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ABSTRACT

A class of exact solutions to the Vlasov equations which shows electro

magnetic radiation is constructed, and a typical example discussed in some

detail. Since velocities larger than c appear to be possibly of importance

in these solutions, an exact radiating solution to the relativistic Vlasov

equations is constructed, which, though much more specialized than the non

relativistic solutions, shows that unphysically large velocities in the

nonrelativistic solutions are not essential for the radiation there obtained.
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INTRODUCTION AND SUMMARY

There has been some discussion as to whether radiation can be emitted

by an oscillating plasma which obeys the Vlasov equation. The available

results on radiation in the Vlasov case do not provide a clear-cut answer

to this problem. Previous proofs of the extence of this radiation such as
1 2that by Dawson and Oberman, and by Harris, have been restricted to the

use of the linear approximation. Since the results obtained by Bernstein

et al.^ show the necessity for a very careful interpretation of any conclu
sions stemming from linearized equations, one might reasonably hold that the

existence of radiating solutions to the Vlasov equations has as yet not been

demonstrated.

The content of the work reported below is a construction of a class of

exact solutions to the (nonlinear) Vlasov equations, and a demonstration

that these solutions correspond to coherent radiation by the plasma as a

whole. The plasma given by these solutions is infinite in extent, and the

meaning to be attached to this radiation is appropriately specified.

While this counter example is logically sufficient to disprove the

conjecture mentioned above, it is not completely satisfactory from a physical

point of view. The reason is that the solutions involve radial velocity

distributions centered about velocities greater than the velocity of light.

This is a consequence of the use of nonrelativistic mechanics in the Vlasov

equations, a limitation generally of no importance. However, the distribu
tions do seem to involve velocities near c in possibly an essential way

(as could conceivably be the situation if Cerenkov radiation were the

radiation mechanism).

1. J. Dawson and C. Oberman, The Physics of Fluids 2, 103 (1959).

2. E. G. Harris, private communication.

3. I. B. Bernstein, J. M. Green, and M. D. Kruskal, Phys. Rev. 108, 5^6
(1957).



To eliminate this objection a second exact solution to the Vlasov

equations is constructed in which relativistic mechanics is used. This

latter solution is more restricted than in the nonrelativistic case, for

it is now required that the masses of the two plasma constituents be equal.

Nevertheless, this solution shows that velocities larger than c are not

essential to obtain radiation, and that this objection to the nonrelativistic

solution is probably not of importance.

METHOD OF SOLUTION

We shall consider in the following a plasma composed of two species:

one with mass m. and charge (+e) ("ions"), and one with mass m and charge

(-e) ("electrons"); collectively designated by i, as in m. and e.. This

plasma is to be infinite in extent, but possessing cylindrical symmetry

about the z-axis and displacement symmetry along the z-axis.

It is explicitly assumed that all quantities vary only with

= a/x +y )and t, and that the scalar potential is zero.

k
The Vlasov equations for the plasma are as usual:

df. of.

dt dt

+ v

df. .-» Of.
—1 + ££ . _ i
-,"» dt x->
or op

= 0, (1)

2 ->
D A = TV'

0 = 0,

(2a)

(2b)

dt
e.(E + v x B) = e
i i

$£ +?* (VxA)
ot

(3)

k. E. G. Harris, Self-Consistent Field Theory for a Completely Ionized Gas,
Naval Research Laboratory Report k9kk (May 1957)•



For convenience in treating the relativistic case to follow, we use

momentum space in place of velocity space. Thus the distribution functions

for the plasma constituents are of the form:

f± =f^t,^, 00

and the charge and current densities which are the sources of the fields are:

e=o=L /vi** (5)

(6)

It follows from the symmetry requirements on the system that the vector

potential has only a component along z, and that the radial and tangential
currents are identically zero. That is:

A = k A (r,t), (T)

f= k j(r,t). (8)

The method of constructing solutions to Eqs. (l) and (2) follows Harris.
The characteristics of the partial differential equations of (l) are given
by solutions to the mechanical equations (3). It is necessary to have suf
ficient integrals to these equations to fix the length of the momentum vector,

and we shall obtain three integrals below.

Calling these integrals c^, a£, and ay it follows that any. function
f (a ) satisfies Eq. (l). In terms of these distribution functions, f , it
iv r



is necessary then to satisfy Eq. (2) as restricted by Eqs. (5) and (8). The

final restriction we shall inpose on the vector potential is that A be a

function of the single variable u = r - ct.

CONSTRUCTION OF INTEGRALS

Two integrals of Eq. (3) can be found at once from the symmetry of the

problem. Using Eq. (3) one has:

dt ei L" dt "

so that one integral is:

xv + yv , _.

x _y) 2£
dr

= - e

p + e.A(r,t)s. QL = constant,
z 1 1

The remaining two equations,

dp

dt

dP.

1 dA

= eiFzr dr" '

-* =e. xv i p,
dt 1 z r dr

dA

i ( dt

have the z-component of the angular momentum as an integral. That is:

xp., - yp = a = constant.

Since the radial acceleration (nonrelativistically) has the form:

d_ / clr
dt ldt

(yv - xv )'
x y' dv dv

+ * _J£ +I __X
r dt r dt '

(9)

(10)

(11)

(12)

(13)

(1^)



it follows from Eqs. (ll) and (12) that

2

Jt (P )=-\ +e4 v M . (15)
dt v*r' _3 i z dr

m.r
i

Explicitly introducing the assumption that A = A(r - ct), it follows from

Eq. (15) that:

2 -,

*r h <»,» -v It <*,) -A K - v> -1 0, -v> 1? <°i - *iA>2.
m. r

2

a2 , „> "i d ,_ - .n2
m,r5
i

so that, for a = 0, a third constant is:

a =(pr -n^c) +pz . (18)

The three integrals given by Eqs. (10), (13), and (18) are sufficient for

constructing suitable distribution functions that satisfy Eq. (l). By reason

of the restriction of Eq. (18) to zero angular momentum, the distribution

functions all involve o(a ).

CONSTRUCTION OF A TYPICAL SOLUTION

It will be clear from the following that a great many solutions to

Eqs. (l) and (3) can be constructed from the integrals obtained above. It

will suffice, however, for the purpose at hand to give a single example.

Let us take the distribution functions:



-1/2
) o lp + e.A(r - ct)V^'Px'P^) "^V ' S^y "*V -z ±

exp I-p. j^r-± (xpx +ypy) -micj +Pz >,
*\

(19)

where N and B are positive constants.

It is necessary that the distribution functions of Eq. (19) satisfy the

conditions that o, j^, and j vanish identically. Consider first the charge

density defined by:

?(r,t) -Z/e.^dp^p^ . (5)

To carry out the integral over dp dp we make an orthogonal transformation to:

and

t] - yp - xp
x *y

£=r" (xpx +ypy),

dPxdPy =J dTj d|,

(20)

(21)

with the Jacobian J = l/r. (The integration limits is still -co to +oo for

both £ and 77.) The charge density is easily found to be:

p(r,t) = 2j ^i1""1 exP 2 2 2
- B.e A (r - ct) (22)



To satisfy the condition that p= 0 it is necessary that B = B, and N± = N.

The condition that the aximuthal current (jQ) be zero is seen to be
satisfied in view of 8(xp - yp ). The radial current is given by:

y x

CO

jr(r,t)5 r.j =2^ / e^-v^dp = L [ —
e.NBjt

•1/2

rm.

dTj d£ dpz £

be:

o(tj)o(p + e A) . exp ^ -P
2 2

(I - *±c) +Pz

-co

>= cp(r,t) = 0. (23)

It remains to calculate the current in the z-direction. This is found to

ri / e.NBjt
•1/2

rm.

co

-00

drj d£ dpz(pz)S(rj).S(pz +e±A)

expf- B2 f~(£ - m±c)2 +p2 /

-82e2A2(r-ct)(t\(l 1^^^1^--)- W

To complete the calculation it is required to find the field generated by

the current in Eq. (2*0, and show that it is a function only of u = r - ct.

The equation determining A is given by:



-B2e2A2
(Nu e2) f±- +i- )Ae

,2. . 4 ^° Vme \ J
D Az = " /^z =

1 LrL.L £\ A-± $£_1 dA , ,
r "dr dr 2. dt*/ r Sr r du ° K^'

Putting this in a more transparent form we have the equation

2

g =ae"a , (26)

where

v-1 <%*> (s-+ s:) (r -ot)'

a = BeA(r - ct). (27)

The solution to Eq. (26) is:

w = - / x e dx (28)

a
o

or,

2w =Ei(a2) (28')



2 .
where iT(x) is the exponential integral of Jahnke-Emde, and aQ is defined

i __ 2
such that E (aQ) =0.

The function I7(x) has the behavior:

T xn(1) E~(x) ->U 7x + L n^T
1 i

x VO

x

(2) e7(x)~ ~ (i +-r + •••)
1 X x

The vector potential is amonotonically increasing function of u
For u _^«oo^ a becomes small exponentially, i.e.,

- w

a = e as w —* -co .

Por u—n-co, Abecomes infinite, but relatively slowly,

(1)

a ~(log 2w) ' . asw-^ +00

PROPERTIES OF THE NONRELATIVISTIC SOLUTION

The solution found in the previous section is given by:

f.(r,t,p) =(BN*-l/2)S(xp - yPx)$(Pz +e±A>

exp < -B
xp + yp \ 2J£ i - m±cJ + pz

= r - ct.

, (29)



(2) A = k A(r - ct),

where:

2u Ne2 f— +i-
' o \ m m.

\ e Xj

10

(30)

S~/^2 2.2,(r - ct) = E.(pVAl (3D

In order to determine the properties of this solution let us first consider
the particle density and particle current. Let us define:

(a) n(r,t)= "particle density" = /dp*f. =-exp (- B2e2A2),

The particle density is the same for each species.

(32)

(b) j(r,t)= "particle current" =J dpxdpydpxvf =£cr -(S\ Mfn(r,t). (33)

Only the radial particle current is independent of the type of particle.
It follows from Eqs. (32) and (33) that:

-* ^

dlV J + 5t = °' for r ^ 0- (3*0

The radial flow across acylinder coaxial with the symmetry axis is given by:

(35)
J = 2jt-Nc exp (- B2e2A2),

so that there exists a net inflow of particles from the axis. That is:

div? +g| =S(r) •̂ exp(-B2e2A2). (36)
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The distribution function given in Eq. (29) is not well defined in the

limit r -> 0, for the three constants a, a. a do not map all of momentum

space in this limit. For any r >£, ^ 0, where £ is a small constant, the

distribution function is well defined, and the solution developed previously

defines the meaning to be associated with the limit r —> 0. Thus the solution

given by Eqs. (29), (30), (31) is a solution to the Vlasov equations for

r/0, but for r = 0 there exists a line source of particles given by the

right hand side of Eq. (36).

The total number of particles in a coaxial cylinder of radius R and

length L is given by:

2*LP
N(R,t) = T-? r— in

Pc e

A(R - ct)/A(- ct)

The number of particles that flow in from the source from time - T to t is

given by:

(37)

2irLB

N
source

(„T,t) = Hn A(- cT)/A(- ct) (38)
( 1 1 \ L J

F° \ me +mi

Equations (37) and (38) verify the rather obvious point that the number of

particles that flow in from time -co to t are found within a cylinder of

infinite radius. The number of particles (per unit length) in the system at

any finite time is, however, infinite.

From Eq. (32) one sees that the particle density for fixed r (^ 0) is

zero for t—*-co, rises as t increases, and asymptotically approaches a

constant final value of n(r,t -^ 00) = N/r.

From Eq. (33) one sees that the particle currents in the z direction are

oppositely directed for the two species, and are zero at t —=* -00^ rise to
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a maximum and again approach zero for t —> +00 . The average particle speed

(in the z direction) on the other hand monotonically decreases, corresponding

to a transfer of energy to the electromagnetic field.

Let us consider now the electromagnetic fields. From the vector potential

given by (30), it follows that:

^ a Nu ce \ /. .\ .22.2
*-£-♦£-*.*•*. (39)E = k

m m.
c 1

e i

The electromagnetic energy flow is therefore radially outward at all

times, and the energy flowing through a coaxial cylinder of radius r and

length L per unit time is:

dW

dt = 2nh
2 .2 2.2

SS i. +i.M (rL),? .-»• * . (lll)

dW
For fixed r, -— is zero for t —» -00, rises a maximum and goes to zero again

for t—^+00. This energy flow does not all represent radiation, however, for

some of the flow only represents a change in the local energy density. Accord

ing to Poynting's theorem, however, the radiation results from the work done

on the current sources, that is:

,-> -* (Sri-*-*-*-*] -* ~*div (E xH) +-j; I (E •D+B•H)J =-j.E

Q \ m m. I r
P \ e 1/
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One sees that energy is monotonically put into the electromagnetic field at

every point in space and since the electromagnetic energy density is zero at

both t = -co and t = +co, it is correct to say that the transfer of mechanical

energy (from motion in the z-direction) to the electromagnetic field represents

radiation by the plasma.

The final point to investigate is the energy balance. Rather than

consider the various terms separately we shall simply establish local energy

conservation for the Vlasov equations. The mechanical energy density is

given by the expression: (Nonrelativistically)

U =- ) / d5p E- f,, and therefore, (^3)
M 2 *-? / F iil, i'

dU
M

dt
\ Z/^^jfl'^-^lxB^.^fj,

df

using Eq. (l) to eliminate —- . It follows that:
dt

Letting the mechanical energy flux be defined by JM = Zi

we obtain the obvious result:

(kk)

0*5)

-i5 + div J = j . E. (k6)
dt M
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Upon combining this with the Poynting integral (Eq. k2) the final result

is obtained:

|- (U„ +JE-D +JB.H) +div(JM +EXH) = 0. (Vf)
ot M 2 2 M

Equation (kl) shows that the Vlasov equations explicitly conserve the sum of

the mechanical and electromagnetic energies (including radiation) locally.

Since the solution given in Eqs. (29) through (31) satisfies the Vlasov

equations everywhere except r = 0, Eq. (kj) establishes energy conservation

everywhere, except for r = 0. For r = 0, however, it is clear from Eqs. (39)

and (kO) the net flux of electromagnetic energy vanishes. The source terms

at r = 0 are therefore sources only of particles and mechanical energy.

This justifies once again the designation of the solution given by Eqs. (29)

through (31) as an exact radiating solution to Vlasov's equations.

EXTENSION TO A RELATIVISTIC SOLUTION

The radiating solution discussed in the previous section has the dis

turbing feature that the radial motion involves velocities whose mean is

the velocity of light. While it is the z-motion and not the radial motion

that is coupled directly to the electromagnetic field, this feature of the

solution is nonetheless sufficiently unphysical as to cast doubt upon its

usefulness as a counter-example. To remedy this defect, we shall in this

section utilize relativistic mechanics in Vlasov"s equation. To be precise,

_i> m v

we shall construct the characteristics to Eq. (l) using p = °

Vi-Wc)2

in determining •£ .
dt

The two constants ol and a [_Eqs. (10) and (13)1 > are once again constants
of the motion, as is to be expected since these are obtained from considera

tions of symmetry that are valid relativistically.

5. A similar, but less general, result has been given by I. B. Bernstein,
Phys. Rev. 109, 10 (1958).



15

The constant o^ is replaced by the new functional:
3

a5

1/2

which, as can be shown by direct calculation (see Appendix), is a constant

of the relativistic equations of motion if 0^ = aQ = 0. [The symbol pr is

A •"* -1 "1a shorthand for r • p = r (xp + yp ) .
X j J

The nonrelativistic constant, Eq. (l8) (for the special case where a±
is also zero), is a limiting case of Eq. (kQ).

It is clear from the form of Eq. (kd) that a ^ 0 if the square root is

chosen with a positive sign, The sign of the square root, however, is fixed

from the derivation (see Appendix) to be positive. This is an essential

limitation which is imposed on the admissible distribution functions.

The next point to establish is that there exists no distribution function

constructed from the constants a, = a„ = 0 and a, which satisfies simultaneously
12 3

the two conditions; that p ^ 0 and j s 0, unless m = m . Let the dlstribu-
v r x s

tion functions be defined by.

f±(r,t,p) =N1S(aL)S(a2)F1(a3). (*9)

The condition that the charge density vanish identically requires that:

co -L/2

Ni / d*FiM[(mic)2 +(eA)2 +f] I" ^
-co

CO

Ne /" ^Fe[j[(mecf+e2A2 +C2] | -{). (50)
-CO
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The condition that the radial current density vanish identically takes a

little manipulation. The radial current involves the radial velocities,

and for each species, is given by:

e N.c
1 1

Jr,l"

co

-co

K
"/ \2 2„2 2](n^c) +eA + £J

', ,2 2A2 J2(nuc) + e A + £
,1/2

1/2 I

Introducing a_ as the variable in Eq. (5l)> one finds that:
3

J- , - c o.
r, 1

e.N.c
i 1

00

da^ Fi(a3)

If Eq. (50) is similarly written in terms of a_, one finds that:
3

N,
( \2 2A2(m c) + e A

oo

a"2 da5 F±(a5) + J da? Pi(a5) .

frNe |[v-+e^jy a^da3Fe(a32 2 2.2

CO

00

(51)

(52)

a^ dax FjaJ + / da3 Fe(o=2) !> • (50 ')

Using Eqs.(50') and (52), and noting that the radial current and charge densities

must vanish identically, the required relations are:
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CO CO

N.m2 / a"2 da F, (a) =Nm2 / a"2 da F(a) (53a)
11/ i ee/ e

co co

W± / a'2 da F±(a) =Ng / a"2 da Fe(a), (53b)

CD CO

N / da F.(a) =N / da F (a) (53c)
i " i e / e

u </
o o

Equations (53a) and (53b) are inconsistent unless m = m

The distinction between this situation and the nonrelativistic cases

treated earlier, lies in the fact that in the nonrelativistic case the radial

current was proportional to the charge density, unlike Eq. (52).
Since our aim is only to demonstrate that the use of relativistic

mechanics does not in itself prevent a radiating solution similar to that

discussed for the nonrelativistic case, we shall simply take the otherwise

uninteresting case m. = m = m, for which solutions can indeed be found.

A particularly simple solution results from the distribution functions:

f±(r,t,p) =NS(a;L)o(a2)S(a5 -a), (5*0

where a, N are positive constants. It is easily seen that p, Jr, and jQ are

now all identically zero.

The current in the z-direction is now given by:
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2
From the equation for the vector potential, {J A = - u j , one finds

that:

A = A exp
o

/2uoe-N2.

V am

(r - ct) (56)

The solution to the "relativistic" Vlasov equations given in Eqs. (5k) and

(56) is qualitatively similar to that discussed earlier for the nonrelativistic

case, and the discussion need not be repeated.

We can conclude from this example that the radiation found and discussed

in a nonrelativistic exact solution to Vlasov's equations is not dependent

in any essential way on the occurrence of unphysically large radial velocities.
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Appendix

DERIVATION OF THE RELATIVISTIC CONSTANTS

dTD "* -> "* "* oAFrom the equation ^J - e4 (E + v x B), the equations E = - — ,
dt i oz

B = V x B, A = k A(r - ct), it follows that:

dt Si dt r x dr r y dr / i dt

or: a, = p + e.A = constant, and: (A-l)
1 z i

5z =ev 2 — (A-2)
dt i z r dr

5* =ev 5 M . (A-3)
dt i z r or

From Eqs. (2) and (3) it follows that a^ - xp - 7PX = constant.

Using the definition p„ = r •p = (xpv + yp )/r, one finds the identity:

£ -fW- +1 £ +'"'<»* "»V^x -»,)• <*-*>

From Eqs. (2), (3), and (k) it follows that:

Pr^-^-VM* 5 +°2r dt ) ' (A-5)
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and, using the fact that A = A(r - ct), one finds:

m c dp

~ dT - - eiK - eiA> i+ 4^- (A-6)
V1 - (v2/c2)

Taking a =ag = 0, (5) and (6) show that:

dp m c dp 2

Vi - (v/o

For ai =ag = 0, the square root in (7) may be written in terms of p and A.
That is:

1/2

moc(l -vV)'1/2 =j^c)2 +p2 +e2A2] (A-8)

Introducing (8) into (7), it is an immediate result that a third integral is
given by:

1~1/2
a3 = [(moc)2 +pr +p2J "pr (A_9)

for the case where a = a =0.
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