




ORNL-2704 )$<£ >J5~U
A Glossary for Numerical Analysts

ADDITIONAL ERRATA

P. 8, line 7: latter portion of equation should read "... =P^m"^(r) / P*m* (r), ".

P. 10, lines 3, 4, and 5 from below: close up spaces between 6 a and 6 b where spaces
occur.

P. 11, line 2: "given" should be "Given."

P. 12, line 7: after "Euler-Maclaurin formula",add "(NO)." deleting period after
"formula. m

88 , line 18: preceding the entry "Bessel interpolation formula" and as a separate
line insert the words "See NO. "

u - A
meV E2" should read "Eu = E2».

P. 13, line 9: after "in the form" insert "(see star)".

P. 14, line 11: "given" should read "Given."
" , line 15: "Descarte's" should read "Descartes's. "
" , line 21: "in" should read "In."

fi> n
P. 16, line 12: equation should read " A. w^f(x). dx =« Y f(x.) + R , ».

P. 17, line 4: close spaces between "nx. "
" , line 2 from below: "for" should read "For. "

P. 18, line 7: "in" should read "In."

P. 19, line 7: insert the fourth paren - it should read "(||6 A|| / ||a||)".
" , line 15: delete the words "and distances. "

" , lines 18 and 19: delete the sentence "Preservation of distances means that the
arc length from P' to Pi is the same as that from P to P,. "

•l 1

P. 20, line 2: change "converge" to "is exact. "
" , line 11: "socalled" should read "so called."

n , line 6 from below: "consider" should read "Consider. "

P. 22, line 6: "a" should read "A. "

P. 23, line 3: "suppose" should read "Suppose."

C4"iM(UicL yiA^U £6;/f^,
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P. 24, line 5: after "smoothing88 add ", Ni. M
" , line 14: "let10 should read "Let."
88 , line 16: 8'kM should read "h. "

2 4
, line 17: equation should read *<j> = a + a. h + a h + ... ",

10 , line 20: equation should read „ ,
hv h2-

P. 25, line 19: "DescarteV should read 88Descartes8s. "

P. 26, line 15: "for" should read Tor.80

P. 29, line 19: "Sterling80 should read "Stirling."

P. 30, line 5: "for" should read Tor.80

P. 31, line 20: After sentence ending "proper value, " add "But usage varies even for
integral equations. H

P. 32, line 7: replace "Poisson" with "Laplace."

P. 33, after line 8: insert the definition "Euclidean algorithm -- see highest common
factor."

88 , line 11: »= 0.577215665..." should read "= 0,577215665".
88 , line 12: after "Euler-Maclaurin formula --" add "the formal expansion".

P. 34, line 2 from below: "Sterling"should read "Stirling. "

P. 35, line 11: raa series of the form" should read "A general series of the form. "
88 , line 12: after the equation, insert (on the next line) the words "is called a

trigonometric series. "

88 , line 20: change the period at the end of the equation to a comma and add (on
the next line) '"and with a and b so defined the series is called a Fourier
series.88 P P

——" , last equation at bottom of page: insert a dot over the equals sign and insert "n"
above the "summation88 and "O80 below it.

_P. 36, line 2: insert "n88 over the "summation" and "j =0" below it.
88 , line 14: replace "weight" with "density."

P. 37, lines 6 and 7: "Siedel" should read "Seidel. "

P. 39, line 1; "Green function" should read "Green8s function. "
18 , line 4: at the end of the equation, replace the period with a comma and add (next

line) "the integration extending over the interval on which the solution is to
be defined. "

88 , line 15: after "160" add "+ ..." and delete the next line of "dots. "
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JP. 40, line 2: insert "n" over the "summation" and "0" below it.

" , line 5: after "formula. madd the sentence "More generally, higher derivatives
may also be prescribed. ffl

JP. 41, line 7: after "However, " insert "if every p\ / 0. "
l

P. 44, line 10

M , line 1 3
" , line 21

insert the right paren to read w« fl (<J», \\t ) + ".
"determination" should read '"approximation. "
after "difference operators replace comma with semicolon.

P. 45, line 1: "determination" should read "approximation."
" , line 21: should read " |<t>'(x) | < k < 1M.

P. 46, line 21: over the large "pi00 insert "0, n",

P. 47, line 2: replace "weightM with "density."
11 , line 12: after m0 0" add "...".

P. 49, line 5: following the equation, on the next line insert "the summation extending
over all observations, M.

" , line 16: replace "weight™ vwith "density."
• , line 17, equation should read "(n-+ 1) P _,, (x) -(2n+l)xP (x) + n P , (x) = 0, ".

n+l n n-1

P. 51, line 4 from below: replace "continuous" with "bounded."

P. 64, line 1: "The" should read "the. M

P. 65, line 13: Md(y)" should read MF(y)".
" , line 16: delete the comma at the end of the equation and add "+ Rn> "•
" , line 22: "Sterling" should be "Stirling. "

P. 68, line 15: "a problem™ should read "A problem. "

P. 70, line 13: replace the words "possesses partial derivatives of all orders" with
"is analytic in x and in y. M

" , line 16: replace "known" with "given" and after "itself" add "one obtains.

P. 71, line 18: "given" should read "Given."
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P. 72, line 1^.'replace "weight" with "density."

P. 73, line 12: "for" should read "For."

P. 75, following line 10: add a new sentence as follows: "The coefficients a, b, and c
are functions of x and y, and the inequalities must hold throughout the
region under consideration. M

P. 76, lines 9 and 10: replace "in the following way:" with "by the following stars:".

P. 78, line 13: "for™ should read "For."

P. 79, line 21: in equation (1) "b " should read "b ".
n m

P. 84, line 1 3: insert a comma after "conceal them. "

P. 85, line 14: "three-eights" should read "three-eighths. "

P. 88, line 1: "colum" should be "column."

P. 92, line 5: entire line should read "Analogous simpler schemes, some of lower and
some of higher accuracy, are available (see Co). In this. "

P. 93, line 5: insert a vertical bar " |" in front of "y*" instead of the paren.

—dS^r,^cepence'used in the —•*«-••»««- °< ii*ur
P. 99, line 8: underline "predictor. "
\" ' after line 12: insert a new entry as follows:

Sturm sequence - a sequence of polynomials associated with a aiven
t'htreTV^^Z^r^^"^ f" ^^L^rZ-" em>, <at no consecutive pair vanish simultaneouslv and that ™h~„
one vamshes the adjacent ones are opposite in sign

|| , line 14: underline "Euclidean algorithm. "
. line 15: "In the sequence" should read "In the Sturm sequence. "

P. 100, line 1: "in" should read "In."
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P. 101, line 11: "to" should be "To."

P. 102, line 2: raise the left paren so that it reads "(n+1)."
» , line 6: "+ £ £" should read "+J_ J J|£

P. 103, line 3

, line 4

, line 6

after "^ b. " add "h = b -a. " replacing the period after "b" with a comma.
replace "null" with "zero. "
change "when also all diagonal elements are units. " to read "when also

ii

n

ii

it

every diagonal element = 1.
, line 11

, line 12

" , line 16
it

"formulas" should be "Formulas. "

change the colon after "obtained" to a period.
"jj/k" should read njfin-

, following line 18: add a new entry as follows:

Trigonometric series -- see Fourier series.

P. 107, last line: »34dM should read "3rd. "
" , add two new references:

Kaj Leo Nielsen (1956): Methods in numerical analysis, New York, Macmillan,
328 pp. - Ni

Niels Erik Norlund (1924): Vorlesungen uber Differenzenrechnung, Berlin,
Springer, ix + 551 pp. - NO

August 12, 1959



ERRATA

ORNL-2704

A Glossary for Numerical Analysis

Delete hyphens and close throughout in "non-null," "non-negative," "non-

hermitian," "non-normal."

P. 30, line 3 - For "or scalars" read "on scalars."

" , line h from below - For "thus" read "then."

P. Jh, line 7 from below - For "both must be taken" read "must be taken both."

P. 39, line 6 from below - For "total step" read "total-step."

P. 59, second matrix - For "L " read "I." Just below, delete "L and" and "both."

P. 65, line k from below - Underline "trapezoidal rule, Simpson's rule."

P. 92, line 5 - For "Analagous" read "Analogous."

P. 93, line 5 - Replace first paren by vertical bar.

P. 97, entry "Stirling formula" - Replace "In" by "log" throughout.

P. 102, line 6 - Insert factor "•=••,".

P. 106, line 7 - For "Konvergente" read "konvergente."

" , reference to Hestenes and Stiefel paper should be dated 1952.

March 17, 1959
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A Glossary for Numerical Analysis

FOREWORD

Probably no two of those who work in a field they consider "numerical

analysis" will agree as to the boundaries of this field, hence as to the terms

that should be included in or left out of a glossary of terms in the field. Thus

a book published in 1955 and entitled simply "Numerical Analysis" contains no

chapter on the solution of algebraic equations, but only a few pages of "Notes"

in an appendix. A Russian book published in 1953 entitled "Numerical Methods

of Mathematical Analysis" makes no reference to the subject at all. Lanczos, who

does consider the subject, entitles his book "Practical Analysis," and proposes

a term "parexic analysis" to apply to an area intermediate between classical

mathematical analysis and what he would consider to be strict "numerical analysis."

The point of view adopted here in the preparation of this glossary is not far

from that urged by Lanczos, although he would doubtless consider many of the

terms included here to belong more properly to parexic analysis than to numerical

analysis. A further distinction must be made between numerical analysis and pro

gramming theory, an area that was hardly recognized to exist prior to the decade

that is soon to end.

A few terms have been included, but only a few, that belong -more properly

to programming theory than to numerical analysis. There the lines are more easily

drawn. In the other direction, most of what is to be found in Collatz's "Numerische

Behandlung" is considered to belong more to parexic than to numerical analysis.



And since "numerical analysis" is assumed to refer to the application of arith

metic processes, there is little here on the use of analog devices, including

nomograms.

By the same rule, however, it is assumed that the first step in prepar

ing a problem for digital computation is to replace continuous variables, where

they occur, by discrete variables. Hence the emphasis is upon the treatment of

discrete variables (vectors in a finite space, matrices of finite order), and

upon the more elementary aspects of approximation theory. Anything else has

been considered either out of bounds for a mere glossary, or belonging at least

to parexic, if not to pure, analysis.

Nevertheless, even within the area thus circumscribed it may be that

many important terms have been overlooked. Hence in view of a possible supple

ment, suggestions, criticisms, and proposed additions are hopefully solicited.
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Accelerating convergence — of series and sequences. See summation of series.

Accuracy -- the degree of exactness actually possessed by an approximation,

measurement, etc. Contrasted with precision, which is the degree of exactness

with which the quantity is expressed. E.g. as a value of it, the number 3-1^28

is more precise than accurate.

Adams-Bashford method — for solving an ordinary differential equation,

y' = f(x, y), expressed in terms of difference operators, uses the predictor

yv+i - yv +h[fv +** fv +12 v fv +I J fv +•••}>
and the corrector

y
v+1

The first amounts to approximating

J f(x, y) dx
v

by means of a quadrature formula which utilizes values of f at x and to the left

only, the second utilizes also the value of f at x .. The corrector is to be

used with the best current approximation of Vv+1> and reapplied until the next

approximation does not differ significantly from the previous. The formulas have

significance when y and f are vectors (see Mi, Co).

Adams-Stormer method — see Stormer method.

Address — the symbol designating a particular cell in the storage unit of a stored-

program computer.

2
Aitken S -process — see Delta-square process.

=yv +*K+i "*v fv+1 - ^v2 fv+1 - k^ fv+i " •••}•

v+1



Aitken method of interpolation — is to form a table

xQ - x yx(xo}

*i - x yx(xi) yx(v xi)

*2 -x yx(x2) yx(xQ, x^ yx(x0, x^ x^)

X3 "X ^V yx(V X3) yx(V V X3}

by means of the relations y (x.) = y. and

y (x. ) xJ - x
'x^ V i

yx(x0, xL, v x5)

yx(v xd> -
yx(xj) Xj " X

/ (XJ " Xi}"

yx<Xi' V V =
yx(xi Xj} Xj - X

yxK> xk) *k - X
/ (xk - XJ>'

Then yx(xi, x ) is the result of linear interpolation based upon the abscissae

xi and x ;Vx(\t x*> \) tha'fc of quadratic Interpolation based upon the abscissae

x , x , and x ; .... The process may be terminated whenever consecutive entries

in a column agree to sufficiently many figures.

It is not necessary that the abscissae be equally spaced, or even ordered,

but only that they be distinct. The method of Neville is based upon the same

principle but utilizes the table



xo - X yx(x0}

xl - X yx(V

X2 - X yx(x2)

X3 -X yx^X3)
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yx(x0, x1)

yx<V V *2>

yx(V X2} yx(V V *2> X3)
yx(xi' V x3)

yx(V x5)

Algebraic equations — an equation, or set of simultaneous equations, in which

the unknowns occur as rational functions only. Hence the equations are expres

sible by equating polynomials to zero. Here the case of a single equation in

one unknown will be considered:

a_ P(x) = a0 x + a. x " + ... + a =0, a_ £ 0,
00 1 n 0 '

where the a. do not depend upon x, and are called the coefficients of the equation,

while n is the degree. This equation is equivalent to

P(x) = x - c. x + ... + (-1) c =0,
1 v ' n

ci = (-1) a± I aQ,

where the c. are the elementary symmetric functions of the roots x .

The remainder theorem states that if a_ P(x) is divided by x - r, the

remainder is a_ P(r):

aQ P(x) = (x - r) Q(x) + aQ P(r)j

the factor theorem is a corollary and states that if r is a root of P(x) = 0,

then x - r divides P(x). The "fundamental theorem of algebra" states that every

algebraic equation has a root, real or complex. These theorems imply that P(x)

can be factored completely:

P(x) = (x -x1) (x - x2) ... (x - xq),
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each x. being a root. If x. = x. for some i J= j, then x. = x. is a double roott

if x = x = x^, a triple root, .... Counting a root x of multiplicity m as

being m coincident roots, one says that an algebraic equation of degree n has

exactly n roots (neither more nor less). A Taylor series expansion gives

P(x -r) =P(r) + (x -r) P'(r) + ... + (x -r)n P(n) (r) / nl

Hence r is a root of multiplicity m if and xinly if

0=P(r) =P'(r) = ... =PW (r) £ P(m) (r), ".

hence r satisfies the derived equations

P^ (x) =0, i=0, 1, ..., m -1.

In general, setting y = x - r, if

b. -pk-1) (r) / (n -i)i ,

then any root of

n t- n-1y +bxy +...+bn=0

is r less than a root x., hence the roots are said to have been reduced by r.

Repeated synthetic division can be applied to the original equation to obtain the

b , since b = P(r) is the remainder after dividing P(x) by x - r; b that after

dividing the quotient by x - rj ....

Other useful transformations are the following:

The roots of

aQ y -a1 y + ... + (-1) aQ = 0

are the negatives of the roots of the original; those of

n n-1 n
any +a.,ay +...+a a =0
0 * 1 ^ n

are a times the roots of the original; those of

n n-1

any +an-ly + •'• +a0 =0
are the reciprocals of those of the original. These can be derived by setting

x = -y, x = y/a, and x = l/y.



When the coefficients a are integers, then any rational root when ex

pressed as a fraction p/q in lowest terms is such that p divides a and q divides

a without remainder. In particular, any integral root must be a divisor of a .
u n

In principle all rational roots can be found exactly, and once any root r is

known, all other roots must satisfy Q(x) = 0 where Q = P / (x - r). For irra

tional roots see Budan theorem, Sturm theorem, Horner method, Newton method,

Bernoulli method, Graeffe method, iterative methods.

While these methods, except for Horner's, apply as well to complex

roots as to real, it may be convenient to evaluate P(z) with z = x + i y, and

write

P(z) = R(x, y) + i y J(x, y),

after collecting real and pure imaginary terms. Then

R(x, y) = J(x, y) = 0

are two simultaneous equations in x and y, and any real solution (x, y) deter

mines a complex solution z=x+iyofP(z)=0. More to be recommended, however,

is the Bairstow method for complex roots, which is, in fact, an adaptation of

Newton's method to complex roots.

Algorithm — a corruption of algorism, which meant originally the art of computing

with Arabic numerals. Algorithm has now come to apply to any rule of computation,

whether algebraic or numerical.

Analog computer — a computing device in which quantities are directly represented

by physical magnitudes: distances, voltages, currents, rotations, etc. Hence the

mathematical operations are direct operations upon these magnitudes. Examples are

slide rules, differential analyzers, and most special purpose computers, as well

as wind tunnels and model basins. Analog computers are to be contrasted with

digital computers, although hybrid forms exist. Most often, as in digital dif-



-10-

ferential analyzers, in overall use the machine will appear as an analog machine

but will contain components that operate digitally.

Analog-to-digital converter — any device for providing a digital representation

of quantities initially represented in analog form, i.e., by physical magnitudes.

Arithmetic unit — the portion of a stored-program computer devoted to the actual

execution of the commands.

Asymptotic series — a generally divergent series of the form

a + a / z+ ap / z + ...

which, however, represents a function of (z) in the sense that

lim £zn (f(z) -J a /z1)] =0.
|z|-> oo \ 0 '

It generally happens that for sufficiently large z a limited number of terms of

the series will yield a close approximation to f(z) whereas more terms will not.

Backward differences — see difference operators.

Bairstow method — for finding complex roots of an algebraic equation. Let

2
z +az+bbea trial divisor of f(z) and form

o p p

f(z) = (z + a z + b) Q(z) + (z + a z + b) q.(z) + r(z), where

r(z) = r± z+ rQ, q(z) = q_± z+ q^.
o

This means that r is the remainder after dividing f by z + a z + b, and .q the

remainder after dividing the quotient. Solve

(a qx -q^ cOa - q_± SO) = -r^

b qx oca - q^ SCb = -rQ
2

for 5aa and SC£>; then z+ (a + 6 a) z + b + Srb will be, in general, closer to

a true divisor. The method is an adaptation of the Newton method to finding com

plex roots and was originally described by Bairstow; later by Hitchcock.



-11-

Base see radix.

Bernoulli method — (jJLven the algebraic equation

(1)
n n-1

x + a., x + + a =0,
n '

let h_, h., .„„, h .be arbitrary numbers, not all zero, and form h , h ,,
0 1 ' n-1 " ' n' n+1*

by

h +a.h .+...+ a h =0.
n+v 1 n+v-1 n v

If (l) has a unique root of largest modulus, then In general the quotients

h / h approach that root. The method can be extended to transcendental

equationso Let

(2) f(a) 1 + C Z + Cp z + ...

converge in some circle about the origin in the complex plane, and let

(3) g(z) = gQ + g]_ z+ g2 z +

represent any function analytic in the same circle, and having no zero in common

with f(z). Let

h0 = g0'

Cl h0 + hl = gl'

C2 h0 + Cl hl + n2 = g2

Then if f(z) has a unique zero of smallest modulus lying within that circle, then

h / h approaches that zero. If there are two zeros whose moduli are less than

those of all others, then the roots of

2 ,
z

z

1

u n+i

Vl \+2
h _ h _'
|i+2 n+3

= 0

approach those zeros of f(z). Likewise one can form cubics whose roots approach

the three smallest roots, ... (see Ho). The Q D algorithm improves upon this

principle (NBS).
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Bernoulli numbers — coefficients B of the Bernoulli polynomials. Except for

B^ those with odd subscripts vanish. The values of the first several are

_ 11 1
B0 = 1' Bl = "2 ' B2 =Z > \ = "30 '

% - 52 ' B8 - " 30 ' B10 = o^ *

They are the coefficients in the expansion

u/ (eU -1) = I Bv uV / v•.
0

They occur in the Euler-Maclaurin formula[ (NO).

Bernoulli polynomials — B (x) of degree v occur as coefficients in the expansion

u e™ I (eU -1) = I uV Bfx) / v'.
0

They satisfy the differential equations with boundary conditions

B;(x) =vBv-l(x^ Bv(l) =("1)V Bv(0)>
and can be written symbolically in the form B (x) = (B + x) , where the right

member is to be expanded as though v were an exponent:

(B +x)v =By +vxBv_x +^p=) x2 Bv_2 +...
and the coefficients are the Bernoulli numbers. In the same fashion a recursion

for the Bernoulli numbers is

By = (B + l)v, v> 1.

stB Na u a r M pBessel interpolation formula -- E » E2 [n + (u -?) 6 + Jn6

+***(?)*+ (?)»*+ ?(?)*-•••)
(for notation see difference operators).

The formula is most useful for 0 < u < 1. Taking v = u - \, an alternative, and

more symmetric, expression is
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EU =E^ [u +v 5+£, (v2 - £) u62
1 , 2 lv _3 1/2 lw 2 9a J*+j, v(v - p 5^ +jj-, (v - ^) (v - J) u B

1 / 2 lw 2 9\ R5 1+5, v(v - ^) (v - £) 5^ + ...J .

Bigit — a binary digit. This term has been proposed in order to reserve bit for

use only as a measure of information.

Biharmonic equation — the partial differential equation

d cp/Sx + 2 d cp / d x dy + <5 cp/dy =0

satisfied by small deflections of a plate. The usual coefficients for a square

mesh are in the form (See- s\ar).

1

2-8 2

1 -8 20 -8 1

2-8 2

1

Binary — characterized by two alternatives; compounded of two parts. In the

binary representation of numbers, the radix is 2, this being used in many digital

computers.

Binary point — the radix point in the representation of a number with the radix 2.

Biquinary — a form of number representation combining the radices 2 and 5«

Bit — a unit of measure of information; viz., that amount represented by one of

two alternatives. A binary digit, i.e., 0 or 1, in number representation with

the radix 2.

Block relaxation — a variant of the method of relaxation for solving linear systems

in which one solves two or more equations of the set simultaneously for the corres

ponding unknowns in terms of current approximations to the others. This generally

speeds convergence if convergence occurs.
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Blunder — any malfunction, human or otherwise, such as faulty arithmetic, use

of an incorrect formula, etc., in a computation. Also the result thereof. See

error.

Boundary value problem — that of finding the (or a) function satisfying an

ordinary or a partial differential equation and satisfying also a condition or

conditions at the boundaries. Elliptic differential equations are ordinarily of

this form. For ordinary differential equations the usual method of solution is

to approximate the derivative by finite differences and solve the resulting dif

ference equations. This leads to matrix inversion and the solution of linear

equations, and possibly to the need for finding proper values and vectors.

Budan theorem — (given any polynomial P(x) in the single variable x, let P and

its derivatives be evaluated at x = r, for any r. Ignoring vanishing derivatives,

let V represent the number of variations in sign in the sequence P, P', P", ....

Then the number of roots of P(x) = 0 exceeding r is V + 2v, where v is an

integer & o. Pescartel£ rule of signs is a particular case with r = 0, where

V_ is the same as the variations in sign in the coefficients. Any r for which

V = 0, all P^ having the same sign, is an upper bound for the roots of P(x) = 0.

In case V - V =1, there must be exactly one root on the interval from r to s.
r s

All roots are counted according ..to multiplicity, e.g., a double root is counted

twice.

Calculator --Tn current usage the term is used interchangeably with computer as

either one who or that which calculates or computes. Since the term "computer"

more often designates a machine in current literature, it is suggested here that

"calculator" be applied only to the human being, and "computer" only to the machine.

Carry --in digital addition of two numbers, an increase by one of the sum of the

digits in any position when the sum in the position to the right exceeds the base.
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Cebysev — see Chebyshev.

Central difference operator — see difference operators.

Central mean operator — see difference operators.

Characteristic polynomial — of a matrix, see matrix.

Characteristic value — of a matrix, see matrix, proper values and vectors, and

principal vector.

Characteristic vector — of a matrix, see matrix, principal vector, proper values

and vectors.

Chebyshev approximation — see minimax approximation.

v
Chebyshev expansion — an expansion in Chebyshev polynomials. Since T = x +

v
terms of lower degree, therefore x = T + Chebyshev polynomials of lower degree.

Let f(x) have the expansion

2
f(x) = a + a x + a x + ..., -l =£ x ^ 1.

v
By expressing each x in terms of Chebyshev polynomials and collecting terms one

has

f(x) = PQ + Px Tx(x) + P2 T2(x) + ....

It generally happens that for a given degree of accuracy this Chebyshev expansion

can be truncated much sooner than the power series expansion, hence for computing

purposes is more effective. See minimax approximation (for more details see Ko,

La).

Chebyshev polynomials - see also Chebyshev system, minimax approximation.

T0=1

T (x) = 2 "V cos v 6, x = cos 6.

Hence the polynomial T is of degree v, with leading coefficient 1, and

|Ty(x)| r£21""V for -1 ^x^1.
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They satisfy the recursion

4 T n = 4 x T -T n,
v+1 v v-1'

and T , further, possesses the important minimax property that among all poly

nomials of degree v and leading coefficient 1, the maximum absolute value of

Ty on the interval from -1 to +1 is least.

One should note that in some books the polynomials

Pv(x) =2V"1 Tv(x) =cos n6
are called the Chebyshev polynomials. For these the recursion is

(see Ko, La).

P . = 2x P - P ,
v+1 v v-1

Chebyshev quadrature formula — a formula of the form

b n

J W(X) f(x) dX =CD Yj t(X. ) + %> m
m 0

where the points x are so chosen that the integration is exact when f(x) is a

polynomial of degree as high as possible. It turns out the x can be determined

as roots of an algebraic equation of degree n + 1, but unless n ^ 7 or n = 9 they

do not all lie on the interval of integration. The formula is advantageous in

particular in cases where the f(x.) are experimentally measured, since in the

formula they are equally weighted.

Chebyshev system — of order n, a set of functions

90(x), 9x(x), ..., 9n(x),

linearly independent and continuous on an interval (a, b) with the property that

if the linear combination

Fn(x) =aQ 90(x) + ... +an q>n(x)

vanishes more than n times on the interval, then it vanishes identically, and
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hence a = a = .., = a =0. Such a system is

cp0 =1, 9X =x, ..., 9n =xn j

for the interval from 0 to 2k, the system

^0 = 1' 91'= Sin X> ^2 = cos x> '"> ^n-l = Sin *&> ^n = COS *€*
is a Chebyshev system of order 2n. Such systems are of importance in minimax

approximation.

Chip's method — for evaluating a determinant is identical in principle with

Gaussian elimination for matrix inversion and the solution of linear equations.

If the elements are a and a / 0, then from the ith row subtract the first

multiplied by a / a .. The result is a determinant of equal value with a zero

in position (i, l). After this has been done for each row other than the first,

the determinant reduces to one of lower order.

Choleski's method — for inverting a positive definite Hermitian matrix A is to

express it first in the form

A = R* R

where R is upper triangular and R* its conjugate transpose, and thence to compute

R and multiply by its conjugate transpose. The method is mathematically equiva

lent to the method of elimination, but requires the extraction of n square roots.

Closed quadrature formula — one which explicitly includes the values of the

ordinates at the endpoints, to be contrasted with an open formula in which the

ordinate of at least one endpoint does, not appear. Closed formulas are used as

correctors, open formulas as predictors, in the numerical solution of ordinary

differential equations.

Code — |br any given stored-program computer, each operation of its repertory is

represented by a code symbol, which is a particular sequence of characters. Also
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each cell in the storage unit is designated by a code symbol,, the address of the

cell. An ordered sequence of symbols representing operations and operands (in

the form of addresses) wher. represented in the storage unit, directs the computer

to perform the operations upon the operands in the specified sequence, and this

ordered set of code symbols is a machine code, and it defines a routine (or pro

gram) o

Complement — Xn decimal representation the complement of a number x is 10V - x,

where v is some fixed integer^, positive, negative, or zero. In binary representa

tion it Is 2 - x, where p. is an integer. The subtraction of a number is thus

essentially equivalent to the addition of its complement, and in computer con

struction it is generally easier to mechanize the formation of a complement than

that of an arbitrary difference. In binary notation, the one's-complement of x

is the number obtained when each digit x of x is replaced by 1 - x .

Computer — see calculator. Any physical device used as an aid in computing. It

is customary to distinguish two general classes, analog computers and digital com

puters.

Condition number — an indicator of numerical stability. In particular, the con

dition number of a matrix is usually taken to be a number that is equal to unity

for a scalar matrix, and that is large when the matrix is in some sense nearly

singular. Hence if the problem is to solve the linear system

A x = h,

the problem is unstable in case the condition number of A is large. Among the

several functions of the matrix that have been proposed, the most suitable seems

to be

7(A) = ||A|| ||A"1!!

for some appropriately chosen norm. The reason for this is that for small changes
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in A, the ratio of the relative change in the solution to the relative change in

A can be shown not to exceed 7(A). This is to say that if 5 A represents a small

change in A, and 5 x the induced change in x, then

(||Bx||/ ||x||)/ (||BA||/ ||A||) £||Ai| HA"1!! = 7(A),

provided second-order effects are neglected. More exactly, if E = A 5 A and

||E|| < 1, then

(||6 x|| / ||x||) / (||BA||/ ||A|D*7(A)/ (l - IN|).

It should be observed that this condition number relates only to the in-

vertibility of a matrix, and has no relation to the finding of its proper values

and vectors. If A is diagonalizable,

A = P A P"1

where A is diagonal, then ||p|| ||P~ || seems to be the appropriate condition number

for this problem.

Conformal mapping — a mapping of one region upon another that is one-to-one and

continuous, and such that angles and distances are preserved. Thus let arcs C.

and C„ in one region intersect in a point Pj and let these be mapped into arcs

C! and C' intersecting in P'. Let P. be any point on C., mapped into P* on C'.

PrcbHrvatlon Of dlsLaimeb means that the arc length from P'—frg-P>-iB th» some nn

that fpom P to P". Let 9 be the angle between tangents to C. and Cp at P, 9' that

between tangents to C' and C' at P'. Preservation of angles means that 9' = 9.

In case the regions are two-dimensional and simply connected, they can be regarded

as regions of two complex planes, and the mapping is then defined by z' = f(z),

where f(z) is analytic in z throughout the region.
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Conjugate gradients, method of — a method of successive approximation for

solving a system of linear equations which e#MM*ge€ after at most n steps.

The successive approximations are so chosen that each residual is orthogonal

to all preceding ones.

Continuant — a determinant of the form

K

a_ ... a
1 n

b.. b. ... b
0 1 n

4c Celled
socalled because the nth numerator and nth denominator of the continued fraction

are

F = bQ +aj bx +

/ ^
• • • cl

n

A = Kj

n 1vbobi ... b
n

( ^
• • • 9.

n

B = K

n ^lb2 ... b
n

0

-1

0

1

-1

0 0

0

0

0

Continued fractions — Consider the (possibly infinite) system of difference

equations

X0 = \ xl + al V

*1 =\ ^ + a2 *3>

X2=\Xl + al XV
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So long as no x vanishes or becomes infinite one can write

0

x.

x~ / x1 = bQ + a.± I (x± I Xg),

\ I *2 =\ +a2 / (xg /Xj),

x2 /^ =b2 +a5 /(^ /x^),

and with repeated substitution

xQ /x1 =bQ +a1/b~+&2/\ +"'
where each horizontal bar signifies the inclusion of all that follows. The right-

hand number is a continued fraction. If one arbitrarily sets x. . = 0 and x = 1,

considering only the first i equations, the finite continued fraction can be

evaluated by solving the ith equation for x, ..; substituting in the preceding

and solving for x ? / x. ..; and continuing until x0 / x is obtained. In many

applications the a. and b are functions of a variable x, and one truncates and

evaluates in the manner just described.

A finite continued fraction

F = b_ + a. /bT +...+a /b =A /B,
n 0 1/1 n ' n n ' n'

where A and B are polynomials in the a. and b. can be otherwise evaluated by

means of the recursions (see continuant)

A=bA,+aArt,
n n n-1 n n-2'

B=bB.+aBr>.
n n n-1 n n-2

These relations, however, though of great theoretical importance, are not to be

recommended for computation in general since they tend to be highly unstable

numerically.

The fraction F is called the nth approximant to F; A and B the nth
n ** n n

numerator and denominator. If all A and B are given, and if
n n ° '

A / B ^A n / B ...
n ' n r n+1 ' n+1

for every n, then the a and b are determined uniquely. In particular the
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approximants F2n are called the even parts, F2 the odd parts, of F, and it is

possible to form a continued fraction whose approximants are the even parts of

F, and one whose approximants are the odd parts.

For applications of continued fractions, see reciprocal differences,

Pade" table.

Correction -- A quantity added to a previously obtained approximation to yield a

better approximation. Sometimes the term is applied to x - x*, where x is the

true value and x* the approximation, and is contrasted with the difference x* - x

which is then designated the error. This sense is not the one adopted here.

Corrector --In solving initial value problems in ordinary differential equations,

a quadrature formula to be used for improving a given approximate value of the

dependent variable at an advance point, and contrasted with a predictor used to

obtain a first approximation. A predictor formula uses an open quadrature form

ula, a corrector formula a closed one.

Cracovians -- except for the rule of composition, the same as matrices, the

Cracovian product of A and B being the matrix product A B. Advocated by

Banachiewicz, they are in favor mostly among some European geodesists. Since

any Cracovian identity can be expressed with matrices and conversely, it is

clear that preference for either over the other can be based only on convenience,

tradition, and taste, in some combination.

Cramer's rule -- in the system of linear equations

A x = h,

let 5 = det A, and let 5 represent the determinant obtained when h replaces the

ith column of A. Then 6/5 are the elements of the solution vector x. The rule

is of great theoretical importance but of little value in computing practice.
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Crout's method — a method of triangular!zation for matrix inversion.

Cubature formulas — see multivariate interpolation.

Curve fitting — .Suppose that a physical variable y is known to bear a particular

functional relation to another variable x:

y = f(x; a, p, ...),

where the form of f is known, but where f contains certain parameters a, p, ...,

that are unknown. Thus in radioactive decay the amount of a constituent is known

to be an exponential function of time, y = a exp (-£ t), where t takes the place

of the above x. If it is possible to measure the y associated with any x, one

can make a series of measurements, x., y., and hope to solve the equations

yi = f^V a> P' •")
for the parameters. Since, in general, the measurements will be subject to error

one must make more measurements than there are parameters, and since the equations

will then be inconsistent, in general, it is necessary to establish some criterion

for making the "best" selection of the parameters so that, in some sense, all

equations are satisfied as nearly as possible, even though possibly none is satis

fied exactly.

A possible criterion is the minimax criterion: to select the parameters

so as to minimize the greatest of the quantities

|yi -f(x±; a, p, ...)|.

This is sometimes used, but is very difficult computationally in most cases. Some

times one resorts to trial and error, with visual inspection of the graphs. The

method of least squares can often be justified on grounds of probability, and

usually leads to the simplest computations.

The same mathematical problem arises when a known function 9(x) is to be

approximated in some fashion by a simpler one. For this purpose interpolation is
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the most usual method of procedure.

Sometimes one has only the empirical measurements x , y , but no theory

to prescribe a particular functional form f(xj ...). In that case one can only

apply intuition, and possibly trial and error, in selecting a convenient form.

See smoothing. A//.

Dandelin's method — a root-squaring method for solving algebraic equations in

which the equation 9(x) =0 is replaced by

9(-Vx) 9(-*v/x) = 0,

differing only mildly from the later Graeffe's method. Dandelin applied this

first in conjunction with Newton's method for accelerating convergence, but also

proposed repeated application as a method in itself.

Decimal — characterized by tenj compounded of ten parts. The decimal system of

number representation is the ordinary one using the radix 10.

Deferred approach to the limit — let 9 represent a quantity to be calculated by

a finite difference method (e.g., an integral)j let 9, represent the approximation

obtained when A x = fc. Often it is approximately true that

ih_^ , ^ u2 1,2 h4 1^ .^v^^*""
Let 9, and 9, represent similarly values obtained with h = h^ and h = hp. If

12 2h1 and h2 are small enough so that terms beyond h can be neglected, then

\h2=(hl %"h22 \) /(hl-h2J
is a much better approximation to 9 than is either 9, or 9 . Commonly one takes

h2 =hl / 2'
Deflation — a transformation applied to a matrix A when one proper value and vector

are known for the purpose of reducing the computations required for finding the

others. The general theorem is, if proper values of A are *_, V,, ..., \ , and if
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A v, =\. = X.. v , then proper values of

T

Al = A " Vl
T Tare X - k v1, \p, ..., \ , whatever the vector k. By choosing k to be a

multiple of the first row of A, and scaled so that

T

k vl ~ V

the first row of 1 is null.

Delta-square process -- Let a , a. , a. represent three consecutive terms in a

sequence, possibly three consecutive approximations to a root of an equation ob

tained by Newton's method, Bernoulli's method, or some other. In many situations,

p p

when the sequence has a limit, then a. - (A a.) /A a will be much closer to

this limit than will a ,. Here A represents the difference operator. If the

approach is geometric, that is, if a = a + a p , then this gives the limit a

exactly.

The formula can be derived by assuming the above form for a. and solving

for a. A somewhat more general formula in terms of a , a , a 2, a. ,, a >

can be obtained on the assumption that a. = a + a., p.. + oc- p2 . The result has

a meaning even when |p| 2=1, hence the method is sometimes effective for summing

divergent series. Generalizations have been developed by Shanks and by Wynn.

DescarteSs rule of signs — for polynomials, a special case of Budan's theorem.

Detection of tabular errors -- by means of differences, is based upon the follow

ing table, readily verified and extended:
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y 5 1 62 y 83y
0

0

0

e

0

e

€

»3e
e

-e

=2e

3e
0

0

e

-e

0 0

This shows that the effect of small errors becomes accentuated progressively in

the columns of differences.

Diagonal matrix -- see matrix.

Difference equation — any equation involving finite differences. The usual

methods for solving differential equations reduce to the solution of difference

equations, with either the derivatives or the integrals expressed approximately

in terms of finite differences {see differentiation formulas, quadrature formulas,

ordinary differential equations, partial differential equations).

Difference operators — for interpolation based upon equally spaced points, most

standard formulas, as well as others, can be developed and expressed easily in

terms of a few difference operators which can be manipulated formally as algebraic

quantities. In their definition given below it is to be understood that they

have no existence independent of the functions upon which they operate. Under

standing that A x = h is fixed, the operators are defined as follows:

[displacement operator];

[forward difference operator];

[backward difference operator];

[central difference operator];

[central mean operator];

[differential operator];

EU f(x,) = f (x + u h)

A f(x,> = f(x + h) - f(x)

V f(x] = f (x) - f(k - h)

5 f(x] = f(x + h/2) - f(x -h/2)

2jJ f(x] = f(x + h/2) + f(x -h/2)

D f(x) = d f(x) / dx

e f(x> = h d f(x) / dx.
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The last operator is not in common use, but simplifies the writing of some

formulas and may be called the logarithmic displacement operator. For functions

of several variables, subscripts can be used to specify the variable with respect

to which the operator acts. Thus

Ex f^x' y> •") = f(x + b, y, ...).

All operators can be defined formally in terms of one of them. Thus

A =E -1, V=1 -E-1, E =exp 6,

the last being the operational expression of the Taylor series.

Examples of the application of these relations are to be found under

appropriate headings, but the following illustration may be in order here. Let

x=xQ +uh, u= (x -xQ) /h, f(x) =EU f(xQ).

Since E = 1 + A, therefore, by the binomial theorem,

EU = 1 + |,|A + In|A^ +I I& + ...c)-13*-(;h
and therefore, formally, taking x = xn + i h, one has

x - x (x - x)(x - x.) p
f(x) =f(x )+~r—^ Af(x )+ SL- i- £f f(xn) + ...

2i h

Unless u is a non-negative integer this is an infinite series, but for purposes

of interpolation the series is truncated by dropping all but the first several

terms. If all terms are dropped beyond that containing An f(x ), then there is

retained on the right that nth degree polynomial that passes through the n+1

points whose coordinates are

\, f(xt), i = 0, 1, ..., n,

and the formula is Newton's interpolation formula with forward'differences. If

one writes E = (l -\?) and proceeds similarly one obtains Newton's interpolation

formula with backward differences:

x - x (x - x )(x - x )
f(x) =f(xQ) + h v f(xQ) + ^—g ^— v f(xQ) + ...

^ • Li
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It is to be noted that the binomial coefficients

fU) _u(u-D .-• (u-r+1)

are defined even when u is not a positive integer, and they are polynomials in u.

Sometimes the symbol vl, \ is used, and related to these polynomials are the fac

torial polynomials

u^ =u(u -1) ... (u -r+ 1) = r! u
(r)

Note that

Au^=ru^, Au, v=u, ...
> (r) (r-1)

Differential analyzer — a computer, generally analog, designed for the purpose

of solving differential equations.

Differential equation — an equation which relates, for each choice of the inde

pendent variable (s), the values of one or more dependent variable and one or more

derivative of each. It is an ordinary differential equation in case only a single

independent variable occurs; a partial differential equation when there are two or

more. For a dependent variable to be uniquely defined as a function of the inde

pendent variable (s), there must be associated a sufficient number of initial or

boundary conditions, or a combination of both. For methods of numerical solution

see ordinary differential equations, partial differential equations, elliptic

equations, parabolic equations, hyperbolic equations.

Differentiation formulas (numerical) — a quite general procedure for carrying out

numerical differentiation is to use interpolation, or least squares, or some other

method for approximating the function of interest, and then to differentiate the

approximating function. When the points of interpolation are unequally spaced one

can use divided differences to form an interpolation polynomial.
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When the points are uniformly spaced, a number of convenient formulas

can be derived by means of difference operators. Since

h D = 9 = log (1 + A) = - log (1 - V),

one obtains

0=A-A2/2+A3/3 - ...

=V+V2/2+V3/3+...,

in terms of forward and backward differences, respectively. Derivatives of higher

order can be obtained by raising to higher powers the expressions for 9,

Expressions in terms of central differences require more manipulation to

obtain, but one finds

9 = u[5 -55/3! + (2:)2 55/5I - (y.f 57/7i + ...],

e2 =2[s2/2i -bk/ki +(2:,)2 56/6: -(3O2 s8/8: + ...].

To obtain higher powers write (r = 9 • (T, Q = ((T) , (P = 9 • 9 , .... To apply,

one truncates the series at some point, and if desired one can replace A, V, 5 and

H 6 by their expressions in terms of E.'

In case the derivative is required at a point other than a tabulated one,

say at xQ + u h, one must apply E , expressing E in terms of the appropriate dif

ference operator. However, the error can be expected to be substantially greater.

See Sttrling numbers.

Digital computer — As contrasted with analog computer, a computing aid that repre

sents numbers digitally, in decimal, binary, or (conceivably) other base. The

simplest artificial example is the abacus, which represents numbers digitally in

such a way as to facilitate carrying out additive operations, hence multiplication

and division as sequences of these. Desk computers perform these operations auto

matically, and sometimes also square-rooting or other special sequences. The very

high speed, general purpose computers are stored-program computers and are digital.
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Direct methods — usually contrasted with iterative methods or methods of successive

approximation for matrix inversion and the solution of equations. The exact inverse

or solution is expressed as the result of a finite sequence of operations or scalars.

Displacement operator — see difference operators.

Divided differences — for interpolation with unequally spaced abscissae, let f(x)

be the function to be interpolated, and let its values be given at

Xq> x^, •••> x^,

where it is not required that they be in order or even distinct. Form the table as

follows:

xo f(xQ)

f(xQ, x^

*1 f(xx)

f(xx, x2)
X0' Xl' "^2

X2 f(x2)

f(x2, x^)

f(x1, x2, x?)

X3 f(*j)
f(x?, x^)

f (Xg t X, , X^ )

XJ+ f(\)

f(xQ, V x^ xj

f^X., Xg, X-,, X^)

where

f(XjL, Xj) = [f(x±) - f(Xj)] / (Xi - Xj)j
f(xt, Xj, x^ = [f(X;L, Xj) - f(Xj, x^)] I (Xi - x^j

• ••••••

When there are coincident abscissae they should be placed in adjacency, and thus

f(x, x) = f'(x),

f(x, x, x) = f"(x) / 21,
• •
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It can be shown that any divided difference is a symmetric function of all its

arguments, which means that

I^..., X., ..., X,, ••• y = X ^. «•, X., ..., X., ...Jy

it being understood that dots represent arguments that are the same on the two

sides.

In terms of divided differences one can write the following interpolation

formula due to Newton:

f(x) = f(xQ) + (x -xQ) f(xQ, x1) + (x -xQ) (x -xx) f(xQ, x^, x2)

+ ... + (x - xQ) ... (x - xq) f(xQ, x1, ..., xq, x),

where the last term written is the remainder and previous ones constitute the

interpolation formula.

Doollttle method — a particular scheme of recording intermediate results in apply

ing triangularization to solve a system of normal equations. See matrix inversion.

Dot product — see scalar product.

Eigenfunction (Eigenfunktion) — see eigenvalue.

Eigenvalue (Eigenwert) — any value of the scalar \ for which the integral equation

9(x) = X J K(x, y) 9(y) d y has a nontrivlal solution. The associated solution

9('x) is called the eigenfunction (from the German Eigenfunktion). The term is

also commonly applied to proper value of a matrix, but if it is to be used in this

connection it should denote the reciprocal of the proper value. B^ tL^&qe^ Ua-r.'es.
&c&n Pet- integral G^<£#.d~tfdAiz>,
Eigenvector — a proper vector of a matrix. See eigenvalue, matrix, principal

vector.

Elimination — a method of solving a system of equations in which one of the

equations is solved for one of the unknowns in terms of the others, and the solu

tion used to replace this unknown in all the other equations. Thus if the orig-
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inal system was one of n equations in n unknowns, one obtains a new system of

which n - 1 of the equations contain only n - 1 of the unknowns.

Elliptic equation — a partial differential equation of particular form. Ordin

arily, along with the equation, it is necessary if the solution is to be well de

fined to impose conditions along the boundary, such as the value of the dependent

variable (Dirichlet condition), or its normal derivative (Neumann condition). In
La.plouCj£- 2 2 -2 2 2

the simple case the Mmm operator D + D is represented by h" (5 +5 )

which gives rise to the coefficient scheme

1

1-^1

1

which is always implicit (see matrix inversion). Refer to Co, Ku, for more de

tails on methods.

Enlargement, methods of — methods of matrix inversion by which the inverse of a

matrix of order m is expressible in terms of that of a submatrix of order m - 1.

Error — in general, any deviation of a computed quantity from the theoretically

correct value. In a restricted sense, that deviation due to unavoidable random

disturbances, or to the use of finite approximations to what is defined by an

infinite series, and hence to be contrasted with blunder. Errors of measurement

arise from the use of instruments of less than infinite precision, and from random,

uncontrollable disturbances. Truncation errors are due to the use of a term as

an approximation for the limit of an infinite sequence, or, in general, to the

use of any approximation in place of the theoretically correct quantity (cf

Remainder, Roundoff). If f(x) is to be computed but only the approximation

x* to x is known, then f(x) - f(x*) is the propagated error. Bounds for the

propagated error can be had by applying mean value theorems when f has suitable
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continuity properties. Generated errors are those which arise in the computation

itself because of rounding. They depend upon the details of the routine.

If f is the true and f* the computed value, sometimes f - f* is called

the correction, f* - f the error. The term correction, however, will be used in

a different way here, to designate a quantity to be added to f* for reducing the

error, hence an approximation to the error.

Escalator method --a method of enlargement for matrix inversion, and for computing

proper values and vectors of matrices. Eajtlideost ajqorith/n -- See fofe*' £otv'*C/i}
factor.
Euler constant — / n \

7 = lim 2j k~ ~ loS n
n -»» * 1 '

Euler-Maclaurin formula — Me- fo^(i\cLl &*pension-.

X0

where

f(x) dx =h(fQ/2 +f1+f2 + ... + tm_x + fj2)

- I k M^ - 4v"lf) / vs.

t± = f(xi) = f(xQ + i h)

and the B are the Bernoulli numbers.

Euler method — for solving an ordinary differential equation

y' = f(x, y)

takes

yv+l = yv + h fV

fv = f(V yv}*
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The "improved Euler method" obtains sequentially

yv+| =yv +hfv /2>

yv+l = yv +h fv+i

and can be considered an elementary form of the Runge-Kutta method. The "improved

Euler-Cauchy method" forms

yv+l=yv+h V fv+l = f(xv+l> yv+l)>

y ,. = y + h(f + f* .) / 2.
•'v+l Jv v v v+1' '

See Co.

Euler summation formula — the Euler-Maclaurin formula when used for summing a

series.

Euler transformation — of an infinite series whose partial sums are

S =a^+anx+...+a x
n 0 1 n

utilizes the identity
n-1

(1 -x) Sq =aQ -an xn+ +x J Aai xl-
0

It is a method for the summation of series.

Everett interpolation formula — in the notation of difference operators

EU =(1-u) +(2-) 62 +(5-j 54 +... +[u +j1;-) 62 +|2;U) ^+...] E.
It thus requires differences of even orders only, but they both must be taken at

xfi and at x. = x + h.

Extrapolation — contrasted with interpolation when the function is required at a

point outside the range of the x.. The same methods are applied.

Factor theorem -- see algebraic equations.

Factorial coefficients — Sttrling numbers, so called from their definition.

False position, method of — see regula falsi.
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Fixed-point — a system of computing in which all quantities must be scaled 60 as

to be representable by a fixed number of digits and with the radix point in a

fixed position. Contrasted with floating-point computations in which a scale

factor is explicitly computed and associated with each number, and represented

as a power of the radix. In some digital computers floating-point operations are

automatic; in others they are not.

Floating-point — see fixed-point.

Forward-difference operator — see difference operators.

Forward differences — see difference operators.

Forward interpolation — see Newton interpolation formulas.

Fourier series — a.aseries of the form

f(x) = a + a. cos x + ap cos 2 x + ... + \> sin x + bp sin 2 x + ...
IS allied a, tngcnoM&trtc^ Series-

Because of the orthogonality relations

r« r *
J cos p x cos q x dx = J sin p x sin q x dx = 0, p ^ q,
-it -Jt

-it

J cos p x sin q x dx = 0

together with

f 2 r 2J cos p x dx = J sin p x dx = n,
-it

it follows that

a = it" r f(x) cos p x dx, b = it" J f(x) s±n p.x dx,
p J p -it

oW tu/tf "o.p Q-tuL hP -so deVioejL Hu ynft ii <?«/»ed a. Fourier Series,.
Fredholm equation — an integral equation with fixed limits:

f(x) =9(x) - \ J K(x, i) 9(0 d I
a

where 9 is unknown. For a numerical solution, let a^f <,,, s| 5b and apply0—— * • • — ^

n

a quadrature formula of the form
b n

f g(x) dx =J, \ g(£±).
a Q
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Then

w

f(^) =9(li) -\ Yj ^3 K(£i> O «P(Sj).
These are n+1 equations ir. n + 1 unknowns 9(|.) (matrix inversion). See Co, Ko.

J : :

Functional iteration -- see iterative methods.

Galerkin method — see Ritz method.

Gaussian elimination — matrix inversion by triangularization.

Gaussian interpolation formulas -- (also called the Newton-Gauss formulas) in the

notation of difference operators, the forward formula is

6^ E2 +
i

EU = 1 + u 6 E2 +

and the backward formula is

E~U = 1 - u 6 E

ul 62 u+i| R3 wi U+l ~4

k r +

l+(p)52" (Y^^+ftV
Gaussian quadrature formula — any formula of the form

b n

J w(x) f(x) dx = J u f(x )+R
a 0 x

denS,'h/
where the ifilgiib function w(x) a: 0$ the coefficients u. are constant and depend

only upon the function w(x) and the range of integration? and the abscissae x

are selected so that the remainder R vanishes whenever f(x) is a polynomial of

degree 2n + 1 or less. It can be shown that these x exist and satisfy an algebraic

equation of degree n + 1; that they are real; and that when ordered they satisfy

a<X0<xl< '*• <xn<b° 1~ey are> in fact> zeros of one of a set of orthogonal
polynomials.

If a and b are both finite, one can make a substitution of variable, if

necessary, and suppose b = - a = 1. Then if w(x) = 1, the x. are zeros of the

Legendre polynomial of degree n+1, and one has for



n = 2

n = 3
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"0 = ^ = 1;

uQ = ^ =5/9, ^ =8/9;

^0 =Mj =(18 -J30) /36, ^ =n2 =(18 +«730) /36.

By choosing w(x) appropriately either a or b or both can be infinite. For tabu

lation of x± and \i , and for a discussion of the theory, see Ko.

Gauss-sS»del method — aterm sometimes applied to the total step iteration for

solving linear equations (see matrix inversion) although both Gauss and SJ»del

used a relaxation method.

Generated error — see error.

Givens method — for computing proper values of a hermitian matrix.

Graduation — another term for smoothing.

Graeffe method — a root-squaring method for solving algebraic equations. Given

the algebraic equation, separate odd and even powers of x on opposite sides of the

equation:

n , n-2 n-4 n-1 n-^x +a2 x + &k x + ... =&1 xu x+a xn D+ ....

If both sides are squared, all powers will be even, and x2 can be replaced by y.

Separate in the same way and repeat. After p such operations, let the equation be

z +c2z + ... = c.. z +....

Then the roots z± of this equation, and the roots x± of the first, are related by

zi = xi> v = 2 •
Then if

IxJ > |xpj a ...,

it follows that, approximately,

vci = V



If

then, approximately,

And, if
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|xj S [xj > jx^| 2

z. v v
C2 ~ *! X2*

|X-| I — yXpI ^ jx,j — «••,
v vthen z1 = xl. and z2 = x_ satisfy, approximately,

When all roots are distinct}

i v . / V . /

W *3 = c3/cV x4 = ck/cy ••

approximately. An enumeration of all possible contingencies resulting from the

presence of conjugate pairs equal in modulus is out of the question, but generally

speaking, a term that continues to oscillate rather than to increase after con

tinued squaring marks the presence of a conjugate pair, and the pair z and z.

will satisfy approximately

Ci-1 z& "ci z+ci+l =°
(see symmetric functions). The method can be generalized to apply to a function

expressible in the form

f(x) =l+a/x+a2/x + ....

If the series converges for |x| > R, then all zeros of f(x) exceeding R in modulus

can be found (see Ho).

Gram-Schmidt orthogonalization — see orthogonal!zation.

V . / V . / V .

2 • «z - c. z + cp = 0.
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Greenfrfunction — a function K (x, |) associated with a given boundary value

problem L[y] = 9(x) that has the property that the solution is expressible in the

form

y(x) = /K(x, I) 9(1) d %> . t. LC ctef/^
As an example, if L[y] * y", and the boundary conditions are y(0) = y(l) = 0, then

(l - I) x for x ^ 5,
K(x, |) =

(1 - x) % for x > £.

The limits of integration are then from 0 to 1. The notion can be generalized to

spaces of higher dimensionality. For theoretical investigations the function is

of fundamental importance, but for numerical computation it is seldom used.

Gregory formula — for numerical quadrature:

x

J rf(x) dx =h(i fQ + f± +fr + ... +£ fr)
X0

(A fr_x -AfQ) /12 -(A2 fr_2 +A2 fQ) /2k

19(A5 fr_3 -A5 fQ) /720 -3(A4 f^ +A^ fQ) /160 +--

Gregory-Newton formula — generally called the Newton formula for forward dif

ferences, though known to Gregory (see difference operators).

Group relaxation — a variant of the total step iteration for solving a linear

system (see matrix inversion) in which at each step two or more equations are

satisfied simultaneously. Same as block relaxation.

Hermite interpolation formula — makes use of the polynomial of degree 2n + 1 with

prescribed value and prescribed slope at each of the n+1 abscissae

xq> x^, ..., x^,
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assumed distinct. The polynomial is

H(x) = £[f v (x) + f.1 w (x)] L.2(x)

where f and f! are the prescribed values and slopes; where

wi(x) =x -x±s v±(x) =1 -wjx) a>"(Xl) / a>'(x);

and where the L (x) and co(x) occur in the Lagrange interpolation formula.

Hermitian matrix --a matrix A such that A* = A. Its proper values are all real

and it can always be diagonalized. In fact, there exists a unitary matrix V such

that

A = V A V*

where A is diagonal. The computation of the proper values and vectors is much

simpler, therefore, than in the more general case.

One of the most successful methods is that of Givens, which will be

described for the symmetric (real) case: Let R__ be a matrix that differs from
23

the identity only in the elements (2, 2), (3, 3), (2, 3), and (3) 2), and let

p22 = cos ^ = P33) P25 = -P32 = sin CP*

Then R is orthogonal, and 9 can be chosen so that in

R23T A R23
the elements in positions (l, 3) and (3, l) vanish. If amatrix R^ is formed

analogously, the elements in (l, k) and (h, l) can be annihilated without disturb

ing the zeros previously created. By continuing this process, the final matrix

will be tridiagonal in form:

T =

a-L P-L 0 0

31 a2 p2 0

0 p2 a5 p5
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The characteristic polynomial can be obtained by means of a very simple recursion:

90U) = 1,

91(\) = \ -a±,

292(\) = (\ -a2) 9X(^) -Px 90U),

95(X) =(\ -a5) 92(\) -P229X(M,
• • • • • >

<p (\) being the'.required polynomial. Howevera ;fche polynomials 9 (X) form a Sturm

sequence, possessing all the properties required for satisfying the Sturm theorem.

Consequently, for any u, by counting the variations in sign of the sequence of

values 9.(u) one can ascertain the precise number of proper values exceeding and

exceeded by \i. It: is therefore advantageous not to expand the polynomial 9(\) ex

plicitly, but to proceed as follows for solving the equation: Having found an

interval on which one or more roots are known to lie, take consecutive midpoints,

evaluating the terms of the sequence for each by means of the recursion.

If the vectors are required, it will be necessary to form the product R

of all the rotations applied. Then

A R = R T,

and if t is a proper vector of T belonging to \:

T t = \ t,

then

ARt = RTt = \Rt

so that R t is a proper vector of A belonging to \. (See also Lanczos method of

biorthogonalization)♦

Another method, often called the Jacobi method, for computing proper values

is iterative in character, and makes use of the fact that the matrix A can be trans-
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formed to the diagonal form A as the limit of an infinite sequence of plane rota

tions. The rotation matrices R are of the same form as before, but the angle

9 is chosen so that in the matrix

T
R. . A R.,
ij lj

the elements vanish in the positions (i, j) and (j, i). Zeros are not preserved,

in general, but the sum of the squares of the diagonal elements is increased by the

squares of the annihilated elements at each step. Optimally one should, at each

step, annihilate the pair of largest off-diagonal elements, but to reduce the

searching one can go through the elements above the diagonal in some sequential

order, annihilating all elements greater than some specified magnitude. With suc

cessive cycles the level should be decreased. In the limit the product of all the

rotation matrices R is the matrix V of proper vectors. This method has been

described in detail by von Neumann, Goldstine, and Murray.

Hessenberg method — see proper values and vectors.

Highest common factor --of two polynomials, P and P , is the polynomial of great

est degree that divides both. In case this is a constant, the polynomials are

said to be relatively prime. It can be found by applying the Euclidean algorithm:

Supposing the degree of Px not exceeding that of P , divide P into P and let -P

represent the remainder; divide P„ into P.. with -P, the remainder; ...; then if
d. X 3

Pi ^ °' Pi+1 =°> Pi is the niShes't common factor. This is represented

P0 = Ql Pl " P2'

Pl =% P2 " p3>

Pi-1 = Qi Pi'
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Hitchcock method — for finding complex roots of an algebraic equation. See

Bairstow method.
^~——"—— .e

Horner method -.- for obtaining irrational roots of an algebraic equation: Given

that a particular root is located between consecutive integers n~ and nn + 1, reduce

the roots by n_. Then locate the root between consecutive tenths, say n../lO and

(nx + l)/lO, 0^^ ^ 9, and reduce by n^/lO. By continuing, the root can be de

termined as

-1 -2n + n1 10 + np 10 + ...

to as many decimals as desired (see synthetic division). For hand computation

the method is not to be recommended, but with a binary machine the method takes

the form of successive bisection of an interval on which a root is known to lie,

in order to obtain successive binary digits, and the method is often very effective

(see algebraic equations).

Hyperbolic equation — a second order partial differential equation. For the

solution to be well defined ordinarily initial and boundary conditions are needed.

In the simple case the equation can be reduced to the form u - u + ... = 0,
xx yy '

where omitted terms involve no derivatives of second or higher order. The usual

difference scheme is representable
1

T2 2(1 - T2) T2
1

where t = A y./ A x. If initial conditions are given along a horizontal line, it is

necessary that t < l for adequate numerical stability.

Initial-value problems — for ordinary differential equations those for which the

initial values of the dependent variables are specified; for a partial differential

equation one of parabolic or hyperbolic type, requiring the specification of initial

conditions as well as possibly conditions along the boundary.
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Inner product — a distributive operation defined on pairs of vectors or functions

in some space to yield a scalar, and such that the result is real and non-negative

when the two vectors or functions are the same. In the latter case it may be taken

to represent the squared length, and thus a metric is defined.

For ordinary vectors the inner product is generally taken to be the or

dinary scalar product. In function space one first prescribes a nondecreasing

real function o, and defines the inner product of 9 and ty to be

(<P, *)=/?Hff.

To say that the operation is distributive means that '.

(ax 9-l +a2 92,*) =a^, V) +^(q^lO, and (9, ^ ^ +pg ^) =p1(<p, ^ +02(q>, *2)

where a.., a2, p.., pp are scalars.

Integration, numerical — see quadrature formulas.

Interpolation — the dox-ermiftation from tabulated values of a function, and pos

sibly of its derivatives, of values not included in a table. Let f(x), and pos

sibly derivatives, be tabulated at x , ..., x . Usually one selects a set of

functions 9Q, ..., q> , which may be polynomials, trigonometric functions, exponen

tials, or of any other convenient class, and applies some criteria for selecting

coefficients a± such that aQ 9Q + ... + a 9 is accepted as an approximation

P[f|x] to f(x). The most common criteria are agreement of P with f (and possibly

derivatives) at the x . Most commonly the term "interpolation" is applied only

when criteria of this type are applied. Cf. difference operators; Aitken method;

Lagrange interpolation formula; Hermite interpolation formula; Newton interpolation

formula; and, for other criteria, minimax approximation, least squares.
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Inverse interpolation — the de^erminati-en, from an interpolating polynomial, of

the value of an abscissa corresponding to a given ordinate. This amounts to solving

an algebraic equation of degree equal to the polynomial. See Ko, W and R.

Iterative methods — for solving equations, whether algebraic or transcendental,

are, in fact, methods of successive approximation in which, having given one or

more approximations to a solution, it is used in computing an improved one. Only

the case of a single equation in a single variable will be considered here (see

matrix inversion and the solution of linear equations, and simultaneous equations;

also Ho for further development of the theory).

If the equation to be solved is

f(x) = 0,

let

9(x) = x - g(x) f(x),

where throughout some region containing a, the root to be determined, g(x) nowhere

vanishes or becomes infinite. Then

a = 9(a),

and if, for some x_ in this region, every

x. n = 9(x.)
l+l TX iy

is again in the region .and the sequence of x converges, it necessarily converges

to a root. A sufficient condition for this is that

at every point of the region. Moreover, if 9 is analytic in some circle about x_,

and if it can be shown that for some positive k < 1,

|9(x') - 9(x")| < k|x' - x"|,

whenever both x' and x" are in the circle, then it can be concluded that every x.

will, in fact, fall within the circle and that the equation has a root a to which
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the sequence converges.

Newton's method is obtained with

g(x) = 1 / f'(x),

and one is assured of convergence if, for real a,

f(xQ) f"(x0) > 0,

and neither f' nor f" changes sign between a and x .

Jacob! method — for computing proper values of a hermitian matrix.

Jordan method — a method of matrix inversion in which by a succession of row

operations one reduces the given matrix to diagonal form.

Jordan normal form — see matrix.

Kronecker delta — „ ,s o if i £ j
d 1 if i = j.

Krylov method — see proper values and vectors.

Lagrange interpolation formula --a formula for interpolation that may be used when

the abscissae xQ, x^, ..., xq at which f(x) is known are distinct but not necessarily

equally spaced. Let

a)(x) = (x -xQ) (x -X]L) ... (x -xn),

L (x) = co(x) / [(x - x ) <o'(x )]
0,*

2

Then the Lagrange formula is

[ C(x -x^ /(Xi -Xj)].

The polynomials L±(x) have been tabulated for particular spacings of the abscissae,

since they are independent of the function f to be interpolated. In case some x

are coincident, confluent forms exist (see Ho for a general theory), but in practice

it is simpler then to use divided differences.
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Laguerre polynomials -- orthogonal polynomials on the interval ( 0, «>) with the

function

I \ OL -X . ,w(x) = x e , a > -1.

They satisfy the recursion

Ln+]_(x) - (x -a -2n-l) Ln(x) + n(a + n) Ln-1(x) =0

with

LQ(x) = l, L (x) = x -a - 1.

Lanczos method of biorthogonalization — a method of forming sequentially the

T
columns of matrices B and C such that B C = D is diagonal, and, for a given matrix

A,

T

A B == B T,
T

A C = C T,

'Zll Z12 0 0 - -•>

1 Z22 z 0 ...

0 1 z33 z34 '

a tridiagonal matrix. If the initial columns of B and C are chosen so that no

diagonal element of D vanishes, the reduction can be carried through to completion

barring special properties of A. See proper values and vectors. For Hermitian

matrices the method is equivalent to that of Givens.

Laplace differential equation — 2 _

2
where V is the Laplacian operator. The nonhomogeneous form, in which a known

function of the independent variables occurs on the right, is known as the Poisson

equation.

2
Laplacian operator -- sometimes represented by A, sometimes by y > and of the form

a" / 3 x +o" / 3 y +....

See Laplace differential equation, Poisson differential equation.

Latent roots — see proper values and vectors, matrix.
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Least squares — a method of smoothing or curve fitting which selects the fitted

curve (or surface) so as to minimize the sum of the squares of the deviations of

the given points from the curve (or surface). In the linear case one has a system

which can be expressed in matrix form as

X c = y + d,

where the matrix X is N x n, with N > n; y is the vector of measured quantities;

and the length of the residual vector d is to be minimized. If the measurements

are equally weighted, this means that c is chosen so that d d is as small as

T
possible; if not, then d W d is to be made as small as possible, where W is the

diagonal matrix whose elements are the weights. The solution is that of the system

T T
X W X x = X W y,

where W = I if the weights are equal (see matrix inversion). For fitting a poly

nomial the matrix X has the form

X

x.

^3

x4

1

2

"3
2

x4

n-11
xn

n-1

n-1

n-1
Xi.

/
where x^ is the value of the independent variable for the ith measurement. How

ever, the use of orthogonal polynomials is advisable for this problem.

In polynomial fitting the unknown parameters are the coefficients of the

polynomial, and they occur linearly in the equations they satisfy. In case the

theoretical relationship is of the form

r\ = f(|j a, 0, ...)

where the parameters a, 0, ..., do not occur linearly, it is generally necessary
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to linearize the equations in order to solve them. Two methods can be suggested,

and either requires initial, sufficiently close, approximations a, 0 , ...,

which are to be improved progressively. By one method one forms the quantity to

be minimized,

6(a, 0, ...) =X^ -f(li; a, 0, ...)]2,
and applies a method of steepest descent. In the other method one expands in

Taylor series

f(li* V p0> •••) + (a -«0) fa(^; aQ, 0Q, ...) + (0 -pQ) fp(|.5 aQ, 0Q, ...)
+ ... = r\. + 5..

i l

Here one wishes to minimize ),5,, or possibly Xa) 5 where the a>. are weights.
i *—' i i i

If aQ> 0_, ... are sufficiently close to the true a, 0, ..., one can omit quad

ratic and higher terms in a - a_, 0 - 0 , ..., and solve as a linear least squares

problem for these differences. The result could be added as partial corrections

to QL, 0_, ..., and the process repeated. See De.

Legendre polynomials — orthogonal polynomials on the interval (-1, l) with the

w#*gBt'function w(x) = 1. They satisfy the recursion

(n + 1) Pn+1 (x) - (2n + 1) x Pn (x) +x P^ (x) = 0,

and

2
P
0

1, Px = X, P2 = (3x* -1) / 2,

P5 =(5X5 -3x) /2, Pu =(35x4 -30x2 +3) /8.
Liebmann method -- the Gauss-Seidel method applied to the solution of the dif

ference equations approximating the Laplace or the Poisson equation. See matrix

inversion, partial differential equations.
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Linear equations (algebraic) — equations in which the unknowns occur only

linearly, hence of the form

&.., - x. + & _ x_ + ... = n, ,
n *1 + ai2 *2

a21 "*! + a22 *2 ' "" _ "2*

They are homogeneous if 0=1^= hg ^ ..., otherwise nonhomogeneous. In matrix

form the equations can be written

A x = h,

and the condition for solvability is that the rank of A and the rank of the

augmented matrix (A, h) be the same. For methods of solving see matrix inversion.

Linear inequalities — a system of relations among variables x ,possibly including

llnear equations among them, but also including at least one inequality of the

form

Za-i x± *b
(in practice a strict inequality is seldom required). Such a system may be in

compatible (e.g., x± SO, x2 ^0, -Xj_ -3^ -12:0), may define aunique point

(e.g., ^20, ^20, -^ -Xg 2:0), or else will define aregion in space, not
necessarily bounded (e.g., Xj_ a0, x^ s0, ~x± -Xg +12: odefine abounded

regionj^2:0, ^2 0, x± + x^ -l&Oan unbounded region).

The inequality written above can be replaced by the equivalent pair

xQ +2a. x± =b±, xQ 2: 0,
and in general it is possible to replace a system of inequalities by a system in

the special form

A x = b, x SO,

where A is a rectangular matrix, x and b are vectors.

The principal applications are in linear programming.

»o = h_.
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Linear programming — the problem of minimizing or maximizing a linear function

C = c + 2jc- x , subject to constraints in the form of linear inequalities to

be satisfied by the x.. The function C may represent costs or profits or losses

in a business activity or a competition (possibly against nature), and the con

straints represent limitations upon resources or their availability.

If the inequalities are compatible and satisfied by more than a single

point x , the solution lies on the boundary, and, if unique, is the intersection

of some subset of the planes whose equations are formed by using equality instead

of inequality signs. Hence, in principle, the problem could be solved by solving

the equations in all possible combinations and comparing the values of C. How

ever, the difficulty of the problem comes from the fact that if the numbers of

variables and relations are at all large, as they often are in practice, the

number of sets to be solved may be astronomical. For such cases the simplex

method may be used.

Lipschitz condition — a condition somewhat stronger than simple continuity. In

the simplest form, a function f(x) is said to satisfy a Lipschitz condition on

the interval from a to b in case there exists a constant k such that

|f(xx) -ftxg)! ^k ^ -x2|

whenever x.^ and x^ both lie on the interval. If the derivative exists and is

on the closed interval then the Lipschitz condition is satisfied, but

not conversely. The condition is a useful one in the study of the solution of

a differential equation. Various generalizations are possible, in particular to

functions of several variables.
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Lobacevskii method --in current Russian literature, any root-sguarIng method

as a method of solving algebraic equations numerically. Actually the idea of

root-squaring for this purpose had already been proposed by Dandelin, and the

specific algorithm proposed by Lobacevskii was slightly more cumbersome than

Graeffe's method which is the one in common use at present.

Lozenge diagram — a mnemonic scheme from which can be read off a great variety

of forms of the interpolating polynomial for equal-interval interpolation (see

Ku for generalization). For forward difference formulas write

'u + 2]

0

u + 1

1

u

1

u - 1

1

u - 2

1

rA f
-2

"A fr

^A f,

where the table can be extended upwards, downwards, and to the right in an obvious

way. A valid polynomial for interpolation can be constructed by starting with any

fi in the first column, multiplying the binomial coefficient on the right by either

of the two A f to which it is joined, multiplying the coefficient on the right of
2

that by either A f continuing thus and adding results. Moreover, all polynomials



-53-

that end with the same A f. on the right are identically equal.

The same diagram can be used for central differences if, for example,

2 2one replaces A f by 5 f ,/p, A f by 5 f ., ....

L R transformation — a method for obtaining the proper values and vectors of a

matrix A, is made by taking AQ = A and forming

Ai = Li Ri> Ai+1 = Ri Li'

where R. is upper triangular and L. unit lower triangular. Under rather general

circumstances the sequence of matrices A. approaches an upper triangular matrix

in the limit, and since all A. have the same proper values as has A itself, the

diagonal elements of the limit matrix are these proper values. The method is due

to Rutishauser, who has also devised methods of accelerating convergence and for

treating exceptional cases. For a discussion of the factorization see matrix

inversion. (See NBS).

Maclaurin series — Taylor series about the origin:

2

f(x) = f(0) + x f'(0) +|r f"(0) + ...

Matrix — a rectangular array of scalars (real or complex) called elements of the

matrix, together with certain rules of combination. If

all ai2 al3 "

m • • •

and if A and B have the same dimensions, then the sum is

A+B=(aij+ v>
that is, corresponding elements are added together.



-54-

If A has n columns and B has n rows, the product is

If p is a scalar,

The transpose of A is

T
A

AB= Z «"V &ik wkj *

pA=(p a±i),

V -

°11 a21 a31

al2 a22 a32

\
Tthe conjugate transpose A* is the result of replacing each element in A by its

T
complex conjugate. If A = A, A is symmetric; if A* = A, A is hermitian. The

square matrix I = (5 ), where 5.. is the Kronecker delta, is called the identity.

If it is n x n, then for any matrix A with n rows, I A = A, and for any matrix B

with n columns, B I = B. A square matrix, with n rows and n columns, is said to

be of order n. The square matrix C such that

C A = A C = I,

if such exists, is called the inverse of A and denoted C = A-1. When A-1 exists

then A is said to be nonsingular. If A is hermitian, of order n, and for every

vector x of n dimensions, which is to say, matrix of n rows and one column,

x* A x 2: o,

then A is non-negative semidefinite; if for every vector x / 0,

x* A x > 0,

then A is positive definite. For non-hermitian matrices these notions are not

defined.

The elements cc±± of a matrix A = (a.,) constitute the diagonal, or main

diagonal. If all other elements are null, A is a diagonal matrix. If, in addition,
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that is, all diagonal elements are equal, then A is a scalar matrix and A = a I.

If V* V = V V* = I, then 7 is a unitary matrix, and if V is unitary and

real it is orthogonal.

If A is square of order n, then det A will represent the determinant of

A. The polynomial

9U) = det (\ I - A)

is a polynomial in \ of degree n whose leading coefficient is unity, and whose

constant term is det A. This is called the characteristic polynomial, and the

Cayley-Hamilton theorem states that

9(A) = 0.

There is a polynomial \|r(\) of minimal degree and leading coefficient unity for

which

*(A) = 0.

This is called the minimal polynomial, and \|r(\) may or may not be the same as

9(\), but in all cases \|r(\) divides q>(\), and every zero of 9 is also a zero of

i|f. These zeros are variously called proper values, characteristic values, eigen

values, latent roots. If \ is any proper value, there exists a non-null vector x

satisfying

(A - \ I) x = 0,

and any such vector is called a proper vector, or characteristic vector, or eigen

vector, or modal column. Naturally there exists also a non-null vector y such

that

y*(A - \ I) = 0.

Either x or y is said to belong to \. If A is hermitian, then all proper values
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are real. In this event there exists a unitary matrix V such that

V* A V = A,

where A is diagonal, and its elements are the proper values of A. Moreover, the

columns of V are proper vectors, and, in fact, if v. is the ith volumn of V, and

X. the ith element in the diagonal of A, then v belongs to X.. The matrix V is

said to diagonalize A.

If A* A = A A*, then A is said to be a normal matrix. Such a matrix can

also be diagonalized by a unitary matrix V, but the diagonal form A is not real

unless A is hermitian.

For a more general matrix A, there exists a nonsingular matrix V such

that

where A has the form

A V = A,

0

0

\

0 0

A2 0

and each A. is either a scalar matrix or of the form
l

A. =
l

f\

\ •

0 0

X. 0
1

with all diagonal elements equal, with ones just below the diagonal, and zeros

elsewhere. This A is the Jordan normal form. Each X. is a proper value, each

column v of V is a principal vector, which is to say that for some X and some v,

-1 .

(A - X I) v = 0.

Also each row of V "^ is a principal row vector.

For computational methods see proper values and vectors and matrix in

version.
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Matrix inversion -- for a given square matrix A, the determination of a matrix

-1 -1 -1 -1
denoted A such that A A = A A = I, the identity, assuming A to exist.

A closed method of inversion would yield the exact inverse, except for errors due

to rounding, after a finite number of operations in prescribed sequence performed

upon the elements. These operations are usually arithmetic, but may include

square-rooting. Other methods, sometimes called iterative are such as to produce

a sequence of matrices C which approach A~ in the limit, again apart from round

ing errors. Since x = A~ h satisfies the system of linear equations A x = h, and

since, conversely, each column of A" is the solution of such a system with a par

ticular h, the problems of inversion and solution are mathematically equivalent

and will be spoken of interchangeably.

The most common direct methods are known as (Gaussian) elimination, or

triangularization, with variants due to Crout, Banachiewicz, Doolittle, and many

others, differing only in detailed arrangements and systems of recording inter

mediate results.

Let A be partitioned in any way in the form

/̂ 1 A12 \
A =

^1 h.2

where A... is required only to be square and nonsingular. In particular A., may

be a scalar, Ap therefore a column vector, A_p a row vector; or App may be a

scalar, A.p a column vector, and A?1 a row vector. The methods seek a factoriza

tion in one of the two forms:

(1)

(2)

R12

L22/ \° R22

^2 1=[Rll R12
W \° ^2
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where the partitioning is conformable throughout. The first factorization re

quires that

Lll Rll = ^1' Lll R12 = h.2>

L21 Rll = ^1' L21 R12 + L22 R22 = ^22'

and the second that

Pll All = Rll' Pll A12 = R12'

P21 hi + P22 A21 = °' P21 \2 + P22 A22 = R22'

The second form is more usual but in fact they are entirely equivalent computa

tionally. If A^1 is known, which is certainly the case If A is a scalar, then

all matrices can be determined and one can even choose arbitrarily either P or

Rll' and eitlier P22 or R22' 0ne common cnoice (Gaussian elimination) is to take

P1]L the identity (= 1 if a scalar), and P22 the identity. Then

Rll = All' R12 = A12'

P21 = "^1 All' R22 = A22 " *2l All A12*

Thereafter one proceeds with R22 as with the original A, that is, one multiplies

on the left by a matrix

0 P*

where P' and Rg2 are to be partitioned. The result is the formation of n - 1

matrices P each unit lower triangular, such that

Pn-1 Pn-2 *'* pi = p
is also unit lower triangular, and

P A = R

is upper triangular and hence readily inverted. Note that P has a unit determinant,
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whence the determinant of A is given by the product of the diagonal elements of

R. If one is interested only in solving equations, the P. need not be retained,

but each must be multiplied by the vector on the right.

While ordinarily one partitions off a row and a column, taking A11 a

scalar, it sometimes happens that the matrix A has a submatrix A.... of order greater

than 1, but whose inverse is already known or readily obtained. The above formulas

apply equally to this case. Analogous formulas can be written for taking R.., and

Rpp to be identities.

In the methods of enlargement one applies the above formulas first to a

second order submatrix; next, this is taken to be A., and bordered to form a third

order submatrix to be inverted by the same formulas. Eventually the entire matrix

is inverted. This method is to be recommended when the matrix to be inverted is a

finite segment of an infinite matrix and the size of the segment to be inverted is

not determined in advance.

When A is positive definite the factorization (l) can be modified:

\i 4\ An °\/LiTi L2Ti
A21 ^22 yL21 ^2/ 0 L22

with L and L?2 both symmetric. Evidently

T T

Lll Lll = ^1' L21 Lll = ^1'
T

L22 = ^2 " L21 L21 *

Ordinarily A., is a scalar. For obvious reasons this is called the square-root

method. It is due to Cholesky, and to Banachiewicz.

Other factorizations are to apply a Schmidt orthogonalization to the

columns, A = Q T, where T is a unit upper triangle and Q, is orthogonal by columns.
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Hence Q Q = D, a diagonal., aad

=•1 "1 -1 T
A = T ~ D Q .

-1
It might seem more .ifi/tin-ai t-c form A u = Q with U = T formed directly.

This can be done but it tor^e cat the eecie computations are required to form U

-1
directly as to form first T and then T »

Alternatively the rows of A car: 'be orthogonalized by applying the same

T
process to A . Still another possibility is to obtain an orthogonal matrix ft

sueh that ft A = S, where S is upper triangular. This is done by applying first a

rotation in the (l, 2)-plane to eliminate the element a?1 of Aj then in the (l, 3)-

plane to eliminate a,.. # and continuing until all subdiagonal elements are elimin

ated.

In the triangular factorization significance can be optimized by inter

changing rows and columns at each stage so that the divisor in every division has

as many significant figures as possible, or, when there is a choice, is as large

as possible,, In forming plaz^e rotations, this interchange is unnecessary, but

the method requires more arithmetic operations than triangular factorization, and

requires a square root in the selection of each rotation.

Quite different in appearance is the method of modification based upon

the following identity:

(B - a vl vT:)"x = B"1^ B"1 u vT B"1,

-I -1 ^ -1
o+t=v~Bu,

readily verified, where u and v are column vectors. If u and v are columns e„

m

and e. of I, then a u v is a matrix whose only non-null element is a in the ith

row and jth column. Hence the formula gives the effect on the inverse of modi

fying a single element of the matrix. Or if o = 1, u = e , it gives the result
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of modifying the entire ith row by v. Evidently one could start with any matrix,

perhaps I or the diagonal of A, whose inverse is known, and modify row by row, or

C

^0
column by column, to build up to A . In case A is symmetric, take u=v=e, ±e.,

a = a. . = a... This affects also the diagonal elements so that one starts by in

verting a suitably demodified diagonal of A. This method seems to be in principle

the method of "tearing" advocated by Kron.

If C is an approximation to A which one wishes to improve, form either

of

H = I-AC, K = I - C A.

Then either of

C1 = C(I + H), C^ = (I +K) C

may be a better approximation, and will be if in any norm, one of the following

is true:

l|H|| < 1, ||K|| < 1.

Convergence is then quadratic. A rigorous bound for the error in the inverse is

given by either of

HA"1 -C|| s'llCHll/ (1- ||H||),

HA"1 - C|| *||KC|| / (1 - ||K||),

under the same condition.

For solving the system

A x = h,

if A is of high order but with most elements null, one usually prefers to generate

a sequence of vectors x approaching the solution x in the limit. Let

S = x - x , r=h-Ax=AS.
v v' v v v
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Starting with any x , one forms recursively

V+1 V V V9

where C is some matrix which may be fixed in advance, or may change from step

to step. One can always arrange, if convenient, so that every diagonal element

of A is unity. If this is done, and C = I, one has the simple, or total step,

iteration. If one writes, then,

A = I - B,

so that B has a null diagonal, it is necessary and sufficient that the spectral

radius p(B) < 1. For the single-step (or Seidel, or Gauss-Seidel, or Liebmann)

iteration let

A = L + R,

where L is null except below the diagonal, and R is null below the diagonal. Then

Cv =If1,
or, as the computation is usually made, one solves

R xv+]_ = h - L xv.

Convergence is assured when A is positive definite, and, more generally, when

p(R L) < 1, the latter condition being necessary and sufficient. Note that in

solving for the ith element of x , one solves the ith equation for that element

in terms of the most recent values of all other elements, and the equations are

taken in fixed cyclic order. In the method of relaxation there is no fixed order,

but one selects at each stage the particular equation which is least well satis

fied, and if this is the jth, one solves for the jth element in terms of most

recent values of the others. This inspection can be done readily in computing by

hand, but not readily by machine, whence relaxation is not recommended for machine

computation (although some authors apply the term more generally to any method, or

at least some other methods, of generating converging sequences). In the method



-65-

of steepest descent

C = (rT Ar )_1

The method is more usually written

T

v x~v v rv rv"

x , = x =u r,
v+1 v v v'

T / T
u =r r / r Ar.
v v v ' v v

It applies in this form only when A is positive definite, and then it alvays con

verges. Note, however, that any system with a nonsingular matrix A can be con

verted to an equivalent system with a positive definite matrix:

T T
A A x = A h.

See condition number, norm.

Memory unit (of a computer) — see storage unit.

Method of successive approximation — see iterative methods."K

Milne method — for solving an ordinary differential equation

f' = f(x, y)

uses the predictor

yv+i = yv-5 + kh{2fv - fv-i + 2fv-2)
and the corrector

yv+i - yv-i +h(fv+i +kfv + W / 5,
the latter formula being the Simpson rule applied to the evaluation of the integral.

The formulas are meaningful when y and f are vectors. The method is one of the

simpler ones and often quite accurate, but for some problems exhibits serious lack

of stability (see Mi, Co).

Midpoint formula —for numerical quadrature.
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Minimax approximation — #ie representation of a function f(x) "by an approxima

tion P[f |x] selected from a class of functions in such away that if R=f -P,

then the maximum of |r| over all points x of some assigned set is minimized over

all functions of the class. Often called Chebyshev approximation. There is no

simple algorithm for forming the Chebyshev approximation to an arbitrary contin

uous function, but there are techniques of successive approximation to it.

In case the class of functions is the class of linear combinations of

functions 9q(x), cp^x), ..., cpQ(x) on an interval from a to b, then the basic

theorem is the following: If the functions cp. form a Chebyshev system of order n

for the interval from a to b, and if f is continuous on this interval, then the

minimax approximation P (x) is unique; moreover |f(x) - P (x)| achieves its maxi-

mum at least n+2 times at points xQ, x±, ..., xn+± on the interval and at these

points f - P alternates in sign.

The Chebyshev polynomial TQ(x) is that polynomial of degree n with lead

ing coefficient unity that gives the minimax approximation to zero on the interval

from -1 to + 1; hence x -Tq is that polynomial of degree n.- 1 that gives the

minimax approximation to xn. This explains the utility of Chebyshev expansions

(see Kb, La, Ha).

Modal column — of a matrix, a term sometimes applied to a proper vector. See

proper values and vectors.

Monte Carlo method — any method for obtaining a statistical estimate of a desired

quantity by random sampling. In the most successful applications the desired

quantity is in fact a statistical parameter, and the sampling is made from an

artificial population that is in some sense a model of the physical system itself:

for example, the fraction of neutrons, of given initial distribution in direction

and energy, that can be expected to penetrate to a given depth in a medium of known

composition and geometric form. For more details see Ho, MC, Sym.
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Multivariate interpolation -- interpolation of functions of two or more variables.

Since

one can expand formally

E =1+A, E =1+A
x x' y y

EU EV = (1 + A )U (1 + A )Vx v \ x' y

and derive equal interval formulas. Likewise analogues of the Lagrange formula

can be derived. To write down explicitly is hardly worth while since they amount

to operating on the two (or more) variables separately (see Ku, W and R).

Neumann series -- the series

9(x) =f(x) +X/K(x, y) f(y)d y+\2 JJk(x, y) K(y, z) f(z) dydz+...,

with appropriate limits of integration. If the series converges, it converges to

a solution of the integral equation

r F9(x) = f(x) + X jK(x, y) <t(y) d y.

Neville method of interpolation — see Aitken method of interpolation.

Newton-Cotes quadrature formulas — these are of the form

x

/ f(x) dx=n0 f0 +\ ^ +... +\ fn# ~h~R^J
xo

where the coefficients r). are obtained by integrating the coefficients of the

Lagrange interpolation formula. The best known and most useful of these are the

trapezoidal rule, Simpson's rule, and the three-eighths rule.

Newton-Gauss interpolation formulas — see Gaussian interpolation formulas♦

Newton interpolation formulas — see difference operators.

Newton-Starling interpolation formulas — see Stirling interpolation formulas.
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Newton method — for solving equations, whether algebraic or transcendental, is

a particular iterative method, and the one most commonly used. The method can

also be extended to simultaneous equations and to matrix inversion.

Nomograph or nomogram — also called an alignment chart or isopleth. It consists

of two or more scales, drawn and arranged so that results of calculation may be

found from the relation of points on them. For example, suppose the relation

f(x, y, z) = 0 is given. Three graduated scales or lines are then constructed so

that, if selected values of two variables are located with a straight-edge, the

third scale will be cut at a value which satisfies the given equation. The method

is readily extended to more than three variables.

Norm -- in some literature the norm j|x|| of the vector x, and the norm ||a|| of the

matrix A refers specifically to what will be called the Euclidean norm, defined

by the non-negative square roots of

||x||2 = x* x; ||A||2 =trace (A* A).

(See trace.) More generally, however, a norm ||x|| of a vector x is taken to be

any real valued function of the elements satisfying the conditions

i) x / 0=* ||x|| > 0;

ii) ||a x|| = |a| ||x||;

iii) ||x + y|| ^ ||x|| + ||y||,

and the associated norm ||a|| of a square matrix A is

||A|| = sup ||A x||.
||x|| = 1

Such a matrix norm possesses properties (i), (ii), and (iii), with matrix arguments,

and also, for any two matrices A and B,

iv) ||AB|| £||A|| ||B||.
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The Euclidean matrix norm possesses these properties, but does not satisfy the

definition. The Euclidean matrix and vector norms are further related, as are

all associated norms, by the property that for any matrix A and vector x,

ISA*!! s;;A|| W.

But for norms as here defined, for any A there exists an x / 0 such that an equal

ity holds, and this is not true for the Euclidean norms. In fact, it is the

spectral norm that is associated with the Euclidean vector norm.

Norms are important in studying convergence properties of sequences of

vectors and matrices, and ir. obtaining error bounds (see matrix inversion). In

fact, a sequence of vectors x has a limit x. if and only if the sequence of norms

||x - x|| vanishes in the limit, whatever norm may be used. A sufficient condition

for the sequence of matrix powers B to have the limit 0 is that ||b|| < 1, in any

norm. Also for any matrix A and any norm, the spectral radius satisfies

p(A) =s||a||.

If x satisfies A x = h, if y = x - s is any approximation, and ifr = h-Ay = As,

then

Hell sIIa"1!! Ikll,

which gives a measure of the departure of the approximate solution y from the true

solution x„ In some cases \\a" jj can be evaluated a priori, as when the equations

arise from a partial differential equation. Otherwise if H = I -AC, and

jJHJ! < 1, then

IK1!! *||c|| / (i - ||H||).
TAs other examples of norms, if x = (£., ..., 6 ) and A = (a. .), then

||x|le =max |i| , ||A||e =nax £• |a | j
i i j J

Mle, =ZUJ > INIe, =max Z kjj •
X X J
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Again, given any norm, and any nonsingular matrix G (for example, a diagonal

matrix),

Hx||G =IIG"1 x|l ; ||A||G =HO"1 AG||
are again norms.

Numerical analysis — the theory underlying the development of numerical processes.

In Lanczos's terms, numerical analysis is distinguished from parexic analysis

which has as its aim the development of approximate formulas. In more common

usage it would include parexic analysis.

Numerical cubature — see multivariate interpolation.

Numerical differentiation — see differentiation formulas.

Numerical quadrature — see quadrature.

Numerical solution of differential equations — see differential equations.

Numerical solution of equations — see algebraic equations, matrix inversion,

Newton method, iterative methods, Bernoulli method, Graeffe method, Horner method.

Numerical stability -- A problem is numerically stable in case small errors in the

data produce moderate errors at most in the required quantities. A method is

numerically stable if it does not permit the accumulation of large generated

errors, or if it does not involve a transformation of the original problem into

another one that may be substantially less stable. The term is applied in partic

ular to certain methods for solving ordinary and partial differential equations

for which the approximating system of difference equations is stable.

(See condition number.)

Open quadrature formula — a quadrature formula in terms of ordinates drawn at

points within the interval of integration, and excluding at least one endpoint,

e.g., for integrating from x to x , but based upon f , f , ..., f only and

not involving f . Such a formula is useful as a predictor formula in the numer-

ical solution of ordinary differential equations.
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Operational methods — the treatment of differential and other operators as

though they were algebraic symbols in order to derive formal identities. Most

often the term applies to the use of Fourier, Laplace, or other transforms in

the solution of functional equations, but see difference operators for the formal

derivation of formulas for interpolation, quadrature, and differentiation.

Optimum-interval interpolation — the use of interpolation formulas based upon

intervals of varying size adjusted so as to optimize the result in some way.

Usually the interval size will be taken as great as possible so that the error

of an interpolating polynomial of fixed degree will not surpass a specified limit

(see Ho).

Ordinary differential equation — one in-which there occur, along with each de

pendent variable, one or more of its derivatives with respect to a single inde

pendent variable. In general there must be as many equations as they are depend

ent variables. Also, in general, if any derivatives higher than the first occur,

it is possible to enlarge the system to one containing only first derivatives.

Thus if the equation is of the form

f(x, y, y', y") = o,

where x is the independent variable, one can set

Y1 = 7> 72 = y'>

and the given equation is equivalent to the simultaneous equations

f(x, y1, y2, 72) = 0,

y[ - y2 = o.

Finally, it is generally possible to solve for first derivatives and write the

system in the form

d y± /dx=9i(x, yx, yg, ..., yQ), i= 1, 2, ..., n.
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The equations are then said to be in normal form. In order that the y.(x) be

uniquely defined as functions of x it is necessary to adjoin n further conditions

relating the values assumed by the y. at certain discrete points. For an initial

value problem, all values are specified at a single pointj for a boundary-value

problem, relations between values at the two boundaries are specified. Here it

will be assumed that initial values are given.

A system in normal form can be compactly represented by

y' = f(x, y),

where, if n > 1, y, y', and f represent vectors in n-space. Methods for numerical

solution in the general case are rather obvious generalizations of the case n = 1,

and attention will be confined to this. It will be assumed that the initial value

y(xo} =y0 /
is given. In case f(x, y) pqPUeTroco-partial derivatives of—all orders at (x , y ),

then it is possible to obtain the coefficients of the series expansion

y=y0 + (x -xQ) yQ +^(x -xQ) y^ +

In fact, y is Iwawa, from the equation itself c^e, C'hjfa-^S

y6 =f(V y0}'
and by differentiation one obtains

y0 =fx(V y0} +y0 fy(V V
and other derivatives of higher order are similarly found.

Most numerical methods, however, combine interpolation with the Picard

method in the sense that the quadratures required by this method are carried out

numerically. This idea is capable of almost infinitely many variations, but to

begin with it is generally assumed that by series expansion or otherwise one has

first obtained suitable values y1 = y(x ), y2 = y(x£), ... where, in general,
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x = x_ + v h, and h represents a sufficiently fine subdivision. Thereafter one

can write
xfv+i

yv+i = yv + J f(x> y) d x>
X
V

where y , y ., ..., yv+. , have been found. At this point one uses first a pre

dictor formula which expresses the integral in terms of values of f at points al

ready known (see quadrature, numerical). This gives an approximate value for

y ., hence permits the calculation of an approximate value of f ., and one can

then apply a corrector formula which utilizes this value. Application of the cor

rector formula gives a new approximation for y ., and the corrector formula should

be reapplied until the changes are negligible. It is advisable to have h small

enough so that at most a second application of the corrector formula will be suf

ficient. Methods of this type are the Euler method, the Adams-Bashford method,

and the Milne method (see NPL, Mi, Co). For questions of stability see Mi, Co.

The method of Runge-Kutta is somewhat different in character.

For the explicit treatment of an equation of higher order

y" = f(x, y, y')

without reducing it to normal form in two independent variables, see Stormer method.

Orthogonalization — ^iven an inner product operation (9, \|r), defined for any pair

of functions 9 and f of a specified class, if (9, ty) =0 then 9 and \(r are said to

be orthogonal. Given a sequence of functions of the class,

V V 92' •*•

one can ask for a sequence

V *i* v •••

such that (\|f , ty ) =0 when i ^ j, and
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<Pn = *n>

'i = aio *0 + +1'

92 = a2Q *Q + a21 +x + *2,

where the a.. are constants. One finds easily that

<V V =aio (V V>

^+0' ^ =Q!20 (V V'

(+1' '2) =a21 (V V'
and all a and \|f can be obtained sequentially unless for some i, (\|r , \|r.) =0.

Orthogonal matrix -- see matrix.

Orthogonal polynomials — any set of polynomials that are mutually orthogonal with

respect to an inner product operation. Such an operation can be defined quite

formally in terms of an abstract moment operator ft defined by

2
ft(aQ +ax x+a2 x +...)= aQ uQ +a ^ +c*2 Ug + ...

where the u are arbitrarily assigned constants. Most often one defines the re

sult of ft operating on a function 9 to be

ft[9(x)] = Jcp(x) o>(x) d x
a

where a and b are fixed, finite or infinite, and a>(x) is a fixed wight function.

The inner product of two polynomials 9 and t is

(9, t) = ft [q>(x) +(x)].

The orthogonal polynomials can be obtained by applying the process of orthogonali-

zation to the powers of x:

2 3
J-, X, X , XT , ....

Orthogonal polynomials arise in Gaussian quadrature in that their zeros

are the points x at which the integrand function must be evaluated. They occur as
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the denominators of the entries in a Pade table along a line parallel to the

diagonal.

Given a finite set of discrete points x , x^, ..., if the operator ft is

defined by

ft[cp(x)] =Z V(x±) ">!
where co. are non-negative weight functions, then the corresponding orthogonal poly

nomials are finite in number. Let these be tyQ, \|r , t2> •••• For least square

polynomial fitting to data taken at these points x., it is advantageous to express

the required polynomial in the form

f(x) =r0t0 + ?'1*1 + 72l2+...

and to solve for the y's by least squares.

Overrelaxation — JPbr solving the system

x = k + B x

(see matrix inversion) by the simple iteration scheme one writes

xv+l = xv + V rv =k - (I -B) xv.

In case of slow convergence it is suggested to write a r in place of r , where

a is a scalar. When a > 1 this is known as overrelaxation, when a,, < 1, under-
V V V '

relaxation. When p(B) < 1 (which is necessary for convergence) and all proper

values are real, an optimal choice for a can be found by the use of Chebyshev

polynomials.

Pade' table — a double-entry table associated with a formal power series

~t \ 2f(z) = s. + s1 z + s? z + ....

The entry in row p and column q, where p, q s 0, is the fraction A (z) / B (z),

where A and B are polynomials of degree q and p, respectively, such that the

formal expansion of the fraction as a power series in z agrees with that of f to
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and including the term in z . The consecutive entries taken in a diagonal

direction are approximants of a continued fraction expansion of f(z). Often the

continued fraction will converge more rapidly than the power series, or may even

converge where the power series diverges, and so provides an effective computa

tional device. To form a particular entry in the Pade table, let

B =b^+bnz+...+b zP,
p, q 0 1 p '

and observe that in the product f(z) B (z), terms in z4 , z^ , ..., z^ p all

drop out. This provides p homogeneous equations in the p + 1 unknowns, b_, ..., b .

If a solution exists, then the polynomial A can be obtained by direct multi-
p,q

plication. See quotient-difference algorithm, orthogonal polynomials. The Shanks

generalizations of the delta-square process applied to the sequence of partial sums

of a power series lead to entries in the Pade table.

Parabolic equation — a partial differential equation that can be reduced to the

form

d u/dx = d u / d t

when the variables are suitably chosen.

Parexic analysis --a term coined by Cornelius Lanczos to designate the branch of

analysis concerned with the derivation of "nearby" (i.e., approximating) but

numerically manageable relations. It is distinguished, on the one hand, from

"pure" analysis, which is concerned with limiting processes and exact relations.

On the other hand it is distinguished from numerical analysis which is concerned

with the translation into numerical processes of the approximations provided by

parexic analysis. The aim of parexic analysis is to reduce truncation errors;

that of numerical analysis to reduce generated error and the number of operations

required.
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Partial differential equation — a differential equation containing two or more

independent variables, hence containing partial derivatives. The order of the

equation is that of a derivative of highest order. It is linear if linear in the

dependent variable(s) and all derivatives; quasilinear if linear in the partial

derivatives of highest order. Second-order linear differential equations

au +2bu +cu +....•= 0
xx xy yy

in two independent variables are classified as

2
elliptic, a c - b > 0,

2
parabolic, a c - b =0,

hyperbolic, a c -b2 < 0. Ofe Ue^'Cie*^ a. b.

Methods of solution differ slightly for the three types. Most often, however, for 'V

any type and any order, a method of differences is used by which the differential

operators are replaced by approximating expressions in terms of difference operators.

This requires dividing the space of the independent variables, in the case of two

independent variables, by equally spaced lines parallel to each axis; for three

independent variables by equally spaced planes parallel to each coordinate planej

and similarly in higher dimensions.

The method is best described by an example. Consider the simple parabolic

equation

or, in operator form,

u = u ,
xx y'

D- D | u = 0.
x J

2
The natural, and simplest, difference representation of D is by central differences

2 -2 2if = h 5 ,
x x'

where h represents the constant difference along the x-axis. There are two equally
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natural representations of D :

D = k"1 A , D = k"1 y .
y y y y

If applied to u.. = u(x , y.), these lead to somewhat different difference equations
i j •*- J

which can be written:

7 u. n . + (l - 27) u. . + 7 u. .. . - u. . , = 0,
i+l,J " i,j l-l,J i,j+l '

7 =k/ h2,

in the first case, and, in the second case

7 Ui+l,j "(1 +27) Ui,j +7Ui-l,j +Ui,j-1 =°'
The coefficients in the two approximations can be represented schematically in the

following \>ay;

71- 27 7 7-(l + 27) 7.

1

These schemes show the relative locations of the points to which the coefficients

are applied. The first scheme is simplest to apply, since one has only to solve for

u at the upper point in terms of its values at the points below. It turns out, how

ever, that to insure adequate numerical stability it is necessary that 7^1. This

is an example of an explicit (or marching) scheme. To apply the other method no

restriction is needed on 7, but to obtain the value of u along any horizontal line

it is necessary to solve a system of linear equations, although the matrix is tri-

diagonal, and hence readily inverted. This is an example of an implicit (or jury)

scheme.

To start the solution it is necessary that suitable initial and boundary

conditions be given. If these involve derivatives, then the derivatives in the

boundary conditions must also be represented by approximating differences.
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Picard method -- a numerical method of successive approximations or iteration for

solving differential equations. If the given equation is y' = f(x, y) subject to

the condition that y = yQ when x = x_, the solution may be written in the form of

an integral equation

ry= y0 + J f(x, y) d x.

An. approximate solution is

X0

'i = yo + J f(x> yo^ d x'
xo

and a sequence of approximations can be formed:
rx

y2 = y0 + J t(x> yl^ d X '
X0

fn=J0+ J f(x' yn-l} d X*
X0

Under quite general circumstances this sequence can be shown to converge to the

solution. Unless f is a polynomial it is not generally feasible to effect the

quadratures analytically, but most methods of numerical solution of differential

equations take their departure from this and integrate numerically. Moreover, y

and f can be interpreted as vectors and the methods apply equally to systems of

differential equations.

Planimeter — an instrument for measuring the area enclosed by a curved boundary,

hence an analog computer for the purpose of performing quadratures.

Poisson equation -- see Laplace differential equation.

Positive (semi) definite matrix — a matrix that is Hermitian with all proper values

positive (non-negative).

Precision -- see accuracy.
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Predictor --a quadrature formula used in the numerical solution of ordinary dif-

diferential equations in which the integral is expressed in terms of equally spaced

ordinates to the left of but not including the endpoint. This provides an initial

approximation to the new ordinate. Thereafter the approximation is used in a

corrector to improve or check the approximation. A predictor formula is open, a

corrector formula closed. See Adams-Bashford method for an example.

Principal vector — of a matrix A, any non-null vector x such that for some scalar

X and integer v,

{X I - A)V x = 0.

In case v = 1, x is a proper vector, and in any event A. is a proper value.

Program — a plan or design of a computational routine to be performed by a stared-?

program computer. Sometimes this term is loosely used interchangeably with code.

Proper values and vectors (of matrices, methods of computing) — -for a given square

matrix A (singular or not), non-null vectors x exist satisfying A x = X x only when

the scalar X satisfies det(\ I - A) = 9(\) =0, called the characteristic equation,

where 9(\) is a polynomial of degree n, the order of A, called the characteristic

polynomial (see matrix). Any root X of this equation is called a proper valuej

associated with any root X there is at least one non-null vector x called a proper

vector belonging to X. The number of independent proper vectors belonging to a

proper value may equal, but cannot exceed, the multiplicity of X as a root of the

characteristic equation. For normal matrices, including hermitian, the number

equals the multiplicity. For a non-normal matrix, if \ is a root of multiplicity

v > 1, and if fewer than v independent vectors belong to X, then there are princi

pal vectors y £ 0 satisfying (\ I -A)^y=0 for 1 < us v. It is always true

that 9(A) = 0. If there is a polynomial i|r(\) of degree m < n for which \|r(A) = 0,

then that polynomial of lowest degree for which this is true is a minimal polynomial,
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and A is said to be derogatory; otherwise nonderogatory. The condition for being

derogatory is rather stringent and not often satisfied in practice, and the same

is true for the presence of principal vectors, but when the conditions are nearly

satisfied the corresponding proper vectors are poorly defined and computational

difficulties arise, possibly even insurmountable.

Implicitly or explicitly, to evaluate a proper value requires the solution

of an algebraic equation of degree n. The problem is much simpler for a hermitian

matrix, and for these will be discussed under that heading. Some of these methods

can also be adapted to normal matrices. Here the general case will be considered.

A method may purport to yield only the characteristic, or possibly the minimal,

polynomial, leaving this to be solved by any of the standard methods for solving

algebraic equations. Such a method is called direct. Once a proper value is

known, a proper vector belonging to it can be found by solving a system of homo

geneous equations (see matrix inversion). A direct expansion of the determinant

is unthinkable when n is at all large.

Since any n+1 vectors in n-space are linearly dependent, if b = b. ^ 0,

then in the sequence

bi+l = A \
there is a smallest index m * n such that bm+1 is linearly dependent upon those

preceding:

(1) b , + p. b + p„ b ..+...+ 0 bn = o.
v ' m+1 1 m 2 m-1 Km 1

This represents n equations in m £ n unknowns, and they are consistent by hypoth

esis, even if m < n. But this is

(2) (Am +^ Am_1 +... +0m I) b=0.
Hence, if

(3) *U) =\m +P1 *m~1 +... +Pm ,
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then \|r(A) b =0 and \|r(\) is either a minimal polynomial or a factor of it, and

except for very special choices of b, ijf(x) is a minimal polynomial.

If one forms the matrix

(4) B= (bx, b2, ..., bj

whose columns are the b., then
i'

(5) A B = B F

where F is the companion matrix whose form is

[0 0 ... 0 - 0 '

(6)

m

1 0 ... 0 - 0
m-1

,0 0 ... 1 - 0

Its characteristic polynomial is \lr(\). With b = Q-,, the first column of I, this

is the method of Krylov.

This method is effective for matrices of fairly low order. For matrices

of high order the equations to be solved for the 0 tend to become ill-conditioned.

A method due to Hessenberg yields a matrix B such that

(7) A B = B G,

where G is not the companion matrix, but whose form is such that the characteristic

polynomial can be expanded directly, and from which it is rather easy to solve for

the proper vectors. To apply this method one selects auxiliary vectors c , cp, c,,...

subject to two mild restrictions but otherwise arbitrary. Ordinarily one can take

(with Hessenberg) each ci =e^ a column of I. One starts again with a vector b,

possibly e . Now b is a linear combination of b and A b orthogonal to c.; b,
•J- £- 11 15

a linear combination of b.^ bg, and A bg orthogonal to both c and c', ... The

restrictions on the c. are, first, linear independence, and, second,

c* b. / 0.
i 1 '
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With these conditions fulfilled one forms

A \ = \ hi + b2
where

1AV c! bi hr
Hence 7.., is obtained, and therefore bp. Next

A b2 - bl 712 + \ 722 + V
where

c* A b2 = c* bx ?12,

C2 A \ = C2 bl 712 + C2 b2 722'

From the first of these one obtains 7 2, from the second 722, and finally b,. The

process continues, and G is seen to have the form

(8) G =

711 712 713
1 722 723
0 1

733

It may be observed that when the choice c. = e. is made, then the first

element of bp is null as are the first two elements of b,, the first three of b^,...

A further refinement of the method is the biorthogonalization method of

Lanczos. In this method only b and c are arbitrary. Thereafter, just as bg is

a linear combination of b and A b orthogonal to c1, so is c2 a linear combination

of c. and A* c. orthogonal to b.., and so for the others. The matrix G is then

tridiagonal, being null everywhere except along, just below, and just above the

diagonal. The recursion then never contains more than three terms in any equation.
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Another modification is due to Araoldi, who chooses b. = c. and requires

B to be an orthogonal matrix. Then (7) is satisfied, but with a matrix G of the

form

/' 11
(9) G = '21

12

'22

'13

'23

32 '33

similar to (8) but with elements other than ones on the subdiagonal. The develop

ment of the characteristic polynomial from G is almost equally straightforward.

When only one, or few, of the proper values of largest modulus are re

quired a simple iteration scheme is advisable, and is preferred by some even for

a complete reduction of rather large matrices. If there is a single proper value

exceeding all others in modulus, A_, vectors b in the continued sequence

\+l = A \

approach the proper vector belonging to \ , so that for large v,

v+1 *lV
Hence, with any vector u, an approximate value of ?v. is given by

u* A b \ u* bv-

Convergence, when it occurs, can be accelerated by application of the delta square

process termwise to the vectors in the sequence.

In the case of a pair of complex roots, convergence does not occur, but

in the limit by becomes parallel to the plane of the two proper vectors. Then if

the roots of the equation

X

u = u* b
v v

v+1

v+1 v+2

v+2 v+3

- 0
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approach these roots X- and V, as v increases. In fact, whether or not X1 and X-

are equal in modulus, but provided only both exceed all others in modulus, the

statement is true. Moreover, the roots of

v+1

X
v+2

AT
v+3

"v+1

%+2

^v+3

^v+4

"v+2

V3

Vh4

^v+5

= 0

approach the three proper values of largest modulus, if such exist (cf. Bernoulli

method).

Returning to the two roots, for large v,

bv = vl + V

\+l = \ Vl + *2 V

approximately, where v.. and Vp are proper vectors belonging to X and Xp. Knowing

A_ and Xp, as well as b and b -., these equations can be solved for v.. and vp.

When any proper value and proper vector are known it is possible to apply

"deflation" as follows: The matrix

A - X± vx u*,

where u is any vector satisfying u* v1 =1 has the same proper values as A except

that instead of X- the new matrix has a zero. Moreover, if w is a proper vector

of A - L v.. u*, belonging to the proper value X, then (A - X- I-) w is a proper

vector of A belonging to the proper value X. And finally, it is possible to choose

u* so that every element but the first in the first row of A - X. v u* is zero.

To do this, normalize v. to have 1 as the first element (should this be zero, per

mute rows and corresponding columns of A, and -the same elements of v. to make the

first element non-null). Choose the last n-1 elements of u* to be l/xi times
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the corresponding elements of the first row of A, and choose the first element of

u* to satisfy u* v = 1. It remains now to consider only a matrix of order n-1,

and further reductions are made as further proper values and vectors are found.

In case u is an approximation to a particular proper value X., closer

than to any other X , then u - X. is the numerically largest proper value of

(A - u I) . Hence the solution of the system

(A - uI) x± = xQ

for an almost arbitrary x will give a good approximation to the proper vector be

longing to Xi, and x* A x^ / x* x will be abetter approximation to X.. This is

Wielandt's broken iteration.

Unless it is known a priori that a matrix has principal vectors that are

not proper vectors, and has auxiliary conditions available for determining them,

rounding errors will almost inevitably conceal themjbut the problem may turn out

to be highly unstable. If A = P A P~ where A is diagonal, the numerical stability

decreases as ||p|| ||P || increases in some norm, hence this seems to be an appro

priate condition number with respect to this problem. But as A approaches the

nondiagonalizable form, this number becomes infinite, hence at least some of the

proper values and vectors become ill defined.

Proper vector — of a matrix, see principal vector, proper values and vectors.

Quadrature, numerical — a method for the (approximate) evaluation of a definite

integral of a function of a single variable, the term cubature being used for two

variables. The most obvious procedure is to obtain some sufficiently close approx

imation to the integrand f(x), whether by interpolation, by least squares, or

otherwise, but in terms that lend themselves readily to analytic integration, and

to integrate the result. Any formulas derivable by equal-interval interpolation
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can be derived also by the application of difference operators. To do this, let

F(x) be the indefinite integral, whence

J f(x) d x = F(b) - F(a)
a

and apply the operator exp 9 to F(x). A somewhat more sophisticated and more

general approach is to seek an approximation of the form

b n

/ f(x) w(x) dx=Z l\ f(xi),
a 0

where the u. are constant coefficients, independent of the function f, and where

the expression on the right is to equal the integral on the left exactly whenever

f(x) is a polynomial of some maximal degree. When the x. are specified in advance,

this degree can be no greater than nj if they are left free it can be of degree

2n + 1, and the result is a Gaussian quadrature formula♦ More general formulas,

not based upon polynomial representations, are also possible (see Ho). For special

formulas see quadrature formulas under the names Chebyshev, Euler-Maclaurin,

ei&kifit
Gaussian, three-aifehire rule, Simpson rule, trapezoidal rule, Weddle rule; see also

remainder formulas.

For solving ordinary differential equations the integrand is of the form

f(x, y), where y = y(x) is the dependent variable to be determined, and considered

as a function of x,

f[x, y(x)] = f(x),

it is to be integrated over a range beyond that for which its values are known.

Most often it is necessary to express

x
v+n

J f(x) d x
xv

in terms of values of f at points x , for j < v + n, in order to obtain an approx

imate value of y . Such a formula is called a predictor, or an open quadrature
v+n
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formula. To simplify the formulas let v = 0. Given an approximation to y , one

applies a corrector, which is a quadrature formula expressed also in terms of f
v+n

There is no restriction in taking v = 0. To obtain a predictor formula,

one applies to F(x ..) the operator

E-E-^"1) =e9 - e-^"1)* =. n9-[(n-1)2 -l] £ / 21 + ...,

and hence to f(x ) the operator

n h[l -(n -2) 6 / 21 + (n2 -3n + 3) S2 / 3! - ...],

thereafter substituting

9 = - ln(l - V)

and retaining as many powers of v in the expansion as may be required. This is

the basis for the Adams-Bashford method. To obtain the corrector one applies to

F(x ) the operator 1 - E-n.

Quotient-difference algorithm --an algorithm due to Rutishauser and having num

erous applications. Let

f(z) =sQ /z+s1 /z +sg /z* +...
represent a formal power series, and form the table

Jo)
bl

n(°)

s(l)sl 40) .(o) S2

n(0)

42)
^1

0W
41' 41} s^S2

^2

(1)
40) e(o)

e2 s(0)
S3

4«
^1

43)

i<2>
l 42) s<2>S2

*2

41} e2 S3



by the following rules:

(v)
1

(v) _ (v+1) / fv)

s, = s ,
1 v'

,(v) (v+1) (v)
% = % %

4V) =4V> +4vi1} > 4v)=oa a o-i ' o

(v) _ (v+1) # (v)
sa+l ~ sa ea '

If the entries of a column of q's approaches a limit, this limit is a

pole of f(z) (see Bernoulli method). Among other properties of the table, only

the following will be mentioned here, that

«.)-.„/-!- -<4°>r^ -^nr- -40)/— ....
is a particular continued fraction expansion of f(z), and others are readily ob

tainable [NBS].

Radix — an integer used in a system of numeration whereby all numbers are ex

pressed as sums of powers of it. Thus in the radix r, a number would be written

in the form of a sequence of integers

av av-l '* *ai a0 *Q-l a-2 a-3

with the understanding that 0 £ a ^ r - 1 for every i, and the interpretation

-1 -2
a r + ... + a r + a + a r + a_ r + ••-.

The radix point stands between a. and a 1. In the ordinary decimal system the

radix is 10; in the binary system it is 2. A digital computer using the radix 3

is said to be under construction in Russia. See bit, binary, decimal.

Radix point — see radix.

-87-

s.
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Rank of a matrix -- the number of column(or row) vectors in the smallest set that

can be selected from among the columns (or rows) of the matrix that are such that

all other columns (or rows) are expressible as linear combinations of them. The

number is the same, whether one counts rows or columns. Also it is the order of

the largest non-null determinant that can be formed from the rows and columns of

the matrix.

Rayleigh-Ritz method — see Ritz method.

Reciprocal differences -- of a function f(x) whose values are given at points

xQ, x1, Xg, .„., not necessarily uniformly spaced, are utilized for interpolation

by means of rational fractions instead of polynomials. This is appropriate in

regions near a singularity. The reciprocal differences

Pi* I xq, ..., xq) = p(x_, ..., x )

are formed by means of a tables

xo

*1

p(xQ)

P(x1)
p(xQ, x1)

p(xQ, x^ x2)

*2 P^)
p(\» Xg)

p(x1, x2, x5)
PlX0* xi> *2.> x,J

"3

x4

p(x^)
P(Xg, x^)

P(Xj, x^)
p(Xg, x^, x^)

P(XX, Xg, Xy X^)

where

p(xt, x^ =(x± -x)/[p(xt) -p(x^)],

p(x±, xy x^) =p(Xj) + (x± -x^) I [p(Xi, Xj) -p(x ,Xj.)],
the latter formula being typical. Then the interpolation is made by taking f(x)

to be an approximant of the continued fraction
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f(x) = p(xQ) + (x -x0)/p(xQ, x^ + (x -x1)/p(xQ, x±, x2) - p(xQ) + ...

If the nth approximant is

F = A / B ,
n n ' n'

then Ap,Ap -• > B? -. > Bp p are of degree p in x. It is not required that the

x. be distinct, and in the extreme case all may coincide. In that event the re

ciprocal differences are expressed in terms of derivatives, the treatment being

analogous to the confluent case of divided differences, and the resulting continued

fraction is then analogous to a Taylor series.

Regula falsi — a method of solving an equation f(x) = 0, for a real root, in which

if f(x ) f(x ) < 0, and the interval from x to x.. is known to contain only one

real root. One passes the chord from the point [x_, f(x.)] to [x^, f(x_)], taking

x_, the intersection of the chord with the real axis, as the next approximation.

This is

X2 = <X0 fl "Xl V / <fl -V
where f. = f(x.). Repeat, using either x_ or x.. with x?. This is an iterative

method which converges more slowly than Newton's, but from the opposite direction,

hence if the two are used simultaneously the error is rigorously bounded.

Relative error -- the ratio of the error in an approximation to the true value of

the quantity approximated.

Relaxation — a method of successive approximation for solving a system of equations

9i(x1, x2, ..., xn) = 0, i= 1, 2, ..., n.

Given any approximate solution x^ ,one evaluates the residuals 9.(x^ ') = R^ '

and selects the largest. If this is R ,, one solves 9., =0 for x , ' in terms

(v)
of the other xx , recomputes the residuals, and repeats. For machine computation,

however, it is generally uneconomical to make the search and the steps are carried
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out in a preassigned cyclic order. Hence the term is sometimes extended to include

this method. The term was introduced by Southwell, but the method was used by

Gauss for solving the normal equations. Some writers use the term for any iter

ative method (see also matrix inversion).

Remainder -- the difference obtained when an approximation is subtracted from the

quantity being approximated. Hence a correction. See remainder formulas.

Remainder formulas — this term will be applied here to any formula expressing

the remainder in approximating a function, or an integral or a derivative of it.

A quite general one is the following: Let

f(x) = P(x) + R(x)

where P(x) is the polynomial of degree n that interpolates f(x) at the points

x , x , ..., x , and let

co(x) = (x - xQ) (x - x^) ... (x - x ).

Then

1 l

R(x) =co(x) J j ... J f(n+l) [x +t (x - x) +t.(x. - x.) + ...
00 0 uu 110

+ tJXn "Xn-l)] dt0'"dV

It is not required that the x be distinct, and, in fact, if x. = x, = ... =x
1 y 1 n

one has a form of the remainder for Taylor series.

A somewhat simpler form is

R(x) =a>(x) f<n+1> (|) / (n +1)1,

where, however, of j- one knows only that it lies on the interval containing all

n + 2 abscissae: x, x , x., ..., x .

These same formulas provide remainders for numerical differentiation

formulas provided the derivative is to be evaluated at one of the points x. , since.

R'(x.) =o>'(x1) f(n+l) (|) /(n +1):.
For remainders in the quadrature formulas, refer to these by name.
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Remainder theorem -- see algebraic equations.

Ritz method -- for solving a boundary value problem is applicable when the problem

can be replaced by an equivalent minimizing problem. The method is to approximate

the required function by a member of a family depending upon certain parameters.

The problem is then reduced to that of minimizing a certain function of these par

ameters. The method is closely related to that of Galerkin (see Co).

Root-squaring methods — methods of obtaining an equation whose roots are the

squares of those of a given one. Graeffe's method is the one in common use, al

though previously Lobacevskii, and still earlier Dandelin, had described other

methods and had applied them in the numerical solution of algebraic equations.

Rounding — the process of dropping the less significant digits in the representa

tion of a number, generally with the rule that a unit should be added in the last

place whenever the first discarded digit is 5 or greater in decimal representation,

1 in binary. When this rule is not adopted the process is called truncation.

Rounding error; roundoff — the error which results from rounding.

Routine — a sequence of operations carried out by a stored-program computer as

specified by a code for the purpose of performing- a mathematical or logical com

putation (cf. program)♦

Runge-Kutta method — for the numerical solution of an ordinary differential equation

y' = f(x, y),

requires the sequential computation of the following quantities:

fv = f(V yv}>
^ =h fv, k2 =h f(xy +h/2, yy + kx/2), -

k^ =hf(xv +h/2, yy +k2/2), k^ =hf(xv+1, yv +k?),

yv+l =yv +(kl +2k2 +2k3 +k4)/6'
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The formulas have an obvious interpretation when y and f are vectors, hence for

a system of equations. The method has the advantage of not requiring special

measures at the outset as do the methods of Adams, Milne, and others based upon

straight interpolation. It has the disadvantage of being slightly more complicated.

Analagous simpler schemes, but of lower accuracy, are available (see Co). In this

class see the Euler method.

Saddle point method — for obtaining an asymptotic approximation to a function ex

pressible in the form

j e v ' d t
C

where f(T)-»-<» at either end of the curve C. Iff(z)=u+iv, the method in

volves choosing the path C of integration to pass through a saddle point of u, a

point that will be among the roots of f'(T) = 0, and to pass through it in the

direction v = const. Points of C in the vicinity of the saddle point then con

tribute most to the value of the integral, and for large positive z only these

points are significant. The method is sometimes called the method of steepest

descent since the direction a = const is that which descends most steeply from

the saddle point.

Scalar product — of two geometric vectors, ,x_and y, is \x\ |vj cos 9, where the

bars signify the geometric length, and the angle 9 is that between the vectors.

If these vectors are referred to an orthonormal coordinate system, and if x and

y are the column vectors whose elements are the coordinates of jcandjj^in this

system, then

x y = y x = [x\ [vj cos 9.

In any event, the scalar product is often written x. *^and hence referred to as

the dot product.
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Schwarz inequality — Let 9 and. \|r be two functions in a space for which an inner

product is defined. Then

1(9, *)|2 ^ (9, 9) (*, *).

In particular, if x and y are two vectors (real or complex), then

|x* y| = |y* x| ^ (x* x) (y* y)

where the asterisk designates the conjugate transpose.

Secular determinant — for a given matrix A, is

det (A - X I),

whose zeros are the proper values of the matrix.

Seidel method -- the term sometimes applied to the single-step iteration for

solving linear equations. See matrix inversion. Actually the method Seidel (and

Gauss) described was a method of relaxation.

Significant figures (or digits) — those digits that can be considered correct in

the approximate representation of a quantity, whether measured or computed, other

than zeros to the right of the decimal and to the left of the first non-null digit.

Thus in 0.00123, the significant digits are 1, 2, and 3« To write a number in the

form 0.001230 is to imply that the final digit is known to be a zero, and that the

four digits, 1, 2, 3, and 0 are all significant.

Simplex method — a method due to George Dantzig for solving the linear programming

problem. Let it be required to find that vector x satisfying

A x = h, x a 0

T
such that 9 = a, + a x is minimized, where the matrix A has n rows and N > n col

umns, and the vectors x and h are of dimensions N and n, respectively. It is

assumed that A is of rank n. It is required thatjinitially one find a particu

lar solution x of the inequalities, with N - n b£ the.• elementsinull,• and'such-

that the matrix of coefficients of the others is nonsingular. •• -
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After a possible renumbering, it can be supposed that the null elements are the

T T T
last N - n. Partition the system with x = (y , z ), where y and z are of di

mension n and N - n, respectively, and write

B y + C z= h, y = B-1 h -B"1 C z.

At this stage the elements of y are called the basic variables, those of z the

nonbasic variables, and the initial solution of the inequalities has y = B h 2: 0

and z = 0.

Now 9 can be written

T T - T -1 W T -1
9 = a + b y + c z = (a + b B h) + (c - b B C) z.

T T -1
Ifc -b B C^O the problem is already solved. If not, consider one of its

negative elements. By allowing the corresponding element of z to become positive,

but holding all others at zero, 9 can be decreased, but, in general, some element

of y = B h-B™ Cz will eventually vanish. At this point, where the first

element of y has vanished, the z which has been allowed to increase is adjoined

to the set of basic variables, and the y which has vanished is adjoined to the

nonbasic ones, and the process is repeated.

Simpson's rule -- for numerical quadrature:

X2
/ f(X) dX=| (fQ +kf1 +fg) +R,
X0

where f = f(xQ + i h) = f(x.)

Hence

P. = -h5 fIvT (g) / 90.

X2n
/ f(x) dx=- [f0 +kf± +2f2 +4f3 +... +4f2n_1 +f2J.
X0



-95-

Simultaneous equations -- The solution of simultaneous linear equations is dis

cussed under matrix inversion. In case there are more equations than unknowns,

it may be that some are redundant, and can be dropped without affecting the

theoretical solution. If not, the equations are inconsistent, and only a least

squares or other approximation can be used. If there are fewer equations than

unknowns the determination cannot be unique, and at most it will be possible to

leave some of the unknowns arbitrary, solving for the others in terms of these.

Even with nonlinear equations it is sometimes possible to eliminate some

of the unknowns by solving and substituting, although this may not be advisable

since the analytic expressions tend to be more complicated. In any case, suppose

the system has the form

9i(51, ..., 6n) = 0, i = 1, 2, ..., n,

assume no further reduction is possible or desirable, and suppose that a solution

a.,, a_, ..., a actually exists. If
n

I
i

* =Z^
then $(£,, ..., I ) so and $(cl, ..., a ) =0. Hence $ is minimized for i. = aJ.

1' ' n' x 1' ' n' i i

Therefore one may use the method of steepest descent as one method of solving the

system, provided the necessary derivatives exist.

Another method is a generalization of Newton's method. Suppose |^ ' is

a set of numbers sufficiently close to a . Then, by expanding in Taylor's series,

9.^; ..., an) -0-9i>0 +Z («j "!<j0)) *9^0 /*ftj +-..,
j

where the subscript 0 signifies evaluation for £. = §. . If the differences

a - !;. are small enough and the terms not written (quadratic and higher) are

negligible, and if, further, the matrix of first partial derivatives

(&*! /dlj)



-96-

is nonsingular throughout a sufficiently large neighborhood of the solution a.,

then the linearized equations can be solved and the result will be approximately

equal to the differences a. - |: '. By adding these to the £; ' one obtains an

improved set, and the process can be continued as many times as seems necessary.

Single-step iteration — see matrix inversion.

Singular values — of a matrix A are the non-negative square roots of the proper

values of A* A.

Smoothing — the replacement of a curve, or of a sequence of points by another

that is in some sense more regular, and yet whose ordinates, for any abscissa, are

changed as little as possible. The irregularities in a sequence of points may be

due to errors in measurement. If theory requires the theoretically correct points

to lie on a given curve, one may apply some method of curve fitting, possibly

least squares. If not, one may select arbitrarily a simple function, possibly a

polynomial, and fit it by least squares. If the purpose is merely to obtain a

smooth graph, this may be drawn visually. Somewhat more sophisticated is to

take, say, 5 consecutive points, fit a parabola, and replace the middle point by

the one on the parabola. The next parabola requires four of these points and one

new one.

Spectral norm —"This term is sometimes used for the spectral radius, but this

function does not possess the norm properties. Also, and more appropriately,

applied to the function ||a|| defined by

||A||2 = p(A* A),

which is a norm (see spectral radius).

Spectral radius of a matrix A -- p(A) = max |x.(A)| for all proper values of A.
i

See norms; spectral norm.

Stability — see numerical stability.

Star-- rte. Set o? Coe.FF/tleufe asSoovW W;«> ^Af*^"^^'"'"''^



Steepest descent — a term sometimes applied to the saddle point method. However

the term is also applied to a method of solving simultaneous equations and of

minimizing (or maximizing) a function. Given a function of several variables

*^s-i y &2> ••°t Sj./

to be minimized, form grad #, the vector whose elements are d $ / d %. = 7.. The

function

9(X) =^U± -X 7V .... 6n - A. 7n)

is a function of only a single variable. Let |^ , ..., £^ ' represent a point

sufficiently close to the minimum, let y\ ' represent the value of 7. at that point;

substitute £„ ' - X 7. in * and minimize the resulting 9 as a function of X. If

this minimum occurs at X" , then V = V. ' - Xs 7. will be, in general, a

closer approximation to the minimum.

Stirling formula -- if n is a large number

inn! =(n + p- Jin n -n

+iin2it +ik-°(1/n5)^ '
where the last term is of the order of l/n . Often approximated by:

in nl = n in n - n.

Stirling interpolation formula — in the notation of difference operators

wu n « u2 J2 u(u2-l2) .3 u2(u2-l2) -4 u(u2-l2)(u2-22) R5E =l + uu5 + g7-5 + ^ ,—' u 6-^ + —>j~ <- 6 + —> {> ' u 5^ + ...

Sterling numbers — the coefficients S^ ^in the expansion (see difference operators)

u(n) =S(n) un +S(n1) un-1+ ... +Sl(n) u.
n n-1 1

( n)For v > n, S^ ' =0. These are also called Stirling numbers of the first kind,

S(n)those of the second kind being the coefficients ox ' of the reverse expansion
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ua =(B{a) u<n> +6{n] a^1* +... + S\n) u{l),
n n-1 1

It follows from these definitions that

(n) _dV u(n)/ duV
vl

u=0 m=0

v!

Their importance is due in part to their occurrence in the following differenti

ation formulas:

s(v+l) Av+1 (v+2) Av+2
ev = S{V) AV +^ +^ + ...

V v+1 (v+1)(v+2)

/-(v+l) v+1 /r(v+2) v+2
av fz(v) av ^v ° tov °A = Ci>y 9 + + + ...

v+1 (v+1)(v+2)

Storage unit — that part of a stored-program computer which stores the code or

the numerical data or both. In most current machines the storage unit is divided

into cells, usually of between 30 and 50 binary elements, these cells are ordered

and the ordinal number of the cell is its address. Generally, too, a given cell

can be used to store either data or commands, a command including an operational

code symbol and one or more address symbols for locating the operands. Operation

can begin with any cell, the contents being interpreted as one or more commands,

and will usually proceed in sequence until a transfer or jump command interrupts,

although in some machines every command specifies also the location of the next

command to be executed.

Stored-program computer -- a computer that is capable of storing instructions as

well as data and of carrying out a sequence of operations as prescribed in advance.

The modern high-speed general-purpose computers are digital computers of this

type. Any such machine will possess a basic repertory of certain arithmetic and
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logical operations, each designated by a certain symbol, basically a binary

sequence. A sequence of such symbols constitutes a code which, when introduced

into the storage unit along with the necessary data will direct the machine

accordingly.

Stormer method — for the numerical solution of an ordinary differential equation

of second order;

y" = f(x, y, y1),

uses the predictor

yv+l *2yv -yv-l +*2 <fv +h^ fv +4 ^ fv +2T§^ fv +I^V5 fv +...)
It is useful in particular when y' does not occur explicitly in f. The equations

apply also when y and f are vectors. See difference operators for the definition

of v. (See Co). "Vs

Sturm theorem -- for locating roots of an algebraic equation P(x) = 0. Taking

P = P0, P' = P,, apply the Euclidean algorithm for the highest common factor of
Shtrfn

P and P . In the/5e*quence P_t P , P?, ... evaluated at any r, let V represent

the number of variations in sign. Then the equation has exactly V distinct roots

exceeding r. While the application of Budan's theorem is simpler, it provides less

information in general. Moreover, if P is not a constant, P being the last

term in the sequence, all multiple roots satisfy P = 0 (see algebraic equations).

Subroutine --a portion of a routine for a stored-program computer, e.g., a part

which evaluates a trigonometric or other standard function, which has been so

coded that it can be made an integral part of any routine that calls for this

particular computation.

"^* S~tu*n Selectee - - d Seou-ence^ oP Pc/c/"£>/ft/a-/s a^Soc.;**^ us/H? a*.

0«e^ dre Offy)os.Jre> ft? s.jn.
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Summation of series — Ji general, methods of approximate computation are based

upon the use of infinite series and sequences whose limits are the desired quanti

ties, and in practice one must truncate the series or select a particular term in

the sequence. It is advantageous, therefore, that convergence be as rapid as pos

sible. In some instances a series may not converge and yet may be regarded as de

fining the required quantity in some sense. Thus the series 1 + x + x+ X? + ...

fails to converge when |x| > lj on the other hand it is the formal development of

(l - x) and may be considered to define this quantity whether or not the series

converges. Moreover, if one applies the delta-square process to the sequence of

partial sums of this series one obtains precisely (l ;•* x)" . Thus the process,

in this instance, transforms the sequence of partial sums into a new sequence of

which every term is the value of the quantity formally defined by the series. It

can be regarded as a device for accelerating convergence, when convergence occurs,

or of converting from divergence to convergence otherwise, in either event a

method for summing the series.

Linear methods of summation have been most exhaustively studied, and the

Euler transformation is one of the simplest and most useful. The delta-square

process is among the simpler and more powerful of known nonlinear methods. The

elements u^ of an infinite sequence can always be regarded as the partial sums

of a series, hence one can direct attention to a series or to a sequence, accord

ing to convenience. The terms u of a sequence can always be regarded as func

tional values u(x) of a function for which x = n . Hence finding the limit of

a sequence of terms uq can be regarded as equivalent to the problem of extrapo

lating the function u(x) to x = 0, when functional values are known for x = n"1.

From this point of view one can use interpolation polynomials, continued fractions

(e.g., formed with reciprocal differences) or any other convenient method of approx

imation.
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Symmetric function — of n variables x^, ..., xn, any function f(x , Xg, ..., x )

not affected by an interchange of any x and x.. If these are roots of an alge-

braic equation

n n-1 n-2 ,
x - c, x + c„ x - ... ± c =0,
12 n '

then

Xi, Cg = IjX^ X , C = IjX^ X x^, ...
y 3 u i j

are the elementary symmetric functions, where the summations are extended over

all distinct products of distinct factors, the x. being themselves considered in

dependently varying. Any rational symmetric function of the x. is a rational

function of the c..
l

Synthetic division --~*£b divide the polynomial

t,/ \ n n-1 n-2P(xJ = a x + a x + a2 x + ...

by x - r, write

a^\ an a*. ... a
0 12 n

a_r b.r b nr
0 1 n-1

aQ bx b2 R

where each number below the line is the sum of those above. Then

Q(x) =aQ xn_1 +h± x11"2 +b2 xn_5 +.,.,
where

P(x) = (x - r) Q(x) + R.

Taylor series -- for a function f(x) of a single variable has the form

f(x) =f(a) +(x -a) f'(a) + ... +(x -a)n f^ (a) /n! +R ,

assuming the derivatives to exist, where R is the remainder. There are many dif

ferent ways of expressing this, among them being
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(x - a) r ,_ .Nn „(n+l) r . , m , .^ = ->—-~-i j (i _ t) r Ma + t (x - a)] d tj

R =(*- a,)^1 f((a+1) (g) a<6<xn (n + 1): * Kl)' a-i-x.

If f(x , Xp, ..., x ) is a function of n variables the expansion has the

f(x]_, Xg, ..., xn) =f(x1 -a±, ..., xq -an) +Z(xj_ -aj_) fj_(a1, ..., aQ)

+X/Z Z (xi "ai) (xj "aj) fi<3 (a!> •••* an) +•••
where the subscripts on f signify partial differentiation.

Tchebychev — see Chebyshev.

Three-eighths rule -- the quadrature formula

*3
/ f(x) dx=3h(fQ +3fx +3f2 +f5) /8,
x0

f. = f(x.) = f(xn + i h).
l v iy v 0 '

The remainder is

R = -3h5 fIV (S) / 80,

hence the formula is in general somewhat less exact than the simpler Simpson's

rule.

Trace of a matrix A — trace (A) = /, a. .
— '-' ii

where A = (a. .).

Transfer of control — in the usual stored-program computers commands are executed

in the sequence in which they occur in storage unless a command of a specific type

(a transfer command) interrupts the sequence and causes the machine to look else

where for its next instruction. The command may be conditional, to be executed

only in case a certain condition is satisfied, or unconditional.
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Trapezoidal rule — for numerical quadrature:

rb
J f(x) d x = (b - a) [f(a) + f(b)] / 2 + R,
a

R=-h5 f"(|) /12, a^^ijjk^ CL.

Triangular matrix — one in which all elements are artsi above the diagonal (a

lower triangular matrix), or else below the diagonal (an upper triangular matrix).
CiMesv a.lso e.u&r-t, oUcL4Crta-L ^bmesd;

It is a unit upper or lower triangular matrix irhm nl •in nil illoignml nlrmrntr itr<ii
= / .
uwd&£. The product of two triangular matrices of the same type is again of that

type, i.e., (unit) upper or lower; and the reciprocal of a triangular matrix

(when it exists) is also of the same type. A triangular matrix is properly tri

angular "if the diagonal is null.

Trigonometric interpolation — formulas analogous to the Lagrange formula for

polynomial interpolation can be obtained* They all have the form

f(x) =Zft Vx) / W-
Possible choices of T (x) are the following:

Tt(x) =J sin (x - X(.) / 2 ;

T.(x) = j] (cos x - cos x ) ;

T.(x) = sin x jj (cos x - cos x ) ;

T.(x) = N (sin x - sin x.) .

Tti'qono rneXn'c- 6, etries - - Se-e- /totcr/er' Se f/cs, ,
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Triple-diagonal matrix -- a matrix A = (a. ) for which a. . = 0 when |i - j| > 1.

Thus nonnull elements occur only along, just above, or just below the diagonal.

These occur in the theory of continued fractions. Some methods for computing

proper values and vectors of a matrix aim first at transforming the matrix to

triple-diagonal form.

Truncation — approximating the sum of an infinite series by the sum of a finite

number of terms in that series. As applied to the dropping of digits in a number,

the term contrasts with rounding.

Truncation error — strictly the error due to dropping all but a finite number of

terms from a possibly infinite series, but often applied also to the error due to

representing the limit of a sequence by one of its terms, or to representing a

function by an interpolation polynomial. See error.

Unitary matrix — see matrix.

Vector — a matrix of n rows and a single column. Geometrically or physically,

it can represent directional magnitudes such as displacements, velocities, ac

celerations, forces, etc.

Volterra equation — the integral equation of the form

rx
9(x) = f(x) - X J K(x, y) 9(y) d y

X0

in which the upper limit of integration is the variable x.

Wave equation — the hyperbolic partial differential equation of the form

a2 u / a x2 = k2 a2 u / a t2.
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Weddle rule — for numerical quadrature,

J f(x) dx=3(f0 +5f-L +f2 +6f5 +fk +5f +f6) +R,
x0

R=-h7 [10 f(Vl) (g1) +9h2 f(viIl) (|2)] /1400.

Word — in the terminology of digital computers, a set of characters occupying

one storage cell and treated as a unit by the machine, e.g., in being transferred

to and from registers.
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