(fv) involves the product of three matrices. Hence the
rounding errors would ordinarily be of the order n22~^~}, where n is the order of the
matrix.

A detailed analysis has been made of the application of this technique to the calcu

lation of the cosine and sine of an angle of a right triangle whose two sides, a and b, are
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given. This is precisely the problem of computing the plane rotations used in transforming

matrices to simpler forms. An algorism has been developed which obtains approximate

solutions y and ay for the equations

yy —ax = 0 ,

y2 + a2 = 1 ,

with minimal intervals of uncertainty for both y and a. This problem has previously been

studied by Goldstine, Murray, and von Neumann;13 by Givens; 4 and by Householder.

,3H. H. Goldstine, F. J. Murray, and J. von Neumann, /. Assoc. Computing Mach. 6(1), 59
(1959).

J. W. Givens, Numerical Computation of the Characteristic Values of a Real Symmetric
Matrix, ORNL-1574, p 23 (Feb. 19, 1954).

15A. S. Householder, The Generation Error in Digital Computation, ORNL-1983, p 43 (Oct. 11,
1955).

BIOMETRICS AND STATISTICS

SEX RATIO IN HUMANS AS A FUNCTION OF PARENTAL AGES AND BIRTH ORDER

A. W. Kimball G. J. Atta E. Leach

A weighted multiple linear regression model was fitted to U.S. birth data giving simul

taneously the parental ages, birth order, and sex of the offspring for the year 1955. This

work was done in collaboration with E. Novitski of the Biology Division. Proportion of

males was taken as the dependent variable, and a second-degree polynomial in the three

independent variables was fitted to the data, which include over four million births. With
the Oracle it was feasible to compute a large number of regressions, each involving a dif

ferent subset of the terms in the polynomial.

It was shown that variation in secondary sex ratio is independent of the mother s age

but is dependent on both birth order and paternal age. It was further shown that the rela

tionships are not linear and cannot be represented adequately without the inclusion of a

component that reflects an interaction between birth order and age of the father.

A LIKELIHOOD RATIO TEST FOR A HYPOTHESIS IN A NEUROSPORA EXPERIMENT

A. W. Kimball M. A. Kastenbaum E. Leach

In the experiment, involving two biochemical mutants of Neurospora crassa, a test

was desired for a hypothesis related to the structure of the chromosome. The problem is

discussed here only in its statistical form.

16
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Random samples are taken on eight different variables yielding the following data:

(*,-, y,-, *,-) ' z' = 1, ..., to ,

(u.,v.,w.) , /= 1, ..., n ,

(rk, sk) , k = 1, ..., p .

The eight variables are mutually independent and have Poisson distributions with means

£(*,) = a. , E(y.)=/3. , E(z{)=yi ,

E(u}) =8j , E(V]) = ej , E(Wj) =6. ,

£<r*) = kk < £(**) = ^ •
One hypothesis, referred to as the alternative hypothesis, is stated as follows:

P.^aa.r) , y. = fca.p , for all i ,

€. = aS.rr , 9- - b8-a , for all / ,

Hk = c\k <p , for all k ,

where a, b, and c are known constants and tj, n, cp, p, and crare unknown parameters.

The second hypothesis, referred to as the null hypothesis, includes the alternative hy

pothesis together with the linear restrictions

p + <p =a , 7T+<£ = r/.

The problem is to find a test for the null hypothesis against the alternative hypothesis.

Under the alternative hypothesis, the likelihood is found to be
m y. z. x.+y.+z. -a.( 1 ±ari +bp)

LA(ai> Sj> \fe< *?< P> n> a> <t>) = 11
i=i xi-yi-zi-

n v. w. u .+v Aw • —S.(]+aTT+bcr)
p, (cm) ' (bcr) ' 8.' ' ' e '

x || I

X

U.\ V •! w-\
>=' 111

* (c<f>)Sk XYS» e-^'^
x n —r,

Application of the maximum likelihood method yields the following simple estimates:

a X(x. +y. +z.) A U(u. + Vj + Wj) A R(rk + sk)
a, = , 8. = , A, = ,

1 X+Y + Z > (J +V +W k R + S

A Y AZ aV a W AS

V~ aX ' P bX ' all bU cR

where the capital letters represent sums over appropriate subscripts of the corresponding

lower-case letters. The likelihood under the null hypothesis, LN(a, 5, A^, p, 7T, <£), is

17
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obtained by substituting p + cp for aand 77 + 0 for 77 in L .. In this case the likelihood

equations for a., S., and A, yield the simple estimates

x. + y. + z.
1 J1 1

8'.:

U. + V • + w.
1 1 1

1 1 +a(Tr'+cp') + bp' ' } 1 + cm'+b(p'+cp")

Primes are used to denote estimates under the null hypothesis and carets to denote esti

mates under the alternative hypothesis. Unfortunately p', 77", and cp" can only be obtained

by solving the following equations iteratively:

Z b(X+ Y + Z) W b(U + V + W)

k 1+C0'

p' 1 + djt' + cp") + bp ' p'+cp" \ + cm'+ b(p'+ cp")
0 ,

a(X + Y + Z) a(U + V + W)

t'+ <p" ] + a(ir'+cp') + bp' tt' ] + cm'+ b(p'+ cp')
0 ,

a(X+Y + Z) b(U +V + W) R + S
•= 0

tt'+ cp' 1 + djr'+ <p") + bp' p'+<p" \ + cm'+ b(p'+ <p') <p" 1 + c<p"

Once estimates under both hypotheses have been obtained, the likelihood ratio, A, is

computed. Since

LN(a--, 8'., K'k, p', tt', cp")

it may be shown that

77' +
In A= y In

A

+ V In

A =
/AAA A A A A A'l

LA\ai'Sj'kk'rf'P,7T,Cr'<P'

1 + aq + bp
+ Z In I ]+ (X+ Y + Z) In

1 + a(n' + cp") + bp'

P +
A A

\ + cm + ba
W In

A
cr

+ (U + V + W) In
1 + cm' + b(p' + cp")

4>' \ I 1 + cct
+ S In j — I+ (R + S) In

1 + ccp"

Finally the required test can be made by noting that -2 In Ahas asymptotically a y dis

tribution with two degrees of freedom.

ESTIMATION FROM OBSERVATIONS HAVING SPECIFIED BUT

UNASSIGNED EXPECTATIONS

A. W. Kimball E. Leach

This problem arose from an experiment performed by R. F. Kimball of the Biology

Division. The experiment dealt with the postirradiation modification of mutagenesis in

18
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Paramecium by streptomycin. In this report, however, the problem will be discussed in

general statistical terms, since it must arise in many other experimental situations.

The basic model is the conventional multiple linear regression model with one de

pendent random variable and several independent fixed variables. It is assumed that N

independent observations (y]( y2, . . ., yN) are taken on a random variable Ywith vari
ance a2 but with expected values that may depend on different functions of p + 1fixed
(measured without error) variables (tQ., /. ., . .., t •; j = 1, . . ., N) observed simulta
neously with the y.. In particular, it is assumed that y. may have one of mdifferent ex

pectations given by

p

E(y.) =77-. = E a<2) t.. ,
VV '2; ,"n i ii '

E(y.) =7, .= t cSm) t.. ,'-Y '"»; .5, 1 11 '

and that the correct expectation for each y. is completely determined by the values of

the fixed variables associated with it. The correct assignment of expectations is un

known and, as defined, is not determined by a stochastic process. The problem is to

find estimates of the a(.*' (k = 1, . . ., to).

In a sense, the'correct assignment of expectations is a nonquantitative parameter

that must be estimated before estimates of the a( ' can be obtained. Since standard

least-squares theory does not provide such an estimate, the following modified approach

was adopted. Let the N observations on y be divided into to groups such that n, fall
m *

into the 4th group and such that 2 n, = N. Suppose further that the n, observations in
fe=l * *

the Ath group are associated with 77, .. For each such assignment consider the least-

squares estimates obtained in the usual manner by minimizing

m

^=1
L <y, - VkjY (1)

where 2 signifies summation over the y. assigned to the kih group. Clearly, among the
"k

m possible assignments, the one which yields the smallest value of V would provide

estimates that are optimum in a sense very closely related to the customary least-squares

criterion.

Although it has been possible to define explicitly what is meant by the least-squares

solution to this problem, the minimum cannot be obtained by the usual methods of calculus.
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Apparently some iterative procedure is required, and one approach seems intuitively most

likely to converge. Let the predicted values of y. obtained by minimizing V (Eq. 1) be

77, . and consider the quantity

V*= L
fe=l |, (y; ~£*/

In some sense, V* represents the grand total of deviations from regression summed over

all observations for all expected values; V* may be subdivided into two parts:

v*=E
/fe=i

A x2

= V . + V
mm max

+ L
k=i

say, where as before 2 signifies summation over the y. assigned to the 4th group and
"k '

where 2 signifies summation over the y. not assigned to the 4th group. Of course Vm]n
"k '

is the value of V (Eq. 1) at the minimum.

Suppose that preliminary information provides an initial assignment of the N observa

tions to m groups and that V* is calculated on the basis of this assignment. For this

particular assignment V • is at a minimum, but it is quite likely that another assign

ment, usinq the same estimates, would yield a smaller value for V • . At this point it
' & ii m i n '

seems logical that the best "estimate" of the correct assignment would be obtained by

assigning each y. to the group for which \y• - 77, .| is the smallest. In other words the

predicted value of y. would be computed for each of the m groups, and in the second

iteration y. would be assigned to the group that, on the basis of the first iteration, pro

vides the best prediction. Note that this procedure, in general, reduces Vmin and in
creases V as calculated from the estimates for the first iteration. Using the second

max "

assignment, the process is repeated and a third assignment is obtained.

At this point, the manner in which the iterations converge, if they do converge, must

be considered. Let

G =(n, , n~ , . . ., n )
s v Is' 2s' ' ms'

designate the sth assignment of N observations to mgroups, and let

G* =(h * n*, .... n *)\ ] 1 2 ' ' m '

designate the particular assignment which, among all possible and admissible assign

ments, yields the absolute minimum sum of squares. By definition this is the assign

ment that provides the least-squares solution. If the process converges after s iterations,

it would be expected that the two assignments G and Gs +1 would be identical and the
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same as G*, or at worst that

Gs = Gs+2 = Gs+4

Gs +\ ~ Gs+3 = Gs+5 = ••• '
in other words, the process might oscillate between the last two assignments. In practice,

this would cause no difficulty since one of the two would provide a smaller residual sum

of squares and this assignment would be taken as G*.

Several questions remain unanswered with respect to the properties of this estimation

procedure. No proof of convergence has been obtained, although the solution is well de

fined, and intuitively it would seem that convergence is likely provided that the initial

assignment is close enough to G*. The method was applied to two artificially constructed

examples (based on the model for the Paramecium experiment) in which half the observa

tions were purposely misclassified in the first assignment. Convergence to the correct

assignment occurred after two iterations. No errors were appended to the observations in

these examples, and it is possible that, in experiments with large experimental error,

convergence would not take place. On the other hand, if the data are reliable and the

model appropriate, convergence may be attained rapidly.

It is probable that estimates will be biased, and the magnitude of bias will undoubtedly

depend on the degree by which the alternative expected values differ from one another. A

practical difficulty with the procedure is that some assignments will be inadmissible in

the sense that they will not permit estimation of all parameters. This can happen, for

example, if, for any iteration, nk = 0 and the expected value for the 4th group contains a
parameter not represented in any other expected value.

On the other hand it is reassuring to know that minimization of V (Eq. 1), when the

correct assignment is known, provides the exact least-squares solution given by conven

tional theory. The standard procedure has been modified to provide an "estimate" of the

correct assignment and logically it would seem that the best "estimate" is that assign

ment which makes V (Eq. 1) a minimum.

Work on this problem will continue, and it is hoped that more information can be ob

tained about the properties of the estimates.

APPROXIMATE LINEARIZATION OF THE INCOMPLETE BETA FUNCTION

A. W. Kimball E. Leach

In radiation mortality studies, the "target" theory predicts that, for some organisms,

the probability Mof death from a dose D of radiation is given by

M= I x'O-*)^-1-' =/ (p,q) ,
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where x = 1 - e~kD; p, q, and 4 are unknown parameters; and lx(p, q) is Pearson's nota
tion for the incomplete beta function. In principle, the parameters may be estimated from

observations on Mand D by an iterative least-squares procedure. In practice the use of

Mas an expected value presents formidable difficulties.

To avoid these difficulties various attempts were made to find a transformation that

would provide an approximate linear relationship between functions of the dependent and

independent variables. To be of any value the approximation had to be satisfactory over

almost the entire range of / (p, q) and had to be valid for values of p and q which were

unknown and for values of x which varied over an unknown range. None of the standard

approximations satisfied all of these requirements.

In connection with a sample size problem, Scheffe and Tukey give, as an approxi

mate solution to the equation !x(p, q) = a,

1 , /l+x\ 1

<^-'>-4*i(7T7rT"-" '
where y2 is the 100a per cent point on the y2 distribution with 2q degrees of freedom.
They indicate that for 0.005 ^ a^ 0.10 and x :> 0.9, the error in this solution is less than

0.1%. It also does well for larger values of abut becomes inaccurate as x is decreased.

We have found that the approximation can be extended to smaller values of x if the first

term is multiplied by

21 1 1 ... x_1
+ +^e~5/2x

A."±
yv

23 19x 3

Wilson and Hilferty'3 give the following approximation to ya:

*2»"2'(1_97 +y*v0 '
where y is the 100a per cent point on the standard normal distribution. By combining

the modified Scheffe-Tukey approximation and the Wilson-Hi Iferty approximation, one

obtains

y=A + BX , (1)

K. Pearson, Tables of the Incomplete Beta-Function, Cambridge University Press, Cambridge,
England, 1934.

2H. Scheffe and J. W. Tukey, Ann. Math. Statistics 15, 217 (1944).

3E. B. Wilson and M. M. Hilferty, Proc. Nat. Acad. Sci. U.S. 17, 684 (1931).
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2p-1 1/3

21 1 1
— + + — e

23 19x 3

• 5/2x
1/3

Thus yacan be computed for any x, p, and q, and the approximation

r'>">- I..W e-'2/2 a

can be obtained from readily available tables of the normal distribution.

Computations over wide ranges of the arguments show that Eq. 1 is satisfactory for

the regression problem provided p <; 80 and q <£ 41. For other values of p and q, the

normal approximation,

p(l - x) - x(q- 1) -0.5
y =

[(p + 9-l) x(l -x)],/2

is preferable since it is more accurate in these ranges and also provides an approximate

linearization. It should be noted that ya+ 5 is a probit and existing aids to probit analy

sis may be employed in the fitting procedure. Also, if 4 is unknown, separate fits for

different trial values of 4 will be required, and 4 will have to be determined by graphical

minimization.

ESTIMATION IN MIXED SAMPLING FROM TWO POPULATIONS

A. W. Kimball

In a certain experiment observations come from one of two populations, but it is not

known either before or after an observation has been taken which population has been

sampled. The frequency functions for the two populations (A and B) are

gA(y)=—e-(y"a,2/2
J2H

gB (y) =
1

y/2~n
•(y-b)z/2

) —oo < V < '

J

and w is the probability that an observation drawn at random comes from population A.

Thus the frequency function for y. (i = 1, . . ., N) is

/ (y,) = u> gA (y,) + 0 - w) gB (y,) , -°° < y,- < °°

From the sample of N observations, estimates of a, b, and w are required.

The method of maximum likelihood would require that

N

n nvi)
i=i
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be maximized with respect to the three parameters, and the resulting equations are trans

cendental and virtually intractable. Fortunately in this problem the method of moments

provides simple estimates. With the use of standard formulas, it may be shown that

E(y) = wa + (1 - w) b ,

E(y2)^w(\ +a2) + (] - w) (1 + b2) ,

E(y3) = w(2a + a3) + (1 - w) (3b + b3) .

Letting

a1=£y./fV, a2=2](y. -a,)2//V , a3 =£ (y. - a,)3/N

and equating the sample moments to their expectations, one obtains the equations

w(a — b) - a. — b ,

w( 1- w) (a - b)2 - a2- 1 ,

w(\ - w) (1 - 2w) (a - b)3 =a3 .

From Eq. 1

(1)

(2)

(3)

(4)

On substituting Eq. 1 in Eqs. 2 and 3 and letting u= a1 - b, v = a - a]( Eqs. 2 and 3 are

reduced to

uv - a. - 1 ,

uv(v —u) = a^ •

The solution of these equations leads to the estimates

A 1

2(a2-D

1
b = a1 +

2(a, - 1)

+/a2 +4(a2 - l)3

->/a2+4(a2 - l)3

whereupon the estimate of w may be obtained from Eq. 4. Asymptotic variances of the

estimates may be calculated if required.

IN-PILE SLURRY AUTOCLAVE EXPERIMENT

D. A. Gardiner

A modified factorial design of eight points was constructed at the request of E.

Compere of the HRP. The intent of the experimentation was to explore the effect of

reactor irradiation on corrosion by thoria slurries. The factors varied were the amount

of radiation, the amount of thorium present, and the power level of fission in the presence

of thoria. The experiment is described fully elsewhere.

E. L. Compere, Notes on Proposed In-Pile Slurry Autoclave Experiments, ORNL CF-57-11-27
(Nov. 6, 1957).
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STUDY OF MASS TRANSFER PRESSURE BUILDUP IN A 500-kw RADIATOR

D. A. Gardiner

The purpose of the study was to examine and measure the effects of the radiator inlet

temperature and of the temperature drop across the radiator on the measurement of friction

factor for a 500-kw radiator. R. E. MacPherson, J. C. Amos, and L. H. Devlin of the Re

actor Projects Division carried out the experiment.

The experimental design chosen was a second-order rotatable design to be performed

in three sequential blocks, with observations taken every 72 hr. The experiment was

curtailed at the completion of the second block because of equipment failures and other

considerations. A planar response surface with a time covariate was estimated and

reported.

An important by-product of this study was a demonstration of the computation of fric

tion factor by the method of least squares. This computation entirely eliminates the

necessity for making a separate observation to correct for bias in the pressure measuring

device.

ANALYSIS OF AIR-MONITORING DATA COLLECTED IN THE OAK RIDGE AREA

D. A. Gardiner

This problem originated with K. E. Cowser of the Health Physics Division and F. A.

Gifford of the Weather Bureau Office of the Oak Ridge Operations Office, AEC. It con

cerned the analysis of radioactivity measurements collected at air monitoring stations

located at the waste pit area, at the X-10 site proper, and at the offsite stations surround

ing Oak Ridge. The data used were for 25 weeks of the period January to July 1957.

An analysis of variance was performed on the data, and differences in the mean ac

tivity at the several sites were pointed out. A striking feature of the data as demon

strated by the analysis was the very large differences in means observed among the

stations surrounding a waste pit.

MAXIMUM REMOVAL OF Sr90 AND Cs137 FROM PROCESS WASTES

D. A. Gardiner

A sequential second-order rotatable design was constructed for studying the response

surfaces of per cent removal of Sr and Cs over the five-dimensional flat of excess

lime, excess soda ash, amount of Conasauga shale per dose, amount of recycled sludge,

and amount of CaCL per dose. The problem originated with K. E. Cowser of the Health

Physics Division.

The basic design was the vertices of a five-dimensional "tetrahedron" of radius y5

upon which was concentrically superposed the five-dimensional measure polytope of

radius 2. The design was performed in two blocks in the event that only the first block,
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designed to measure first-order effects, was sufficient. Actually both blocks were used,

and there was inconclusive evidence of any block effects.

With regard to the removal of Sr90, only the amount of excess soda ash appeared to
have a significant effect and that only linearly, but the apparent negative effect (although

not significant) of excess lime seemed deserving of further study.

Both the linear and quadratic terms of the regression equation corresponding to the

amount of clay per dose had the greatest effect on the per cent removal of Cs 7.

Both second-order equations were considered poor fits to the response surfaces. A

new set of experiments was designed to test the difference between local Conasauga

shale and imported Grundite as media for this waste disposal process. Other factors

studied were the amount of clay per dose, size of the particles of clay (as measured by

the size of mesh through which the particles would pass), fraction of stoichiometric re

quirement of lime, and excess soda ash. The design chosen was the four-dimensional

simplex which was performed twice, once with Conasauga shale as the clay used and

once with Grundite. The objects of these experiments were to compare the effectiveness

of the two clays and to find the paths of steepest ascent in each to the maximum per

cent removal of strontium and cesium.

Grundite was found to be significantly more effective. The removal of cesium ap

peared to be unaffected by the factors lime and soda ash, while the removal of strontium

appeared to be independent of the size and amount of clay used. Accordingly, two-

dimensional paths of steepest ascent were calculated: for cesium in the space of par

ticle size of clay and amount of clay per dose; for strontium in the space of fraction of

stoichiometric requirement for lime and excess soda ash. Exploration along these paths

i s in progress.

ESTIMATION OF CENTERS OF DETECTION OF ION CHAMBER AND

PHOTOMULTIPLIER TUBE DETECTION INSTRUMENTS

D. A. Gardiner

This problem, supplied by W. Zobel of the Neutron Physics Division, was attacked

by the "sliding sum of squares" technique.

A radioactive source of known strength was placed at a given distance from the

geometrical center of the detection instrument. Several readings of the strength of the

source at several distances from the source were obtained for each of three instruments.

Point estimates of the center of detection were obtained by use of the model

C

S'j =(Z, +a)2 '
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in which

Stj =;th measurement when the instrument is positioned at the zth distance from the
source,

Zi = the z'th distance from the source,

C = a constant,

a = the difference between the geometric center and the center of detection of the

instrument.

Point estimates of a were determined by an iterative least-squares technique and then
added to the geometrical center of the instrument to obtain the center of detection. The

sliding sum of squares technique was used to obtain 95% confidence intervals on a.

ANALYSIS OF SOME THERMOCOUPLE DRIFT DATA

D. A. Gardiner

This problem originated with J. F. Potts of the Instrumentation and Controls Division.

Experiments with thermocouples had been performed and the data already assembled.

The physical description of the experiments is as follows. A copper block containing

transverse holes or wells into which thermocouples are inserted is placed in an electric

furnace. At irregular time intervals a "standard" thermocouple is inserted into an empty

well and the differences between the readings from the standard and the test thermo

couples are recorded. This difference, as it changes over time, is called "drift."

Several furnaces at several temperatures were used, and different types of thermo

couples in different lengths of wells also were involved. However, each furnace at its

temperature was treated as a single experiment.

The technique chosen for analyzing the data was the analysis of variance. Since

the experiments had not been statistically designed, expected mean squares for each

experiment had to be derived. The unexpected features of the data were that significant

differences in drift were observed among the wells in a block and that these differences

changed significantly over time.

Additional consultation with J. W. Reynolds and J. F. Potts dealt with revision of an

Oracle program to process thermocouple drift data. The revised program will exhibit,

among other things, the standard errors of the several estimates calculated from the

information.

ANALYSIS OF ABSORPTION SPECTRA OF FUSED SALTS

D. A. Gardiner S. E. Atta

G. P. Smith, Jr., of the Metallurgy Division is responsible for this problem, which

involves the visible and ultraviolet absorption spectra of fused salts as measured with

a modified Cary model II MS spectrophotometer. The spectra are obtained as chart re

cordings (or in the near future as digital information from paper tape) of absorbance as
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a function of wavelength of light. The spectra consist of overlapping bands which arise

from the absorption of energy by the electrons that give the light-absorbing particles

their chemical properties.

The specific problem is to separate the lowest-energy electronic band from the ab

sorption edge (i.e., the low-energy side) of the next most energetic band. The first model

chosen was

where

2
-c, (x-M,)Y}=k}e ' '

2
_c2(x_M2)

i 2 = /s2 e ,

and where x is wavelength, 4. is the height of the low-energy band at its maximum, c1

is an energy scale factor for the low-energy band, /u] is the energy at which the peak of
the low-energy band is located, and 42, c2, and p.2 are similarly defined for the second
band. Since the second band is only partially observed, 42, c2, and fi2 are very poorly

estimated, and this model was discarded in favor of

where y. is defined as before and

y, + y2 , (i)

y = y, + y2 , (2)

C -X+k*
y2 = e

k
with Cj an enfergy scale factor and e an absorption scale factor for the second energy

band.

A special code was written to fit model 2 by either of two methods, known locally

as the Deming method and the Garwood method, the choice of method being left to the

user of the code. Both are iterative least-squares procedures, the difference being that

the Deming method approximates a Taylor series expansion with planar terms only and

the Garwood method with both linear and quadratic terms. Preliminary results indicate

that both procedures converge to the same solution but that fewer iterations are required

for the Deming method within the limits of significant digits.

The code prints out the observation pairs, the logarithm of absorbance, the estimates

of Y., Y' , and Y for each x, the estimated area of the low-energy band with its estimated

95% confidence interval, and the estimates of 4,, c., /n,, 42, and c2 with their asymptotic

95% confidence intervals.
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ASSISTANCE GIVEN THE PROCESS ANALYSIS DEPARTMENT OF THE

ENGINEERING DIVISION, Y-12

D. A. Gardiner M. A. Kastenbaum

Several problems of a classified nature originated with W. L. Griffith and A. Christman

of the Process Analysis Department of the Y-12 Engineering Division. Assistance was

given them on topics such as analysis of variance, estimation of errors, the design of

experiments, and probability.

ESTIMATION PROBLEM IN DROSOPHILA MELANOGASTER5

M. A. Kastenbaum

The problem involved the estimation of relative frequencies of four sperm types in

the absence of some information concerning two of the sperm types. The maximum likeli

hood estimates of the relative proportions have already been reported. ' The asymptotic

variances and covariances of these estimates are the following:

N^N2{\ - p} - p3) L J

2/A . P2° (P2)
(1 -P, -P3)

2 , k, * n h \2|(1 -P,)d -P3)d -p]-p2-p3) p2 N,p3(l -p,)2 +N2pi(l -p3)

N,(l -p,) + N2(l -p3) N,/V2

, A M1"^)2

,A A, ^PsH-^Kl-Ps) r

A A ^M1 -P3) ,
^'^-^(i-p^h0-^2-^,o-p3)] •

The details of this experiment and the preliminary results have been reported; see Math.
Semiann. Prog. Rep. Feb. 28, 2957, ORNL-2283, p 16.

6M. A. Kastenbaum, Biometrics 14, 223-28 (1958).
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CONFIDENCE LIMITS ON THE ABSCISSA OF THE POINT OF INTERSECTION

OF TWO FITTED LINEAR REGRESSIONS

M. A. Kastenbaum

A A

Let Y. = a. + b^x and y2 = a2 + b2x be two fitted linear regressions based on n,

and n2 observations, respectively, where the random variables Y. (j = 1,2) upon which
the observations are made are normally and independently distributed with means

of these two lines is estimated by

E(Y) = a. + fix and common variance a2. The abscissa of the point of intersection
v V 1 Hl

A a7- a.

X,= , (1)1 b,-b2

where (a. -a.) and (b, - b_) are distributed jointly as a bivariate normal distribution
with means (a2 -aj and (fi, - fi2), and

, / 1 1 *l *2 \ (2)Var(a2-a,) =a2 —+—+-+— , ™
\"l n2 51 S2/

Var(^-&2) =a2(^- +-M , (3)

/x, x2 \
Cov [(«.,-*,), (fc, -b2)] =o2[— +—I , (4)

where

n •

1

S.= V (x..-x.)2 .
i *J v 'i r

:'=1

If we let

a2 - a]

X,
'"/S, -fi2

and if we estimate the quantities in Eqs. 2, 3, and 4 by replacing a2 with s2, the pooled
estimate of the error mean square, then according to a theorem by Fieller, the confidence

limits for X. consist of those values for which

K - «1>2 "^V*,)] - 2X< h - al><*l - M" t2^a2-a})ib}-b:
+X2\(b]-b2)2-t2s2{b^b2)\ =0 ,

>r

7E. C. Fieller, J. Roy. Statist. Soc. B7, 1-53 (1940).
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where t is the appropriate level of the Student distribution for n. + rz, - 4 degrees of
freedom.

TETRAD FREQUENCIES IN DROSOPHILA

M. A. Kastenbaum

Assume that the physical basis of crossing over (chromosome replication, for instance)

starts at one end of the chromosome and proceeds to the other end. Assume further that

there is a constant probability of an exchange, a, in every genetic unit of length. After an

exchange has occurred, chromosome replication continues in the same direction, but the

per-unit probability of an exchange is now 6. After a second exchange, the probability re

verts to a, after a third exchange, to 6 again, and so on. This simple system is disrupted

somewhat by an interference factor which tends to prevent the occurrence of exchanges in

adjacent or even near-adjacent units. The delay, which is a function of distance, is ap

proximated, in this model, by a step function whose value is zero for i units after every ex

change and is unity thereafter.

Let the probability of 0, 1, 2, and more than 2 exchanges be P., P. , P2, and P-, re
spectively. Then for a chromosome N units long P. = (1 - a)N, To obtain P. , we consider

separately all possible cases; that is, that the one required exchange may occur in any one

of the N genetic units. Thus, for the first (N - i) units we have the following:

Unit in Which
r- , _ Probability
exchange Occurs

1 (1 -a)°a(l -/j)N-'-l

2 (1 -a)' a(l - /3)N-*-2

(1 -a)k-} a(l ~fi)N-i-k

N-i (1 -a)N-!-1 a(l -0)°

N-i
4-1 ,. „.N-i-kTotal: a £ (1 -a)*-1 (1 -/j)

4=1

31



MATHEMATICS PANEL PROGRESS REPORT

For the remaining i units, in which the probability of an exchange is zero by the definition

of z, we have:

In total, then,

Unit

N - i + 1

N - i + 2

Probability

(1 -ajN-'a

(l-a)AWf,a

(l-ajN-'+'a

(l-ay-'a

i-1

Total: a £ (1 -a)N"!+r
r = 0

P1 =a f' (1 _a)*-l (1 -p)N-i-k+ £ (1 _a)"-i+r
k = l r=0

By the same arguments,

W-2i-1

P =a £ 0 ~a ,s-i

N-2i-s

js L 0 -e)*-1 (1 -a)N-2i-^-
4=15=1

and finally

i-1

+0 E (i -fi)*-2'-*+'
r=0

+a/3E (1 -a)N-2'-1+/ 'e (1 -/3)x ,
*=0 x=0

p =l_p -P -P
3 0 1 2

Evaluating the indicated summations, we find that

P0=C\-a.)N ,

a(l _fi)W-!-fi(l -a)N-'_
a-6
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N-2i-lP, =d -a) 1 +
(N ~2i - 1) afi

fl-a

a2d -/3)

(/3.-a)2
(1 -fi)W~2i-l _(1 _a)N-2i-l

P = 1 - P -P -P
r3 r0 rl r2 *

A USEFUL PARTITION OF CHI SQUARE

M. A. Kastenbaum

~(po + pi) »

Let n.. be the observed frequency in the z'th row and /'th column of an r x s contingency

table, and designate

R • = E «•• , C• = Y. n •
7-1 i=l

and

/V = £ R, = E S .
i=l 7=1

Then on the hypothesis of independence of rows and columns, the expected frequency in

the z'/th cell is

R.C.
' 1

£(«•,) =
'' N

A test of this hypothesis is given by the statistic

r s n •

x2 =n E E — -1
•_, •_. RC.
z-1 7=1 i 7

(1)

(2)

which has a limiting chi-square distribution with (r - 1) (s - 1) degrees of freedom. In

many experimental situations the contingency table results from the selection of 5 r-celled

multinomial samples of sizes C^ , C2 , . .., Cs . The null hypothesis

0 rz; rz for z' = 1, 2, .. ., r; and 7 = 1, 2, ..., s (3)

is that the s samples have been drawn from the same multinomial population with parameters

p;, where

E p^ i •
i=l
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Atest of this hypothesis is provided by Eq. 2. If, however, there is reason to believe that
the s samples were, in fact, drawn from two different multinomial populations in such a way,
say, that the first m<s samples were drawn from one population and the remaining (s - m)
samples from another population, then three separate hypotheses may be tested:

W01: Pi\ =P:2="-=Pim=Pi ;

W02: fi(m+l) =?i(m+2) ="' =Pis =Pi ;

H03: p^p'. for all i

A test of Hn. with (r - 1) (m - 1) degrees of freedom is given by

X2 , w ,, = N E —(r-l)(m-l) ** R
i=l i

1 m v
, I E

'"
m n ..

E
7=1

'1

c.
1

v '-• 1

m

E c,
7=1

a test of H. with (r - 1) (s - m - 1) degrees of freedom is given by

x2A(r-l)(s-m_1)
... R
Z= l I 7=772+1 S'

72 ..

»7
7=m+l

5

E c,
7=m+l

and a test of Wn, with (r - 1) degrees of freedom is given by
03

X
(r-1)

= N E
._, R-

E «,-
7=1

E cj
7=1

;'=m+l

c.

j=m+l

N

(4)

(5)

(6)

(4')

(5')

(6')

Note that the sum of Eqs. 4", 5', and 6' is identically equal to Eq. 2. Also note that

W01nH02nW03=^>W0 .

Illustration

In a stock of Drosophila melanogaster in which sperm of four different genotypes were

produced, a geneticist wished to study the influence of irradiation on the relative frequen

cies with which the sperm types were represented in the subsequent generation. The vari

ability from male to male, however, was so great as to completely obscure any influence of

the irradiation on the composition of the sperm population.
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After a genetic procedure involving approximately ten generations and designed to make

the stock genetically homogeneous, it was found that five of the seven lines were still

heterogeneous with respect to sperm types. The over-all heterogeneity at this point ap

peared to be due to the combination of data on males from two separate populations; that is

to say, of the 23 samples of observed sperm, the distributions of the sperm types in 17

samples appeared to be homogeneous among themselves, but different from the remaining 6

samples. The number of offspring and their genetic classification are given in Table 1. To

test the hypotheses related to these observations, the data were partitioned in such a way

as to carry out the tests outlined above.

Table 1. Experimental Results

Number of Offspring

Sample

No.

Genotypes

1 II III + IV
Total

1 12 26 11 49

2 22 38 6 66

3 25 44 11 80

4 2 11 4 17

5 13 22 6 41

6 16 36 12 64

7 7 32 9 48

8 27 37 23 87

9 23 44 7 74

10 4 14 1 19

11 7 20 12 39

12 20 50 16 86

13 32 48 10 90

14 19 37 11 67

15 8 16 10 34

16 27 56 18 101

17 12 18 7 37

18 25 26 7 58

19 9 11 11 31

20 49 44 11 104

21 38 45 6 89

22 18 21 9 48

23 39 38 9 86

Total 454 734 227 1415

1. To test

woi: pi/ =pi i =l,2, 3; / =1, 2, ..., 17 ,

we use Eq. 4', setting m - 17:

/ 3.245976 3.586132 3.832569 \
X2 =1415 + + =40.92038 .

32 \ 454 734 227 /
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2. To test

H02: Pirp; = 1,2,3; / = 18,19 23,

we use Eq. 5', setting s =23:

X20 =1415

3. To test

we use Eq. 6 ':

X2 = 1415

4. To test

we use Eq. 2 and find that

0.972608 0.633155 2.192966
+-

454 734 227

W03: Pi-P'i

6.750696 3.228047 0.642455
+ +-

454 734 227

y PirP{

= 17.92239 .

i-= 1,2, 3 ,

31.26584

' = 1,2,3; 7 = 1, 2, ..., 23 ,

X24 =90.10861 .

Test 4 shows that the 23 samples are heterogeneous. Tests 1, 2, and 3 show, respec

tively, that (1) the first 17 samples are homogeneous, (2) the last 6 samples are homo

geneous, and (3) the first 17 samples and the last 6 samples are drawn from two different

populations.

The results of these tests assured the geneticist that his genetic procedure had been

partially successful and that a single genetic factor remained to be removed to achieve

homogeneity.

ORACLE OPERATIONS AND SPECIAL CODES

Machine operations were on a three-shift, five-day-week schedule. The average good

computing time was 405 hr per month. The operating ratio (good computing time * sched

uled computing time) was 94.8%.

The operations staff is composed of three machine operators, one input preparation

operator, one subroutine librarian, four mechanics, two engineers, and one supervisor.

A new console with a faster paper-tape punch, narrow output magnetic-tape unit, moni

toring typewriter, and provision for alphameric input and output was installed in May 1957.

The following routines and subroutines have been prepared during the period covered by

this report.
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GENERAL CHARACTERISTIC VALUE PROBLEM FOR SYMMETRIC MATRICES

A. C. Downing

The problem of finding the characteristic values and vectors for the product of two

symmetric matrices has been one of continued interest in laboratory research on the struc

ture of simple molecules. An integrated package of Oracle routines has been assembled

for this calculation.

The numerical method is based upon Givens' procedure for finding the characteristic

values and vectors of a single symmetric matrix. The major segments of the routine and

their programmers are given in Table 2. The output segment includes the matrix output

routine prepared by E. L. Cooper. The program for calculating the vectors of the tridi-

agonal form was modified by D. J. Wehe to provide a complete set of vectors for a multiple

root.

Table 2. Segments of the Routine

Major Segment

Matrix loading routine

Rotation to tridiagonal form*

Sturm sequence calculation of characteristic values*

Vectors of tridiagonal form*

Unrotation of vectors*

Matrix multiplication

Supervisory control

Output

*Math. Semiann. Prog. Rep. Feb. 28, 1957, ORNL-2283, p 6.

Approximate

Number of Programmer

Instructions

256 Downing

418 Downing

379 Hildebrandt

400 Dismuke

155 Dismuke

202 Downing

315 Downing

1571 Downing

Theoretically, the matrix of vectors obtained in this calculation, call it V, should

diagonalize both matrices. More precisely, if ABV = VA, where A is positive definite, then

the vectors are normalized so that, if they were exact, it would be true that V BV = A and

V A(V~ ) = I. Both these matrix products are computed and may be obtained as an

optional output. They provide a measure of the accuracy of the numerically computed

vectors. Experience has shown that accurate vectors are not always obtained. This is

mentioned elsewhere in this report (see "Characteristic Vectors of Symmetric Matrices").
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APPROXIMATE MATRIX INVERSE AND SOLUTION OF LINEAR EQUATIONS

S. E. Atta

The program which will calculate the inverse of a square matrix of small order as well

as obtain the solution of systems of linear equations has been rewritten. The system of

codes which are stored on a magnetic tape can be used as a complete program, or it can be

used as a segment in a larger program. The input and output codes were written to take

advantage of the new input-output equipment.

Past experience has shown that an essential part of a program for matrix problems is an

evaluation of the errors in the approximate solutions due to propagation and rounding.

Several methods of appraising the accuracy of the approximate solutions are included in

this program.

A simple scheme has been devised for this matrix program which will indicate approxi

mately the number of accurate digits not lost through subtraction due to "ill condition."

The scheme is based upon the number of accurate digits in the matrix A. An extra vector

b' is formed by summing each row of A. This is equivalent to setting the elements of the

vector x equal to 1. The elements of 6'have the same linear relation as the equations.

The number of accurate digits in b'\s forced to be equal to the number of digits in A. The

system of equations Ax = b' is solved simultaneously with the other systems. A comparison

of the solutions of this system with 1.0 should indicate the accuracy to be expected in the

approximate solutions of the other systems.

Another method used to evaluate the error was suggested by Householder. It is a

rigorous upper bound to the error in the approximate inverse. Let C represent a computed

inverse of a square matrix A, and set

H = I - AC .

Then

A~} -C < C
1- H

in terms of any norm. For this program the norm is taken to be

||H|| =max; (^. |H.y|) <1 .

^Math. Semiann. Prog. Rep. June 30, 1956, ORNL-2134, p 10.

2S. E. Atta, /. Assoc. Computing Mach. 4(1), 36 (1957).

3A. S. Householder, ]. Assoc. Computing Mach. 5(3), 205 (1958).
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COMPUTING THE MAXIMAL EIGENVALUE OF A POSITIVE MATRIX

C. T. Fike

A method devised by Brauer for computing the maximal eigenvalue of a positive matrix

has been coded for the Oracle, and its speed and accuracy have been checked on certain

test matrices. It is iterative in character and depends on the fact that the maximal eigen

value of a positive matrix lies in the interval determined by the maximal and minimal row

sums of the matrix. Simple similarity transformations which reduce successively the length

of this interval are applied to the matrix.

Although it appears to be exceedingly difficult to estimate sharply the error which can

occur in the application of this code to a particular matrix, tests indicate that the maximal

eigenvalue can generally be computed accurately. Even in tests requiring more than 200

iterations, at least 8, and usually more, significant figures of the maximal eigenvalue were

always obtained.

Surprisingly, perhaps, the number of iterations required to reduce the difference between

the maximal and minimal row sums of the test matrices to less than 2~3' was observed to

be about 200 regardless of the order of the matrix. For matrices of order less than ten, 200

iterations require less than 1 min of computing time; 2/, min was needed to obtain the

maximal eigenvalues of the 20 x 20 segment of the Hilbert matrix accurate to eight signifi
cant figures.

All computations are performed in fixed-point arithmetic, and only the fast memory of
the machine is used.

BIORTHOGONALIZATION METHOD OF LANCZOS

C. T. Fike

Lanczos' method of biorthogonalization and the quotient-difference (Q.D.) algorithm

have been discussed widely. A good bibliography and a discussion of the relation of the

two methods are contained in a recent article by Henrici.5

The method of Lanczos was selected to be coded in floating-point arithmetic for the

Oracle to provide a program which could be coupled with the Q.D. algorithm to provide a

means of computing eigenvalues of nonsymmetric matrices. Experience with the method at

other computing centers indicated that the method would not be suitable for large matrices,

since the choice of a starting vector seriously affects the accuracy of the computations.

This was confirmed in subsequent tests.

4A. T. Brauer, Duke Math. J. 24, 367-78 (1957).
P. Henrici, in Further Contributions to the Solution of Simultaneous Linear Equations and the

Determination of Eigenvalues, National Bureau of Standards Applied Mathematics Series No. 49,
p 23-46 (Jan. 15, 1958).
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The code was completed and tested extensively, both alone and with the Q.D. algo

rithm. It was found that the method was poorly suited to anything but small matrices, a

disappointing loss of accuracy being experienced even on problems of moderate size. The

work of Wilkinson6 indicates that reorthogonalizing after each step is, in most cases, a

satisfactory remedy to this difficulty, which apparently arises in a large degree from loss

of the orthogonality conditions among the iterate vectors. A revision of the code to in

clude reorthogonalization is planned.

QUOTIENT-DIFFERENCE ALGORITHM

A. A. Grau

The quotient-difference algorithm, previously programed in fixed point, was programed

in the (40,40) floating-point mode. It was designed to use the output from the code de

scribed above, which reduces a nonsymmetric matrix to tridiagonal form by using the bior-

thogonalization method of Lanczos.

Some experimental work was done with the combination, much of which indicated that

some modification in the orthogonalization process was desirable. It was also tried on a

problem involving nonsymmetric matrices arising in the Laboratory; the matrices involved,

however, for the most part were very poorly conditioned.

INTERACTION OF ELECTROMAGNETIC WAVES WITH PLASMA

E. L. Cooper C. T. Fike A. A. Grau J. Neufeld8

Mathematically, this problem consisted in the determination, for a large number of in

dividual cases, of the roots of a polynomial equation given in the form of the determinant

of a ninth-order nonsymmetric matrix equal to zero. The application of basic principles

from the theory of determinants and matrices reduced the problem analytically to the de

termination of the eigenvalues of a fourth-order nonsymmetric matrix.

A code was written to handle the problem in general which incorporated the quotient-

difference code just described. Most of the matrices which resulted were, however, very

poorly conditioned, and in these cases the process was not expected to give reliable

results. In some cases, the matrices decomposed, and it was possible to handle them by a

more direct method. Comparison of the results with those obtained from the general code

gave better agreement than was anticipated, even for matrices with condition number of the

order 1010, though generally one of the four roots obtained by the general method was in

gross error.

6J. H. Wilkinson, Computer J. 1, 148-52 (1958).

7Math. Semiann. Prog. Rep. Feb. 28, 1957, ORNL-2283, p 3.
o

Health Physics Division.
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Additional cases of this problem will probably be considered in the future. It is hoped

that modifications of the method outlined will permit the reliable treatment of some of the

cases of interest. Others, if necessary, can be treated more directly.

GENERALIZED LINEAR REGRESSION CODE I9

C. L. Gerberich A. H. Culkowski

This code will calculate, by the method of least squares, the coefficients a. of the

equation

n

y= E aX- ,
*"• 7 7

7 = 0

where

xj= xj(*o' xv •••' xj~vy) -
y =y(x0, x,, ..., Xp_v y) ,

2 < n < 29 (hex) and p ^ 1 .

The a.X. are the terms of the equation, and each term is composed of the product of an

unknown coefficient a. and a known function X. of the variables x., x., ... , x ., y. The

term Y has the coefficient 1 and is considered the resultant or dependent-variable term.

The code is linear in that Y is a linear function of the coefficients. Nevertheless, the

terms may be composed of exponentials, products, powers, basic trigonometric functions,

divisions, logarithms, differences, sums, or combinations of these.

In addition to finding the coefficients, there is the option of obtaining YT Y, (XT X)~\
and the summation of the residuals squared, (YT Y- AXT Y) , the latter quantity being
useful in computing the standard estimate of fit.

GENERALIZED LINEAR REGRESSION CODE II

A. H. Culkowski N. M. Dismuke

This code, which is an elaboration of Code I designed and begun by C. L. Gerberich,

I calcu

equations

will calculate, by the method of weighted least squares, r sets of coefficients b. of the
1 tr

Y = E *• X. ,
r U J.r 7 '

7 = 0

where

X! =Xj(X0' Xl' '" ' Xp-\' y0' yl' ••' ' yq-V i
Yr=Yr(x0,Xy ...,xp_,,yn, y,, ... ,yq_}) ,

2<n+r<29 (hex) and p ^ 1, q > 1, r > 1 .
g

Math. Semiann. Prog. Rep. June 30, 7955, ORNL-1928, p 6; a report on the completed program
is available from the Oracle subroutine library.
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The b. X. are the terms of the rth equation, and each term is composed of the product
7<r 1

of an unknown coefficient b. and known functions X., made up of any or all of the vari-
Ur 1

ables xQ, xy, ... , x ,, yQ, y,, ... , yq_y Each Yf is considered a resultant or dependent
term, and each Y may be formed from the variables xQ, x,, ... , x v yQI yy ... , y ,.

The code is linear in that Y is a linear function of the coefficients. Nevertheless, the

terms may be composed of exponentials, sums, products, differences, powers, basic trig

onometric and hyperbolic functions, divisions, logarithms, or any combinations of these.

The input instructions to the code describe the functions to be formed and are written

in modified Polish notation. This input and other pertinent information should be in alpha

meric form; however, the numerical input, which constitutes the variables, is to be given in

packed decimal form.

The user may choose the output wanted from the following list of items (the first ten of

which are now available) and may also designate whether it is to be in binary or packed

decimal form:

1. Means (mu)

2. Standard deviations (set)

F w.x..
— i= 1

X. =
7

m

E wi
i=i

E w.(x.;.-x.)

yjm- 1

;-0, 1,2,

m = the number of observations

1 £ r <, 29 - n

V m —1

3. Standard deviation ratios (sr)

S.
1

sr =

S
y

4. "Transpose" matrix or augmented matrix of the normal equations (t)

t = (x,y)Twx, (X,Y)TWY

5. Matrix of sums of squares and sums of products of deviations from the means (spm)

spm = XT WX - (ZW) XXT
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6. Correlation matrix (cm)

=(s) \xTwx - (iw) XXT \ (s) , s

7. Inverse of the normal matrix (ti)

iz = (XrWX)-'

8. Raw regression coefficients (b)

br =(xTwx)~] xTWYr

9. Standard regression coefficients (b')

10. The vector y computed (yc)

11. Residuals (res)

b'=b. ,
r >r \ S.

yr

yc = Xb
' r r

res=Y - Xb
r r

V^

12. Weighted sum of residuals (swr)

swr= H'T(y -Xb )

13. Weighted sum of residuals squared (ssr)

ssr= (Y - Xb) WT(Y - Xb )\ r ri \ r ri

14. Multiple correlation coefficient (mcc)

= 1

(Yr-Xbr)WT(Yr-Xbf)

(m - \) S2v ' yr

V37

15. Standard error squared or variance of deviations about regression (msr)

(Y -Xb) WT(Y -Xb )
r r r r

msr =

m — n — 1

^i
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16. Variances of parameter estimates (vb)

E W.(Y .-Yc .y
Li tKrt ri'

i- 1
vh (XTWX)~\

" m-n-\ >•>

17. Variance of Y for a single prediction (vy)

V W.(Y .-Yc)'
*J i v ri r

m

= ll +(x.-x(xrwx)-1 (X.-x)r^ 'vy. - I + i,A . - A i,A w A; i.a . — a;
'r ' ' m — n — 1

18. Variance of V7 for a mean prediction (vym)

V W.(Y .-Yc .)

vymir =\(X. - X) (XT WX)~] (X. - X)T\

m

2

i *' ri ' ~ri'

i= 1

»- 1

DETERMINATION OF ATOMIC ENERGY LEVELS

M. Feliciano

Given a set of energy levels E. and a set of observed transitions Dabetween these

energy levels, it is required to adjust the values of the energy levels to give the best fit

to the observed transition energies. As many as 512 levels and about 10,000 transitions

are anticipated.

Each transition energy is coupled with a weight depending upon experimental infor

mation. However, the former must also be associated with the pair of energy levels from

which it was derived. It is supposed that the given set of energy levels is precise enough

to afford the following correlation. All differences,

E . - E. = D .. , i < 7 ,

being established, the observed transition levels are paired to the index ij for which

Id., -d I < e ,
1 Z7 a1 '

where e is a fixed positive quantity determined by the experimenter.

With the conventions that Wis the diagonal matrix of the weights arranged according to

ndex; y is the solution vector for energy levels ranging from £Q to E ; D is the vector
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whose elements are the transition energies arranged according to index; and M is the matrix

then

Hence

r
1 0 0 . . 0 0

/-i 0 1 0 . . 0 0

0 -1 1 0 . . 0 0

0 -1 0 1 0 0

Vo ooo -i i

WMy = WD .

MTWMy =MTWD

Now the matrix M WM is a symmetric matrix obeying the following:

n

au =- E aij .
7=1

i*j

and a., (i > j) is the weight affixed to the transition D... This matrix is scanned for its
ij y ' 3 z?

largest element, which must be on its diagonal, and is compressed around it; that is, the

row and column to which this element belongs are eliminated. Similar action is taken with

the corresponding elements of y and D. This procedure has the effect of establishing

Ek = 0, where k is the index of the row eliminated. Now let the matrix obtained by com

pressing M' WM be denoted by A and the corresponding vectors derived from y and D by x

and h. Then Ax = h.

At this juncture it must be pointed out that the method for obtaining the desired result

of the problem can be divided appropriately into three parts. The first part generates the

matrix A and scales it by that power of 2 not less than twice its largest element. The

second part, an intermediate step, establishes h scaled so that its norm is not greater than

/2. It generates a first approximation x. of x from the given set of energy levels, scales it

analogously to h, and finds bounds for the proper values of the matrix A. The final part of

the method uses the iterative method of conjugate gradients, which converges to x after n

steps. The first two parts have been completed, and the last one is near the final stage.
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ESTIMATION OF GENOTYPIC PROBABILITIES IN THE ABO BLOOD GROUP SYSTEM

Define

E p, =i
i= i

Let

G. J. Atta
.'0E. Novitsky

Human blood can be classified into four phenotypic groups, A, B, Ab, and 0, and into

six genotypic groups, AA, AO, BB, BO, Ab, and 00. The inheritance of any one of the

groups is controlled by the three allelomorphic genes A, B, and 0, of which 0 is recessive

to A and B. From data collected in Australia on the phenotypic blood groups of mother-

child pairs it is desired to estimate the expected probabilities of the genotypes by the

method of maximum likelihood.

In general, let there be m mother-child pairs. Let tt . (j = 1, 2, ... , m) be the proba

bility associated with the /th pair. Then

E ^,= i •
7'='

p, = probabil

p2 = probabil

p3 = probabil

p. = probabil

p5 = probabil

p, = probabil

ty of genotype AA ,

ty of genotype AO ,

ty of genotype BB ,

ty of genotype BO ,

ty of genotype AB ,

ty of genotype 00 ,

7Tj =4'j(py, Pv ••' >P() •

If /. is the observed frequency in the /th pair, then the likelihood function is

and its logarithm is given by

Biology Division.
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The maximum likelihood estimates of the p. are obtained from the solution of the system of

equations

dL
= 0

dPi
(z = 1, 2, 3, ... , 5)

Since these five equations are nonlinear, the solution cannot be obtained directly. Conse

quently Rao's method of scoring11 was used. Thus the scores at p. are

s = E1 U.TT. dp.
7=1 7 K*

and the (i,k) element of the information matrix is

'i l

'a = E

i d-rr. Stt .
1 7 7

.TT. <9 i dp,
7=1 7 P **

(z — i,/,..., 07 ,

(z, &= 1, 2, ... , 5) .

Initial values of the p. are chosen. The S. and /., are evaluated at these values. Small
r Z Z Ik

additive connections, 5p., are given by the solution of the simultaneous equations

Id= s ,

where

/ is the information matrix,

is the vector | 8p3

Sp4

8pt

s is the vector I S.

The operation is repeated with corrected values each time until stable values of the p. are

C. R. Rao, Advanced Statistical Methods in Biometric Research, p 165—72, Wiley and Sons,
New York, 1952.
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obtained. Then p, is computed from the equation

p6 - ] ~ E Pi •
i= 1

The asymptotic variance-covariance matrix is given by the inverse of the information

matrix.

An Oracle program has been written to estimate the p., together with their variances,

and to evaluate, by means of the chi-square test, the extent to which the data fit the model.

Additional parameters were introduced in the model so that the hypotheses of (1) abnormal

segregation in heterozygotes, either male or female, (2) viability effects, and (3) misclassi-

fication of some blood groups could be tested.

Preliminary results and discussion have been reported elsewhere. Final results are

still being evaluated and will be published in the open literature.

DISEASE-INCIDENCE ESTIMATION IN POPULATIONS SUBJECT

TO MULTIPLE CAUSES OF DEATH

G. J. Atta D. A. Gardiner A. W. Kimball

E. Leach A.C.Upton13

A random sample of N animals from an infinite population is observed until all animals

in the sample have died. At the time of death, the cause of death is recorded. The problem

considered is the estimation of disease incidences in a population in which one or more

diseases have been eliminated as causes of death. The estimation is performed with a

sample from a population in which all causes of death are operating. An estimate of the

incidence of the z'th disease, /', and an approximate variance formula for I' have been de

rived.14

A random sampling experiment has been conducted in an attempt to learn something

about the small-sample properties of the estimates. An Oracle program was written from

which 1000 random samples were generated for a predetermined set of conditional proba

bilities. Each sample consisted of 400 animals, 10 time intervals, and 4 causes of death
A, A^

(N =400, m = 4, n = 10). When disease 1 was eliminated, /'. and V(I') were computed for

each sample. The distribution of the estimates is shown in Table 3. Column 4 gives a

measure of the bias of the estimates, column 5 the standard error of the bias, and column 6

Student's ratio. Columns 7 and 8 show a measure of the skewness and kurtosis of the

sampling distributions, respectively. Examination of Table 3 indicates that the estimates

12E. Novitski and R. D. Owen, Biol. Semiann. Prog. Rep. Aug. 15, 1958, ORNL-2593, p 34.
13 Biology Division.

^4Math. Semiann. Prog. Rep. June 30, 1956, ORNL-2134, p 13; Math. Semiann. Prog. Rep. Feb.
28, 1957, ORNL-2283, p 11.
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are unbiased and that the sampling distributions of I' approximate the normal distribution.

Table 4 shows the distribution of the variances of the estimates. Note that in every case

the approximate variance formula overestimates the sample variance.

The empirical study of these estimates will be continued. A final summary of the re

sults will be submitted for separate publication.

Table 3. Distribution of the Estimates of /.

/: b(i: Ei' -i:
Standard

Error / V^"=M3/M2 ^V^

2 0.43357 0.43204 -0.00153 0.001118 1.37

3 0.49978 0.50124 +0.00146 0.001228 1.19

4 0.06665 0.06672 +0.00007 0.000683 1.10

0.0915 3.086

0.0784 3.057

0.2726 2.925

Table 4. Distribution of V(l')

The equation

Variance from Formula

0.0019073

0.0036176

0.0004999

Variance from 1000 Samples

0.0012499

0.0015081

0.0004660

ROOTS OF A DETERMINANTAL EQUATION

G. J. Atta A. Sauer15

(B2L2f + 1) [B2L2s +(] +o)]
= 1

has two roots in terms of the unknown a: B1(a) > 0 and B2(a) < 0. Similarly, the equation

k
1

(B2L2+ 1) (B2L2+ 1)

has two roots: B2 > 0 and B2 < 0. If

/31(o) =B2(a) , £3 = B3 '

£2(o) =-B2(a) , ^4=-b; ,

Director's Division.
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then x and y are related by the equation

l-a3 tan/33y ' ~ a4 tan/3 y

whe

L, ctnh —=
' L , a, - a.

/ 3 4

L2B2+1

A program was written to solve for the real positive root a = a(x) of the determinantal

equation

0, a4-a3

ctn x/Sj (a) ctnh x/32 (<r) -tan y/33

/8,(a) 02O) ^3

-1 1 1

ctn xfiy (a) ctnh x/32 (a) -tan y/33

a,/31 ^1
a_/3

2^2
a3/3

3^3

^4

-tanh y/34

^4

-tanh y/34

a4^4

= 0

A trial-and-error method was used.

ANALYSIS OF VARIANCE FOR RANDOMIZED BLOCK EXPERIMENTS

D. A. Gardiner

This routine will print out, via paper tape, the standard analysis of variance table,

tables of means, and, where appropriate, tables of cell variances of a randomized block

experiment, with or without repeat measurements.

The input tape is composed of the number of blocks (in hex), the number of treatments

(in hex), the number of measurements per treatment per block (in hex), a carriage return, and
the words representing the observations in decimal floating-point form. The words are

punched block by block, with the same order of treatments followed in each block.

The output tape contains tabular stop and margin instructions, followed by the analysis
of variance information. All tables printed are in standard form with decimal points properly
aligned.

ORACLE PROGRAM FOR CALCULATING THE CHI-SQUARE TEST STATISTIC
IN AN ORDINARY R xS CONTINGENCY TABLE

M. A. Kastenbaum

This program is designed to compute the simple chi-square test statistic for two-di

mensional contingency tables varying in size from 2 x 2 to 256 x 256. Inasmuch as there
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is no iteration necessary to compute this test statistic, the calculations are extremely

rapid. The use of a high-speed machine is justified only if the contingency tables are very

large or if a large number of chi-square statistics are to be computed. For this latter

problem, the program may be placed on "continuous," whereupon the Oracle will read each

set of data in its turn, do the necessary calculations, punch out (1) the value of chi-square,

(2) the degrees of freedom, (3) the expected cell frequencies, and (4) the deviations from

expectation in each cell, and then continue to the next set of data.

ORACLE PROGRAM FOR TESTING THE HYPOTHESIS OF "NO-INTERACTION"

INANRXSXT CONTINGENCY TABLE

M. A. Kastenbaum

The primary difficulty in testing the hypothesis of "no-interaction" as given by Roy

and Kastenbaum ° for a three-way contingency table is the solution of the simultaneous

systems of third-degree equations which arise from the "no-interaction" constraints. This

problem may be handled now by the Oracle with a program which will take data from con

tingency tables varying in size from 2x2x2 to 5x5x 16. The program will solve up to

240 simultaneous third-degree equations (of the type peculiar to the present problem), com

pute the chi-square test statistic, and punch out a solution to the equations, the expected

cell frequencies, and the deviations from expectation in each of the cells of the table.

MAGNETIC FIELD CALCULATIONS FOR DCX

N. B. Alexander A. C. Downing B. S. Rose

It is well known that in the case of a single circular current the magnetic field is given

in terms of elliptic functions. Formulas for the fields due to solenoids with cylindrical

symmetry are apparently not generally available in the literature. Among the standard refer

ence works on magnetic fields is the report by Snow. He reduces each of the components

of the field to a sum of four functions, each of which is an infinite series of Legendre

polynomials.

Since sophisticated formulas convenient for digital computation do not seem to be

available, the field expressions were developed as double integrals of elementary transcen

dental functions. A set of Oracle routines was written for computing both components of

the field and the vector magnetic potential.

A separate Oracle program was written for determining the relative dimensions for a

pair of coils with rectangular cross sections, a prescribed Fabry factor, and a fixed

volume. This involved solving a pair of simultaneous transcendental equations.

16S. N. Roy and M. A. Kastenbaum, Ann. Mathematical Statistics 27(3), 749-57 (1956).
C. Snow, Magnetic Fields of Cylindrical Coils and Annular Coils, National Bureau of

Standards Applied Mathematics Series No. 38 (1953).
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EXPONENTIAL FUNCTION

A. C. Downing

The fixed-point subroutine for evaluating the exponential series was rewritten for in

creased speed and accuracy. A precise error analysis was made and has been distributed

as part of the preliminary report on this subroutine.

OVERLAP INTEGRALS

D. B. Grimes

This program evaluates the following integral by use of (8,32) floating-point arithmetic

and the Gaussian quadrature:

m +WZ.+1

S= %NaNb
( 1

a b

2R

where

1 C 2m 2u r/a
= / r ae a H

N2
a

Jo

UH = 0.529171 ,

(ua + uh) R
P 2aH

t

u — u,
a b

u + u,
a b

C°° C ' rn -2 m,-2•+1

(f+») a (£-«)'
-1

. (f2-l) (1 -n2)(c;2 -n2)e~P^+nt) dn dc2 ,

dr

INTEGRATION

D. B. Grimes

Floating-point arithmetic and Gaussian single integration were used to evaluate the

following integral:
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CORNPONE A

D. B. Grimes

Cornpone, written by W. Kinney, has been set up to do essentially Eyewash (UNIVAC)
reactor calculations on the Oracle for the Fused-Salt Reactor Group of the Reactor Projects
Division. The Eyewash cross sections and group structure have been put on a permanent
magnetic-tape library. Added to Kinney's edit is a curve-plotter edit of the absorptions in

a region by element. Portions of the output from this code have been adapted as input for
Sorghum, a reactor burnout code. Production problems have been running since March 1,
1958.

DIFFUSION OF CHROMIUM INTO INOR AND INCONEL

D. B. Grimes

In the course of experimental investigations of diffusion of chromium in nickel alloys

being conducted by G. M. Watson of the Reactor Chemistry Division, it was hypothesized

that the data could be correlated by assuming that the diffusion coefficient is dependent

upon the concentration of the chromium. It was therefore of interest to solve the corre

sponding diffusion equation given below, by means of an Oracle program.

This program, written in fixed point, solved the following differential equation by

means of a difference equation:

d dC dC

dx dx dt

where

D=D° I 1
\ °o

AC

B =

D°

Initial conditions were

C0.0=° '

C = 1 _2~39

r = l _?-39^n,0 ' Z

To test the accuracy of initial conditions, the following changes were made:

C = 1 -2~39c0,0 ' z
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After 90 days the maximum difference in C/C^ was 6.1%. After 180 days it was 3.2%, and
after a period of one year it had decreased to 1.4%. The results of the calculation were

assembled in the form of a table listing values of ratios of C/C^ as a function of time (0

and position (x), for the use of the Reactor Chemistry Division.

CALCULATION OF INTERACTION OF CHARGED COLLOIDAL PARTICLES

D. J.Wehe

A program was written which calculated the relative energy required for charged col

loidal particles to approach each other. The energy was calculated as a function of tem

perature, valence, radius of the particle, concentration of particles, and distance between

particles.

Fifteen hours of computing time was required, and 420 tables were calculated. The re

sults will be published in an ORNL report.

INTERNAL-CONVERSION COEFFICIENTS

D. J. Wehe

With the use of a linear interpolation routine and a set of tables of the internal-con

version coefficients for eight molecular weights (Z) and ten energy levels (k), the coef

ficients were calculated for intermediate Z with each k. Nine tables of radical integrals

R_L(m), RL+1 (m), RL(e), R_L_, (<?) were calculated.
The results were reported via magnetic tape in a form suitable for publication. Al

though the computational time was relatively small, approximately 48 hr was required to

print the results. The tables, exactly as printed by the Oracle, were photocopied to pro

vide plates for the book by Rose.

SOLUTION OF SIMULTANEOUS DIFFERENTIAL EQUATIONS

D. J. Wehe

The system

with the conditions

dn
+

lt~

dnQ

=/l(l -n2)-Bn+n0

— =C(1 -„0)-Dn+nQ

»+(0)=0 ,

»0 (0) = ]

was solved by a code written in FORTRAN for the IBM-704 computer at the K-25 plant.
Use was made of a prepared subroutine to solve the system by the Runga-Kutta method.

M. E. Rose, Internal Conversion Coefficients, Interscience, New York, 1958.
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Because of the large range of the coefficients an extremely small interval (10 )

was required, implying that many values of the functions nQ(t), n, (t) would have to be

calculated, with 15 to 20 min machine time required for each case. Therefore only a few

cases were calculated, and the results were used as a test for those obtained on the ana

log computer.

DECAY OF RADIOACTIVE MATERIALS

N. B. Alexander B. S. Rose

The problem is to determine the amount of decay of certain radioactive materials at

various time intervals. Functions such as the following were evaluated:

A/, i e-V
= A, A ,.. A. , } .

"? ' 2 S=l lift,-A.)

SPECIFIC HEATS OF ALLOYS

N. B. Alexander R. K. Benson E. C. Long

The problem is to calculate the specific heats of various alloys and the probable errors

in such calculations.

GAMMA-RAY ABSORPTION

N. B. Alexander

In a study of the mechanism by which atomic holes are produced in solids exposed to

gamma radiations, the cross sections for producing energetic electrons by the Compton

effect, the photoelectric effect, and pair production were tabulated for a wide range of

atomic weights. These cross sections were obtained by numerically integrating single,

double, and triple integrals. One of the integrands was calculated by fitting a table of

values by means of the linear regression code. Ninety per cent of the computation has

been completed on this problem.

SUBROUTINE FOR SUBTABULATION

N. B. Alexander A. C. Downing

A subroutine was written for subtabulation of a function by introducing a specified

number, m—1, of intermediate values between consecutive pairs of given values. A table

of the differences A7 of the given values is constructed, from which a new table of differ

ences is calculated.

Let /(x) be given at the equally spaced points x. , x. , ..., x and let

x-xQ

xl -*o

Then Newton's expansion for f(x) in terms of the old differences (A) is
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/(*)=/(*„) +( 1 K +( _ )A2+..

=/(V+ L L a,
^=o v K /

In terms of the new differences (§), it is

whe

/W=/(*0)+ I
6=0

S0 '

sfe= e a)u
j = k

is obtained recursively from the components of an auxiliary vector a . Let B be the lower

triangular matrix:

0 0

0 0

rT1 \ /zT1

„-l -1

m—2 / \m —3 / \7?z —4

„-l

w I ) (wm- 1 / W-2 / \m-3

-1

Then a is defined by the conditions

a" = e, =
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Hence

and

*o* = U<*o>'VAo Aom~' j a

FUNCTION EVALUATOR SKELETON

A. C. Downing

The normal subroutine entry for the Oracle places two addresses in the accumulator:

the address in the main code from which the subroutine was entered and the address of the

first word of the subroutine. With this information available all subroutines of a given

class may make use of a common slave routine which will perform the red-tape operations

for all members of the class. Compiler item 00 088 was written for use by the function

evaluation routines, specifically, those using a linkword or a Q-register word to specify

M(x) and M[/(x)], that is, the storage locations of member x and the location where f(x) is

to be placed. The slave (item 00 088) fetches both of these addresses and brings x into

the accumulator before transferring control back to the function-evaluating subroutine.

After f(x) is computed, item 00 088 stores it in M[/(x)] and transfers control back to the

proper point in the main routine. Thus the red-tape operations in the function evaluation

subroutine are reduced to a minimum, namely, two transfers to item 00 088.

Provision is also made in item 00 088 for monitoring subroutine stops (e.g., for illegal

values of x) on the console typewriter. The subroutine causing the stop is identified by

its storage location, and the return address in the main code is also reported.

Item 00 088 is eight words in length.

THE OAK RIDGE RANDOM RESEARCH REACTOR ROUTINE (05R):

A GENERAL-PURPOSE MONTE CARLO CODE FOR THE IBM-704

H.P.Carter R. R. Coveyou1 9 J.G.Sullivan19

A general-purpose Monte Carlo code20 is being developed for the IBM-704. The immedi

ate purpose of the code will be to facilitate the analysis of the problems which arise in the

calculations and measurements of the age of neutrons in water.

SIMPSON'S RULE INTEGRATION SUBROUTINE

C. T. Fike

This is a closed subroutine which uses Simpson's rule for numerical quadrature. Com

puting is done entirely in fixed point, and certain simple scaling restrictions are made

a — B e.

1 9 Neutron Physics Division.
20 R. R. Coveyou, J. G. Sullivan, and H. P. Carter, Neutron Phys. Ann. Prog. Rep. Sept. 1,

1958, ORNL-2609, p 87.
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therefore on the integral and integrand in addition to the customary conditions which must

be met for the application of Simpson's rule.

FLUX DEPRESSION

B. S. Rose

The problem was to calculate the flux depression due to gold foil in various media. The

mathematics of the problem reduced to the evaluation of a double integral.

ORACLE TIME CODE

D. J.Wehe

A code was written to minimize the bookkeeping required in the charging for the time

used on the Oracle. From the cards which are stamped at the console each time a pro

grammer uses the machine, the operator types a tape containing the problem number, the

amount of time used, and the type of computing done, that is, whether the time was used

for production or debugging or whether the time was lost because of a machine or power

failure. With this information and a list of account numbers and problem numbers stored on

magnetic tape, the program computes three reports: (1) a tabulation of production, debugg

ing, and lost time, with a breakdown of the time used by the engineers and mechanics; (2) a

listing of the divisions to which time has been charged and the amount of time used by each

problem belonging to that division; (3) a financial report, which is sent to the accounting

department at K-25, stating the charge to each account using the Oracle.

In addition to the time code itself, a series of codes is used to change or add new

problems or accounts to the present list stored on magnetic tape.

From time to time, changes have been made in the calculations and format, but such

changes have been relatively simple.

SUBROUTINES AND REPORTS21

D. J. Wehe

Reports of 19 subroutines already on the Compiler were rewritten in a form consistent

with present usage and were published as preliminary reports.

Two routines were written: one to perform decimal addition and another to punch any

portion of a word. Preliminary reports for these routines are available.

An (8,32) subroutine for arc sin x, written by the MIT practice students, was rewritten

in compiler form, and the report was revised for general distribution.

Reports were written for two subroutines programed by H. Moran [error function and

derivative, (40,40) arc tan x].

Available from the Oracle subroutine library.
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COMPILER AND COMPILER LIBRARY

B. J. Osborne D. J. Wehe B. S. Rose

Codes have been written to make automatic the following changes to the Compiler:

1. scanning subroutines to determine slaves,

2. rearranging subroutines on the Compiler,

3. correcting subroutines on the Compiler,

4. writing over old subroutines and adding new subroutines,

5. getting a new directory from the Compiler with items in numerical order,

6. changing constants.

Three permanent constants were removed and all the alphameric symbols added. These

are located from E00 through E3F. The Compiler has also been changed so that it will

accept alphameric items.

A new and complete writeup for the Compiler was issued 22

A complete, dated edit has been made of the Compiler library and is available for refer

ence. This listing is kept current, and anyone requesting a copy of an item may obtain a

Thermo-Fax copy showing the date on which the edit was made.

A system has been introduced in which the author of a new routine receives an edit of

his routine after it has been placed in the library. The paper-tape copy is dated and kept

on file. As changes in a routine are requested, a dated edit of the altered routine is sent

to the author or to the person requesting the change.

Routines which were obsolete due to changes in the machine and routines about which

no information was available were removed from the library and filed.

CODE FOR CLASSIFICATION OF SUBROUTINES

B. J. Osborne D. J. Wehe N. B. Alexander N. M. Dismuke

A code has been completed for producing three classifications of subroutines in the

Oracle subroutine library from a list stored on magnetic tape. The code also has provisions

for deleting, adding, changing, and sorting as is necessary for updating this list.

Classification I is a listing of routines according to their mathematical and computa

tional purposes. A routine may be included several times in this list. Classification II is

a breakdown of routines by arithmetic or numerical representation. Classification III lists

the routines in increasing numerical order of library number.

22M. E. LaVerne, R. R. Coveyou, and R. R. Bate, Programmers Manual for the Oracle Compiler,
ORNL CF-57-8-92 (Aug. 23, 1957).
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TRACER

B. J. Osborne D. J. Wehe

An automonitoring routine (the tracer) was completed but was too slow to be used ef

fectively. It is now being rewritten, and the following new features are being added:

1. It will trace between address aaa and address bbb. This eliminates much output

from subroutine loops.

2. When the (8,32) floating-point routine is included in the program being traced, the

format tape requires the beginning address, in which case it will give the following output

for floating-point orders:

Address Order Results

aaa xxx a yyy zzz C(zzz)

3. More than one section of temporary storage, which will be kept in the memory at all

times, can be specified by the programmer, thus speeding up the operation.

It is hoped that the new tracer will be able to keep at least half the program of the code

being traced in the machine at one time. This will speed up the monitoring by a factor of 4.

CANNED PROGRAMS AND SERVICE PROGRAMS

B. J. Osborne

A new cataloging method was started in these groups. Canned programs were given a

numbering system consisting of a three-digit number preceded by the letters "CP." These

programs are now available in the tape preparation room.

Service programs were broken down into two groups: those needing input tapes, which

were numbered SP 100, and those not needing input tapes, which were numbered SP 000.

Both series are available at the computer console.

SERVICE PROGRAM TO RECONSTRUCT SEVERAL ITEMS

INTO ONE COMPILER ITEM

N. B. Alexander

A need was felt for a service routine which would combine several items into one item

for later use as one subroutine on the Compiler. This code uses the compiled program from

the several items, the directory of the compiled version, and the items themselves in order

to calculate the new key words, to reinsert the universal constants, to change any zero

item into zero words at the end of the new item, and to check for length and references to

routines outside itself.
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SUPER "B"

N. B. Alexander E. C. Long

This subroutine simplifies the coding of many problems by setting up the entrances to

other subroutines. Hence, once in this subroutine, the programmer could give a list of

three-address orders that would make programing automatic. The subroutine has been re

vised in order to increase its usability.

LIST OF SUBROUTINES ON COMPILER

B. S. Rose

This service routine will produce an alphameric compiler directory listing the sub

routines in numerical order with their associated magnetic-tape block number and listing

the subroutines in the order in which they appear on the compiler tape.

INSERTION OF LINK-WORD INFORMATION INTO THE

CLASSIFICATION DIRECTORY

B. S. Rose

This service routine will add the alphameric link-word information to the classified

titles of the compiler subroutines which form the classification directory.

ORACLE ITEM EDIT

D. B. Grimes

There are two versions of this code available. The first edits the item from paper tape

into a convenient form for checking and correcting. In addition to the key words, it punches

an address followed by a word plus extra words without addresses. The second version

edits items from private library tapes and gives a neater edit than the first one because it

separates the order and address in each word.

OUTPUT CONVERSION AND EDIT SEGMENT FOR CP 00B AND CP OOC

E. L. Cooper N. M. Dismuke

A segment for putting results on paper tape or magnetic tape has been added to the

fixed-point inversion and linear equation codes written earlier. The codes are part of

the canned-program library. Both programs solve s sets of k equations in k variables with

the size limitations

CP 00B: 0^/^127, n = k + S < 4095 ;

CP OOC: ]28<k^2SS, n = k + S <. 4095 .

A preliminary report describing the codes has been published.

23Math. Semiann. Prog. Rep. Dec. 31, 1955, ORNL-2037, p4; June 30, 1956, ORNL-2134, p 10;
Feb. 28, 1957, ORNL-2283, p 9.
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THREE-WORD INTERPRETIVE COMPLEX NUMBER SUBROUTINE

A. A. Grau

As a coding device, it is useful to write the orders for interpretive arithmetics used on

the Oracle in a way that is mnemonically reminiscent of the corresponding fixed-point

orders. Routines using this principle for (28, 12) and (40,40) floating-point operation have

been used on the Oracle for some time. In this convention the subroutine entry is followed

by an arbitrary sequence of instructions which, although resembling machine instructions,

are interpreted by the code as the corresponding floating-point operations. The regular A

and Q registers are replaced by interpretive A and Q registers, each of which consists of

reserved space in the memory. Exit is effected by the presence of a 1 bit in the breakpoint

position of a transfer order that is executed.

A three-word interpretive complex number routine has been designed and constructed

which handles complex numbers in the form

(x + yi) • 2Z .

The numbers x, y, z occupy successive memory cells; in the interpretive order, only the

address x is mentioned. Here —1 < x < 1 and —1 ^ y < 1, while z is a binary integer. The

number in question is normal if either x or y satisfies —1 <: ( <-/ or k < t <]. Almost

all standard arithmetic orders are interpreted by this routine.

The routine has been completed and tested but has not been added to the library.

FORMULA INTERPRETATION CODE

A. H. Culkowski A. A. Grau

This routine was written to translate mathematical expressions or equations from alpha

meric form to modified Polish pentahex notation. Once the expression is in the modified

Polish notation, it can be evaluated in the Oracle by suitable codes.

ALPHAMERIC DECIMAL INPUT AND CONVERSION TO NORMALIZED

(40,40) FLOATING POINT, ITEM ODE

A. H. Culkowski A. A. Grau

This routine converts alphameric decimal numbers to normalized (40,40) floating-point

numbers. The numbers may be positive or negative, with or without a decimal, and have a

power of 10 if desired. The number to be converted is limited to 11 digits and may contain

commas, spaces, plus signs, and carriage returns, all such symbols being ignored by the

code.

ALPHAMERIC NUMERICAL INPUT AND CONVERSION TO BINARY

WITH DECIMAL SCALE FACTOR, ITEM 06F

A. H. Culkowski A. A. Grau

This subroutine converts alphameric numerical numbers to binary with a decimal scale

factor. The numbers to be converted may be positive or negative, with or without decimal
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point, and may contain an exponent of 10 if desired. All punctuation symbols and plus

signs, other than tabs, that may be included with the numbers are suppressed by the code.

A special code similar to ODE was devised for use in either ORSAP or ORBIT.

BI-HEX CHARACTER INTERPRETER AND PLOTTER, ITEM OBC

A. H. Culkowski A. A. Grau

This subroutine will interpret and plot on the curve plotter any character of the Oracle

bi-hex code to give curve-plotter, alphameric output similar to that obtained by the same

bi-hex character on the off-line printer. Characters such as space, upper case, lower case,

back space, tab, and carriage return are interpreted as they would be on a typewriter, and

characters that would be typed are plotted.

KEY WORD LIST FOR CURVE PLOTTER, CONSISTENT WITH PERIPHERAL

BI-HEX CODE, ITEM OBD

A. H. Culkowski A. A. Grau

This item is a slave alphabet for item OBC, which interprets all bi-hex characters for

the curve plotter. It is a list of the key words which will describe the bi-hex characters

they represent.

THE (8,32) LOCATOR FOR AN ISOLATED REAL ZERO OF

AN ARBITRARY FUNCTION

N. B. Alexander

This subroutine will find one zero of an arbitrary function between two given points

provided that the signs of the function at the two given points are opposite. The method

employed is to halve the interval, calculate the value of the function at the half point,

select a new interval of length half that of the previous one, and repeat the above three

steps until a sufficiently small value is found for the function.

SOME ROUTINES FOR CONVERTING, EDITING, AND SCALING

E. L. Cooper

Binary-to-Decimal Conversion - One-Character Output. - A list of machine numbers,

identically scaled, is put out on paper tape or narrow magnetic tape in alphameric form.

Up to 15 digits per number can be reported. The code makes use of the single-character

output order, recording on magnetic tape at maximum density.

Matrix and Eigenvector Conversion and Output Edit. - A rectangular matrix of digi

tal ized elements is put out on paper tape or narrow magnetic tape as alphameric numbers

with a matrix format. Eigenvalues and eigenvectors can be handled by changing a hex

digit in one link word. This routine is available in both subroutine and canned program

forms.
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Calculation of Scale Factor and Power of 10 for Output Scaling. —Given the binary

exponent b, this routine will determine the decimal exponent d and the scale factor

R= 2 «10 , where '/.. ^ R< 1; R is obtained from a double-precision number with
rounding in the last stage. When a list of numbers, instead of one number only, is to be

scaled by a common factor, R, this routine provides greater efficiency.

MATRIX NORM AND SCALING CODE

C. T. Fike

This is a self-contained code which will compute the sum of the squares of the ele

ments of a matrix stored in fixed-point and scale the matrix down by a power of 2 so that

the sum of the squares of the elements of the scaled matrix is less than unity. Partial

sums are accumulated in multiple-precision arithmetic to prevent loss of accuracy, and

the matrix is not scaled down any more than is necessary to make the sum of squares

less than unity.

CURVE-PLOTTER MATRIX OUTPUT CODE

C. T. Fike

This is a self-contained code written to provide fast output on the curve plotter of a

fixed-point matrix stored on magnetic tape. Conversion is made from binary to decimal,

with provision for scaling the matrix up by a power of 2.

FLOATING-BINARY-POINT ARITHMETIC FOR REAL AND COMPLEX NUMBERS

S. E. Atta

Subroutines for floating-binary-point arithmetic24 for both real and complex numbers
were written in an attempt to accomplish the objectives of reducing to a minimum the

time required for floating-point operations, using the regular single-address Oracle

instructions for ease in coding as well as in debugging, and obtaining the maximum

accuracy in single precision.

Separate subroutines for summation, multiplication, and division were written for

each number field. Any of the regular Oracle instructions for summation or product of

real numbers can be executed in floating point by using one of these subroutines. Regular

Oracle instructions for summation or product can be executed in floating-binary-point

arithmetic for complex numbers with the exception of the modulus (absolute value) in

structions.

Two groups of codes are available for each number field. In one, two storage cells

are required for each number (40,40), while in the other the mantissa and exponent of a

number are packed in a single storage cell (8,32).

24Math. Semiann. Prog. Rep. Dec. 31. 1954, ORNL-1842, p 20; preliminary reports of Oracle
subroutines, item numbers 00 0E4 —00 0F1.
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AUTOMONITORING FOR (8,32) ARITHMETIC

B. S. Rose

This service program is useful in debugging three-address codes. It will punch out

the location of each order, what the order is, the two numbers being operated upon, and
the result of the operation.

BINARY-TO-DECIMAL CONVERSIONS

J. Harrison

Four binary-to-decimal conversion codes have been designed to convert fixed-point

integers, fractions, and numbers with decimal scaling. Each one is designed to take

advantage of the free time between successive character punches when narrow magnetic

tape is being used. Except for suppressing zeros following the exponent (for a decimal

scale factor), the computing time for each character is below 900 /usee.

The integers and fractions are converted by means of the same loop. The conversion

of an integer p to decimal form is reduced to the case of conversion of a fraction by

noting that if the machine representation of p, N= p-2-39, is multiplied by 239/10^, the

number P = p-10 is obtained whose decimal representation differs from that of p itself

only in the position of the decimal point. Multiplication by 2/10 is effected by

shifting three places left and then multiplying by ra/8 =57F5FF85E6.

Items 00 08A and 00 08B convert and punch numbers of the form A/-10P composed of

a binary fixed-point part N and a decimal scale-factor part P. The reported number is

composed of a decimal fraction and a decimal scale factor. Item 00 08A handles scale

factors up to and including 1023D, and item 00 08B handles scale factors up to and in

cluding 11 decimal places. Item 00 08C converts a starred binary integer to a decimal

integer, and item 00 08D converts a binary fixed-point number to a decimal number.

THE n nth ROOTS OF A COMPLEX NUMBER

R. K. Benson

By use of the formula

(k) 1/n _
(log k)/n

e

for the rath root of a real number, this code provides the zzth roots of complex numbers by

expressing them first in polar form.

THREE-ADDRESS COMPLEX ARITHMETIC IN FIXED-POINT BINARY

R. K. Benson

This routine will add, subtract, multiply, and divide complex numbers and store a

scale factor, if the answer is not digital, by shifting the two complex numbers being

operated upon until they do not produce overflow.
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THREE-ADDRESS CODING FOR (28,12) COMPLEX ARITHMETIC

R. K. Benson

This routine allows the programmer of a problem to code with three-address words

which the routine interprets and sets up for the (28,12) complex arithmetic subroutine.

MISCELLANEOUS SHORT CODES

A. H. Culkowski

The following miscellaneous short codes were written during the period of this

report:

1. code to manufacture integrand and limits for a double integral to be evaluated by use

of Gaussian integral code;

2. HRE-III vessel analysis: heat generation data code, temperature data code, and

stress data code;

3. variables needed for input in the generalized linear regression code;

4. first-, second-, or third-degree equation solver, given the variables and coefficients;

5. standard error of estimate for the generalized linear regression code.

SUBROUTINE FOR (8,32) FLOATING-POINT ARC-TANGENT

M. Feliciano

The arc-tangent of an (8,32) floating-point number x = x «2^ is computed in one of

the following manners.

1. |f -8 <; p <; 0, then x is changed to fixed point and the arc-tangent is computed by

the method of continued fractions.

2. If -62 <; p £ -9, then the arc-tangent is computed by using the first two terms of

the series

1 3 ] 5
arc tan x = x xh— x— ... .

3 5

3. If —128 <; p <; -63, then the approximation arc tan x = x is used.

4. If p > 0, the identity arc tan 1/x = arc cot x is used.

5. If x = 0, +1, -1, then the value of the arc-tangent is substituted without computa

tion.

ORBIT TRANSLATOR PROGRAM

J. Harrison J. J. Andrews A. A. Grau

The purposes of the five segments contained in ORBIT are as follows:

Segment I loads into the memory the alphameric program and converts it to an internal

bi-hex representation by adding 40(hex) to each upper-case character. This modification

66



FOR PERIOD MARCH 1, 7957 TO AUGUST 31, 7958

is necessary for proper interpretation of all available alphameric characters, including

those in upper case and lower case.

Segment II places each ORBIT statement on a separate block on drive 1, where it

is taken and processed by segment III. Zero items for the variables are manufactured in

this segment.

Segment III, the main segment, processes an ORBIT program and produces a finished

object program ready for compiling. This segment was originally too large for the memory

and had to be rewritten.

Segment IV forms key words for the object program and creates items containing con

stants and the statement number (SN) list.

Segment V reads in segment I of the Compiler, changes a few orders, supplies the

basic item word, and transfers control to the Compiler.

ORBIT is designed to accommodate alphameric statements, each statement consisting

of an equation, iteration, conditional or unconditional transfer, subroutine, or input or

output order. Each statement is dissected into its alphameric characters by processing

one pair of characters at a time. Every possible combination of permissible characters

lies in a table of pairs which actually is the hub of ORBIT. This table contains over

160 pairs, with corresponding transfers to items producing the required machine orders.

ORBIT contains, in addition to the table of pairs, another interesting coding device

which supplies addresses of transfers. Each time a numbered statement is processed,

the statement number together with a transfer to the object code address of the statement

is placed in the SN list. When a reference to a statement not yet in the SN list appears,

the SN alone is entered in the SN list and the object code transfers to the vacant address

portion of the SN in question. When this particular SN is reached, its object code address

is then placed in the proper position beside the SN. Thus the SN list links transfers and

addresses in the object code.

Iterations are processed by storing the maximum, minimum, increment, variable, and

return address and then creating the initialization, increase, and conditional transfer

statements at the proper time. A variable transfer called the "tau switch" regulates the

timing of these manufactured statements.

ORBIT's numerous subroutines include the advance instruction subroutine designed

to insert additional orders between orders already produced and to change addresses ac

cordingly. The COM subroutine inserts each order in a list, one order per word, and

remembers the object code address of the present order. Subroutine IML programs a

stall, if necessary, to assure that the next instruction will be a left-hand one when

coding subroutine entries, transfers to the left, etc.

Statements referred to by other statements or immediately following an iteration must be
numbered. Numbering of other statements is optional.
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After each statement has been processed, the instruction processor picks up the

orders by two's from the above-mentioned list and places them in the final object code.

ORBIT uses two conversion codes: one which converts alphameric decimal numbers

to binary and one which slaves the first to produce normalized (8,32) floating-point

numbers.

COMPILER ITEMS AND SUBROUTINES

Sixty-five compiler items were added to the Compiler library by members of the

Mathematics Panel during the period March 1, 1957, to September 1, 1958; the classifica

tion used here is one that is in standard use with the Compiler library. The data are

given in Table 5.

Table 5. Items Added to Compiler Library

Item Number Compiler Item Contributor

Programed Arithmetic

(8,32) floating-point multiplication S. E. Atta

(8,32) floating-point division S. E. Atta

(8,32) floating-point addition S. E. Atta

Super "B": simplified coding in (8,32) N. B. Alexander,
E. C. Long

(8,32) packed automonitoring floating-point arithmetic B. S. Rose

(40,40) floating-point multiplication S. E. Atta

(40,40) floating-point division S. E. Atta

(40,40) floating-point addition S. E. Atta

Complex Numbers

00 0EF (8,32) floating-point multiplication S. E. Atta

(8,32) floating-point division S. E. Atta

(8,32) floating-point addition S. E. Atta

(40,40) floating-point multiplication S. E. Atta

(40,40) floating-point division S. E. Atta

(40,40) floating-point addition S. E. Atta

Decimal addition D. J. Wehe

Elementary Functions, Fixed Point

Exponential and Logarithmic

00 092 e~~x (series) A. C. Downing

00 192 e~x (series) A. C. Downing

Roots and Powers

00 OOF Square root (Newton) A. C. Downing

00 10F Square root (Newton) A. C. Downing

Elementary Functions, Floating Point

Trigonometric

00 091 (8,32) arc-tangent (series, trigonometric identities) M. Feliciano

eal Numbers

00 0E8

00 0E9

00 0EA

03 0A0

03 205

00 0E4

00 0E5

00 0E6

00 0F0

00 0F1

00 0EC

00 0ED

00 0EE

Decimal

01 0B7
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Table 5 (continued)

Item Number Compiler Item Contributor

Polynomials and Special Functions

00 0B3 Fixed-point locator for isolated zeros of arbitrary A. C. Downing
functions

00 0B4 (8,32) locator for isolated zeros of arbitrary functions N. B. Alexander

00 088 Functional subroutine skeleton A. C. Downing

Operations on Functions and Solutions of Differential Equations

Integration

00 093 Simpson's rule integration C. T. Fike

Others

00 0B3 Fixed-point locator for isolated zeros of arbitrary A. C. Downing
functions

00 0B4 (8,32) locator for isolated zeros of arbitrary functions A. C. Downing

Interpolation and Approximations

Table Lookup and Interpolation

00 0F2 (8,32) interpolation (Newton, 03 005) N. B. Alexander

00 0D9 Binary table lookup, one word A. A. Grau

00 0DA Binary table lookup, multiple word A. A. Grau

Curve Fitting

00 0F3 (8,32) least-square fitting for linear functions E. C. Long

Operations on Matrices and Vectors

00 0BE Matrix and eigenvector conversion and output code E. L. Cooper

00 0D8 Computation of blocks required for vector and matrix A. C. Downing
storage

Statistical Analysis and Probability

00 071 (8,32) sum and sum of squares D. A. Gardiner

Input

Alphameric

00 06F Alphanumerical input and conversion to binary floating A. H. Culkowski
point with decimal exponent

00 ODE Alphameric input and conversion to (40,40) floating A. H. Culkowski
point

Output

(8,32) Floating Point

00 095 (8,32) output conversion with choice of decimal places D. A. Gardiner
00 098 (8,32) floating-point alphameric conversion and punch T. W. Hildebrandt
00 336 (8,32) output, alphameric E. C. Long

(40,40) Floating Point

00 096 (40,40) floating-point alphameric conversion and punch T. W. Hildebrandt

(28,12) Floating Point

00 097 (28,12) floating-point alphameric conversion and punch T. W. Hildebrandt
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Item Number

Fixed Point

00 089

00 08A

00 08B

00 08C

00 08D

00 0BE

00 28D

Alphameric

00 0BE

00 095

00 098

00 336

00 096

00 097

Others

00 110

00 0D6

00 10E

Fixed Point to

00 09A

Floating Point

00 0B9

00 0BB

Others

00 0DB

00 023

00 024

00 099

00 0BA

Table 5 (continued)

Compiler Item

Output

Binary-to-decimal conversion, one-character output

Fixed-point conversion with decimal scaling, binary
to decimal, alphameric output, exponent less than
1024

Fixed-point conversion with decimal scaling, binary to
decimal, alphameric output

Integer conversion, binary to decimal, alphameric output

Fixed-point conversion, binary to decimal, alphameric
output

Matrix and eigenvector conversion and output code

Binary-to-decimal fixed-point conversion with inter
changeable curve plotter, punch output

Matrix and eigenvector conversion and output code

(8,32) output conversion with choice of decimal places

(8,32) floating-point alphameric conversion and punch

(8,32) output, alphameric

(40,40) floating-point alphameric conversion and punch

(28,12) floating-point alphameric conversion and punch

One-word typewriter output with zero suppression

Punch portion of word

Output changer; curve plotter or paper tape

Con versions

Floating Point

Binary fraction to (40,40)

to Floating Point

(8,32) to (40,40)

(40,40) to (8,32)

Calculation of scale factor and power of 10 for output
scaling

(40,40) floating-point binary power of 10 to floating
point binary power of 2

(40,40) floating-point binary power of 2 to floating
point binary power of 10

(40,40) floating-point binary power of 2 to floating
point binary power of 10

Scaleup of (40,40) floating-point number

Curve Plotter

00 28D Binary-to-decimal fixed-point conversion with inter
changeable curve plotter, punch output

00 OBC Bi-hex character interpreter and/or plotter
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Contributor

E. L. Cooper

J. Harrison

J. Harrison

J. Harrison

J. Harrison

E. L. Cooper

C. T. Fike

E. L. Cooper

D. A. Gardiner

T. W. Hildebrandt

E. C. Long

T. W. Hildebrandt

T. W. Hildebrandt

C. T. Fike

D. J. Wehe

A. A. Grau

T. W. Hildebrandt

E. C. Long

E. C. Long

E. L. Cooper

E. C. Long

E. C. Long

T. W. Hildebrandt

J. H. Vander Sluis

C. T. Fike

A. H. Culkowski
A. A. Grau
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Table 5 (continued)

Item Number Compiler Item Contributor

Curve Plotter

Peripheral bi-hex curve-plotter alphabet slaved by A. H. Culkowski,
00 OBC A. A. Grau

Curve-plotter coordinate setter A. A. Grau,
C. T. Fike

Output changer; curve plotter or paper tape A. A. Grau

Interpretive curve-plotter output, 84 order A. A. Grau

Interpretive curve-plotter output, 88 order C. T. Fike

Interpretive curve-plotter output, 8C order A. A. Grau

Magnetic-Tape Codes

00 OBE Matrix and eigenvector conversion and output code E. L. Cooper

00 0D8 Computation blocks required for vector and matrix A. C. Downing
storage

All Others

00 08E Subroutine stop monitor A. C. Downing

00 0BD

00 10B

00 10E

00 284

00 288

00 28C

ORBIT SUBROUTINES

The compiler item number and description of the subroutines that have been designed

specifically for use with ORBIT are given in Table 6. All but item number 00 109 have

been added to the Compiler library. The following auxiliary subroutines are used by

many of the subroutines listed in Table 6:

F4 UNPACKER M. Feliciano

F5 SCALER M. Feliciano

F6 CODED STOP M. Fel iciano
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Table 6. Orbit Subroutine Conventions

Q: an (8,32) number in the Q register

Q : a binary integer in the Q register

Ace: an (8,32) number in cell F00

Ace : a binary integer in cell F00

A : a binary integer in the A register

F01: an (8,32) number in cell F01

F01 : a binary integer in cell F01

Item Number Description Contributor

00 0F7 F01 -> 0 M. Feliciano
x K-

00 0F8 Q-* A M. Feliciano
K x

00 0F9 —Q-* Q M- Feliciano

00 0FA |pj -» Q M. Feliciano

00 0FB -|S|-»Q M. Feliciano

00 0FC Q + Acc-*Q,Acc M. Feliciano

00 0FD Q X Ace •* Q, Ace M. Feliciano

00 0FE g^ Ace -» Q, Ace M. Feliciano

00 OFF VQ^Q M- Feliciano

00 100 log Q-> Q M. Feliciano

00 101 e® -* Q M. Feliciano
Ace

00 102 Q *-» Q, Ace M. Feliciano
Ace

00 103 F01 -» Q , Ace M. Feliciano
X X X

00 104 |Q|/lcC-> Q, Acc M. Feliciano

00 107* Statement linkage A. A. Grau

00 108 Input G. C. Caldwel

00 109 Output E. L. Cooper

00 10A Ace "=" Q-* Q, Ace M. Feliciano

*Used exclusively by ORBIT as needed.
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SERVICE PROGRAMS

During the period covered by this report the following service programs were added

to the Oracle library:

SP 002 Magnetic-tape item edit D. B. Grimes

SP 003 Five-to-seven-hole converter A. H. Culkowski

SP 004 Postmortem punch with zero suppression T. W. Hildebrandt

SP 005 Item check code D. B. Grimes

SP 008 Paper-tape assembly C. D. Griffies

SP 009 Reference check code C. L. Gerberich

SP 00A Alphameric hunk preparer A. C. Downing

SP 00B Output changer A. A. Grau

SP OOC Input-output check for magnetic tape A. H. Culkowski

SP 00D Reconstruct compiler items N. B. Alexander

SP 00E Reference to address, typewriter output A. A. Grau

SP 102 Correction code for magnetic tape A. H. Culkowski

SP 103 Compiled program edit J. W. Reynolds

SP 104 Code edit routine E. C. Long

SP 105 Tracer B. J. Osborne

SP 106 (8,32) curve plotting routine M. P. Lietzke

SP 107 Servi-seer J. G. Sullivan

SP 108 Code editor A. A. Grau

TRAINING

NUMERICAL ANALYSIS

A. S. Householder A. A. Grau N. M. Dismuke K. Fan

Two series of lectures on topics in numerical analysis were given during 1958:

Series I. The Approximation of Functions

Polynomial Interpolation

1. Lagrange Polynomials; Divided Differences

2. Methods of Aitken and Neville; Several Variables

3. Inverse Interpolation; Remainders and Errors

4. Confluent Formulas

5. Optimum Interval Interpolation

6. Equal Interval Interpolation

Quadrature and Cubature; Numerical Differentiation

7. The Classical Formulas. I

8. Operator Methods. 1

9. Operator Methods. II
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10. The Classical Formulas. II

11. Gaussian and Related Formulas

12. Improper Integrals

Least Square Curve Fitting

13. Least Square Polynomials; Smoothing

14. Methods of Deming and Garwood

More General Methods

15. Interpolation with Arbitrary Functions

16. A General Remainder Theorem. I

17. A General Remainder Theorem. II

Continued Fractions

18. E lementary Properties

Series II. Theory of Matrices and Determinants

1. Determinants and Linear Dependence. I

2. Determinants and Linear Dependence. II

3. Characteristic Values and Vectors. I

4. Characteristic Values and Vectors. II

5. Jordan Canonical Form. I

6. Jordan Canonical Form. II

7. Givens Method for Eigenvalues and Vectors. I

8. Givens Method for Eigenvalues and Vectors. II

9. Methods for Solving Systems of Linear Equations

10. Theory of Systems of Linear Inequalities

STATISTICS

The following topics were presented at statistics section seminars during the first

half of 1958:

D. A. Gardiner

Some Statistical Aspects of Life Testing

Elements of Accident Statistics

Life Testing from Exponential Populations

A New Look at Statistical Hypotheses

M. A. Kastenbaum

The "Aberrant" Observation in an Otherwise Valid Set of Data

Least Squares Estimation Using Order Statistics

Inverse, Multiple, and Sequential Sample Censuses
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A. W. Kimball

Poisson Processes

Problem of Interval Estimation and Fiducial Distributions

The Estimation of Extraneous Variation in Binomial Populations
Estimates with Prescribed Variance Based on Two-Stage Sampling

H. L. Lucas, North Carolina State College

Experimental Design and Analysis with Nonlinear Models

M. J. R. Healy, Rothamsted Experimental Station, Harpenden, England

Experience with the Elliot 401 Computer at Rothamsted

N. F. Gjeddebaek, A/S Ferrosan, Copenhagen, Denmark

Efficiency of Grouping of Observations

CODING FOR DIGITAL COMPUTERS

E. C. Long

Three basic Oracle coding courses were presented to a total of 82 participants. One

basic coding course for the IBM-704 stressing business application was presented. Thirty

people from the three Oak Ridge Carbide plants attended this course.

ORACLE MANUAL FOR PROGRAMMERS

S. E. Atta

An introductory manual to the Oracle for beginning programmers was issued. It in

cludes many details, as well as simple examples to illustrate various points in principles

and techniques. The material covered is divided into four chapters:

I. Introduction

II. A Description of the Oracle

A. General Characteristics

B. Description of the Seven Units

III. The Number Systems

A. Binary Numbers

B. Conversion of Decimal Numbers to Binary Numbers

C. Conversion of Binary Numbers to Decimal Numbers

D. Binary Number Representation in the Oracle

E. Negative Numbers

F. Hexadecimal Numbers

S. E. Atta, Oracle Manual for Programmers, ORNL CF-57-6-68, 2d ed., rev. (Jan. 22, 1958).
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IV. Basic Operations of the Oracle

A. Instruction Word

B. Arithmetical Operations of the Oracle

C. Logical Operations of the Oracle

D. Input-Output Operations

E. Approximate Speeds of the Operations

F. Summary of Operations

ORACLE APPLICATIONS PROGRAM

C. T. Fike

The following universities obtained Oracle time through the Oracle Applications

Program, a joint project of the Laboratory and ORINS: The University of Tennessee,

The University of Texas, Louisiana State University, Florida State University, Duke

University, The University of Arkansas, Vanderbilt University, West Virginia University,

Virginia Polytechnic Institute, Brooklyn Polytechnic Institute, and Michigan State

University. Most of this work originated in the chemistry and physics departments of

these universities, and occasionally in their psychology and statistics departments.

Recent increases in the number of computing machines to be found in universities

have made the need for assistance of this type less urgent than before, and the program

has been suspended since September 1, 1958.

A brief description of the various computing problems undertaken for these universities

is given below:

1. Approximate solution of the generalized eigenvalue problem Ax = ABx, where each

of A and B is a symmetric matrix and B is positive definite. Some of the codes written for

this problem have become part of the Oracle library.

2. Approximate solution of two boundary value problems describing the phenomenon

of adsorption on a plane electrode and on a dropping mercury electrode. A detailed de

scription of this study has been published.

3. Statistical factor analysis according to a method developed by E. E. Cureton of

The University of Tennessee. The codes developed for this purpose make a principal

axes decomposition of a modified correlation matrix and are of considerable flexibility.
They are currently being applied to a problem originating in the Laboratory and have been

used several times for university problems.

4. Tabulation of a function F(t;a,b,c) defined by

F(t;a,b,c) =af cp(t - 6) f cos (bcp #- if,) e~^-c^dcp dd ,

2 P. Delohay and C. T. Fike, /. Am. Chem. Soc. 80, 2628-30 (1958).
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which occurs as the solution of a boundary value problem arising in the study of heat

transfer in radioactive waste.

5. Tabulation of elementary particle reactions for a prescribed set of elementary

particles. A reaction was "possible" if certain quantum numbers were conserved. For

these reactions, a table of threshold energies was also computed according to classical

formulas. Results of these calculations are being incorporated in a master's thesis being

written at Vanderbilt University.

6. Extension of the tables of the energy levels of an asymmetric rotor begun by

King, Hainer, and Cross. This required the computation of the eigenvalues of certain

triple diagonal matrices; the Sturm sequence method of Givens was used for this

purpose. Further extensions of the tables for the purpose of publication are being con

sidered.

7. Inversion of an 81 x 81 symmetric matrix by the method of Givens.

8. Computational study of the distribution of eigenvalues of the matrix

1 - cos x cos y cos z p. sin x sin y cos z zi sin x cos y sin z

p. sin x sin y cos z 1 - cos x cos y cos z p. cos x sin y sin z

p. sin x cos y sin z p. cos x sin y sin z 1 - cos x cos y cos z

where 0 = ix = 1, 0 = x, y, z = zr. A similar study of this type made on the AVIDAC has

been described. Results of this study are being incorporated in a dissertation being

written at The University of North Carolina.

9. Least-squares refinement of the crystal structure parameters of quartz based on

x-ray data. The codes used for this purpose were written for the Oracle by H. A. Levy

and W. R. Busing of the Chemistry Division.

10. Study of problems relating to the design of a cyclotron magnet. Particle orbits

in measured magnet fields, focusing properties of a magnet, and corrections to magnet

structure were computed. The codes used for this purpose were written for work origi

nating within the Laboratory.

3G. W. King, R. M. Hainer, and P. C. Cross, /. Chem. Phys. 11, 27-42 (1943).

W. Givens, Numerical Computation of the Characteristic Values of a Real Symmetric Matrix,
ORNL-1574 (Feb. 19, 1954).

5C. B. Walker, Phys. Rev. 103, 547-57 (1956).
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PUBLICATIONS

C. W. Sheppard, M. Slater, and G. J. Atta, "A Theory for Heterogeneous Ion Chambers
and Neutron Response of Victoreen Dosimeters," Radiation Research 7, 342-56 (1957).

S. E. Atta, Oracle Manual for Programmers, ORNL CF-57-6-68, 2d ed., rev. (Jan. 22,
1958).

K. Fan and J. J. Andrews, On Kofink's Approximate Solution of the Neutron Transport
Equation, ORNL-2485 (March 19, 1958).

K. Fan (with P. Davis), "Complete Sequences and Approximations in Normed Linear
Spaces," Duke Math. J. 24, 183-92 (1957).

K. Fan (with G. Pall), "Imbedding Conditions for Hermitian and Normal Matrices," Can.
J. Math. 9, 298-304 (1957).

K. Fan (with I. Glicksberg and A. J. Hoffman), "Systems of Inequalities Involving
Convex Functions," Am. Math. Soc. Proc. 8, 617-22 (1957).

K. Fan, "Existence Theorems and Extreme Solutions for Inequalities Concerning
Convex Functions or Linear Transformations," Math. Z. 68, 205-16 (1957).

K. Fan, "Topological Proofs for Certain Theorems on Matrices with Nonnegative Ele
ments," Monatsh. Math. 62, 219-37 (1958).

K. Fan, "Note on Circular Disks Containing the Eigenvalues of a Matrix," Duke Math.
]. 25, 441-45 (1958).

K. Fan (with I. Glicksberg), "Some Geometric Properties of the Spheres in a Normed
Linear Space, "Duke Math. J. 25, 553-68 (1958).

K. Fan, "On the Equilibrium Value of a System of Convex and Concave Functions,"
Math. Z. 70, 271-80 (1958).

A. S. Householder, "Numerical Mathematics from the Viewpoint of Electronic Digital
Computers," Proceedings of the Darmstadt Conference, abstracted in Computers and Auto
mation 5(4), 14-19 (1956).

A. S. Householder, "Glossaries and Malapropisms," Computers and Automation 6(4),
34-35 (1957).

A. S. Householder, "A Survey of Some Closed Methods for Inverting Matrices," /. Soc.
Ind. Appl. Math. 3,155-69 (1957).

A. C. Downing, A. A. Grau, E. C. Long, J. Harrison, and B. J. Osborne (with M. E.
LaVerne, R. R. Bate, R. R. Coveyou, and J. G. Sullivan), Programmers' Manual for the
Oracle Compiler, ORNL CF-57-8-92 (April 30, 1958).

A. C. Downing, "The Utilization of Digital Computers in Chemical, Physical and
Metallurgical Research," p 24, Proceedings of Computer Applications Symposium, UCC
Engineering Liaison Meeting, New York, October 14, 1957.

A. S. Householder (with W. C. Sangren), Sec III, Mathematics, p 3-1-3-148, Nuclear
Engineering Handbook, McGraw-Hill, New York, 1958.

A. S. Householder, "A Class of Methods for Inverting Matrices," /. Soc. Ind. Appl.
Math. 6(2), 189-95 (1958).

A. S. Householder, "On Matrices with Nonnegative Elements," Monatsh. Math. 62,
238-42 (1958).

A. S. Householder, "The Approximate Solution of Matrix Problems," /. /Usoc. Com
puting Mach. 5(3), 205-43 (1958).
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M. A. Kastenbaum, "Estimation of Relative Frequencies of Four Sperm Types in
Drosophila melanogaster," Biometrics 14, 223—28 (1958).

L. Sandler and M. A. Kastenbaum, "A Note on the Frequency Distribution of Tetrads by
Rank in Drosophila melanogaster," Genetics 43(2), 215—22 (1958).

A. W. Kimball (with W. T. Burnett, Jr., and D. G. Doherty), "Chemical Protection
Against Ionizing Radiation. I. Sampling Methods for Screening Compounds in Radiation
Protection Studies with Mice," Radiation Research 7, 1—12 (1957).

A. W. Kimball, "Errors of the Third Kind in Statistical Consulting," /. Am, Stat. Assoc.
52, 133-42(1957).

C. W. Sheppard, M. Slater, E. B. Darden, A. W. Kimball, G. J. Atta, C. W. Edington, and
W. K. Baker, "Biological Effects of Fast Neutrons from an Internal Target Cyclotron:
Physical Methods and Dominant Lethals in Drosophila," Radiation Research 6, 173—87
(1937).

A. W. Kimball, "Evaluation of Data Relating Human Leukemia and Ionizing Radiation,"
/. Natl. Cancer Inst. 21, 383-91 (1958).

A. C. Upton, F. F. Wolff, J. Furth, and A. W. Kimball, "A Comparison of the Induction
of Myeloid and Lymphoid Leukemias in X-lrradiated RF Mice," Cancer Research 18,
842-48 (1958).

LECTURES

J. J. Andrews, "Light Open Mappings in Euclidean Spaces," University of Tennessee,
Knoxville, January 1958.

A. C. Downing, Panel Discussion on Matrices, Conference on Matrix Computations,
Wayne University, Detroit, September 1957.

A. C. Downing, "The Utilization of Digital Computers in Chemical, Physical, and
Metallurgical Research," Union Carbide Engineering Liaison Meeting, New York, October
1957.

A. C. Downing, "The Design of Fixed-Point Iterations," National Meeting of the As
sociation for Computing Machinery, University of Illinois, Urbana, June 1958.

K. Fan, "Combinatorial Proofs of Some Topological Properties of the Spheres (two
lectures); "Systems of Linear Inequalities" (three lectures), University of Idaho, Moscow,
July 1957.

K. Fan, "A New Closure Property in Banach Spaces and Its Application to Uniqueness
Theorems and Approximations for Analytic Functions," Conference on Analytic Functions,
Institute for Advanced Study, Princeton, September 1957.

K. Fan, "Some Geometric Properties of the Spheres in a Normed Linear Space," Uni
versity of Tennessee, Knoxville, October 1957; University of Kentucky, Lexington, April
1958.

K. Fan, "Minimax Theorems and Systems of Linear Functional Inequalities," University
of South Carolina, Columbia, January 1958.

K. Fan, "Inequalities for Eigenvalues," Alabama Polytechnic Institute, Auburn,
February 1958.

K. Fan, "Topological Groups" (course), University of Tennessee, Knoxville, 1957—
1958.
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K. Fan, "Some Geometric Properties of the Spheres in Normed Linear Spaces"; "Com
binatorial Proofs of Some Antipodal Point Theorems of Spheres," Florida State University,
Tallahassee, April 1958; University of Florida, Gainesville, April 1958.

K. Fan, "Elementary Proofs of Some Topological Properties of the Spheres," University
of Tennessee, Knoxville, May 1958.

D. A. Gardiner, "Experimental Designs for Exploring Response Surfaces," Milwaukee
Section, American Chemical Society, Milwaukee, March 1957.

D. A. Gardiner, "Some Third Order Rotatable Designs," Mountain Lake Conference on
Statistics, Mountain Lake, Virginia, August 1957.

D. A. Gardiner, "Experimental Designs for Industrial Research," Chemical Engineering
Department Seminar, University of Tennessee, Knoxville, January 1958.

D. A. Gardiner, "Multiple Regression"; "Response Surface Methodology" (two lec
tures), Short Course in Statistical Methods for Research Workers in Industry and the Phys
ical Sciences, North Carolina State College, Brevard, June 1958.

A. A. Grau, "Mathematical Systems Involving Ternary Operations Related to Boolean
Algebras and Lattices," University of Tennessee, Knoxville, May 1957.

A. S. Householder, "A Survey of Some Closed Methods for Inverting Matrices" (two
lectures), University of Wisconsin, Madison, March 1957; Boulder Chapter of Society of
Industrial and Applied Mathematics, Boulder, Colorado, July 1957; Conference on Matrix
Computations, Wayne University, Detroit, September 1957.

A. S. Householder, "Truncation Error in the Solution of Partial Differential Equations,"
Association for Computing Machinery, Houston, June 1957.

A. S. Householder, "The Approximate Solution of Matrix Problems" (ten lectures), Uni
versity of Michigan, Ann Arbor, August 1957; two lectures, Argonne National Laboratory,
Lemont, Illinois, April 1958.

A. S. Householder, "A Class of Methods for Inverting Matrices," Argonne National
Laboratory, Lemont, Illinois, January 1958; American Mathematical Society, Cincinnati,
January 1958.

A. S. Householder, "Norms of Vectors and Matrices," University of Tennessee, Knox
ville, February 1958.

A. S. Householder, "Some Observations on the Method of Conjugate Gradients," South
eastern Section, Mathematical Association of America, Gainesville, Florida, March 1958.

A. S. Householder, "Minimal Matrix Norms," American Mathematical Society, Chicago,
April 1958.

A. S. Householder, "Generated Error in Rotational Tridiagonalization," Association for
Computing Machinery, University of Illinois, Urbana, June 1958.

A. S. Householder, "Convergence and Error in the Solution of Linear Systems," Uni
versity of Michigan, Ann Arbor, June 1958.

A. S. Householder, "Computational Method in Linear Algebra: Survey and Critique,"
IBM Corporation, Endicott, New York, July 1958.

A. S. Householder, "Some Mathematical Problems in Matrix Computation" (three lec
tures), 7th Series of Earl Raymond Hedrick Lectures, Mathematical Association of America,
Massachusetts Institute of Technology, Cambridge, August 1958.
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M. A. Kastenbaum, "The Hypothesis of No-Interaction in Multiway Contingency
Tables," Mountain Lake Conference on Statistics, Mountain Lake, Virginia, August 1957.

M. A. Kastenbaum, "Estimation of Sperm Frequencies in Drosophila," Joint Meeting of
the Biometric Society (Eastern North American Region) and the Institute of Mathematical
Statistics, Gatlinburg, Tennessee, April 1958.

A. W. Kimball, "Disease Incidence Estimation in Populations Subject to Multiple
Causes of Death," 30th Session of the International Statistical Institute, Stockholm,
Sweden, August 1957.
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