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STUDIES OF THE SPHERICAL HARMONICS METHOD IN NEUTRON TRANSPORT THEORY

III. Distribution of the Roots of the Characteristic Equation in the

Case of Anisotropic Scattering

Walter Kofink*

A. The Characteristic Equation in the Case of Anisotropic Scattering.

1. Derivation of the Characteristic Equation.

In this section we consider solutions of the Boltzmann equation in plane

geometry of the form

f(S,n) = g(n)eikz = gMe1^" (k = \, i =zz) (i)

admitting, however, that k may be not only pure imaginary (for c ^ 1, a = 0) or real

(for c > 1, a = 0) but that it may be a complex number k = K]_ + ircg under some

circumstances (e.g., in time dependent problems). We may ask the question, how many

solutions of the form (l) exist in every point c,a of our c, a-plane,^ ' where c is

the constant of multiplication and a is the constant of linear anisotropy. The

answer to this question is given by an investigation of the number of roots of the

characteristic equation for every c,a value. Hence we derive first the characteristic

equation, which yields the numbers k for solutions of the form (l) of the Boltzmann

equation

+1 +1

u^f(^} +f(S,n) = i(l-7a) /rf(^^') du' +|(l-7t) n(f(^n') ^'du'
^ -1 -1 (2)+1 -1 +1 \d>

= lc J f(^n') du' +| YT~^ ^f f(^') ^d^'
-1 -1

*0n leave of absence from the Institute of Technology, Karlsruhe, Germany. This work
is supported by the Bunderminster fuer Atomkernenergie und Wasserwirtschaft, Bad
Godesberg, Germany.
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By integration over u from -1 to +1 one finds a relation between the first and the

second integral

•^- /Vf(£,u) du = (c-1)/ f(£,u) du . (3)
2t -1 *1

If we use now the supposition (l) for f(£,u), we obtain for the Boltzmann equation

(2)
+1 +1

(1 +ij:) g(u) = ic / g(u') du' +i- —^- u/g(u') u'du' (2a)
*" 2 l/-, 2 1 - C l/n

-1

and for the relation (3)

+1 r1
i / ug(u) du = (c-l) / g(u) du . (3a)
-1 -1

Using (3a) one eliminates the second integral in (2a) and one obtains, as is well

known,

. . +1
, . k(c +iaKuj f

SW = —; — / g(^')du' . (4)
2(k +1u) ^

The last integral is a constant and a final integration over u from -1 to +1 yields

the characteristic equation

+1
k_ r c + iaicu

2 J k+ iu
-1

which determines those values of k as function of (c,a), for which (k) Is fulfilled.

2. Numbers of Roots in Different Regions of the c,a Plane

B. Davison^ ' has proved that there are (in our notation)

., k / c + iaKU , / T ._ \ , >

1 = o / —7-^ d^ (= h + lX2) > (5)

\

a

2 roots if - > - 1 "\ (6a)
c

ah roots if — < - 1 and c > 1 (6b)
c

12)B. Davison, "Milne Problems in a Multiplying Medium with a Linearly Anisotropic
Scattering," National Research Council of Canada, CTR-358 (19I4-6).
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0 roots if - < - 1 and c < 1 (6c)
c

of the characteristic equation (5)- c is always supposed to be larger than 0. We

intend in the following to recognize further details of the behavior of these roots

in their distribution over the c,a-plane.

First we show the well-known fact that with k also -k is a root of (5). By

converting the part of the integral from u = -1 to u = 0 in an integral from

u = 0 to 1, one obtains for (5)

1

1 = K2 f c+au2 d[i (= ^ +.l2) _ (5a)
J0 K2 + U2

In this form it contains only k and +k are both roots. Equation (5a) shows also

that with k2 also (k*) is the square of a root. Because the left side is real, also

the right side must be real, and its complex conjugate must have the same real value,

1 = (k*)2 I Clo^2 o^ (= h - iX2) ' ^
J (k*)2 + u2
0

Hence, if k = k.-, + iKp is a root, k* = k-, - Ik^ is a root of (5) also. We have,

as a consequence of (5a) and (5b) together, that with k also -k, k*, -k* are roots.

The meaning of this is that for a complex root k = K]_ + iK2^ these other 3 roots

exist also at the same point c,a of the c^a-plane. If the real part of a root is

0, however, we have only two roots, k = iKp - -k* and -k = -tlK-Q. = K* and, if

the imaginary part of a root is 0, we also have only two roots, k = k-j_ = k.* and

-k. = -Kn = -k*. The classification of Davison shows therefore that we have in

the area a > -c (c > 0 always) of the ayc-plane either kj_ = 0 and two imaginary

roots. iKp> -iKp or Kp = 0 and two real roots Kj_, -k-,. Actually this area is divided

by a straight line through c = 1 with the equation 7&7^ - 1 - c - — = Oin the

3
c,a plane. This straight line cuts the other boundary line a = -c at c = —,
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3 a
a = - — . On the left side of the straight line 1 - c - — = Owe will find

2 3

always k-j_ = 0 and the two roots will be specified by + k^; on the right side of

1-c-— = Owe will find always Kg = 0 and the two roots will be specified by
3

The area of four roots is divided in a more complicated manner. It will be

shown that there are in fact three additional possibilities to have four roots be

sides the possibility of a complex root mentioned above. It will turn out that we

have in a first c, a area two pairs of different k^'s, say + Kg and + Kq (but

k-]_ ' = K-, " = 0), in a second area one pair + Kg (but rc, = 0) and one pair + K-,

(but Kg = 0), and in a third area two pairs of K-^'s, say + k-, ' and + Kj_" (but

K2' = K2" = 0) and finally the area mentioned above with a complex k, i.e., the

roots + K, + K*.

3- The Five Different Cases of Behavior of the. Characteristic Equation.

The integrand of the integral in (5) is a complex quantity and the equation (5)

means that the real part of the right side is 1 and the imaginary part is 0. By

adding and subtracting equations (5a) and (5b) one obtains for the real part I, and

the imaginary part I2 the following equations:

H =t (c+au2) (™*)2+M«2«<**>n,*2 du
0 (k2 +u2)((k*)i2+u2)

(c+au^) i-i - -*•• ..g du = 1
** / 2 2 2\2 > P 20. (k£ -k| +u^) + 4k£k|

and

*2

k2 - (k*)2 r (c+au ) u du

2i •> (k2+u2)((k*)2+u2)

r (c +au2) u2du
2k-lK2 / •—:—: :—- < = 0

J (k2- k| +u2) +4k2k2

(7a)

(7b)
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Equation (7b) shows that Ig = 0 can be fulfilled in five different ways. If we

put

r1 (c + au2) |i2d|J,

J (K2 - Kg +U2)2 +4k2k|

we may distinguish the following nontrivial cases, satisfying Ig = 0:

1) k± = 0, k2 4 0; J 4 0

2) k± = 0, Kg 4 °> -J = 0

3) Kg = 0, k± 4 0, $ 4 0 (9)

*0 Kg = 0, KX 4 °> J' = °

5) K-l / 0, Kg ^ 0, J = 0

It will turn out that l) and 3), where J 4 °/ Sive tne two-root solutions and the

characteristic equations which are usually considered for c < 1 or c > 1 in the area

a > -c of the c,a plane. They give further the four-root solutions in the area

a< -c, which were described as the three cases a) two pairs of Kg' s, b) one pair

of Kg and one pair of K]_, and c) two pairs of k-^'s as solutions; the corresponding

other component of k is, always 0.

Furthermore, 2) and k) with the additional condition J = 0 represent

together a curve in the a < -c area of the c, a plane, called the envelope, which

separates the region described above from the region with complex roots. This last

region will be related finally to case 5). It is bordered on the right side by the

envelope, to the left side by a vertical straight line from the point c = 1,

a = -1 to c = 1, a = -win the c,a plane. This line is the right side border

of the area with 0 roots also.

k. Discussion of Case l)

Considering case l) iaoa?* closely, We fulfill (7b) by k-[_ = 0. Equation

(7a), the characteristic equation of the exponentially increasing and decreasing



solutions (l)

takes then the form

f(5,n) = g(n)e^/K2 , (10)

1

P / c + au

Xl = K2 / "1 2^ (ll)Jq Kg -U

2 / 2\ 1 ^2 "*" -1--aKg + Kg(c+aKg) - log = 1 (12)
w2

The integral (ll) converges only for Kg > 1, if c + awf, ^ 0. If we admit c+ arc? = 0

equation (l2) yields k2 = ;this is only possible if ais negative a= -|a|,
2 1 1 pk = ,-j, Kg = + -j=r. The condition c + aKg = 0 gives c = 1. If we put Kg = 1, the

condition becomes c + a = 0, a = -c and (ll) yields c = 1 again. Therefore we have

on the vertical straight line from the point 6=1, a. = -1 to d = 1, a = - °° two solu

tions Kg = + ypj-; this line is the border between the regions of four roots and no

roots. But on the straight line a = -c from the point c = 0, a = 0 to c = 1, a = -1 we

have no root with the exception of the endpoint c = 1, a = -1, where we have two

roots Kg = +• 1. This last straight line is the upper boundary of the region with no

root.

Returning to our old ".-notation^ we may put K = \ an(j we may call

Ch(\) = 1-I]_ = 1 + a\2 -\(c+a\2) cotanh"1 \ (13)

the characteristic function. Ch(\QJ =0 is then identical with the characteristic

equation (12) and the characteristic equation in I.e. ^'

137W. Kofink, "Studies of the Spherical Harmonics Method in Neutron Transport Therapy",
Part II, ORNL-2358, equation (58), (1957).



Ch(\Qoa) = 0 is a straight line in the c,a plane:

c•(\0fl0 cotanh"1 \QJ +a\2^ (XQ00 cotanh-1 \Qoo -l) = 1. (l2a)

the coefficients depend only on the value of Xnoo; therefore we have a set of

straight lines in the c,a-plane with the parameter \„ running from \nco = 1 + e (e

positive, arbitrary small) to XQoo = °°. The point in which a special straight line

with the parameter Xq^ cuts the c-axis (this means for vanishing anistropy of the

scattering), may be denoted by c0. It is

c0 = i-T . (HO
XQco cotanh \Qoo

Introducing c_ in equation (l2a) we may express the anistropy-pafameter a by

a =
p

Xx, 1 - c~Ooo 0

(12b)

In numerical calculations one would prefer to choose Xq^ and to calculate c~ by

equation (l4). Then one proceeds on the special straight line with the parameter

NDoo ^y choosing c values on the left or the right side of c0 and one will obtain

the corresponding positive or negative a values by equation (l2b).

For \0oo ->• oowe have cQ = 1, because \0oo cotanh"- x* ->• 1.., The limit of

\§ (Xqoo cotanh--^- XQm - l) is —, and the straight line corresponding to X0oo = oo is

c + ^ = 1 . (15)

It cuts the other limiting straight line of the Davison criterium (6a) for two

3 ^roots a = -c at the point c = —, a = - —. The sector of the c,a-plane between

these straight lines contains therefore the set of straight lines (each denoted by

a different A.0oo), on which we have two roots of equation (12). With increasing v. =

X the straight lines become always steeper against the c-axis.(see Figure l).
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Fig. 1. Straight Line in the c, o-Plane, Along Which the Characteristic Roots k^ or <2
are Constant. For Stationary Solutions (c< 1) Only the Region Between the Solid Curves o= +c

(c —1) is of Importance. Between the Dashed Lines c>\ We have the Region of Solutions, for

Which Only Scattering is Anisotropic, but Fission and Absorption are Assumed Isotropic.
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Every straight line of the set is cut by every other straight line of the

set in a point of the c,a-plane below the line a = -c, but the set has no common

point for them altogether; this means the set forms an envelope below a = -c. It

will be shown that this envelope satisfies the additional condition J = 0.

5. Discussion of Case 3«

We proceed to the consideration of Case 3. Here we fulfill the equation (7b)

by Kg = 0. Equation (7a), the characteristic equation for sinusoidal solutions (l),

takes the form

h - «! / V"^ a* (l6)x J Kf + u^
0 1

aK? + K-,(c-aK?) tan-1 — 1 . (17)
-L -L -L k-^

These equations are valid for co ^ K2 ^ 0. If we replace X by i\ in (l3) or if we call

K-, = X in (17) we obtain

Ch(i\) = 1-Ijl = 1 -a\2 -\(c-a\2) cotan"1 X (l8)

as the characteristic function for these cases, which include c ^ 1, a = 0. The roots

of (18) are the characteristic values in the sinusoidal case of solutions (l).

By using the parameter

—_ if k-[_ = 0 (in case l)

P = 2" g = -j
1 2 I, _ ±r, if K = 0 (in case 3)

.Kf 2

both integrals (ll) and (l6) take the same form unifying the cases 1 and 3:

1 2p-1- c + au , .I = f ~ du = 1. (20)

Equation (20) represents a set of straight lines in the c,a-plane with a parameter p.

(19)
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The parameter p is permitted to run continuously through the interval -1 < p < oo

giving a straight line in the a,c-plane for every fixed p as a solution of case 1

in the interval -1 •<• p 40 and of case 3 in the interval 0 £ p -c oo . The second

set of straight lines continues just the first one, their inclination against the

c axis becoming steeper with increasing p (decreasing k-,). For p -»« (k-, -> 0)

the angle of inclination goes to a right angle against the c axis., (see Figure l).

The integral J of equation (8) will be

(c+au2) u2du

(c+au ) u du

0 ^ "2

J =

(U2+K2)2

for k, = 0 (in case l) (21a)

for k2 = 0 (in case 3) (21b)

P r (c+au2) u2du
p / ~z~p in both cases. (21)
Q (1+P.2)2

If one compares :J with the condition of an envelope of the set of straight lines (20)

3l;L r (c+au2) u2du

^P i (1+pn2)2
0

one recognizes that this condition is identical with the vanishing of the second

factor in equation (21):

^J=0, or J =0 for p / «, (Kl / o) . (23)

These are the cases (2) and (k) in the list (9). The points of the envelope in the

c,a-plane satisfy both equations (20) and (22).

= 0 (22)
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They yield for p = 0, i.e., for the point P of connection of both cases

l) and 3) in the c,a-plane:

c + - = 1 (20a)
3

£ + - = 0 . (22a)
3 5

Hence the coprdinates c,, a of T are

c - 2 a - -15 (21+)
cl - 1+ ' al _ 1+ K J

and Equation (20a) shows that P lies of course on the straight line with Equation

(15)•(see Figure 2).

6. Discussion of the Envelope (Cases 2 and K).

With the denotation

we may express

and

1

K(P) = f -*a— (-i< p <») (25)
pu2

f -Jk

^p ,/ (l+pu2)d 2p vj du \1 +puy

1 K(p)
2p(l+p) 2p

(26)

1 1

^ = ifLl p^ -Xdu = i(l-K(p)) •• (27)
J 1 + pu2 pj 1 + pu2 p
0 0

By application of (25) and (27) to the characteristic Equation (20) one obtains

Ix = -+ (c-|) K(p) (28)
P p
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Fig. 2. A Schematical Picture Showing in the Small Circle
the Number of Roots in Different Regions of the c, c-Plane
and some Details Discussed in the text.
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and further by application of (26) to the derivative of (28)

or

" = -^ +^K(p) +(c-£)_
3p P2 P2 P 3p

-i- ((3a-pc) K(p) +P(G-2a) -5a
2p2 I 1 + P

(29)

p3lx if p(c-2a) -3a1 , ,j = _ p2 _A = _ J(pc_5a) K(p) _ _^ i I. (30)
-g>p 2 ^ 1 + P J

The points c = c , a = a on the envelope fulfill the two Equations (20) and (23)
hi hi

in the representation with the parameter p

(pcg-ag) K(p) + ag -p = 0 (51)

(l+p)(pcE-3aE) K(p) + 3aE - p(cE-2aE) = 0 , (32)

The equation of the envelope in the c,a-plane would result from Equations (3l) and

(32) by elimination of the parameter p.

A more convenient representation for numerical calculations is the parameter-

representation (- 1 < p < 00)

3 + 2p - 3(l+p) K(p)
cE = • •

1 + (1+p) K(p)(l-2K(p))

(33)

1 - (1+p) K(p)_ p

1+ (1+p) K(p)(l-2K(p))

with



- Ik -

i i +y[pi _i x~, i /, \
/ log —— = Kg cotanh Kg for -1 < p < 0, /|p| = — (,34a,)
2/[p7 1 -M K2

case 2) of list (9)

K(p) = {

*> — tan--'- /p = k-i cotan"^- k-j_ for 0 < p <r *>, yp = — (3+b)
Jv Kl

case U) of list (9)

P P p3 O /IN]__£: + £__£!_+_... for p^ < 1 in both cases. (,3+cJ

3 5 7

In the environment of p = 0 the following quotients for c and a may be derived

using (3+c):

c
E

aE

1
3 5 2

" 7 P + 21 p
5 3 15 k

- 33 p5 +1+3 P "+
1

5 18 2
- ~ P + — Vd

7 35

++6 . 6323 u
P^ + P4

1155 21021

- + . ..

n 1 3 2 1 3 1 +
15 -1- ^ p + 55 p -2ip+33p - + •••

k 5 18 2 ++6 , 6323 u
1 - — p + — p - p^ + p - +

7 35 1155 21021

(35)

9For p —> 0 of course we come back to the values (2k) c —> c = -r and a —~>a

= - -r^, which is the point Pc on the envelope E (see Figure 3)•

The following Table I gives some points on the envelope for case 2), where

k =0 and J = 0, specified by the parameter Kp = -=. :
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Fig. 3. It Should Give an Impression how the k, = Const-Curves Build Up the Lower Part of the Envelope Beginning at Pc.

The k2 = Const-Curves are not Drawn Here. The Dotted Curves ± a = c(c —\) Include all those c, o-points, for which Absorption,

Fission and Scattering of Single Neutrons Obey the Same Non-Negative Probability Law.



*E

~E

K2
1

CE a„
E

1 1 - 1

1.001 1-033 - 1-043

1.002 I.053 - 1.070

i.oo4 1.082 - 1.112

1.006 1 1.106 - 1.147

1.008 ' 1.126
1

- I.178

1.01 i 1.1+4 - 1.206

1.02 1.215 - 1-321

1.05 1-353 - 1-565

1.1 1A98 - 1.847

1.2 1.674 - 2.228

1-3 I.785 - 2.490

1.4 1,863 - 2.684

Kg - 1
cotanh" k.

1 + 3 (ftg-l) 1- Kg cotanh" Kg

i6

Table I

Kg c

E
a„

E

1.5 1.922 - 2.834

1.6 1.968 - 2.953

1-7 2.004 - 3.049

1.8 2.033 - 3-129

1.9 2.057 ; - 3-195

2 2.078 - 3-249

2-5 2.143 : - 3.^36

3 2.177 - 3-53^

4 2.213 - 3.639

5 2.227 - 3.681

7,5 2.242 - 3.725

1 > ' 1
00 2.25 - 3.75

, ... ^-.

(33a)

aEKg cotanh ^ Kg - -^ k2 (l -Kg cotanh-1 Kg).

A further Table II shows the continuation of the envelope for case 4), where k = 0

and j = 0 , in some points belonging to values of the parameter & = l/^/p- :



aE

CE

!Kl ! Ce a„
E

CO 2.25 - 3-75

' ' V
1

20 2.254
1

- 3.761

10 2.255 - 3-766

5 2-275 - 3.827

4 2.289 - 3-869

10/3 ; 2.306 - 3=922

2.5 2.349 - 4.053

2 2.402 - 4=219

1.6 2.480 - 4.474

. 1.25 2.610 - 4,912

10/9 2,693 - 5.202

l 2.782 - 5-521

10/11 2.874 - 5.865

5/6 2.971 - 6.236

0.8 3.021 - 6,431

- 17 -

Table II

k:i CE
a„

E 1
1

10/13 3.071 6.632

5/7 3..174 7.051

2/3 3.279 7-^95

0.625 3.387 7 ..961

4/7 3-551 8.704

0.5 3.833 10.05

0,4 4.4l6 13.15

1/3 5»0i6 16078

! 0.25 6.24l 25,58

0*2 7-485 36.40

0.16 9.053 52.76

0.125 11.26 80.93

i 0.1 13.79 120.6

0*05 26A9 - ^39*3

0,02 64.67 - 2595

0.01 128.33 - 10189

+_—,— -•»••' ——

(33b)
4 +i . -1

cotan K-i

_H i

1-3 (kT+1)(1- K|_ cotan ^ k-j_)

1 + -1 ^ ^ 2 /,— = K-, cotan Kj_ + — k, (i

CE CE

k-, cotan" Kj)

For small k-, (large positive p) asymptotically holds-



K(p)
it 1

2 Vp

aE

4

ir

IT

4 _l_
If K-^

1

K,-
"2 j

In fact it is possible to eliminate the parameter p from the Equations

(3l) and (32) because K(p) is the only transcendent function, in both equations.

The elimination of K(p) from both equations

18

> aE
^ 2
IT*

K(p)
P - aE pcE - 3aE - 2p aE

PcE - ag (l+p)(pcE -38^)

yields a quadratic equation for p (if p 4 0):

2eP£ 2E " CE " aE:(ctt-3) P + aE av. + 3(ctt-1) = 0

(36)

(37)

By this equation c , a , p are connected on the envelope.. One has to keep in mind
Ji hi

that only one of the three variables can be considered as a free variable because

Equation (37) is equivalent to only one of the two Equations (3l) and (32). Hence

we have (37) always to consider together with the characteristic Equation (31) for

instance. Solving the quadratic Equation (37) one obtains

P =
'E " UE -aE(cE-3) +\/(cE-l) [cE(cE-aE)2 -(cE+5aE)2

2c
E

The;^ sign of the root has to be determined always in such a manner that Equation

(3l) is satisfied.

(37a)
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There is an interesting relation between the Equation (37) on the enve

lope and the function

h(c,a;u) = c + c2 - c + a(3-c)| u2 +aa+ 3(c-l)l u^ (38)

3)which was defined in the Equation (51) of 1. c. h(c,a;u) occurs in the inte

grand of all integrals involved in the different quantities derived there. If one

compares the Equations (37) and (38), one recognizes that

h(cE,aE; -_L) = 0 (39)

h(c,a;u) was defined only for the case l) in 1,. c. So we restrict ourselves

to this case, in which —— = Kg = Vw Then (39) has the meaning that

hfc^ag;?,^) = 0 (39a)
on the envelope.

7- The Three Different Regions with Four Roots above the Envelope.

We discuss now more thoroughly the four-root-solutions below the straight

line a s - c and the envelope. They were mentioned in the discussion after the

list 9),

All straight lines, belonging to different k (but k = 0) traverse the

crucial line a = - c, below which four solutions exist, between the two points

A(c = 1, a - - l) and B(c * —, a = - =~ )., They touch the envelope E for in-
<— 2

creasing k? consecutively between A and P (c = j-, a = - -j~) •• Let us consider now

a straight line with a special parameter k ' . All straight lines with a parameter

k0< k* will traverse it before (smaller c and - a) its touching point with the en-

velopej all straight lines with a parameter Kp> W" will traverse it after (larger

c and - a) its touching point with the envelope. The straight line Kp r 00 with the

equation a a - 3(c-l) is the last of this set with Kp> Kp\ Hence it is the boundary

of the region, in which a straight line k ' is cut successively by all other straight

lines of the same set. To every point c,a in the triangle ABP with the curved
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basis AP on the envelope belong two parameter-values k 1" and Kp"", which label

the two straight lines traversing one another in the point c,a. They indicate

four roots + k 1 and + k ""' (but k = 0).

An analoguous consideration shows that the sector of the c,a-plane G^BGp

with the cusp in B and the border lines a n - c and a = - 3(c-l) is occupied by

the solutions with two roots + k (but k = 0) and two roots + k (but k = 0).

In every point c,a of this sector two straight lines traverse one another, one be

longing to the set k?(k = 0) and the other to set k (k = 0). In the region

G PJE with the cusp in P between the lower part of the envelope E and the straight
2 ^ C

line a = - 3(c-l) we find the four solutions belonging to + k:, + k,^ (but k =

0), In every point a,c of it two straight lines labeled by the different parame

ters k ' and k - traverse one another.(see Figure 4).

8. The Region of Four Complex Roots below the Envelope (Case 5)-

The last area with four roots, to be discussed, is the sector G~AE with

the cusp in A, the straight line AG„(c = 1 from a=-ltoa=-co) and the en

velope AE as boundaries. It contains the examples of case 5) of the list ($)., in

which k is a complex root and J is 0. By Equations(5a) and (5b) was recognized

that + k , - k are roots, if k is a complex root.

Below Equation (12) it was shown that on the vertical straight line AG,.

the roots k = + j. . (but k = o) exist. Hence two roots lie on every point
2 y Ia| 1

of the boundary between the regions of four roots and of 0-roots. And this line

can be considered as a continuation of the "k—part" PJl of the envelope, because

k m0 holds likewise on AG- and PpA; the k values decrease from k - 1 at A to

k s 0 at a = - co on G . In fact k increases continuously on GJU? from k = 0

to k = oo (but k = 0); and on the remainder of the envelope k decreases from

k =co at P to k i 0 at infinity on the envelope E (but k - 0).
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Fig. 4. The Complex Roots of the Characteristic Equation for Anisotropic Scattering with Multiplication
Between the Envelope E and the Straight Line G3.

4.0



- 22 -

If one considers now the region of four roots with this boundary one finds

curves of cons tant k by starting at that point on G AP , which belongs to this
d. 3 ^

special k . On the boundary is k = 0 in this point. With increasing k the

point moves into the interior of the region with complex roots. It goes to P' ,

if k increases to oo, as a tangent to the envelope. The set of curves of con

stant kq enters the point P for k > oo in the same direction, in which k

tantincreases to infinity on the envelope itself. Because the curves k = cons

start for k- ~> 0.8 at considerably higher a values than that of P„ they show the

form of a hook, which gets an always sharper form the larger is k = constant.

The curves of constant k-j_ show a similar behavior. They start on the lower part

of the envelope PpE at the point labeled by the value k (but k = 0). With in

creasing Kp the point moves into the interior of the region. It describes a curve

with the form of a hook and enters the point P for k —-> oo on a tangent to the

envelope in the same direction in which k increases on the envelope. This direc

tion is opposite to that of the curves of constant k .

Curves, on which the roots k = QJk-,, with a fixed (of course real) quotient

oc of their imaginary and real parts lie, start also in Pn for k = oo. They leave

that point into the interior of the region with complex roots, if k decreases, in

a definite angle, depending on the constant a, against the envelope. Only if Q!

is 0 or co they leave P in the direction of the tangent on the envelope or in the

opposite direction - those cases were discussed before. We consider now the cases,

for which a is different from 0 and oo . When k decreases > o, they can never

meet the boundary G-AP E of the region with complex roots in a finite point, be-
3 ^

cause on that boundary is one of the numbers k , k always 0 (k : o on G AP ,
12 1 3 0

k? : 0 on PpE), but the other is always different from 0 in points with finite

c,a. Hence all those curves run to infinity in the c,a-plane between AG^ and the

envelope AE. An example of such a curve isKp=K (or k? : - k, because the prob-
2

lem depends on k only). Table III shows its behavior) it is drawn on Figure 3.
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K, = Kp c a

OO 9/4 -15/4

5 2.250011 - 3.750136

4 2.250155 - 3.750716

10/3 2.250332 - 3.751517

2-5 2.250618 - 3.753515

2 2.2522 - 3.7607

1.6 2,2563 - 3.7787

1-25 2.2663 - 3-8247

10/9 2.2757 - 3-8679

l 2.2882 - 3.9260

10/11 2.3042 - 4.0010

5/6 2.3239 - 4.0942

0.8 2.3353 - 4.1481

23 -

Table III

K~\ — Kq c a

1//2 2-379 ' - 4.359

0.625 2.440 4.660

0.5 2.603 5.516

0.4 2.849 6.925

1/3 3.121 8.654

0.25 3-701 12.96

0.2 4.305 - 18.33

0.16 5=076 26.47

0.125 6.168 40.54

0.1 7.426 60.38

0.05 13.76 - 219.7

0.02 32.84 - 1298.

0.01 64.67 - 5094

The curve in the c, a-plane belonging to the Table III gives on every point c,a

the four roots k = K-^l+i), K-|_(l-i), - K-|_(l+i), - K]_(l-i) as a solution of the

real part I-, = 1 and the imaginary part Ig = 0 of the characteristic equa

tion (see Equations 7a and 7b):

f

K-, < 2a - k, a lo£
1 + 2k-, + 2k-, c

1 + 2k, - 2k,

and

tan'

K-, + 1

'-1 - tan"1
K
1

K-, = 1~\

= 1 (40)
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1+ 2k? + 2k K-i + 1
Ig = K-^^a - i (c+2aKj) log - + - (c-2aK£) tan"1 — tan"1 —

K-, - 11

C-i - drv.-i1+2K^"-2K-, 2

(41)

0.

a 1
In numerical calculations it is convenient to calculate - — and — as functions of

c c

the parameter ic. = k? :

with the' abbreviations

a

c

2^kt_ " ^ki

2kx|4 -̂ (ZD^+L^)]

; %*i[T*i -?ki(*iV2)]

1 +

LK± = lQg M and T.. tan
-1 "aK-, + 1

tan
-1 "•!K-, - 1

1 + ft?)' "'
2 1

For small ic, holds asymptotically c ~ , a ~ - , a

and

"l ^l

By comparison of the last equation with the corresponding Equation (36) one recog

nizes that the k = k curve runs twice as fast to a » 00 for increasing c as the

envelope. In the general case of a complex root k = k-, + iKg one has to solve the

Equations (7a) and (7b)

TTK-,

k? + k§ f k2 + (k0+1)
— 12a - K2a log -1 2——

2 \ «l +(Vl)2

2k<

•— c - (k -k ) a rtan
ki L N

.1 K2 + 1
tan'

tt2 2
— c .

^} = 1

(42)

(^3)

(44)

(*5)
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2 ' ,\2Ki r , o o, i <- + iwK0+i;t. p p. "I K -r ^K -I,k£-3k2) a i log -1 8_

L + (K2_1^

+^ Tc - (3k2-k2) alftaiT1 "2 +±- tan"1 *2 " ^ = 0 (46)
2 L 1 a J v Kl Kl y

and one finds quickly a and c for every given k = k + in in the case 5) of list

(9) from

and

Hi
a k2Tk " 2 Lk

4k1K2 + — (K-L-jKg) \ - Kg(3K1-Kg) TR

2

L^/T _t L I. t _oW f„2 „21 „-|l

with the abbreviations

i+/Kg+1^2cg+iy
K-[_ /\ r^l / _-jKp + _L ,Kp-_L

L^ = log g and TK = tan -s- - tan""1 —

i+r-^v K

V K-|_ /
1

For k^ = k one comes back of course to Equations (40) - (43).

B. The Position of the Largest Root of the Characteristic Equation

in P -Spherical Harmonics Approximation

One likes to distinguish the largest root X of the characteristic equation

in P approximation -see for instance ¥= Kofirik, ORKL Report 2334, Equation (12).

(^7)
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(1+ax2) W^ "x^c+aX?) wlW = o (49)

from the other smaller roots X (s = 1,2,3,... -p"-) • One is accustomed to call the

partial solution, belonging to X , the asymptotic solution and to call the other so

lutions, belonging to the X 's, the transient solutions, because only X passes over
' ^" " s o

the boundary of the interval - 1< X £ 1, if the degree of approximation L goes to

infinity. X goes then to X , the solution of the exact characteristic equation

Ch(^0co) = X+aX0co "Ndco^+^Ood) cotanh_1 X0oo = °* ^5a)
Xn is the mean diffusion length in units of the mean free path.

Hence the question arises, at which degree of approximation L = L.. passes the root

X of (49) over the boundary\ = 1 (or lu = -X over X••= - l) of the interval

- 1 <r X < 1?

If we write Equation (49) for X in the form

cVl(\P +aXo(X0WI>o) " PL+1^0)) = 1 (5°)

we see that (50) is the equation of a straight line in the c,a plane in the same

sense as the exact Equation (13a) is. The coefficients of this straight line de

pend on L and X in this interpretation. If one puts X = 1, one has a relation

between c,a and the degree of approximation L = Lj,where X passes the boundary:

cWLi(l) +a(wLi(l) -PL]+1(1)) = 1• (51)

By putting c = 1 and a = - 1 this equation is always fulfilled. Therefore the

bundle of straight lines (51) has the common point (L, - l) in the (c,a) plane*

To determine one of them completely we need a further point in the (c,a) plane.

We take as that point the cut c-j_ of it with the c axis for a = o (this means for

isotropic scattering), which is simply
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Wt„ (!)

To evaluate this numerically we remark that

PL+1(1) = 1 andW WL(1) = *L+1

Ll

E
n=0

n + 1

(52)

(53)

Hence we may write the equation of the straight lines (5l) for anisotropic scat

tering

kL1+l +a(kL1+l 1) = 1 (51a)

Table iV shows c as function of L.. . In a problem with isotropic scattering

c = c must be larger than c. of the table, if one wants that X is larger than
o ° -v—1 > o

1 in P.. approximation of the spherical harmonics method,, c has the same mean

ing as in Equation (l4). Another interpretation of the table is: The degree of

approximation I, should be larger than L, in a problem with c = c to obtain the

desirable distinction of X from the other roots X of Equation (49).

Table IV

T

-a i 3 5 7 9 11 13 15

ci 2/3 0.480 0.408 O.368 0*34l 0.322 0,308 0.296

17 19 21 23 25 27 29 3k.

'l I 0.286 0.280 0,271 0.265 0.259 0.255 0.250 0.246

4) E„ W. Hobson, The 'Theory of Spherical and Ellipsoidal Harmonics^ Cambridge Uni
versity Press (1931)/ P- 55»
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We see for instance from the table that for c0 = 0.5 P-^approximation is sufficient,

but for cq = 0.25 P*}*approximation would be necessary to shift + Xq outside of the

interval - 1 £ X < 1.

For anisotropic scattering, a 4 0 (with the exclusion of the case of no absorp

tion c = l), the simple condition Cq >• c-|_ of isotropic scattering must be replaced

by a statement, on which side of a crucial straight line with the Equation (51a) one

has to remain. Using (52) and (53) to introduce c-j_ in Equation (51a) the equation

of this crucial straight line takes the simple form

c + a(l-c1) = cj_ . (51b)

To every L-|_ belongs such a line. On the right side of it in the c,a plane is

Xq > 1> on the line is Xq = 1 and on the left side is Xq < 1 in Pl approximation.

See Figure 5. The inclination of the straight lines is in such a manner that in

the case of preferred forward scattering (with positive a) a lower L-^ is required

than in the case of preferred backward scattering (with negative a) at the same c

for XQ > 1.

These statements are restricted of course to the region in the c,a plane above

the line a = - c, i.e., to the region of two roots + X0oo of the exact character

istic Equation (l3a). They may be extended to cases Cq > 1 in this region.

For small c one may use an asymptotic formulaA-^ for large Lj_ to calculate cj_

in the coefficients of the straight line, labeled by Lj_,

— = kL +l~lo&(Li+l) + C + — -x + - (5*0
ci ^1' 2(Lx+l) 12(Lx+l)2

with C = 0,5772l6 (Euler-Mascheroni's constant).

If we keep only the most important terms of (54) for very small c-, (that is

high absorption /a «* 1, C|_ -s* 0), the degree of approximation L^, at which Xq passes

(5) E. Jahnke, F. Emde, Tables of Functions, 4th Ed., Dover Publ. (19+5), P- 19-
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Fig. 5. A Straight Line Denoted by the Degree L1 of the Spherical

Harmonics Approximation Divides the c, tf-Plane in Two Parts. On the Right

Side of the Line the Asymptotic Root XQ of the Characteristic Equation is

> 1, on the Left Side < 1 in this Approximation.
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1 for isotropic scattering is asymptotically

l/c-i
lx- 0.5615 • e . (55)

For linear anisotropic scattering c in Table IV and in the Equation (55) must be

replaced by

cl + al

1 +a* 1)
where a = 37 (l - j. ) is the constant of anisotropy, defined in 1. c. , p. 2.

J. s> x
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