





P. 8, line 7: latter portion of equation should read "... =

P. 10,

P. 11,

P. 12,

ORNL-2704 )%, &

A Glossary for Numerical Analy

ADDITIONAL ERRATA

pim-1) ) 2 plm) ) w,

lines 3, 4, and 5 from below: close up spaces between §a and § b where spaces
occur.

line 2: "given" should be "Given. "

line 7: after "Euler-Maclaurin formula",add "(NO)." deleting period after
"formula. "

line 18: preceding the entry "Bessel interpolation formula" and as a separate
line insert the words "See NO. "

u 1 u 1
"E a E2" ghould read "E = E2%,

line 9: after "in the form" insert "(see star)".

line 11: "given" should read "Given."
line 15: "Descarte's" should read "Descartes's."
line 21: "in" should read "In."
n
line 12: equation should read ".\. wix¥dfx) dx = w ; f(xi) + Rn’ ",

line 4: close spaces between "nx."
line 2 from below: "for® should read "For."

line 7: "in" should read *In."

line 7: insert the fourth paren - it should read "(||6 Al / lalhe.

line 15: delete the words "and distances.®

lines 18 and 19: delete the sentence "Preservatmn of d1stances means that the
arc length from P! to P'1 is the same as that from P to Pl' "

line 2: change "converge" to "is exact."

line 11: "socalled" should read "so called."

line 6 from below: "consider" should read "Consider."

line 6: "a" gshould read "A."

line 3: "suppose" should read "Suppose."
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P. 25,

P. 26,
P. 29,
P. 30,

P. 31,

P. 32,

)

P. 34,

P. 35,

0

0

__P. 36,

P. 37,

P. 39,

"
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line 5: after "smoothing™ add ¥, Niji.®
line 14: "let"™ should read "Let. "
line 16: "k" should read *h." > 4
line 17: equation should read *¢, =a.+a, h- +a_ h +...",
. . h 0 1 2
line 20: equation should read , o
h

- m e e om o
-

1° B
line 19: "Descarte’s” should read "Descartes's. "
line 15: "for" should read "For.% ,

line 19: "Sterling" should read "Stirling. "

line 5: "for” should read "For."

line 20: After sentence ending "proper value, " add "But usage varies even for
integral equations. "

line 7: replace "Poisson” with "Laplace. "

after line 8: insert the definition "Euclidean alsrorithm -- gee Lnighest common
factor. ™

line 11: "= 0.577215665..." should read "= 0, 577215665".

line 12: after "Euler-Maclaurin formula --" add "the formal expansion".

line 2 from below: "Sterling"should read "Stirling."

line 11: "a series of the form" should read "A general series of the form."

line 12: after the equation, insert (on the next line) the words "is called a
trigonometric series. ® .

line 20: change the period at the end of the equation to a comma and add (on
the next line) "and with a_ and b 8o defined the series is called a Fourier
series.” . P P '

last equation at bottom of page: insert a dot over the equals sign and insert "n"
above the "summation™ and "0 below it.

line 2: insert "n" over the "summation" and "j= 0" below it.
line 14: replace "weight” with "density. *

lines 6 and 7: "Siedel” should read "Seidel. "

line 1: "Green function" should read "Green's function."

line 4: at the end of the equation, replace the period with a comma and add (next
line) "the integration extending over the interval on which the solution is to
be defined. ®

line 15: after "160" add "+ ..." and delete the next line of "dots. "
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—P. 40, line 2; insert "n" over the "summation®” and "0" below it.

» line 5: after "formula. " add the sentence "More generally, higher derivatives

may also be prescribed. ®

P. 41, line 7: after "However, " insert "if every B; Fo.m

P. 44, line 10:
» line 13:
» line 21:

insert the right paren to read "= 8. (¢, Y, ) + ==-=",
"determination"” should read ““a.pproxfmaéion. "
after "difference operators replace comma with semicolon.

P. 45, line 1: "determination” should read "approximation. "

", line 21:

P. 46, line 21:

should read "|¢'(x)] =k <1".

over the large "pi® insert "0, n".
ge "p

P. 47, line 2: replace "weight®with "density.”

, line 12:

after "0 0% add "...",

P. 49, line 5: following the equation, on the next line insert "the summation extending
over all observaticons, ¥.

W, line 16:

replace "weight® wwith "density. "

. : Wi, 1 - = "
» line 17, equation should read “(n+1) Pn+1 (x) - (2n+1) x Pn (x)+n Pn-l (x) =0,".

P. 51, line 4 from below: replace "continuous" with "bounded. *

Dee p-€3

P. 64, line 1: "The" should read "the."

P. 65, line 13:
W . line 16:
" . line 22:

P. 68, line 15:

P. 70, line 13:

"d(y)" should read "F(y)".
delete the comma at the end of the equation and add "+ Rn'

"Sterling" should be "Stirling. "

"a problem® should read A problem. "

replace the words %possesses partial derivatives of all orders" with

"is analytic in x and in y. " ) - .
n line 16: replace "known" with "given" and after "itself" add "one obtains.

?

P. 71, line 18:

"given™ should read "Given."



P. 73,

P. 75,

P. 76,
P, 78,
P. 79,
P. 84,
P. 85,
P. 88,

P. 92,

-4

line lg:replace "weight" with "density."

line 12:

"for™ should read "For.*

following line 10: add a new sentence as follows: "The coefficients a, b, and ¢
are functions of x and y, and the inequalities must hold throughout the
region under consideration. ®

lines 9 and 10: replace "in the following way:" with "by the following stars:".

line

line

line 13:

line 14:

13:

21:

line 1:

line 5: :
some of higher accuracy, are available (see Co). In this."

Yifor® should read "For. "
in equation (1) “bn" should read “bm".

insert a comma after ®conceal them. "

"three-gights“ should read '“three-gi_ghths. "
"colum® should be “column. ®

entire line should read *Analogous simpler schemes, some of lower and

P. 93, line 5: insert a vertical bar " |" in front of "y*" instead of the paren.

e e ————— e

~——To===svawvces Uy dilterences used in the numerical solution of partial
differential equations.

P. 99, line 8: underline "Eredictor. o

~ » after line 12: insert a new entry as follows:

Sturm sequence -- a sequence of polynomials associated with a given

polynomial possessing the properties required for applying the Sturm

theorem, that no ¢onse

cutive pair vanish simultaneously, and that when

one vanishes the adjacent ones are opposite in sign. '

» line 14: underline "Euclidean algorithm. "
» line 15: "In the sequence" should read "In the Sturm sequence."

P. 100, line 1: "in" ghould read "In. "
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P. 101, line 11: "to" should be "To."

P. 102, line 2: raise the left paren so that it reads "(n+1)."
", line 6: "+ " should read "+ 1 V¥ ¥¥u
h L'y g

P. 103, line 3: after "= b." add "h = b -a." replacing the period after "b" with a comma.
" , line 4: replace "null" with "zero." .

, line 6: change "when also all diagonal elements are units." to read "when also
every diagonal element = 1. "

" , line 11: "formulas" should be "Formulas. "

,» line 12: change the colon after "obtained" to a period.

" , line 16: "j#k" should read "j#i".

, following line 18: add a new entry as follows:

Trigonometric series -~ see Fourier series.

P. 107, last line: "34d" should read "3rd, "
, add two new references:

Kaj Leo Nielsen (1956): Methods in numerical analysis, New York, Macmillan,
328 pp. - Ni

Niels Erik Norlund (1924): Vorlesungen uber Differenzenrechnung, Berlin,
Springer, ix + 551 pp. - NO '

August 12, 1959
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ERRATA

Delete hyphens and close throughout in "non-null," "non-negative," "non-

"non

hermitian," "non-normal."

P. 30, line 3 - For "or scalars" read "on scalars.”
" , line 4 from below - For "thus" read "then."

P. 34, line 7 from below - For "both must be taken" read "must be taken both."

P. 39, line 6 from below - For "total step" read "total-step.”

P. 59, second matrix - For "L22" read "I." Just below, delete "Lll and" and "both."

~P. 65, line 4 from below - Underline "trapezoidal rule, Simpson's rule."
P. 92, line 5 - For "Analagous" read "Analogous."

P. 93, line 5 - Replace first paren by vertical bar.

P. 97, entry "Stirling formula" - Replace "ln" by "log" throughout.

P. 102, line 6 - Insert factor "%1 ",

P. 106, line T - For "Konvergente' read "konvergente."

"

, reference to Hestenes and Stiefel paper should be dated 1952.

March 17, 1959
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A Glossary for Numerical Analysis

FOREWORD

Probably no two of those who work in a field they consider "numerical
analysis" will agree as to the boundaries of this field, hence as to the terms
that should be included in or left out of a glossary of terms in the field. Thus
& book published in 1955 and entitled simply "Numerical Analysis" contains no
chapter on the solution of algebraic equations, but only a few pages of "Notes"
in an appendix. A Russian book published in 1953 entitled "Numerical Methods
of Mathematical Analysis" makes no reference to the subject at all. Lanczos, who
does consider the subject, entitles his book "Practical Analysis," and proposes
a term "parexic analysis" to apply to an area intermediate between classical
mathematical analysis and what he would consider to be strict "numerical analysis."
The point of view adopted here in the preparation of this glossary is not far
from that urged by Lanczos, although he would doubtless consider many of the
terms included here to belong more properly to parexic analysils than to numerical
analysis. A further distinction must be made between numericel analysis and pro-
gramming theory, an area that was hardly recognized to exist prior to the decade
that is soon to end.

A few terms have been included, but only a few, that belong ‘more properly
to programming theory than to numerical analysis. There the lines are more easily
drawn. In the other direction, most of what is to be found in Collatz's "Numerische

Behandlung" is considered to belong more to parexic than to numerical analysis.




T

And since "numerical analysis" is assumed to refer to the application of arith-
metic processes, there is little here on the use of analog devices, including
nomograms.,

By thé same rule, however, it is assumed that the first step in prepar-
ing a problem for digital computation is to replace continuous variables, where
they occur, by discrete variables. Hence the emphasis is upon the treatment of
discrete variables (vectors in a finite space, matrices of finite order), and
upon the more elementary aspects of approximation theory. Anything else has
been considered either out of bounds for a mere glossary, or belonging at least
to parexic, 1f not to pure, analysis.

Nevertheless, even within the area thus circumscribed it may be that
many importent terms have been overlooked. Hence in view of a possible supple=-

ment, suggestions, criticisms, and proposed additions are hopefully solicited.
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Accelerating convergence -~ of series and sequences. See summation of series.

Accuracy -~ the degree of exactness actually possessed by an approximation,
measurement, etc. Contrasted with precision, which is the degree of exactness
with which the quantity is expressed. E.g. as a value of n, the number 3.1428
is more precise than accurate.

Adams-Bashford method ~-- for solving an ordinary differential equation,

y' = £(x, y), expressed in terms of difference operators, uses the predictor

= 1 2 2 p)
Yy =Y, thlf +3ve +2 F £ +57 1, + ..,

and the corrector

- Y . -4 -
Ypu1 =9y 7 h[fv+l 2V fv+l Vv fv+l §E'V; fv+l eee

The first amounts to approximating
X
v+l
}{’ f(x; Y) dx

by means of a quadrature formula which utilizes values of f at X, and to the left

only, the second utilizes also the value of f at X, The corrector is to be

l.
used with the best current approximation of Yya1? and reapplied until the next
approximation does not differ significantly from the previous. The formulas have

significance when y and f are vectors (see Mi, Co).

Adams-StOrmer method -- see StOrmer method.

Address -~ the symbol designating a particular cell in the storage unit of a stored-

program computer.

Aitken 62-process -- see Delta-square process.
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Aitken method of interpolation -~ is to form a table

>
]
»

¥, (x5)

O

X - x ¥ (%)) Y (%gs %)
x5

-x oy (xy) Y (%5s %) Y (xgs X5 %)

o)
'
™

5 ¥y (%) Yy(Xgr %) Yx(Xps X5 %3) V%o X5 Xy %g)

by means of the relations yx(x.) =y, and

yk(xi) % =X

Ve(xy, %) = [ (xy -3y,
glxg) o xy - x

Yo(xs %y %) = / G - x5

Then yx(xi, xj) is the result of linear interpolation based upon the abseissae
x, and X3 yx(xi, Xy xk) that of quadratic interpolation based upon the abscissae
X, xj, and X3 eeee ihe process may be terminated whenever consecutive entries
in a column agree to sufficiently maeny figures.

Tt is not necessary that the abscissae be equally spaced, or even ordered,
but only that they be distinct. The method of Neville is based upon the same

principle but utilizes the table




xy - x v, (%)
Y (xgs %)
o V(%) Yx{%or %15 %)
V(% %) Yx(%or Xps %o X5) -
X - X ¥, (%) Vu(Xpr %5 %5)
V(%5 %)
X3 - X Yx(%5)

Algebraic equations -- an equation, or set of simultaneous equations, in which

the unknowns occur as rational functions only. Hence the equations are expres-
sible by equating polynomials to zero. Here the case of a single equation in

one unknown will be considered:

- n n-1 _
8, P(x) = 8y X + &, X + ... +8 =0, aq £0,

where the a, do not depend upon x, and are called the coefficients of the equation,

while n is the degree. This equation is equivalent to

P(x) = x* - cy 2L (-1)% c =0,

i
c; = (-1) ay / 80

where the cy are the elementary symmetric functions of the roots x

The remainder theorem states that if a

i'
P(x) is divided by x - r, the

0
remainder is a, P(r):

a. P(x) = (x -r) Q(x) + &, P(r);

the factor theorem is a corollary and states that if r is a root of P(x) = O,
then x - r divides P(x). The "fundamental theorem of algebra" states that every
algebraic equation has a root, real or complex. These theorems imply that P(x)

can be factored completely:

P(x) = (x - xl) (x - x2) eee (x - x ),

n
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each X, being a root. If x, = x, for some i # J, then x, = x, is a double roots

i J i J

if x, = xJ =X, 8 triple root, .... Counting a root x, of multiplicity m as

i i

being m coincident roots, one says that an algebraic equation of degree n has

exactly n roots (neither more nor less). A Taylor series expansion gives

P(x - 1) =P(r) + (x = 1) P'(r) + vnv + (x = ) P(n) (r) / n!
Hence r is a root of multiplicity m if ?nd § ly if
(r)

0 = P(r) = P'(r) B C.) ) £ p(m) (r), .

hence r satisfies the derived equations
P(i) (x) =0, i=0,1, .., m - 1.
In general, setting y = x - r, if

b, = p(n-1) (r) / (o - 1),

then any root of

n n-1
y + bl Y + ee. + bn =0

is r less than a root xi, hence the roots are said to have been reduced by r.

Repeated synthetic division can be applied to the original equation to obtain the

b, , since b = P(r) is the remainder after dividing P(x) by x - r; b _, that after

dividing‘the quotient by x ~ r;
Other useful transformations are the following:
The roots of

n n-1 n
ay ¥ -a;y + ees + (-1) a =0

are the negatives of the roots of the original; those of

n n-1 n
ay ¥ + ay ay + ce. + a, a =0

are @ times the roots of the original; those of

a_ y* +a n-l +a =0
n Y n-1 Y e o~
are the reciprocals of those of the original. These can be derived by setting

X = -y, X = y/a, and x = 1/y.
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When the coefficients a, are integers, then any rational root when ex-

pressed as a fraction p/q in lowest terms is such that p divides a and q divides
ay without remainder. In particular, any integral root must be a divisor of a:
In principle all rational roots can be found exactly, and once any root r is

known, all other roots must satisfy Q(x) = O where Q =P / (x - r). For irra-

tional roots see Budan theorem, Sturm theorem, Horner method, Newton method,

Bernoulli method, Graeffe method, iterative methods.

While these methods, except for Hornmer's, apply as well to complex
roots as to real, it may be convenient to evaluate P(z) with z = x + i Yy, and
write

P(z) =R(x, y) + 1y J(x, y),
after collecting real and pure imaginary terms. Then
R(x, y) =J(x, y) =0

are two simultaneous equations in x and y, and any real solution (x, y) deter-

mines a complex solution z = x + 1 y of P(z) = 0. More to be recommended, however,

is the Bairstow method for complex roots, which is, in fact, an adaptation of

Newton's method to complex roots.

Algorithm -- a corruption of algorism, which meant originally the art of computing
with Arabic numerals. Algorithm has now come to apply to any rule of computation,
whether algebraic or numerical.

Analog computer -- a computing device in which quantities are directly represented

by physical magnitudes: distances, voltages, currents, rotations, etc. Hence the
mathematical operations are direct operations upon these magnitudes. Examples are
slide rules, differential analyzers, and most special purpose computers, as well

as wind tunnels and model basins. Analog computers are to be contrasted with

digital computers, although hybrid forms exist. Most often, as in digital dif-
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ferential analyzers, in overall use the machine will appear as an analog machine
but will contain components that operate digitally.

Analog-to-digital converter -- any device for providing a digital representation

of quantities initially represented in analog form, i.e., by physical magnitudes.

Arithmetic unit -- the portion of a stored-program computer devoted to the actual

execution of the commands.

Asymptotic serles -- a generally divergent series of the form

2
ay +a; / z + a, /25 + ...

which, however, represents a function of (z) in the sense that

lim [zn f(z) - Z a; / zi>] = 0.

|z]>
It generally happens that for sufficiently large z a limited number of terms of
the series will yield a close approximation to f(z) whereas more terms will not.

Backward differences -- see difference operators.

Bairstow method -- for finding complex roots of an algebraic equation. Let

22 a2+ b be a trial divisor of f(z) and form
f(z) = (z2 +az+ b)2 Q(z) + (z2 +az+5b)a(z) + r(z), where

r(z) = Tz + Ty, a(z) = a4 Z + g

This means that r is the remainder after dividing f by z2 + a z + b, and .q the

remainder after dividing the quotient. Solve

(a q - qo) a - a; &b = T,

0
for &» and %b; then z2‘+ (a + ®5a) z+b+ 8D will be, in general, closer to

b 4 &xn - 9% &b = -r

a true divisor. The method is an adaptation of the Newton method to finding com-

blex roots and was originally described by Bairstow; later by Hitchcock.




=11~

Base ~=- see radix.

Bernoulli method m-“@iven the algebraic equation

(1) X+ a, S a =0,
let hO’ hl, cooy hnml be arbitrary numbers, not all zero, and form hn’ hn+l’ cony
by

hn+v + ey hn+v—l t oo tay hv = 0.

If (1) has a unique root of largest modulus, then in general the quotients

hp+l / huvapproach that root. The method can be extended to transcendental

equations. Let

. 2
(2) f(z) =1+ ClZ+CyZ + s

converge in some circle about the origin in the complex plane, and let
- 2
(3) g(z) =gy +8 z2+g, 2 + ...
represent any function analytic in the same circle, and having no zero in common
with f£(z). Let
ho = go)
¢y By + by =gy,

c2 hO + cl hl + h

]
NN

2

° . . ° °

Then if f(z) has a unique zero of smallest modulus lying within that circle, then

hu / hp+l approaches that zero. If there are two zeros whose moduli are less than
those of all others, then the roots of

2

pA hu hu+l

2 b Bup [ =0

1 hwe hu@

approach those zeros of f(z). Likewise one can form cubics whose roots approach

the three smallest roots, ... (see Ho). The Q D algorithm improves upon this

principle (NBS).
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Bernoulli numbers -- coefficients Bv of the Bernoulli polynomials. Except for b
Bl’ those with odd subscripts vanish. The values of the first several are
1 1 1
Bp=1, Bj=-%5, By=%, B, =-35,

1 1 _ 5
Be=15s Bg=-35, Bpy=%5 "

(o]

They are the coefficients in the expansion
o0

u/ (% -1) = ED B, W /v

0
They occur in the Euler-Maclaurin formula} (NO)*

Bernoulli polynomials -- Bv(x) of degree v occur as coefficients in the expansion

o0

et -1) = 23 u’ B,(x) /v!.

0
They satisfy the differential equations with boundary conditions

Bi(x) =vB, (x), 3B,1)=(1)"5/(0),

and can be written symbolically in the form Bv(x) = (B + x)v, where the right

member is to be expanded as though v were an exponent:

(B+x). =B. + vxB + ¥(v-1) =2 B + vee
v v v-1 2 v-2

and the coefficients are the Bernoulli numbers. In the same fashion & recursion

for the Bernoulli numbers is

= (B +1) v v > 1.

SEE NO. u o
Bessel interpolatlon formula -- EY "IEz [u +(u-3) 5+ o HB

1/u u+l 1 [futl
+ E—%—a(/2> 5 + ( L ) n ah + 2%3 ( L ) 5 + ...]

(for notation see difference operators).

The formula 1s most useful for O < u<1l. Taking v =1u - %, an alternative, and -

more symmetric, expression is
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1
E" = E? [u + VS + 5 (v2 - %) u 5°

VP -h Pl P -h (P -D s

1
>
%l v(v2 - ]]f) (v2 - E—) 55 + ..-] .

Bigit -- a binary digit. This term has been proposed in order to reserve bit for
use only as a measure of information.

Biharmonic equation -~ the partial differential equation

Fo/oxt+23 0/ 0205+ 0/ 35 =0
satisfied by small deflections of a plate. The usual coefficients for a square

mesh are in the form (See Stav).

1
2 -8 2
1 -8 20 -8 1
2 -8 2
1
Binary -- characterized by two alternatives; compounded of two parts. In the

binary representation of numbers, the radix is 2, this being used in many digital

computers.
Binary point -~ the radix point in the representation of a number with the radix 2.
Biguinary -- a form of number representation combining the radices 2 and 5.

Bit -- a unit of measure of information; viz., that amount represented by one of
two alternatives. A binary digit, i.e., O or 1, in number representation with
the radix 2.

Block relaxation -- a variant of the method of relaxation for solving linear systems

in which one solves two or more equations of the set simultaneously for the corres-
ponding unknowns in terms of current approximations to the others. This generally

speeds convergence if convergence occurs.
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Blunder -~ any malfunction, human or otherwise, such as faulty arithmetic, use
of an incorrect formula, etc., ir a computation. Also the result thereof. See
error.

Boundary value problem -- that of finding the (or a) function satisfying an

ordinary or a partial differential equaticn and satisfying also a condition or

conditions at the boundaries. Flliptic differential equations are ordinarily of

thig form. For ordinary differential equations the usual method of solution is
to approximate the derivative by finite differences and solve the resulting dif=-

ference equations. This leads to matrix inversion and the solution of linear

equations, and possibly to the need for finding proper values and vectors.

Budan theorem -- @iven any polynomial P(x) in the single variable x, let P and

its derivatives be evaluated at x = r, for any r. Ignoring vanishing derivatives,
let V_ represent the number of variations in sign in the sequence P, P', P", ....
Then the number of roots of P(x) = O exceeding r is Vr + 2v, vwhere v is an

integer = 0. Descartesb rule of signs is a particular case with r = O, where .

VO is the same as the variations in sign in the coefficients. Any r for which

vV, =0, all P(i) having the same sign, is an upper bound for the roots of P(x) = O.
In case Vr - Vs = 1, there must be exactly one root on the interval from r to s.
All roots are counted according.to multiplicity, e.g., & double root is counted
twice.

Calculator -- In current usage the term is used interchangeably with computer as
either one who or that which calculates or computes. Since the term "computer”
more often designates a machine in current literature, it is suggested here that
"calculator" be applied only to the human being, and "computer" only to the machine. N

Carry -- in digital addition of two numbers, an increase by one of the sum of the

digits in any position when the sum in the position to the right exceeds the base.
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Eébxéev -~ see Chebzshev.

Central difference operator ~- see difference operators.

Central mean operator -- see difference operators.

Characteristic polynomial -- of a matrix, see matrix.

Characteristic value -- of a matrix, see matrix, proper values and vectors, and

principal vector.

Characteristic vector ~- of a matrix, see matrix, principal vector, proper values

and vectors.

Chebyshev approximation -- see minimax approximation.

Chebyshev expansion -~ an expansion in Chebyshev polynomials. Since Tv =x’ +

terms of lower degree, therefore x’ = Tv + Chebyshev polynomials of lower degree.
Let f(x) have the expansion
f(x) =, +a, x+0 £ s, -l =x =1,
0 1 2 e
By expressing each x’ in terms of Chebyshev polynomials and collecting terms one
has
f(x) = By + By Tl(x)'+ Bs Te(x) e
It generally happens that for a given degree of accuracy this Chebyshev expansion

can be truncated much sooner than the pover series expansion, hence for computing

purposes is more effective. See minimax approximation (for more details see Ko,

La).

Chebyshev polynomials -~ see also Chebyshev system, minimax approximation.
T. =1
1-v
Tv(x) =2 cos v 6, X = cos 0.
Hence the polynomial Tv is of degree v, with leading coefficient 1, and

|, (x)] =2V for -1 =x=1.
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They satisfy the recursion
4 Ty = b ox T, - Ty
and Tv’ further, possesses the important minimax property that among all poly-
nomials of degree v and leading coefficient 1, the maximum absolute value of
Tv on the interval from -1 to +1 is least.
One should note that in some books the polynomials
P (x) =2 T (x) =cosn 6
are called the Chebyshev polynomials. For these the recursion is

P =2Xx P - P
v

v+l v-1

(see Ko, Ia).

Chebyshev quadrature formula -- a formula of the form

b
o W 200 a0 f o) TR,

a
where the points xi are so chosen that the integration is exact when f(x) is a
polynomial of degree as high as possible. It turns out the xi can be determined
as roots of an algebraic equation of degree n + 1, but unless n <7 or n = 9 they
do not all lie on the interval of integration. The formula is advantageous in

particular in cases where the f(xi) are experimentally measured, since in the

formula they are equally weighted.

Chebyshev system -- of order n, a set of functions
Po(x), @ (x), ooty @ (%),
linearly independent and continuous on an interval (a, b) with the property that
if the linear combination
Fn(x) = 0, ¢o(x) toeee O ¢n(x)

vanishes more than n times on the interval, then it vanishes identically, and
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hence . =, = .., = an = 0. Such a system is

n

cpozl, (Pl=x, coey CPn=x ;

for the interval from O to 2x, the system

% = 1, 9,=sin x, Pp =COS X, veey Py g = sin 1 X, Ppp = COS ICX
is a Chebyshev system of order 2n. Such systems are of importance in minimax
approximation.

Chid's method -~ for evaluating a determinant is identical in principle with

Gaussian elimination for matrix inversion and the solution of linear equations.

If the elements are aiJ and Q5 # O, then from the ith row subtract the first

11/ o
in position (i, 1). After this has been done for each row other than the first,

multiplied by o The result is a determinant of equal value with a zero

the determinant reduces to one of lower order.

Choleski's method -- for inverting a positive definite Hermitian matrix A is to

express it first in the form

A =R¥R
where R is upper triangular and R* its conjugate transpose, and thence to compute
R-l and multiply by its conjugate transpose. The method is mathematically equlva-

lent to the method of elimination, but requires the extraction of n square roots.

Closed quadratire formula -- one which explicitly includes the values of the

ordinates at the endpoints, to be contrasted with an open formula in which the
ordinate of at least‘éne endpoint does not appear. Closed formulas are used as
correctors, open formulas as predictors, in the numerical solution of ordinary

differential equations.

Code -- for any given stored-progrem computer, each operation of its repertory is

represented by a code symbol, which is a particular sequence of characters. Also
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each cell in the storage unit is designated by a code symbol, the address of the
cell, An ordered sequence of symbols representing operations and operands (in
the form of addresses) wher represented in the storage unit, directs the computer
to perform the operations upon the operands in the specified sequence, and this
ordered set of code symbols is a machine code, and it defines a routipg (or pro-
gram).

Complement =- In decimal representation the complement of a number x is lOv - X,
where v is some fixed integer, positive, negative, or zero. In binary representa-
tion it is 2 - X, where u is an integer. The subtraction of a number is thus
essentially equivalent to the addition of its complement, and in computer con-
struction it is generally easier to mechanize the formation of a complement than
that of an arbitrary difference. In binary notation, the one's-complement of x

is the number obtained when each digit x, of x is replaced by 1 - x

i i°
Computer -- see calculator. Any physical device used as an aid in computing. It

is customary to distinguish two general classes, analog computers and digital com-

Euterso

Condition number == an indicator of numerical stebility. In particular, the con-

dition number of a matrix is usually taken to be a pumber that is equal to unity
for a scalar matrix, and that is large when the matrix is in some sense nearly
singular. Hence if the problem is to solve the linear system
AXx=h,

the problem is unstable in case the condition number of A is large. Among the
several functions of the matrix that have been proposed, the most suitable seems
to be

7(a) = [la]l Ja™

for some appropriately chosen norm. The reason for this is that for small changes
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in A, the ratio of the relative change in the solutlion to the relative change in
A can be shown not to exceed y(A). This is to say that if ® A represents a small
change in A, and ® x the induced change in x, then

(lo =l / <) / (s all / llalh) = llafl ™ = »(a),
provided second-order effects are neglected. More exactly, if E = A-l ® A and
Il < 1, then

ol / Il / o all / al)=y(a) / @ - Jizl)-

It should be observed that this condition number relates only to the in-

vertibility of a matrix, and has no relation to the finding of its proper values

and vectors. If A is diagonalizable,

A=pAP?
where A is diagonal, then ”PH ”Pgl” seems to be the appropriate condition number
for this problem.

Conformal mapping -- & mapping of one region upon another that is one-to-one and

continuous, and such that angles emd—distemees are preserved. Thus let arcs Cl

and 02 in one region intersect in a point P; and let these be mapped into arcs

Ci and Cé intersecting in P'. Iet Pl be any point on Cl’ mapped into Pi on Ci.

that—#*eaLELée—Pi. let ¢ be the angle between tangents to Cl and 02 at P, ¢' that

i and Cé at P', Preservation of angles means that ¢' = ¢@.

In case the reginns are two-dimensional and simply connected, they can be regarded

between tangents to C

as regions of two complex planes, and the mapping is then defined by z' = f(z),

where f(z) is analytic in z throughout the region.




-20-

Conjugate gradients, method of -~ a method of successive approximation for

1S exact .
solving a system of linear equations which egsmesges after at most n steps.

The successive approximations are so chosen that each residual is orthogonal

to all preceding ones.

Continuant -- a determinant of the form
bo al 0 o 0
a. ... a =L b & ... O
1 n
K - O "l b2 e s e O ’
bo bl eee bn
0 0 0 o b
n
50 called

socatted because the nth numerator and nth denominator of the continued fraction

F = bo + al/ bl + e

are
8y eee B .
A.n =K
bo bl cee bn .
al LN an
Bn = K L4
bl b2 cee bn

Continued fractions -- €onsider the (possibly infinite) system of difference

equations

xO = bo xl + al x2,

X =Py X 8y Xy,
X, = b2 x3 + a.3 X, 5 -
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So long as no X, vanishes or becomes infinite one can write

5/ % =%y +ay [/ (x /%),
x) [ my =y +ay /(%] %),
X [/ x5 =0, + ey [ (x5 / x,),
and with repeated substitution
X, / x1 = bo + al//£1-+ ae/f€;-+ e
where each horizontal bar signifies the inclusion of all that follows. The right-
hand number is a continued fraction. If one arbitrarily sets Xj00 = 0 and X, = 1,
considering only the first i equations, the finite continued fraction can be
evaluated by solving the ith equation for xi-l; substituting in the preceding
and solving for xi_2 / x;-l; and continuing until X, / X is obtained. In many
applications the ai and bi are functions of a variable x, and one truncates and
evaluates 1n the menner just described.
A finite continued fraction
Fn=bo+al/Fl'+...+an/bnEAn/Bn,
where An and Bn are polynomials in the ai and bi can be otherwise evaluated by
means of the recursions (see continuant)
An = bn An—l * 8y An-2’

B a

n - bn Bn—l Bl Bn—2'
These relations, however, though of great theoretical importance, are not to be
recommended for computation in general since they tend to be highly unstable
numerically.

The fraction Fn is called the nth approximant to'F; A.n and Bn the nth
numerator and denominator. If all An and Bn are given, and if

An / Bn # An+l / Bn+l

for every n, then the a and bn are determined uniquely. In particular the
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approximants an are called the even parts, Fén+l the odd parts, of F, and it is
possible to form a continued fraction whose approximants are the even parts of
F, and one whose approximants are the odd parts.

For applications of continued fractions, see reciprocal differences,

Pade table.

Correction -~ A quantity added to a previously obtained approximation to yield a
better approximation. Sometimes the term is applied to x - x*, where x is the
true value and x* the approximation, and is coatrasted with the difference x* - x
which is then designated the error. This sense is not the one adopted here.

Corrector -- In solving initial value problems in ordinary differential equations,

a quadrature formula to be used for improving a given approximate value of the
dependent variable at an advance point, and contrasted with a predictor used to
obtain a first approximation. A predictor formula uses an open quadrature form-
ula, a corrector formula a closed one.

Cracovians -- except for the rule of composition, the same as matrices, the
Cracovian product of A and B being the matrix product AT B. Advocated by
Banachiewicz, they are in favor mostly among some European geodesists. . Since
any Cracovian identity can be expressed with matrices and converéely, it is
clear that preference for either over the other can be based only on convenience,
tradition, and taste, in some combination.

Cramer's rule -- in the system of linear equations

Ax=h,
let © = det A, and let 61 represent the determinant obtained when h replaces the
ith column of A. Then Si / ® are the elements of the solution vector x. The rule

is of great theoretical importance but of little value in computing practice.
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Crout's method -- a method of triangularization for matrix inversion.

Cubature formulas -- see multivariate interpolation.

Curve fitting -- Suppose that a physical variable y is known to bear a particular

functional relation to another variable x:

y=1f(x; a, B, ...),
where the form of f is known, but where f contains certain parameters o, B, ...,
that are unknown. Thus in radioactive decay the amount of a constituent is known
to be an exponential function of time, y = @ exp (-8 t), where t takes the place
of the above x. If it is possible to measure the y associated with any x, one
can make a series of measurements, X5 ¥yo and hope to solve the equations

¥y = f(xi; Ay By ees)
for the parameters. Since, in general, theNmeasurementsvwill be subject to error
one must make more measurements than there are parameters, and since the equations
will then be inconsistent, in general, it is necessary to establish some criterion
for making the "best" selection of the parameters so that, in some sense, all
equations are satisfied as nearly as possible, even though possibly none is satis-
fied exactly.

A possible criterion is the minimax criterion: to select the parameters

so as to minimize the greatest of the quantities

ly, - £(x5 2, 8, +.0)].
This is sometimes used, but is very difficult computationallylin most cases. Some-
times one resorts to trial and error, with visual inspection of the graphs. The

method of least squares can often be justified on grounds of probability, and

usually leads to the simplest computations.
The same mathematical problem arises when a known function ®(x) is to be

approximated in some fashion by a simpler one. For this purpose interpolation is
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the most usual method of procedure.
Sometimes one has only the empirical measurements X5 ¥y» but no theory
to prescribe a particular functional form f(x; «e.). In that case one can only

apply intuition, and possibly trial and error, in selectihg a convenient form.

See smoothing. N I

Dandelin's method -- a root-squaring method for solving algebraic equations in

which the equation 9(x) = O is replaced by
o(x) o(x) = 0,

differing only mildly from the later Graeffe's method. Dandelin applied this

first in conjunction with Newton's method for accelerating convergence, but also

proposed repeated application as a method in itself.
Decimal -~ characterized by ten; compounded of ten parts. The decimal system of
number representation is the ordinary one using the radix 10.

Deferred approach to the limit -- igt P represent a quantity to be calculated by

a finite difference method (e.g., an integral); let ¢,, Tepresent the approximation

h
obtained when & x = %. Often it is approximately true that
A Wk
S A S . t &
h 1 2 e =% .

let @h and ¢h represent similarly values obtained with h = hl and h = h2. If
1 2

hl and hé are small enough so that terms beyond h2 can be neglected, then
- 2 2 2 2
é =(nf ¢ -n- @ ) / (h -h )
hl h2 1 h2 2 hl 1 2

is a much better approximation to ¢ than is either ¢h or wh

. Commonly one takes
1 2

h2=hl/2.

Deflation -~ a transformation applied to a matrix A when one proper value and vector

are known for the purpose of reducing the computations required for finding the

others. The general theorem is, if proper values of A are xl, AE, ooy Ah’ and if
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A vl = xl vl, then proper values of

T
Al = A - vy k
are xl - kT vy A?’ veay xn, whatever the vector k. By choosing kT to be a
multiple of the first row of A, and scaled so that

T
k vl = Xl,

the first row of A1 is null.

Delta-square process -- Let 85 85 9 855 represent three consecutive terms in a

sequence, possibly three consecutive approximations to a root of an equation ob-
tained by Newton's method, Bernoulli's method, or some other. In many situations,

when the sequence has a limit, then a; - (A;ai)2 / A2 a, will be much closer to

this 1limit than will a Here A represents the difference operator. If the

i+3°
approach is geometric, that is, if a, = a + pi, then this gives the 1limit a

i
exactly.
The formula can be derived by assuming the above form for ay and solving
for a. A somewhat more general formula in terms of 85 85 95 84 0 ai+§, 8.
can be obtained on the assumption that a; = a + al pf‘+ a2 péi. The result has
a meaning even when |p| = 1, hence the method is sometimes effective for summing

divergent series. Generalizations have been developed by Shanks and by Wynn.

Descarted’s rule of signs -- for polynomials, a special case of Budan's theorem.

Detection of tabular errors -- by means of differences, is based upon the follow-

ing table, readily verified and extended:




T

¥y 5y ay 55y
0 0

Q €
0 €

€ =~3€
€ =2€

-€ pl3
0 €

0 ~€
0 0

This shows that the effect of small errors becomes accentuated progressively in
the columns of differences,

Diagonal matrix -- see matrix.

Difference equation ~- any equation involving finite differences. The usual

methods for solving differential equations reduce to the solution of difference

equations, with either the derivatives or the integrals expressed approximately

in terms of finite differences {see differentiation formulas, quadrature formulas,

ordinary differential equations, partial differential equations).

Difference operators -- For interpolation based upon equally spaced points, most

standard formulas, as well as others, can be developed and expressed easily in
terms of a few difference operators which can be manipulated formally as algebraic
quantities. In their definition given below it is to be understood that they
have no existence independent of the functions upon which they operate. Under-

standing that & x = h is fixed, the operators are defined as follows:

u

E”f(x) = f(x + u h) [displacement operator];
A f(x) = f(x + h) - £(x) [forward difference operator];
v f(x) = f(x) - f(x = h) [backward difference operator];
f(x) = f(x + h/2> - f(x - n/2) [central difference operator];
2u £(x) = £(x + b/2) + £f(x - n/2) [central mean operator];
D f(x) =4 f(x) / ax [differential operator];
6 f(x) =had £(x) / dx.
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The last operator is not in common use, but simplifies the writing of some
formulas and may be called the logarithmic displacement operator. For functions
of several variables, subscripte can be used to specify the variable with respect
to which the operator acts. Thus
%f@,m.“)=fu+h,m.”L
All operators can be defined formally in terms of one of them. Thus
A=E-1, V=1 - E'l, E =exp 0,

the last being the operational expression of the Taylor series.

Examples of the application of these relations are to be found under
appropriate headings, but the following illustration may be in order here. Let

X =x,+uh, u=(x - xo) /h, f£(x)=©g" f(xo).

Since E = 1 + 4, therefore, by the binomial theorem,
u u u
EY =1 + ( ) A+ ( ) o2 + 3) & + ...

1 2
+ i1 h, one has

and therefore, formally, taking X; = Xy

X - X (x - x )(x - )
f(x) = f(xo) + ——3;—12 A;f(xo) + 2'0h2 1 &2 f(xo) + oeee

Unless u is a non-negative integer this is an infinite series, but for purposes
of interpolation the series is truncated by dropping all but the first several
terms. If all terms are dropped beyond that containing At f(xo), then there is
retained on the right that nth degree polynomial that passes through the n + 1
points whose coordinates are

X, f(xi), i=0,1, ..., n,

and the formula is Newton's interpolation formula with forward differences. If

one writes E = (1 - V)-l and proceeds similarly one obtains Newton's interpolation

formula with backward differences:

X - X (x - x)(x -x.)
— 9 v f(xo) + 0 5 -1 V2 f(xo) +oees

2:¢ h

f(x) = £(x.) +

0
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It is to be noted that the binomial coefficients

(u _u(u-1) ... (u-r+l)

r| r!

\
are defined even vwhen u is not a positive integer, and they are polynomials in u.
Sometimes the symbol u(r) is used, and related to these polynomials are the fac-

torial polynomials

Note that

A u(r) =ru s A u(r) = u(r-l)'

Differential analyzer -- a computer, generally analog, designed for the purpose

of solving differential equations.

Differential equation -- an equation which relates, for each choice of the inde-

pendent variable (s), the values of one or more dependent variable and one or more

derivative of each. It is an ordinary differential equation in case only a single

independent variable occursj a partial differential equation when there are two or

more. For a dependent variable to be uniquely defined as a function of the inde-
pendent variable (s), there must be associated a sufficient number of initial or
boundary conditions, or a combination of both. For methods of numerical solution

see ordinary differential equations, partial differential equations, elliptic

equations, parabolic equations, hyperbolic equations.

Differentiation formulas (numerical) -- a quite general procedure for carrying out

numerical differentiation is to use interpolation, or least squares, or some other

method for approximating the function of interest, and then to differentiate the
approximating function. When the points of interpolation are unequally spaced one

can use divided differences to form an interpolation polynomial.
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When the points are uniformly spaced, a number of convenient formulas

can be derived by means of difference operators. Since

hD=6=1log (L +A4) ==~ 1log (1 -V),
one obtains
6=0-02)24+ /3 -...
=V+V2/2+v5/5+.”,
in terms of forward and backward differences, respectively. Derivatives of higher
order can be obtained by raising to higher powers the expressions for 6.
Expressions in terms of cgntral differences require more manipulation to
obtain, but one finds
s - 82/31 + (21)2 82/50 - (312 81 /Tt + ...1,
2[6%/21 - 5% /U1 + (21)2 8%/61 - (3102 8%/8: + ...1.

6

&

To obtain higher powers write © =0 - 62, 0lF = (62)2, 65 =0 - 94, ... To apply,

Il

one truncates the series at some point, and if desired one can replace 4, V, 8 and
K ® by their expressions in terms of E.’

In case the derivative is required at a point other than a tebulated one,
say at xo + u h, one must apply Eu, expressing E in terms of the appropriate dif-
ference operator. However, the error can be expected to be substantially greater.

See St;rligg>numbers.

Digital computer -- As contrasted with analog computer, a computing aid that repre-

sents numbers Jigitally, in decimal, binary, or (conceivably) other base. The
simplest artificial example is the abacus, which represents numbers digitally in
such a way as to facilitate carrying out additive operations, hence multiplication
and division as sequences of these. Desk computers perform these operations auto-
matically, and sometimes also square-rooting or other special sequences. The very

high speed; general purpose computers are stored-program computers and are digital.
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Direct methods -~ usually contrasted with iterative methods or methods of successive

approximation for matrix inversion and the solution of equations. The exact inverse

or solution is expressed as the result of a finite sequence of operations or scalars.

Displacement operator -- see difference operators.

Divided differences -~ For interpolation with unequally spaced abscissae, let f£(x)

be the function to be interpolated, and let its values be given at

Xys Xyp cees Xy

where it is not required that they be in order or even distinct. Form the table as

follows:
X, f(xo)
£(xy, %)
Xy £(x;) £(xy, %1, %)
£(xy, x,) £(x,, Xer %, x3)
x, £(x,) £(x), %5, xi) cene
£(x,, x3) £(xy, x,, Xy x,)
x5 f(xj) £(x,, X5 x),)
£(x,, xu)
X), f(xh)
where
£(x, x,) = [2(x,) - 2(x,)] / (x; - x,);

f(xi: XJJ xk) = [f(xi’ XJ) - f(xJ: xk)] / (xi - xk)"'
When there are coincident abscissae they should be placed in adjacency, and thus
f(x, x) = £'(x),

f(x, x, x) = £"(x) / 2,
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It can be shown that any divided difference is a symmetric function of all its
arguments, which means that
(..., Xjs eoes Xy ees) = F(ean, Xgs eoey Xy cee)y
it being understood that dots represent arguments that are the same on the two
sides.
In terms of divided differences one can write the following interpolation
formula due to Newton:
f(x) = f(xo) + (x - xo) f(xo, xl) + (x - xo) (x - xl) f(xo, X, x2)
+ oees + (x - xo) eee (x - xh) f(xo, X s eees X5 x),
where the last term written is the remainder and previous ones constitute the

interpolation formula.

Doolittle method ~-- a particular scheme of recording intermediate results in apply-

ing triangularization to solve a system of normal equations. See matrix inversion.

Dot product -- see scalar product.

Eigenfunction (Eigenfunktion) =-- see eigenvalue.

Eigenvalue (Eigenwert) == any value of the scalar A for which the integral equation
p(x) = A j.K(x, y) ¢(y) 4 y has a nontrivial solution. The associated solution
@(x) is called the eigenfunction (from the German Eigenfunktion). The term is

also commonly applied to proper value of a matrix, but if it is to be used in this
connection it should denote the reciprocal of the proper value. But asage Uaries

ecen for integral eguations.
Eigenvector -- a proper vector of a matrix. See eigenvaelue, matrix, principal

vector.
Elimination =-- a method of solving a system of equations in which one of the
equations is solved for one of the unknowns in terms of the others, and the solu-

tion used to replace this unknown in all the other equations. Thus if the orig-
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inal system was one of n equations in n unknowns, one obtains a new system of
whiech n - 1 of the equations contain only n - 1 of the unknowns.

Elliptic equation -- a partial differential equation of particular form. Ordin-

arily, along with the equation, it is necessary if the solution is to be well de-
fined to impose conditions along the boundary, such as the value of the dependent

variable (Dirichlet condition), or its normel derivative (Neumann condition). In
Lo.place 2 2 2,2 .2
the simple case the Bedswen operator D~ + Dy is represented by h (Sx + Sy )
which gives rise to the coefficient scheme
1
1 -4 1
1

which is always implicit (see matrix inversion). Refer to Co, Ku, for more de-

tails on methods.

Enlargement, methods of -~ methods of matrix inversion by which the inverse of a

matrix of order m is expressible in terms of that of a submatrix of order m - 1.
Error -- in general, any deviation of a computed quantity from the theoretically
correct value. In a restricted sense, that deviation due to unavoidable random
disturbances, or to the use of finite approximations to what is defined by an
infinite series, and hence to be contrasted with blunder. Errors of measurement
arise from the use of instruments of less than infinite precision, and from random,
uncontrollable disturbances. Truncation errors are due to the use of a term as

an approximation for the limit of an infinite sequence, or, in general, to the

use of any approximation in place of the theoretically correct quantity (ef

Remainder, Roundoff). If £(x) is to be computed but only the approximation

x* to x is known, then f(x) - f(x*) is the propagated error. Bounds for the

propagated error can be had by applying mean value theorems when f has suitable
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continuity properties. Generated errors are those which arise in the computation
itself because of rounding. They depend upon the details of the routine.

If £ 1s the true and £* the computed value, sometimes f - f¥ is called
the correction, f¥ - f the error. The term correction, however, will be used in
a different way here, to designate a quantity to be added to f* for reducing the
error, hence an approximation to the error.

Escalator method -- a method of enlargement for matrix inversion, and for computing

' p) > I E /C X,
proper values and vectors of matrices. Eucli dean afgori Fhor -- sce 4'765 ormmen

Nactor.
Euler constant =--

n
y= lim [) k7T -1logn
n—o \ 1

= OvETFRI566E . (. 57721 5665

Euler-Maclaurin formula -- the. formal €ppansion.

m
f f£(x) ax -h(fo/2 L SR N fm/2)

X0

3 1) (vl :
- ; B, hv(flglv ) . fo” )y /v,

where

£, = f(xi) = f(xo +1h)

and the Bv are the Bernoulll numbers.

Euler method -- for solving an ordinary differential equation

y' = f(x, y)
‘takes
Yver =¥y *F b fv’
£, = f(xv, yv).
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The "improved Euler method" obtains sequentially

il

yv+% Ty +h fv / 2,

Yysr =9y ¥ h fv+%

and can be considered an elementary form of the Runge-Kutta method. The "improved

Euler-Cauchy method" forms

* = ¥* = *
Yve1 =9y 7 hf,, fv+1 f(xv+l’ yv+l)’
= * *
yv+l Iy ¥ h(fv + fv+l) / 2
See Co.
Euler summation formula -- the Euler-Maclaurin formula when used for summing a
series.
Euler transformation -- of an lnfinite series whose partial sums are
S =a, +a, x+ + a xn
n 0 1 teT n
utilizes the identity 1
N
n+1 i
(l-x)Sn_ao-anx +X;Aaix.

Jt is a method for the summation of series.

Everett interpolation formuls -- in the notation of difference operators

3-uv L 1+u} .2 2+ul 4
5 ) 3 + oo + [u + ) 3 + (- ) 5 + ...} E.

)62 +

EY = (1-u) + (egu

3 2
It thus requires differences of even orders only, but they both must be taken at-

xo and at x1 = xo + h.

Extrapolation -- contrasted with interpolation when the function is required at a

point outside the range of the xi. The same methods are applied.

Factor theorem -- see algebraic equations.

Factorial coefficients -- St&rling numbers, so called from their definition.

False position, method of -- see regula falsi.
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Fixed-point -- a system of computing in which all quantities must be scaled so as
to be representable by a fixed number of digits and with the radix point in a
fixed position. Contrasted with floating-point computetions in which a scale
factor is explicitly computed and associated with each number, and represented

as a power of the radix. In some digital computers floating-point operations are

automatic; in others they are not.

Floating-point -- see fixed-point.

Forward-difference operator ~- see difference operators.

Porward differences -- see difference operators.

Forward interpolation -- see Newton interpolation formulas.

eneral
Fourier series -- ggseries of the form

f(x)=a0+alcosx+a cos2x+...+blsinx+'b sin 2 x+ ...

] . 2
18 called a trgonometric. Series.
Because of the orthogonality relations

x n
f cospxcosq_xdx=f gin p X sin q x dx = O, p;éq,
=5 -5 :
x
f cos pxsingxdx =20
-1
together with
x x
f cosepxdx=f sin2pxdx=1t,
-5 =7
it follows that
n
-1 =x -1
a = f(x) cos xdx, b_=mx f(x) sin p.x
. T £(x) cos p x ax, by J #(x) einp.x ax,

and with ""LP and ‘°P S0 deVined Mg sevies 15 called a fourier Series.
Fredholm equation -- an integral equation with fixed limits:

b
£(x) =o(x) - » [ K(x, &) o(t) at
a

where @ is unknown. For a numerical solution, let a = go =.,.. S §n =D and apply

a quadrature formula of the form

b n
J elx) axz ), ale).
a
0
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Then
n
{ — [ e - .
£(g;) = o(g,) - A }(; n, K(tg, &) o(&,)
These are n + 1 equations ir n + 1 unkaowns @(gj) (matrix inversion). See Co, Ko.

Functional ileration =-- see iterative methods.

Galerkin method -- see Ritz method.

Gaussian elimination =~- matrix inversion by triangularization.

Gaussian interpoletion formulas -- (also called the Newton-Gauss formulas) in the

rotation of difference operators, the forward formula is

i s
E* =1 +ud B2 + %] 8%+ %82 52 4 uzl 8lL + one
2 5
and the backward formula is
3] .-"]"" y -'l" J+
E-l=l-uE>E2+u82-u+183E_2+u::15-..,
2 5
Gaussian quadrature formula =-- any formula of the form
b n
S owixy £(x) ax = ), w £(x) + R
a 0 1 1

dens:
where the wammst function w(x} = 03 the coefficients i, are constant and depend

only upon the function w(x) and the renge of integration; and the abscissae xi
are selected so that the remainder'R vanishes whenever f£(x) is a polynomial of
degree 2n + 1 or less. It can be shown that these Xy exist and satisfy an algebraic
equation of degree n + 1; that they are real; and that when ordered they satisfy
a < Xy < Xy <o < x <%». They are, in fact, zeros of one of a set of orthogonal
polynomisls.

If a and b are both finite, one can make a substitution of variable, if

necessary, and suppose b = - a = 1. Then if w(x) = 1, the X, are zeros of the

Legendre polynomial of degree n + 1, and one has for




n=1: “O = “1 = 13

5/9, w = 8/9;
(18 - V30) / 36, u = u, = (18 +V30) / 36.

B
i
Y
CF
I
nF
I

B
I
N
CF
!
i

By choosing w(x) appropriately either a or b or both can be infinite. For tabu-

lation of x, and p,, and for a discussion of the theory, see Ko.

i i
Gauss-Sg‘del method -- a term sometimes applied to the total step iteration for

el
solving linear equations (see matrix inversion) although both Gauss and Shedel

used a relaxstion method.

Generated error -- see error.

Givens method -- for computing proper values of a hermitian matrix.

Graduation -- another term for smoothigg.

Graeffe method ~- a root-squaring method for solving algebraic equations. Given

the algebraic equation, separate odd and even povwers of X on opposite sides of the

equation:

n n-2 n-4 n-1 n-3
X +a, X + 8 X + oo =8 X + a5 X + oee.,

If both sides are squared, all powers will be even, and x? can be replaced by y.

Separate in the same way and repeat. After p such operations, let the equation be

n n-2 n-1
Z + 02 z + see = cl z + een,
Then the roots z; of this equation, and the roots Xy of the first, are related by
= x’ = oP
Zy = Xy, v =27,

Then if

x| > (x| =...,

it follows that, approximately,
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If

Il =l > il =,

then, approximately,

li*

cp =X %
And, if
Iz | = %] > ) = ..,

v v .
then zl =X and Zy, = X, satisfy, approximately,

When all roots are distinct,

x) = c./c LGRS /e x e /e

2 T %% %55 63/%s Xy = Cyfcys .
approximately. An enumeration of all possible contingencies resulting from the
presence of conjugate pairs equal in modulus is out of the question, but generally
speaking, a term that continues to oscillate rather than to increase after con-
tinued squaring marks the presence of a conjugate pair, and the pair Zg and zi+l
will satisfy approximately

(see symmetric functions). The method can be generalized to apply to a function

expressible in the form
2
£(x) =1+ a; / x + a, [ x+ ...,
If the series converges for |x| > R, then all zeros of f(x) exceeding R in modulus
can be found (see Ho).

Gram-Schmidt orthogonalization -- see orthogonalization.
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Green§function ~-- a function K (x, &) associated with a given boundary value

problem L{y] = ¢(x) that has the property that the solution is expressible in the
form

y() = [X(x, £) o(s) a ¢  doFn
te int€qration cylencling cuer mm/ffrm’ o bt She soturtzn 15 10 be deFined]

As an example, if L{y] = y", and the boundary conditions are y(0) = y(1) = 0, then

(L -&) x for x =§,
K(X, §)=
(1L -x) & forx>E.
The limits of integration are then from O to 1. The notion can be generalized to
spaces of higher dimensionality. For theoretical investigations the function is
of fundamental lmportance, but for numerical computation it is seldom used.

Gregory formula -~ for numerical quadrature:

X
r 1 1
j‘ £(x) dx = h(3z fo + £+ + .00 + 3 fr)

3 1
0
2 2
-(af =01 /12 - (& £t A £) / 2k
b 3 b L .
- 19(a £.5 " & £,) / 720 - 3(A £ 4 ) / 160 +ees

v Py

Gregory-Newton formula -- generally called the Newton formula for forward dif-

ferences, though known to Gregory (see difference operators).

Group relaxation ~- a variant of the total step iteration for solving a linear

system (see matrix inversion) in which at each step two or more equations are

satisfied simultaneocusly. ©Same as block relaxation.

Hermite interpolation formula -- makes use of the polynomial of degree 2n + 1 with 5

' prescribed value and prescribed slope at each of the n + 1 abscissae

xo’ ﬁ’ .'I’ xn’
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assumed distinct. The polynomial is
; 2
= ] )
H(x) = g[fi vi(x) + £} wi(x)] Li(x,,
where fi and fi are the prescribed values and slopes} where
— - _ - \L N .
wi(X) =X xi} vl(x) l wi(x) W (xi) / w (x))

and where the Li(x) and @w(x) occur in the Lagrange interpolation formula.
More 9enem//(/ ﬁ;ﬂ/z@s, derivatves mmay alss be reser e,

e

Hermitian matrix -- a matrix A such that A* = A, TIts proper values are all real

and it can always be diagonalized. 1In fact, there exists a unitary matrix V such
that
A=V AV*

where A is diagonal. The computation of the proper values and vectors is much

simpler, therefore, than in the more general case.

One of the most successful methods is that of Givens, which will be
described for the symmetric (real) case: Let R23 be a matrix that differs from
the identity only in the elements (2, 2), (3, 3), (2, 3), and (3} 2), and let

=cos @ = = sin ¢.

Pop 330 P23 = "Px
Then R23 is orthogonal, and ¢ can be chosen so that in

T
R23 A R23

the elements in positions (1, 3) and (3, 1) vanish. If a matrix Ry, is formed
analogously, the elements in (1, 4) and (4, 1) can be annihilated without disturb-
ing the zeros previously created. By continuing this process, the final matrix

will be tridiagonal in form:
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The characteristic polynomial can be obtained by means of a very simple recursion:

(Po(%-) =1,
CP1(>‘-) =N - al’
9, (\) = (n - ) o () - BE @ (),

9500 = (n - ag) 9, (0) - B9 (),

> edery B Y

/

cpn(%.)..being theirequired polynomial. waeverq the :polynomials '9’1(") form a Sturm

sequence, possessing all the properties required for satisfying the Sturm theorem.

Consequently, for any H, by counting the variations in sign of the sequence of
values ¢i(u) one can ascertain the precise number of proper values exceeding and
exceeded by . It is therefore advantageous not to expand the polynomial @(A\) ex-
plicitly, but to proceed as follows for solving the equation: Having found an
interval on which one or more roots are known to lie, take consecutive midpoints,
evaluating the terms of the sequence for each by means of the recursion.
If the vectors are required, it will be necessary to form the product R
of all the rotations applied. Then.
AR=RT,
and if t is a proper vector of T belonging to A:
| Tt=nt,
then
ARt=RTt=ARt

so that R ¢ is a proper vector of A belonging to A. (See also Lanczos method of

biorthogonalization).

Another method, often called the Jacobli method, for computing proper values

is iterative in character, and makes use of the fact that the matrix A can be trans-
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formed to the diagonal form A as the limit of an infinite sequence of plane rota-
tions. The rotation matrices Rij are of the same form as before, but the angle

¢ is chosen so that in the matrix

T
Ris i3

the elements vanish in the positions (i, J) and (J, i). Zeros are not preserved,
in general, but the sum of the squares of the diagonal elements is increased by the
squares of the annihilated elements at each step. Optimally one should, at each
step, annihilate the pair of largest off-diagonal elements, but to reduce the
searching one can go through the elements above the diagonal in some sequential
order, annihilating all elements greater than some specified magnitude. With suc-
cessive cycles the level should be decreased. In the limit the product of all the

rotation matrices Ri is the matrix V of proper vectors. This method has been

J

described in detail by von Neumann, Goldstine, and Murray.

Hessenberg method -~ see proper values and vectors.

Highest common factor -- of two polynomials, PO and Pl’ is the polynomial of great-

est degree that divides both. 1In case this is a constant, the polynomials are
said to be relatively prime. It can be found by applying the Ruclidean algorifhm:

divide P, into P. and let -P

not exceeding that of PO’ 1 o 5

Supposing the degree of P1

represent the remainder; divide P2 into P, with -P, the remainder; ...; then if

1 )
Pi # o, Pi+l = 0, Pi is the highest common factor. This is represented

Po =8 Py - Py
P) =Q, By - By,
Piag =9 By
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Hitchcock method -~ for finding complex roots of an algebraic equation. See

Bairstow method.

; .
Horner method ~- for obtaining irrational roots of an algebraic equation: Given

that a particular root is located between consecutive integers n, and n, + 1, reduce

0 0

the roots by n,. Then locate the root between consecutive tenths, say nl/lO and
(nl + l)/lO, 0 = oy = 9, and reduce by nl/lO. By continuing, the root can be de-

termined as

-1 -2
nO + nl 10 + n2 10 e

to as many decimals as desired (see synthetic division). For hand computation

the method is not to be recommended, but with a binary machine the method takes
the form of successive bisection of an interval on which a root is known to 1lie,
in order to obtain successive binary digits, and the method is often very effective

(see algebraic equations).

Hyperbolic equation -- a second order partial differential equation. For the

solution to'be well defined ordinarily initial and boundary conditions are needed.

In the simple case the equation can be reduced to the form L u.yy + ... =0,

where omitted terms involve no derivatives of second or higher order. The usual
difference scheme is representable
1

2 2

™ 2(1 - 12) T
1
where T = A,yv/ A x. If initial conditions are given along a horizontal line, it is

necessary that T =1 for adequate numerical stability.

Initial-value problems ~-- for ordinary differential equations those for which the

initial values of the dependent variables.are specified; for a partial differential

equation one of parabolic or hyperbolic type, requiring the specification of initial

conditions as well as possibly conditiowns along the .boundary.
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Inner product =-- a distributive operation defined on pairs of vectors or functions

in some space to yield a scalar, and such that the result is real and non-negative
when the two vectors or functions are the same. In the latter case it may be taken
to represent the squared length, and thus a metric is defined.

For ordinary vectors the inner product is generally taken to be the or-

dinary scalar product. In function space one first prescribes a nondecreasing

real function o, and defines the inner product of ¢ and ¥ to be

((P) W)=f$‘¥d°'

To say that the operation is distributive means that
where Qs Oy, Bl, 52 are scalars.

Integration, numerical -- see guadrature formulas.

opproifiation
Interpolation -~ the &egerméne%ien from tabulated values of a function, and pos-

sibly of its derivatives, of values not included in a table. ILet f(x), and pos-

sibly derivatives, be tabulated at Xy

functions @O, oy @n, which may be polynomials, trigonometric functions, exponen-

ceey X Usually one selects a set of

tials, or of any other convenient class, and applies some criteria for selecting
coefficients ai such that ao wo + se. + an ¢n is accepted as an approximation
P[f]|x] to £(x). The most common criteria are agreement of P with f (and possibly

derivatives) at the x Most commonly the term "interpolation" is applied only

i.
when criteria of this type are applied. Cf. difference operators; Aitken method}

Lagrange interpolation formula; Hermite interpolation formula; Newton interpolation

formula; and, for other criteria, minimax approximation, least squares.
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a,/vozyndxfkyo _
Inverse interpolation -- the deégyﬂinatien, from an interpolating polynomial, of

the value of an abscissa corresponding to a given ordinate. This amounts to solving

an algebraic equation of degree equal to the polynomial. See Ko, W and R.

Iterative methods -- for solving equations, whether algebraic or transcendental,

are, in fact, methods of successive approximation in which, having given one or
more approXimations to a solution, 1t 1s used in computing an improved one. Only
the case of a single equation in a single variable will be considered here (see

matrix inversion and the solution of linear equations, and simultaneous equations;

also Ho for further development of the theory).
If the equation to be solved is
f(x) =0,
let
p(x) = x - g(x) £(x),
where throughout some region containing &, the root to be determined, g(x) nowhere

vanishes or becomes infinite. Then

a = 9(a),
and if, for some X, in this region, every
X = 0lx)

is again in the region and the sequence of Xy converges, 1t necessarily converges
to a rooﬁ. A sufficient condition for this is that
ot ,‘P'(X)’{:K<I
at every point of the regionf Moreover, if ¢ is analytic in some circle about X5s
and if it can be shown that for some positive k <1,
lo(x') - 9(x")| < xlx' - x"],
whenever both x' énd x" are in the circle, then it can be concluded that every Xy

will, in fact, fall within the circle and that the equation has a root & to which




the sequence converges.
Newton's method is obtained with
g(x) =1/ £'(x),
and one is assured of convergence if, for real «,

£"(x.) >0

fx O)

o)

s

and neither f' nor f" changes sign between o and Xy

Jacobi method -~ for computing proper values of a hermitian matrix.

Jordan method =-- a method of matrix inversion in which by a succession of row

operations one reduces the given matrix to diagonal form.

Jordan normal form ~- see matrix.

Kronecker delta =-- N .
5 = 0 if i #j
Moo 4 1=y,

Krylov method -- see proper values and vectors.

Lagrange interpolation formula -- a formula for interpolation that may be used when
the abscissae x, X, ..., x  at vhich f(x) is known are distinct but not necessarily

equally spaced. Let

0 1 n
L, (x) = o(x) / [(x - xi) w'(x,)]
On
g RCEERIACARE R

Then the Lagrange formula is

Plf|x] = ) £, L (x).
The polynomials Li(x) have been tabulated for particular spacings of the abscissae,
since they are independent of the function f to be interpolated. In case some xi

are coincident, confluent forms exist (see Ho for a general theory), but in practice

it is simpler then to use divided differences.
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Laguerre polynomials -- orthogonal polynomials on the interval ( 0, =) with the

dens.t
wigit function

w(x) = & e-x, a > -1.

They satisfy the recursion

L ,(x) - (x -a - 2n-1) Ln(x)+n(a+n) L, x) =0

n+l _1(
with

x) =1, L(x)=x-a-~-1.

1

Lanczos method of biorthogonalization -- a method of forming sequentially the

colums of matrices B and C such that BT C =D is diagonal, and, for a given matrix

A,

a tridiagonal matrix. 1If the initial columns of B and C are chosen so that no
diagonal element of D vanishes, the reduction can be carried through to completion

barriang special properties of A. See proper values and vectors. For Hermitian

matrices the method is equivalent to that of Givens.

Laplace differential equation -- v2 u=0,

o
where v~ is the Laplacian operator. The nonhomogeneous form, in which a known

function of the independent variables occurs on the right, is known as the Poisson
equation.

Laplacian operator -- sometimes represented by 4, sometimes by-ve, and of the form

F /3L + P /3y 4 ...,

See laplace differsntial equation, Poisson differential equation.

Latent roots -- see proper values and vectors, matrix.




_Lg.

Least squares -=- a method of smoothing or curve fitting which selects the fitted

curve (or surface) so as to minimize the sum of the squares of the deviations of .
the given points from the curve (or surface). In the linear case one has a system
vwhich can be expressed in matrix form as
Xe=y+4d,

where the matrix X is N x n, with N > n; y is the vector of measured quantities;
and the length of the residual vector d is to be minimized. If the measurements
are equally weighted, this means that ¢ is chosen so that dT d is as small as
possible; if not, then d'11 W d is to be made as small as possible, where W is the
dlagonal matrix whose elements are the weights. The solution is that of the system

T T

X" WXx=X" Wy,

where W = I if the weights are equal (see matrix inversion). For fitting a poly-

nomial the matrix X has the form

1 X x2 xn-l
l l LN BN l
1 x X2 -1
X = 2 2 2 -
1 x 2 £B-1
3 X300 3
1 x %2 2L
L L 4

.o

where xi is the value of the independent variable for the ith measurement. How-

ever, the use of orthogonal polynomials is advisable for this problem.

In polynomial fitting the unknown parameters are the coefficients of the
polynomial, and they occur linearly in the équations they satisfy. In case the
theoretical relationship is of the form

n=1(t a, B, ...)

where the parameters a, B, ..., do not occur linearly, it is generally necessary
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tc linearize the equations in order to solve them. Two methods can be suggested,
and either requires initial, sufficiently close, approximations ao, BO, seay
which are to be improved progressively. By one method one forms the quantity to
be minimized,

5(a, B, +.0) = N0, - £(55 @, B, ...)15,

the Bummation & Lleacling o Vev @/l 06 serdetions,
and applies a method of steepest descent. In the other method one expands in

Taylor series

f(gi; %y Bys con) + (a - ao).fa(gi; %y, By» cee) + (B - BO) f6(§15 %y» By» eee)
+ see -"'--T):,L +5i.
- 2 2
Here one wishes to minimize 2361, or possibly 25&& 61 vwhere the @, are weights.
If Ay BO, ... are sufficiently close to the true o, B, ..., one can omit quad-

ratic and higher terms in & - Qs B - B ..., and solve as a linear least squares

O)
problem for these differences. The result could be added as partial corrections

to Ay 609 ..., and the process repeated. See De.

Legendre polynomials -- orthogonal polynomials on the interval (-1, 1) with the

dens:
w@!gﬁé%%unction w(x) = 1. They satisfy the recursion

(n+1)P (x) - (2n + 1) x P (x) + 4 P 1 (x) =0,

n+l

and

2
P,=1, P =x, P,=(3 -1) / 2,

Py

il

(52 -3%) /2, B = (3" - 302 +3) /8.

Liebmann method -- the Gauss-Seidel method applied to the solution of the dif-

ference equations approximating the lLaplace or the Poisson equation. See matrix

inversion, partial differential equations.
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Linear equations (algebraic) -- equaticns in which the unknowns cccur only

linearly, hence of the forw

&

-rdlg ﬁ + oo ~=ﬂ13

11 %y
& + & F ooeo = M,
F21 1 TG Mo T ‘2

They are homogeneous if 0 = hl = h‘2 = 4.0, Otherwise nonhomogereous. In matrix

form the equations can be written
AXx=h,
and the condition for solvability is that the rank of A and the rank of the

augmented matrix (A, h) be the same. For methods of solving see matrix inversion.

Linear inequalities -- a system of relations among variables X5 Possibly including

linear equations among them, but alsoc including at least one inequality of the

form
Zai Xy =D

(in practice a strict inequality is seldom required). Such a system may be in-
compatible (e.g., x, 20, x, =0, X - %, -1 Z0), may define a unique point
(e.g., X, =0, x, 20, =x; - X, Z0), or else will define a region in space, not
necessarily bounded (e.g., X =0, X, =0, "X - Xy 4+ 1 =0 defire a bounded
region; X =0, X, 0, X tx, - 1 =0 an unbounded regiom).

The inequality written above can be replaced by the equivalent pair

X + Zai X, = bi’ X =0,
and in general it is possible tc replace s system of irequalities by a system in
the special form
AXx =D, X =0,

where A is a rectangular matrix, x and b are vectors.

The principal applications are in linear Programming.
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Linear programming -- the problem of minimizing or maximizing a linear function

C = ¢y + zzci X, subject to constraints in the form of linear inequalities to

be satisfied by the xi. The function C may represent costs or profits or losses
in a business activity or a competition (possibly against nature), and the con-
straints represent limitations upon resources or their availability.

If the inequalities are compatible and satisfied by more than a single

point x,, the solution lies on the boundary, and, if unique, is the intersection

12
of some subset of the planes whose equations are formed by using equality instead
of inequality signs. Hence, in principle, the problem could be solved by solving
the equations in all possible combinations and comparing the values of C. How-
ever, the difficulty of the problem comes from the fact that if the numbers of
variables and relations are at all large, as they often are in practice, the
number of sets to be solved may be astronomical. ZFor such cases the simplex

method may be used.

Lipschitz condition -- a condition somewhat stronger than simple continuity. 1In

the simplest form, a fﬁnction f(x) is said to satisfy a Lipschitz condition on
the interval from a to b in case there exists a constant k such that

l£(x) - 2(x,)] =k |x - x]
whenever X and X, both lie on the interval. If the derivative exists and is
é2g332&§32 on the closed interval then the Lipschitz condition is satisfied, but
not conversely. The condition is a useful one in the study of the solution of

a differential equation. Various generalizations are possible, in particular to

functions of several variables.
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Lobalevskii method -- in current Russian literature, any root-squaring method

as a method of solving algebrsic equations numérically° Actually the idea of
root-squaring for this purpose had already been proposed by Dandelin, and the
specific algorithm proposed by Lobalevskii was slightly more cumbersome than

Graeffe's method which is the one in common use at present.

Lozenge diagram -- a mnemonic scheme from which can be read off a great variety

of fbrms of the interpolating polynomial for equal-interval interpolation (see
Ku for generalization). For forward difference formilas write

ZRE
AN

where the table can be extended upwards, downwards, and to the right in an obvious
way. A valid polynomial for interpolation can be constructed by starting with any
fi in the first colummn, multiplying the binomial coefficient on the right by either
of the two A fi to which it is joined, multiplying the coefficient on the right of

that by either A? fi’ continuing thus and adding results. Moreover, all polynomials
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that end with the same A" fi on the right are identically equal.

The same diagram can be used for central differences if, for example,

one replaces & f_2 by 8 A? f-l by 62 f_

_3/2, 15 o

L R transformation ~~ a method for obtaining the proper values and vectors of a

matrix A, is made by taking AO = A and forming
Ay =Ly Ry» A =Ry Iy
where R, is upper triangular and L, unit lower triangular. Under rather general

i i
circumstances the sequence of matrices Ai approaches an upper triangular matrix
in the 1imit, and since all Ai have the same proper values as has A itself, the
diagonal elements of the limit metrix are these proper values. The method is due
to Rutishauser, who has also devised methods of accelerating convergence and for
treating exceptional cases. For a discussion of the factorization see matrix

inversion. (See NBS).

Maclaurin series -~ Taylor series about the origin:

2
=

f(x) = £(0) + x £'(0) + 51

£'(0) + ...

Matrix -- a rectangular array of scalars (real or complex) called elements of the
matrix, together with certain rules of combination. If

all (112 (115 veo

ij) = Gpy Oy Gpz oo IS

and if A and B have the same dimensions, then the sum is

)

A+B=(aij+aij

that 1is, corresponding elements are added together.
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If A has n columns and B has & rows, the preduct is

AB= (%O‘ikﬁkj

If p is a scalar,

The transpose of A is

Al = (o

the conjugate transpose A* is the result of replacing each element in AT by its

complex conjugate. If AT = A, A is symmetric; if A* = A, A is hermitian. The

square matrix I = (Sij), where aij is the Kronecker delta, is called the identity.

If it is n x n, then for any matrix A with n rows, I A = A, and for any matrix B

with n columns, B I = B. A square matrix, with n rows and n columns, is said to
be of order n. The square matrix C such that

CA=AC=1I,
if such exists, is called the inverse of A and demoted C = A™Y. When A™' exists
then A is said to be nonsingular. If A is hermitian, of order n, and for every
vector x of n dimensions, which is to say, matrix of n rows and one column,

x*¥ A x =0,
then A is non-negative semidefinite; if for every vector x # 0,

x*¥* Ax>0,
then A is positive definite. For non-hermitian matrices these notions are not
defined.

The elements aii of a matrix A = (aij) constitute the diagonal, or main

diagonal. If all other elements are null, A is a diagonal matrix. If, in addition,
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%3 =%

that is, all diagonal elements are equal, then A is a scalar matrix and A = o I.

If V¥ V=V V¥ = I, then V is a unitary matrix, and if V is unitary and
real it is orthogonal.

If A is square of order n, then det A will represent the determinant of
A. The polynomial

P(A) =det (A I - A)

is a polynomial in A of degree n whose leading coefficient is unity, and whose

constant term is det A. This is called the characteristic polynomial, and the

Cayley-Hamilton theorem states that

There is a polynomial ¥(A) of minimal degree and leading coefficient unity for

which

This is called the minimal polynomial, and ¥(A) may or may not be the same as
¢(A), but in all cases ¥(\) divides @(A), and every zero of ¢ is also a zero of
V. These zeros are variously called proper values, characteristic values, eigen-
values, latent roots. If A is any proper value, there exists a non-null vector x
satisfying

(A-A1I)x=0,
and any such vector is called a proper vector, or characteristic vector, or eigen-
vector, or modal column. Naturally there exists also a non-null vector y such
that

y*(A - A I) =0.

Either x or y is said to belong to A. If A is hermitian, then all proper values
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are real. In this event there exists a unitary matrix V such that
Ve AV = A,
where A is diagonal, and its elements are the proper values of A. Moreover, the

columns of V are proper vectors, and, in fact, if v, is the ith volumn of V, and

i

Xi the ith element in the diagonal of A, then v, belongs to xi. The matrix V is

i
said to diagonalize A.

If A¥ A = A A%, then A is said to be a normal matrix. Such a matrix can
also be diagonalized by a unitary matrix ¥, but the diagonal form A is not real
unless A is hermitian.

For a more general matrix A, there exists a nonsingular matrix V such

that

where A has the form

with all diagonal elements equal, with ones just below the diagonal, and zeros

elsewhere. This A is the Jordan normal form. Each Xi is a proper value, each

column v of V is a principal vector, which is to say that for some A and some v,
’

(A-r1) v=o.
Also each row of V-l is a principal row vector.

For computatidnal methods see proper values and vectors and matrix in-

version.
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Matrix inversion ~~ for a given square matrix A, the determination of a matrix

denoted A™Y such that A AT =A% A = I, the identity, assuming A" to exist.

A closed method of inversion would yield the exact inverse, except for errors due
to rounding, after a finite number of operations in prescribed sequence performed
upon the elements. These operations are usually arithmetic, but may include
square-rooting. Other methods, sometimes called iterative are such as to produce
a8 sequence of matrices Cv which approach A_l in the limit, again apart from round-
ing errors. ©Since x = A.l h satisfies the system of linear equations A x = h, and
since, conversely, each column of A'l is the solution of such a system with a par-
ticular h, the problems of inversion and solution are mathematically equivalent
and will be spoken of interchangeably.

The most common direct methods are known as (Gaussian) elimination, or
triangularization, with variants due to Crout, Banachiewicz, Doolittle, and many
others, differing only in detailed arrangements and systems of recording inter-
mediate results.

Let A be partitioned in any way in the form

Ay A
Ay Ay

where A1l is required only to be square and nonsingular. In particular All may

A

be a scalar, A21 therefore a column vector, A12 a row vector; or A22 may be a
scalar, A12 a column vector, and A2l a row vector. The methods seek a factoriza-

tion in one of the two forms:

) A Ay (I © T
- b

Ay Ay Loy I 0 Roo

Pp O A A Ri1 Bp

(2) e = »

Prp P Ay Ay 0 Roo
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where the partitioning is conformable throughout. The first factorization re-

quires that

L1p Bia = 490 b1 Bio = Ao

Loy By = Apys Lop Rip * bop Bop = Ay
and the second that

P11 A11 = Byy» P11 A0 = Byps

+

Pop A1 * Fpp Bp =0, By Ay + Byp Ayy = Ry

The second form is more usual but in fact they are entirely equivalent computa-

tionally. If -1 is known, which is certainly the case if is a scalar, then
v 1 Y 1 )

all matrices can be determined and one can even choose arbitrarily either Pll or
Rll’ and either P22 or R22. One common choice (Gaussian elimination) is to take
P , the identity (= 1 if a scalar), and P,, the identity. Then
R11 = 4110 Rip = Ayp0
P, =-A. Al =A, -A_ Al
21 = 7 Aoy A7 Fop = Agp = A1 Ay Aygpe

Thereafter one proceeds with R22 as with the original A, that is, one multiplies
on the left by a matrix

1 0

0 P!
where P' and R22 are to be partitioned. The result is the formation of n - 1
matrices Pi each unit lower triangular, such that

Pn-l Pn_.2 .. Pl =P

is also unit lower triangular, and

PA=R

is upper triangular and hence readily inverted. ©Note that P has a unit determinant,
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whence the determinant of A is given by the product of the diagonal elements of
R. If one is interested only in solving equations, the Pi need not be retained,
but each must be multiplied by the vector on the right.

While ordinarily one partitions off a row and a column, taking All a

scalar, it sometimes happens that the matrix A has a submatrix A . of order greater

11
than 1, but whose inverse is already known or readily obtained. The above formulas
apply equally to this case. Analogous formulas can be written for taking Rll and
R22 to be identities.

In the methods of enlargement one applies the above formulas first to a
second order submatrix; next, this is taken to be A1l and bordered to form a third
order submatrix to be inverted by the same formulas. Eventually the entire matrix
is inverted. This method is to be recommended when the matrix to be inverted is a
finite segment of an infinite matrix and the size of the segment to be inverted is

not determined in advance.

When A is positive definite the factorization (1) can be modified:

T T
Ap Ao\ [ 9\ (M1 Im
- b4
I~ Loy I f\90 Ixp
with Lll and L22 both symmetric. Evidently
Ly 11 =4y Loy 11 = by
LT

= Ao ~Ipy Iy -
Ordinarily All is a scalar. For obvious reasons this is called the square=-root
method. It is due to Cholesky, and to Banachiewicz.

Other factorizations are to apply a Schmidt orthogonalization to the

columns, A = Q T, where T is a unit upper triangle and Q is orthogonal by columns.



Hence QT Q = D, a diagonal, and
| Al el gl T

It might seem mors zsbuersl te form A U =Q with U = Tgl formed directly.
This ¢an be done but it burns oub the ssoe coﬁpu&aﬁions are required to form U
directly as to form first T and Hhen T 7,

Alternatively the rows of A can be orthogonalized by applying the same
process to ATO Still another poseibility is to obtain an orthogonal matrix §
such that Q@ A = 5, where 5 is wpper triangular. This is done by applying first a

rotation in the {1, 2)-plane %o eliminate the element .. of A; then in the (1, 3)-

21

plane to eliminate aaly and zontiruing until all subdiagonal elements are elimin-
ated.

In the triangular factorization significance can be optimized by inter-
changing rows and columns at each stage sc that the divisor in every division has
as many significant figures as possible; or, wher there is a choice, is as large
as possible. In forming plaxe rotations, this interchange is unnecessary, but
the method requires more arithmetic operations than triangular factorization, and
requires a square root in the selection of each rotation.

Quite different in appearance iz the method of modification bhased upon
the following identity:

, T, =1 - - -
(B-ocuv') =38 Lo B 1 u VT B l,

Q
+
a
i
<
tw
=i
‘o

readily verified, where u and v are column vectors. If u and v are columns e;
and ej of I, then o u vT is a matrix whose only non-null element is ¢ in the ith

rov and jth column. Hence the formula gives the effect on the inverse of modi-

fying a single element cf the matrix. Or if o =1, u = s it gives the result
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of modifying the entire ith row by v. Evidently one could start with any matrix,
perhaps I or the diagonal of A, whose inverse is known, and modify row by row, or
column by column, to build up to A_l. In case A is symmetric, take u = v = e, £~ ej,
0 =0,, =0,.. This affects also the diagonal elements so that one starts by in-

ij ji
verting & suitably demodified diagonal of A. This method seems to be in principle
the method of "tearing'" advocated by Kron.
If C is an approximation to A-l which one wishes to improve, form either

of

H=I-AC, K=1I«-CA.
Then either of

Cl=C(I+H), C]'_=(I+K)C

may be a better approximation, and will be if in any norm, one of the following
is true:

Izl < 1, el < 1.

Convergence is then quadratic. A rigorous bound for the error in the inverse is

given by either of

1™t~ ol =llcal / @ - [&l),

la™ - el =lx el / @ - Ik,
under the same condition.
For solving the system
Ax=h,
if A is of high order but with most elements null, one usually prefers to generate
a sequence of vectors xv approaching the solution x in the limit. ILet

S =X-X

v v’ v v v
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Starting with any X,, one forms recursively
Xy =% 7 cv Ty

where Cv is some matrix which may be fixed ir advance, or may change from step
to step. One can always arrange, if convenient, so that every diagonal element
of A is unity. If this is done, and Cv = I, one has the simple, or total step,
iteration. If one writes, then,

A=1I+B8,
so that B has a null diagonal, it is necessary and sufficient that the spectral
radius p(B) < 1. For the single-step (or Seidel, or Gauss-Seidel, or Liebmann)
iteration let

A =1 +R,
where L is null except below the diagonal, and R is null below the diagonal. Then
c, = R'l,
or, as the computation is usually made, one solves

R X1 = h -1 X,

Convergence is assured when A is positive definite, and, more generally, when
p(R":L L) < 1, the latter condition being necessary and sufficient. Note that in
solving for the ith element of X, .2 one solves the ith equation for that element
in terms of the most recent values of all other elements, and the equations are
taken in fixed cyclic order. In the method of relaxation there is no fixed order,
but one selects at each stage the particular equation which is least well satis-
fied; and if this is the jth, one solves for the jth element in terms of most
recent values of the others. This inspection can be done readily in computing by
hand, Lut not readily by machine, whence relaxation is not recommended for machine

computation (although some authors apply the term more generally to any method, or

at least some other methods, of generating converging sequences). In the method
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of steepest descent

T -1 T
c, = (rv A rv) r, T,
The method is more usually written

X = X = r
v+l v “v v’

T T
b, =T, T, / r, A T,

It applies in this form only when A is positive definite, and then it always con-
verges. Note, however, that any system with a nonsingular matrix A can be con-
verted to an equivalent system with a positive definite matrix:

A? Ax= AT h.

See condition number, norm.

Memory unit (of a computer) -- see storage unit.

Method of successive approximation -- see iterative methods. ¥

Milne method -~ for solving an ordinary differential equation

' = f(x) Y)

uses the Eredictor

e
]

+ hh(Efv - f + 2f

v+l yv-3 v-1 V-E)

and the corrector
Ypa1 =Yy * h(fv+l + hfv + fv-l) /3,

the latter formula being the Simpson rule applied to the evaluation of the integral.

The formulas are meaningful when y and f are vectors. The method is one of the
simpler ones and often quite accurate, but for some problems exhibits serious lack

of stability (see Mi, Co).

%

Midpoint formtula -- for numerical quadrature,

fbf(x) dx = (b-a) (22) + 3L b -u)® g,

a

a=§=<hbh.
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Minimax approximation -- $he representation of a function f(x) by an approxima-

tion P[f | x] selected from a class of functions in such & way that if R = f - P,
then the maximum of IRI over all points x of some assigned set is minimized over
all functions of the class. Often called Chebyshev approximation. There is no
simple algorithm for forming the Chebyshev approximation to an arbitrary contin-
uous function, but there are techniques of successive approximation to it.

In case the class of functions is the class of linear combinations of
functions @O(x), @l(x), ceey @n(x) on an interval from a to b, then the basic

theorem is the following: If the functions @i form a Chebyshev system of order n

for the interval from a to b, and if f is continuous on this interval, then the
minimax approximation Pn(x) is unigue; moreover |[f(x) - Pn(x)l achieves its maxi-
mum at least n + 2 times at points x, Xys wees X 41 °n the interval and at these

points f - Pn alternates in sign.

The Chebyshev polynomial Tn(x) is that polynomial of degree n with lead-

ing coefficient unity that gives the minimax approximation to zero on the interval
from - 1 to + 13 hence X - Tn is that polynomial of degree n - 1 that gives the

minimax approximation to X", This explains the utility of Chebyshev expansions

(see Ko, La, Ha).

Modal column -~ of a matrix, a term sometimes applied to a proper vector. See

proper values and vectors.

Monte Carlo method ~-- any method for obtaining a statistical estimate of a desired

quantity by random sampling. In the most successful applications the desired
quantity is in fact a statistical barameter, and the sampling is made from an
artificial population that is in some sense a model of the Physical system itself:
for example, the fraction of neutrons, of given initial distribution in direction
and energy, that can be expected to Penetrate to a given depth in a medium of known

composition and geometric form. For more details see Ho, MG, Sym.
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Multivariate interpolation -~ interpolation of functions of two or more variables.

Since
E.=1+4, E =1+A4
X X y y

one can expand formally

EYE = (1 +a)Y (1 +a)Y
X ¥ X p

and derive equal interval formulas. Likewise analogues of the Lagrange formuls
can be derived. To write down explicitly is hardly worth while since they amount
to operating on the two (or more) variables separately (see Ku, W and R).

Neumann series ~-- the series

( 2
o(x) = £(x) + A J”K(X, y) f(y)d y + N JJ”K(x, v) K(y, z) f(z) d ydz + ...,
with appropriate limits of integration. If the series converges, it converges to
a solution of the integral equation

o(x) = £(x) + » [X(x, y) &(y) 4 v.

Neville method of interpolation -- see Aitken method of interpolation.

Newton-Cotes guadrature formulas -~ these are of the form
X
n + R,
§[ f(x) d x = Mg fo My T3 + «ee + 1 Ty n
0

where the coefficients ni are obtained by integrating the coefficients of the

Lagrange interpolation formula. The best known and most useful of these are the

trapezoidal rule, Simpson's rule, and the three-eighths rule.

Newton-Gauss interpolation formulas -- see Gaussian interpolation formulas.

Newton interpolation formulas =-- see difference operators.

4 .
Newton-Stgrling interpolation formulas -- see Stérling,interpolation formulas.
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Newton method -- for solving equations, whether algebraic or transcendental, is

a particular iterative method, and the one most commonly used. The method can

also be extended to simultaneous eguations and to matrix inversion.

Nomograph or nomogram -- also called an alignment chart or isopleth. It consists

of two or more scales, drawn and arranged so that results of calculation may be
found from the relation of points on them. For example, suppose the relation
f(x, y, z) = 0 is given. Three graduated scales or lines are then constructed so
that, if selected values of two variables are located with a straight-edge, the
third scale will be cut at a value which satisfies the given equation. The method
is readily extended to more than three wvariables.
Norm -- in somwe literature the norm Hx“ of the vector x, and the norm “AH of the
matrix A refers specifically to what will be called the Euclidean norm, defined
by the non-negative square roots of

Ixl® = x* x5 [|all® = trace (a* a).
(See Ezggg.) More generally, however, a norm “x” of a vector x is taken to be

any real valued function of the elements satisfying the conditions

1) x#£0=>|x] >o;

11) o x[| = fe] Il

.
>

111)  lx + yll ==l + llylls

and the associated norm “A” of a square matrix A is

lall = sup [la x
x|l =1

Such a matrix norm possesses properties (i), (ii), and (iii), with matrix arguments,
and also, for any two matrices A and B,

iv) |la Bl = [la] |=Bll.




BT

The Buclidean matrix norm poscesses tiese properties, but does not satisfy the
defirition. The Euclidean matrix and vector norms are further related, as are

all associated norms, by the property that for any matrix A and vector x,

ha =l = Al fxl.

But for norms as here defined, for any A there exists an X # O such that an equal-
ity holds, and this is not true for the Fuclidean norms. In fact, it is the

spectral norm that is associated with the Euclidean vector norm.

Norms &are importarnt in studying convergence properties of sequences of

vectors and matrices, and ir obtaining error bounds {see matrix inversion). In

fact, a sequence of vectors X, has a 1imit x if and only if the sequence of norms
”xv - xu vanishes in the limit, whatever norm may be used. A sufficient condition
for the sequence of matrix powers BY to have the limit O is that ”B“ <1, in any

norm. Alsc for any matrix A and any norm, the spectral radius satisfies

p(a) = |lall.
If x satisfies Ax =h, If y = x - s 1s any approximation, and if r=h - Ay = A s,
then

sl = la™) i=lf,
which gives a measure of the departure of the approximate solution y from the true
solution x. In some cases ﬂAwlﬂ can be evaluated a priori, as when the equations
arise from & partial differential equation., Otherwise if H=1 - A C, and
HH” < 1, then

la™ ) =lieh / @ - l&D).

As other examples of norms, if < = (gl, ceo, gn) and A = (aij)’ then

Il = o leg 1 Il = e ol

EREPNINE s = mex 3yl
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Again, given any norm, and any nonsingular matrix G (for example, a diagonal

matrix),
-1 -1
Ixlly = lle™ =[ ; lally = lla™ A c
are again norms.
Numerical analysis -- the theory underlying the development of numerical processes.

In Lanczos's terms, numerical analysis is distinguished from parexic analysis

which has as its aim the development of approximate formulas. In more common
usage it would include pareXic analysis.

Numerical cubature -- see multivariate interpolation.

Numerical differentiation -~ see differentiation formulas.

Numerical quadrature -- see quadrature.

Numerical solution of differential equations -- see differential equations.

Numerical solution of equations -- see algebraic equations, matrix inversion,

Newton method, iterative methods, Bernoulli method, Graeffe method, Horner method.

Numerical stability -- A problem is numerically stable in case small errors in the

data produce moderate errors at most in the required quantities. A method is
numerically stable if it does not permit the accumulation of large generated
errors, or if it does not inveolve a transformation of the original problem into
another one that may be substantially less stable. The term is applied in partic-

ular to certain methods for solving ordinary and partial differential equations

for which the approximating system of difference equations is stable.

(See condition number.)

Open quadrature formula ~-- a quadrature formula in terms of ordinates drawn at

points within the interval of integration, and excluding at least one endpoint,

e.g., for integrating from X, to xn, but based upon f fl, coey fn-l only and

OJ
not involving fn. Such a formula is useful as a predictor formula in the numer-

ical solution of ordinary differential equations.
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Operational methods -~ the treatment of differential and other operators as

though they were algebraic symbols in order to derive formal identities. Most
often the term applies to the use of Fourier, Laplace, or other transforms in

the solution of functional equations, but see difference operators for the formal

derivation of formulas for interpolation, guadrature, and differentiation.

Optimum-interval interpolation -- the use of interpolation formulas based upon

intervals of varying size adjusted so as to optimize the result in some way.
Usually the interval size will be taken as great as possiblé so that the error

of an interpolating polynomial of fixed degree will not surpass a specified limit
(see Ho).

Ordinary differential equation -- one in which there occur, along with each de-

pendent variable, one or more of its derivatives with respect to a single inde-
pendent variable. In general there must be as many equations as they are depend-
ent variables. Also, in general, if any derivaﬁives higher than the first occur,
it is possible to enlarge the system to one containing only first derivatives.
Thus if the equation is of the form

£(x, y, v'5 ¥") =0,
where x is the independent variable, one can set

Y1 =9, Yo =Y
and the given equation is equivalent to the simultaneous equations

£(%, ¥15 Yps ¥5) =0,

¥y - ¥, =0.

Finally, it is generally possible to solve for first derivatives and write the
system in the form

dyi / dx==cpi(x, Yi9 Yos ooy yn); i=1,2, ..., n.
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The equations are then said to be in normal form. In order that the yi(x) be
uniquely defined as functions of x it is necessary to adjoin n further conditions
relating the values assumed by the Yy at certain discrete points. For an initial

value problem, all values are specified at a single point; for a boundary-value

problem, relations between values at the two boundaries are specified. Here it
will be assumed that initial values are given.
A system in normal form can be compactly represented by
y' = £(x, ¥),
where, if n > 1, y, y', and f represent vectors in n-space. Methods for numerical
solution in the general case are rather obvious generalizations of the case n =1,

and attention will be confined to this. It will be assumed that the initial value

y(x,) =¥
is analytic, in Y 0wl ing

is given. In case f(x, y) s at (XO; YO);

then it is possible to obtain the coefficients of the series expansion
1 L 2 _u
Y=Y, * (x - xo) Yy * 5(x - xo) Yot e
UEN_
In fact, Yo is ELeun, from the equation itself gmne o bfains
yé = f(xo} yo):
and by differentiation one obtains
L 1]

yo - fx(xo} yO) + yo fy(xo) yO) b
and other derivatives of higher order are similarly found.

Most numerical methods, however, combine interpolation with the Picard
method in the sense that the quadratures required by this method are carried out
numerically. This idea is capable of almost infinitely many variations, but to
begin with it is generally assumed that by series expansion or otherwise one has

first obtained suitable values ¥, = y(xl), y

5 = y(xe), ... where, in general,
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X, = X, + v h, and h represents a sufficiently fine subdivision. Thereafter one
can write
X .
v+i
Ypug =¥y + [ otx y) ax,
£y
where Yyr Yy12 20 Yypia have been found. At this point one uses first a pre=-

dictor formula which expresses the integral in terms of values of f at points al-

ready known (see quadrature, nugerical). This gives an approximate value for
Yyai? hence permits the calculation of an approximate value of fv+i’ and one can
then apply a corrector formula which utilizes this value. Application of the cor-
rector formula gives a new approximation for Yyaq? and the corrector formula should
be reapplied until the changes are negligible. It is advisable to have h small
enough so that at most a second application of the corrector formula will be suf-

ficient. Methods of this type are the Euler method, the Adams-Bashford method,

and the Milne method (see NPL, Mi, Co). For questions of stability see Mi, Co.

The method of Rggge-Kutta is somewhat different in character.
For the explicit treatment of an equation of higher order
y'=1(%x, ¥, ¥')

without reducing it to normal form in two independent variables, see StOrmer method.

Orthogonalization -- inen an inner product operation (9, V), defined for any pair

of functions ¢ and ¥ of a specified class, if (p, ¥) = O then ¢ and ¥ are said to
be orthogonal. Given a sequence of functions of the class,

q)O) cPl) C‘p2) s b
one can ask for a sequence

\l'(oj \l’(l) We) o

such that (Wi, WJ) =0 when 1 # j, and
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(po = Wo)
P = Vo V15
Pp = Oy Vg *+ Opy ¥y + ¥y,

where the aij are constants. One finds easily that
and all aij and Wi can be obtained sequentially unless for some i, (wi, Wi) = 0,

Orthogonal matrix -- see matrix.

Orthogonal polynomials -- any set of polynomials that are mutually orthogonal with

respect to an inner product operation. Such an operation can be defined quite

formally in terms of an abstract moment operator @ defined by
Qa. +a, x + £+.“)=a;1+a + Q + oeea
O 2 oo TH M +h K
where the W, are arbitrarily assigned constants. Most often one defines the re-

sult of @ operating on a function ¢ to be
Qle(x)] = fcp(x) w(x) 4 x
a

bgesit
where a and b are fixed, finite or infinite, and w(x) is a fixed uuighﬁyfunction.

The ;nnez'product of two polynomials ¢ and ¥ is

(9, ¥) =8 [o(x) ¥(x)].
The orthogonal polynomials can be obtained by applying the process of orthogonali -

zation to the powers of x:

2
1, x, x7, ) ees

Orthogonal polynomials arise in Gaussian quadrature in that their zeros

are the points X, at which the integrand function must be evaluated. They occur as
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the denominators of the entries in a Eggé table along a line parallel to the
diagonal.,
Given a finite set of discrete points Xys Xqy ey if the operator @ is
defined by
ale(x)] = ), o(x;) @

where wi are non-negative weight functions, then the corresponding orthogonal poly-

nomials are finite in number. Let these be WO’ Wl’ Wz, ...+ For least square
polynomial fitting to data taken at these points X, it is advantageous to express
the required polynomial in the form

f(x)

% wo + 7 Wl + 75 We + ...
and to solve for the 7's by least squares.

Overrelaxation -- for solving the system

XxX=k +Bx

(see matrix inversion) by the simple iteration scheme one writes

X010 =X, tT,, T, = k ~ (I - B).xv.

In case of slow convergence it is suggested to write av T, in place of T, where
@, is a scalar. When @, > 1 this is known as overrelaxation, when @, <1, under-
relaxation. When p(B) < 1 (which is necessary for convergence) and all proper

values are real, an optimal choice for @, can be found by the use of Chebyshev

polynomials.
Padeé table -- a double-entry table associated with a formal power series
f(z) =s. +s, 2+ s z2 + oeee,

0 1 2

The entry in row p and column q, where p, ¢ =0, is the fraction A.p q(z)‘/ BP q(z),
b J

where A and Bp q are polynomials of degree q and p, respectively, such that the
J J

formal expansion of the fraction as a power series in z agrees with that of f to
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and including the term in Pt The consecutive entries taken in a diagonal

direction are approximants of a continued fraction expansion of f(z). Often the

continued fraction will converge more rapidly than the power series, or may even
converge where the povwer series diverges, and so provides an effective computa-

tional device. To form a particular entry in the Padé table, let

P
B =b. +b, 2+ 0. +b_ 2
P, g 0 1 "’

and observe that in the product f(z) B (z), terms in zq+l, zqﬁe; cee 22P an1
b,q

drop out. This provides p homogeneous equations in the p + 1 unknovns, bo, coey bp.

If a solution exists, then the polynomial A.p q can be obtained by direct multi-

)

Plication. See quotient-difference algorithm, orthogonal polynomials. The Shanks

generalizations of the delta-square process applied to the sequence of partial sums

of a power series lead to entries in the Padé table.

Parabolic equation -- a partial differential equation that can be reduced to the

form
® u / o £ =du / 9t
when the variables are suitably chosen.

Parexic analysis -- a term coined by Cornelius Lanczos to designate the branch of

analysis concerned with the derivation of "nearby" (i.e., approximating) but
numerically manageable relations. It is distinguished, on the one hand, from
"pure" analysis, which is concerned with limiting processes and exact relations.

On the other hand it is distinguished from numerical analysis which is concerned

with the translation into numerical processes of the approximations provided by

parexic analysis. The aim of parexic analysis is to reduce truncation errors;

that of numerical analysis to reduce generated error and the number of operations

required.
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Partial differential equation -- a differential equation containing two or more

independent variables, hence containing partial derivatives. The order of the
equation is that of a derivative of highest order. It is linear if linear in the
dependent variable(s) and all derivatives; quasilinear if linear in the partial
derivatives of highest order. Second-order linear differentiasl equations

au. + 2b uxy +cu  + .e..=0

¥y
in two independent variables are classified as

elliptic, ac - b2 >0,
parabolic, ac - b2 = 0,
hyperbolic, ac -be <0, We Loeftrciends a, b,

W e oare fupetions &ﬁ 1 and ) and #\‘l;ne%mi.‘k,;s must hold fif&r’c‘zska&“ the vegier wrcler (’01&;/5,@}‘
Methods of solution differ slightly for the three types. Most often, however, for %

any type and any order, a method of differences is used by which the differential

operators are replaced by approximating expressions in terms of difference operators.

This requires dividing the space of the independent variables, in the case of two
independent variables, by equally spaced lines parallel to each axis; for three
independent variables by equally spaced planes parallel to each coordinate plane;
and similarly in higher dimensions.

The method is best described by an example. Consider the simple parabolic

equation

or, in operator form,

<52 - D > u = 0.
X y

The natural, and simplest, difference representation of Di is by central differences

0 =n™? 82,
X X

vhere h represents the constant difference along the x-axis. There are two equally




natural representations of Dy:

D =k~ A D =K .
? v Vy

If applied to ugy = u(xi, yJ), these lead to somewhat different difference equations

which can be written:

- - =0
T,y t D m2)wy g7 gy 5 =0
2
7=k / h E)
in the first case, and, in the second case
Y Uiby,y " (1 + 27) Uy + 7 uipy + ui,J-l = 0.
Hee.
The coefficients in the two approximations can be represented schematically im—the
stars:
following weas: -1
y 1-2y 7y y - (1+27) 7.
1

These schemes show the relative locations of the points to which the coefficients
are applied. The first scheme is simplest to apply, since one has only to solve for
u at the upper point in terms of its values at the points below. It turns out, how-

ever, that to insure adequate numerical stability it is necessary that y = 1. This

is an example of an explicit (or marching) scheme. To apply the other method no
restriction is needed on 7, but to obtain the value of u along any horizontal line
it is necessary to solve a system of linear equations, although the matrix is tri-
diagonal, and hence readily inverted. This is an example of an implicit (or jury)
scheme.

To start the solution it is necessary that suitable initial and boundary
conditions be given. If these involve derivatives, then the derivatives in the

boundary conditions must also be represented by approximating differences.
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Picard method =-- a numerical method of successive approximations or iteration for

solving differential equations. If the given equation is y' = f(x, y) subject to

the condition that y = y. when x = x., the solution may be written in the form of
0 o

an integral equation

X
Y=y, + J~ f{x, y) 4 x.
o

An approximate solution is

X
Y, =gt f £(x, ¥,) 4 x,
*o

and a sequence of approximations can be formed:
X
Yo=Yy + J flx,¥) ax;

° o ° ° °

X

Y=Yy + j' f£(x, yn_l) a x.
*o

Under quite general circumstances this sequence can be shown to converge to the

solution. Unless f is a polynomial it is not generally feasible to effect the

quadratures analytically, but most methods of numerical solution of differential

equations take their departure from this and integrate numerically. Moreover, y
and f can be interpreted as vectors and the methods apply equally to systems of
differential equations.

Planimeter -- an instrument for measuring the area enclosed by a curved boundary,

hence an analog computer for the purpose of performing quadratures.

Poisson equation ~- see lLaplace differential equation.

Positive (semi) definite matrix -- a matrix that is Hermitian with all proper values

positive (non-negative).

Precision -- see accuracy-.
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Predictor -- a guadrature formula used in the numerical solution of ordinary dif-

diferential equations in which the integral is expressed in terms of equally spaced

ordinates to the left of but not including the endpoint. This provides an initial
approximation to the new ordinate. Thereafter the approximation is used in a

corrector to improve or check the approximation. A predictor formula is open, a

corrector formule closed. See Adams-Bashford method for an example.

Principal vector -- of a matrix A, any non-null vector x such that for some scalar

A and integer v,
(AI -a) x=o0.

In case v = 1, x is a proper vector, and in any event A is a proper value.

Program -- a plan or design of a computational routine to be performed by a stored-

program computer. Sometimes this term is loosely used interchangeably with code.

Proper values and vectors (of matrices, methods of computing) -- for a given square

matrix A (singular or not), non-null vectors x exist satisfying A x = A X only when
the scalar A satisfies det(A I - A) = ¢(A) = 0, called the characteristic equation,
where @(A) is a polynomial of degree n, the order of A, called the characteristic
polynomial (see matrix). Any root A of this equation is called a proper values
associated with any root A there is at least one non-null vector x called a proper
vector belonging to A. The number of independent proper vectors belonging to a

proper value may equal, but cannot exceed, the multiplicity of A as a root of the

characteristic equation. For normal matrices, including hermitian, the number
equals the multiplicity. For a non-normal matrix, if A is a root of multiplicity
v > 1, and if fewer than v independent vectors belong to A, then there are princi-
pal vectors y # 0 satisfying (A I - A)"l y=0forl<pu=v. It is always true
that @(A) = 0. If there is a polynomial Yy(\) of degree m < n for which y(A) = O,

then that polynomial of lowest degree for which this is true is a minimal polynomial,
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and A is said to be derogatory; otherwise nonderogatory, The condition for being
derogatory is rather stringent and not often satisfied in practice, and the seame

is true for the presence of principal vectors, but when the conditions are nearly
satisfied the corresponding proper vectors are poorly defined and compptational
difficulties arise, possibly even insurmountable.

Implicitly or explicitly, to evaluate a proper value requires the solution

of an algebraic equation of degree n. The problem is much simpler for a hermitian
matrix, and for these will be discussed under that heading. Some of these methods

can also be adapted to normal matrices. Hexre the general case will be considered.

A method mey purport to yileld only the characteristic, or possibly the minimal,
polynomial, leaving this to be solved by any of the standard methods for solving

algebralic equations. Such a method is called direct. Once a proper value is

known, a proper vector belonging to it can be found by solving a system of homo-

geneous equations (see matrix inversion). A direct expansion of the determinant

is unthinkable when n is at all large.
Since any n + 1 vectors in n-space are linearly dependent, if b = bl % o,
then in the sequence
biyg = ADy
there is a smallest index m =n such that bm+l is linearly dependent upon those

preceding:

(1) b +B b+ Byb ... + B b =0.

This represents n equations in m =n unknowns, and they are consistent by hypoth-

esis, even if m < n. But this is

1

(2) (&7 + By & + .. +B I)D=0.

Hence, if

(3) \v(x)sxm+61 xm'l+...+5m,
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then Y(A) b = 0 and Yy(\) is either a minimal polynomial or a factor of it, and
except for very special choices of b, y(A) is a minimal polynomial.

If one forms the matrix

(h) B = (bl, b2} ’ bm)
whose columns are the bi’ then
(5) AB=BF

0 cee 1 - Bl
Its characteristic polynomial is y(\). With bl = ey, the first column of I, this
is the method of Krylov.

This method 1s effective for matrices of fairly low order. For matrices
of high order the equations to be solved for the Bi tend to become ill-conditioned.
A method due to Hessenberg yields a matrix B such that
(7) AB=3Baga,
where G is not the companion matrix, but whose form is such that the characteristic
polynomial can be expanded directly, and from which it is rather easy to solve for
the proper vectors. To apply this method one selects auxiliary vectors Cys Cpoy c5,...
subject to two mild restrictions but otherwise arbitrary. Ordinarily one can take
(with Hessenberg) each c; =€, 2 column of I. One starts again with a vector b,
17 b3
The

possibly el. Now b2 is a linear combination of bl and A b, orthogonal to ¢

1

8 linear combination of bl, b2, and A 'b2 orthogonal to both ¢y and Chji vee

restrictions on the c, are, first, linear independence, and, second,

¥ by £ 0.



-81-

With these conditions fulfilled one forms

Ab =Db, 7,, +Db

15°% 791 7%
where
»* - »*
cf Ab) =cib) 7,
Next

Hence 7 is obtained, and therefore b,..
11 ’ 2

A b2 = bl 712 + b2 722 + b3,
where

* = o*
cf AD e bl LTy

* b

* —_ ¥*
c* A b, = 02 bl 712 + c2

2 Tope
From the first of these one obtains 7109 from the second Yoos and finally bj' The

process continues, and G is seen to have the form

(8) ¢=|"1 Yoo Yoz et
0 1 733 ces
. . . . /

It may be observed that when the choice c, =€ is made, then the first

element of b2 is null as are the first two elements of b,, the first three of bk""

31
A further refinement of the method is the biorthogonalization method of

are arbitrary. Thereafter, just as b, is

Lanczos. In this method only bl and c 5

1

a linear combination of bl and A bl orthogonal to cy, 8O is c, a linear combination

of ¢, and A¥* ¢. orthogonal to b and so for the others. The matrix G is then

1 1
tridiagonal, being null everywhere except along, just below, and just above the

l’

diagonal. The recursion then never contains more than three terms"in any equation.
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Another modification is due to Arnoldi, who chooses bi =c, and requires
B to be an orthogonal matrix. Then (7) is satisfied, but with a matrix G of the

form

(9) G=| Tor T2 723 -

similar to (8) but with elements other than ones on the subdiagonal. The develop-
ment of the characteristic polynomial from G is almost equally straightforward.
When only one, or few, of the proper values of largest modulus are re-
quired a simple iteration scheme is advisable, and is preferred by some even for
a complete reduction of rather large matrices. If there is a single proper value
exceeding all others in modulus, xl, vectors bv in the continued sequence
bv+l =4 bv

approach the proper vector belonging to xl, so that for large v,

bv+l =N Dy
Hence, with any vector u, an approximate value of xl is given by
¥* — ¥*
u* A bv = xl u bv'

Convergence, when it occurs, can be accelerated by application of the delta square

process termwise to the vectors in the sequence.
In the case of a pair of complex roots, convergence does not occur, but

in the 1limit bv becomes parallel to the plane of the two proper vectors. Then if

— 1%
Hy =1 bv
the roots of the equation
1 Hy p‘v+l
A p'v+l p'v+2 = 0
2
A p'v+2 p'v+3
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approach these roots xl and x2 as v increases. In fact, whether or not xl and x2

are equal in modulus, but provided only both exceed all others in modulus, the

statement is true. Moreover, the roots of

1 uv “v+l “v+2
A “v+l “v+2 “v+3 -0
x? Hyio Hyi3 Myl
KB “v+3 Myl “v+5

approach the three proper values of largest modulus, if such exist (cf. Bernoulli
method).
Returning to the two roots, for large v,

bv =V + Vs

bv+l : >\1 vl‘+ %2 Vo

approximately, where vy and Vv, are proper vectors belonging to xl and x2. Kndwing

‘ kl and x2, as well as bv and b

Il

these equations can be solved for v, and \’%

v+1? 1

When any proper value and proper vector are known it is possible to apply

"deflation" as follows: The matrix
A - xl vy u*,

where u 1s any vector satisfying u* vy = 1 has the same proper values as A except
that instead of xl the new matrix has a zero. Moreover, if w is a proper vector
of A - A v, u*, belonging to the proper value A, then (A - M I) w is a proper
vector of A belonging to the proper value A. And finally, it is possible to choose
u* so thét every eleﬁent but the first in the first row of A - Al vy u* is zero.

To do this, normalize v, to have 1 as the first element (should this be zero, per-

1

mute rows and corresponding columns of A, and ‘the same elements of vy to make the

first element non-null). Choose the last n - 1 elements of u* to be l/>\1 times
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the corresponding elements of the first row of A, and choose the first element of

u* to satisfy u¥* vy = 1. It remains now to consider only a matrix of order n - 1,

and further reductions are made as further proper values and vectors are found.

In case u is an approximation to a particular proper value xi, closer
37 then p - Ki is the numerically largest proper value of
(A - I)-l. Hence the solution of the system

than to any other A

(A -pI) X, =X

for an almost arbitrary X, will give a good approximation to the proper vector be~
. * * . . .

longing to Ki’ and x¥ A X / x3 X will be a better approximation to ki. This is

Wielandt's broken iteration.

Unless it is known a priori that a matrix has principal vectors that are

not proper vectors, and has auxiliary conditions available for determining them,
rounding errors will almost inevitably conceal them,but the problem may turn out

to be highly unstable. If A =P A P-l where A is dlagonal, the numerical stability

decreases as ”P“ “P_l” increases in some norm, hence this seems to be an appro-

Priate condition number with respect to this problem. But as A approaches the

nondiagonalizable form, this number becomes infinite, hence at least some of the

proper values and vectors become ill defined.

Proper vector -- of a matrix, see principal vector, proper values and vectors.

Quadrature, numerical -- a method for the (approximate) evaluation of a definite

integral of a function of a single variable, the term cubature being used for two
variables. The most obvious procedure is to obtain some sufficiently close approx-

imation to the integrand f(x), whether by interpolation, by least squares, or

otherwise, but in terms that lend themselves readily to analytic integration, and

to integrate the result. Any formulas derivable by equal-interval interpolation




-85-

can be derived also by the application of difference operators. To do this, let

F(x) be the indefinite integral, whence

b
[ £(x) a x =F(p) - F(a)
a

and apply the operator exp 6 to F(x). A somewhat more sophisticated and more

general approach 1s to seek an approximation of the form

b n
f. f(x) w(x) d x = 23 by f(xi),
a 0

where the W, are constant coefficients, independent of the function f, and where
the expression on the right is to equal the integral on the left exactly whenever
f(x) is a polynomial of some maximal degree. When the xi are specified in advance,
this degree can be no greater than njy if they are left free it can be of degree

2n + 1, and the result is a Gaussian quadrature formula. More general formulaes,

not based upon polynomial representations, are also possible (see Ho). TFor special

formulas see quadrature formulas under the names Chebyshev, Euler-Maclaurin,

e

/ahths .
Gaussian, three-gééhbs rule, Simpson rule, trapezoidal rule, Weddle rule; see also

remainder formulas.

For solving ordinary differential equations the integrand is of the form

f(x, y), where y = y(x) is the dependent variable to be determined, and considered

as a function of x,
flx, y(x)] = £(x),
it is to be integrated over a range beyond that for which its values are known.

Most often it is necessary to express

X
v+n

f. f(x) d x
%y

in terms of values of f at points xJ, for J < v + n, in order to obtain an approx-

imate value of Yvin® Such a formula is called a predictor, or an open quadrature
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formula. To simplify the formulas let v = 0. Given an approximation to Yy4n? OB
applies a corrector, which is a quadrature formula expressed also in terms of fv+
There is no restriction in taking v = 0. To obtain a predictor formula,

one applies to F(x the operator

nnl)

g - E-(n-l) _ e9 _ e—(n—l)e -n 0 - [(n-l)2 - 1] 92 /20 + ...,

and hence to f(xn_ the operator

1)
nh(l-(n-2)6/2+ (n2 - 3n + 3) 62 /30 - .00,
thereafter substituting
6 =-1n(1 - V)
and retaining as many powers of y in the expansion as may be required. This is

the basis for the Adams-Bashford method. To obtain the corrector one applies to

F(xn) the operator 1 - E O,

Quotient-difference algorithm -- an algorithm due to Rutishauser and having num-

erous applications. ILet
- 2 bos
f(z) = 54 / z + 5, / z° + 5, /27 + ...
represent a formal power series, and form the table

(0)

)

1
o(0)
1

SJ(Ll) ( dJ(Lo) eio) séo)

1) (0)

4 %

Siz) dil) eil) sél) déo) eéo) séo)
o) o4

:3) @ @) NORNC (D
o3
1

e

n
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by the following rules:

v
Si : = Bys

qév) _ sc(:‘v+l) / ng)

dgv) _ q((Jv+l) _ Qév)

LY a9 g
L) _ (1) L _(v)
o+l ag g

If the entries of a column of q's approaches a limit, this limit is a

pole of f(z) (see Bernoulli method). Among other properties of the table, only

the following will be mentioned here, that

O O O -

is a particular continued fraction expansion of f(z), and others are readily ob-

f(z) = SO/ Z

tainable [NBS].

Radix -- an integer used in a system of numeration whereby all numbers are ex-
pressed as sums of powers of it. Thus in the radix r, a number would be written

in the form of a sequence of integers

av av_l coe al ao . a_l 0_2 0_3 coe
with the understanding that O 5(11 =r - 1 for every 1, and the interpretation
QT 4+ eee+Q T A +QA T e TP ...
v v 1 (0] -1 -2 .
The radix point stands between ao and a_l. In the ordinary decimal system the

redix is 10; in the binary system it is 2. A digital computer using the radix 3

is said to be under construction in Russia. See bit, blnary, decimal.

Radix goint -=- see radix.
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Rank of a matrix -- the number of ccliumh{or row) vectors in the smallest set that

can be selected from among the columns {or rows) of the matrix that are such that
all other columns (or rows) are expressible as linear combinations of them. The

number is the same, whether one counts rows or columns. Also it is the order of

the largest non-null determinant that can be formed from the rows and columns of

the matrix.

Rayleigh-Ritz method =-- see Ritz method.

Reciprocal differences -- of a function f(x) whose values are given at points

Xy X5 X5 oo, not necessarily uniformly spaced, are utilized for interpolation

by means of rational fractions instead of polynomials. This is appropriate in
regions near a singularity. The reciprocal differences
o(f | Xyy oo xn) = p(xo, coo xn)

are formed by means of a table:

X p(xy)

p(xy, %)
X p(x)) p(xgs X35 %,)

olx, x3) p(xgr X5 %5 %)
X p(x,) plxy, %5, X3)

p(xy, %) p(x), Xy, X3, %)
%y p(x3) p(xy, %5, %)

(x5 %)
X, p(xu)

where
p(xi} x.j) = (xi - x.j) / [p(xi) = p(xj)]’
p(xi, xj’ x'K) = p(xj) + (xi - x‘K) / [p(xi} xj) = p(x,j, xk)]}
the latter formula being typical. Then the interpolation is made by taking f(x)

to be an spproximant of the continued fraction
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£(x) = p(x,) + (x - x)/alag, %) + (x = x)/BTag, Hpy %p) = BlR) + -

If the nth approximant is

Fn = An / By

then A2p’ A2p+l’ BQP+1’ BQP+2 are of degree p in x. It is not required that the
Xy be distinct, and in the extreme case all may coincide. In that event the re=-
ciprocal differences are expressed in terms of derivatives, the treatment being

analogous to the confluent case of divided differences, and the resulting continued

fraction is then analogous to a Taylor series.

Regula falsi -- a method of solving an equation f(x) = O, for a real root, in which

2 is known to contain only one

real root. One passes the chord from the point [x_, f(xo)] to [:L_L, f(}L_L)], taking

if f(xo) f(xl) <0, and the interval from x, to x

x2, the intersection of the chord with the real axis, as the next approximation.
This is

Xy = (xo £, - % fo) / (fl - fo)
where £, = f(xi). Repeat, using either xj or x, with x,. This is an iterative

method which converges more slowly than Wewton's, but from the opposite direction,

hence if the two are used simultaneously the error is rigorously bounded.

Relative error -~ the ratio of the error in an approximation to the true value of

the quantity approximated.

Relaxation -- a method .of successive approximation for solving a system of equations
@i(xl, Xy wees xn) = 0, i=1,2, ..., n.

gv), one evaluates the residuals @i(xgv% = Rgv)

(v+1)

Given any approximate solution x
and selects the largest. If this is R,,, one solves ¢,, = 0 for x
i it

of the other x(v), recomputes the residuals, and repeats. For machine computation,

however, it is generally uneconomical to make the search and the steps are carried
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out in a preassigned cyclic order. Hence the term is sometimes extended to include
this method. The term was introduced by Southwell, but the method was used by

Gauss for solving the normal equations. Some writers use the term for any iter-

ative method (see also matrix inversion).

Remainder -~ the difference obtained when an approximation is subtracted from the

quantity being approximated. Hence a correction. See remainder formulas.

Remainder formulas -~ this term will be applied here to any formula expressing

the remainder in approximating a function, or an integral or a derivative of it.
A quite general one is the following: ILet

£(x) = P(x) + R(x)
where P(x) is the polynomial of degree n that interpolates f(x) at the points

X

0? xl, ceey xn, and let

w(x) = (x - xo) (x - xl) eee (x - xn).
Then

t t
1
R(x) = o) [ grn o f 200 x4 og () - x) + b (xg - 1)+ e

+ tn(xn - xn_l)] dty ... dt .

It i1s not required that the x be distinct, and, in fact, if xo =X = el = xn

one has a form of the remainder for Taylor series.

A somewhat simpler form is

(n+1)

R(x) = o(x) f (¢) / (n+ 1)1,

where, however, of & one knows only that it lies on the interval containing all

n + 2 abscissae: x, Xgr Xys eeey X

These same formulas provide remainders for numerical differentiation

formulas provided the derivative is to be evaluated at one of the points xi, since.

n+l)

R(x;) = 0'(x) 2™ (6) / @+ 1)1,

For remainders in the quadrature formulas, refer to these by name.
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Remainder theorem -- see algebraic equations.

Ritz method -~ for solving a boundary value problem is applicable when the problem
can be replaced by an equivalent minimizing problem. The method is to approximate
the required function by a member of a family depending upon certain parameters.

The problem is then reduced to that of minimizing & certain function of these par-

ameters. The method is closely related to that of Galerkin (see Co).

Root-squaring methods -- methods of obtaining an equation whose roots are the

squares of those of a given one. Graeffe's method is the one in common use, al-

though previously Lobaéevskii, and still earlier Dandelin, had described other
methods and had applied them in the numerical solution of algebraic equations.
Rounding -- the process of dropping the less significant digits in the representa-
tion of a number, generally with the rule that a unit should be added in the last
place whenever the first discarded digit is 5 or greater in decimal representation,
1 in binary. When this rule is not adopted the process is called truncation.

Rounding error; roundoff -- the error which results from rounding.

Routine -- a sequence of operations carried out by a stored-program computer as

specified by a code for the purpose of performing a mathematical or logical com=-

putation (cf. program).

Runge-Kutta method -- for the numerical solution of an ordinary differential equation

y' = 1(x, ¥),
requires the sequential computation of the following quantities:

fV = f(xV) y‘;l)’

k, =bf, k,=h f(xv + h/2, y, + kl/e),~

ks =h £(x, + n/2, y, + k2/2), k, =h f(xv+l, y, + k3),

+ (k, + 2k, + 2k, + ku)/6.

Y 1 D 3

¥y

v+l Yy
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The formulas have an obvious interpretation when y and f are vectors, hence for

a system of equations. The method has the advantage of not requiring special
measures at the outset as do the methods of Adams, Milne, and others based upon
straight interpolation. It has the disadvantage of being slightly more complicated.
Analagous simpler schemes, but of lower accuracy, are available (see Co). In this

class see the Euler method.

Saddle point method -- for obtaining an asymptotic approximation to a function ex-

pressible in the form

‘erf(T) d-T

c
where f£(7) —» - w at either end of the curve C. If f(z) =u + i v, the method in-
volves choosing the path C of integration to pass through a saddle point of u, a
point that will be among the roots of £'(7) = 0, and to pass through it in the
direction v = const. Points of C in the vicinity of the saddle point then con-
tribute most to the value of the integral, and for'large positive z only these

points are significant. The method is sometimes called the method of steepest

descent since the direction ¢ = const is that which descends most steeply from
the saddle point.

Scalar product -- of two geometric vectors, x and y. is L&I ij cos 6, where the

bars signify the geometric length, and the angle 6 is that between the vectors.
If these vectors are referred to an orthonormal coordinate system, and if x and
y are the column vectors whose elements are the coordinates of x and y in this
system, then

Xy =y x= |x| Iyl cos 6.
In any event, the scalar product is often written x - y and hence referred to as

the dot product.
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Schwarz inequality ~- Let ¢ and ¥ be two functions in a space for which an inner

groduct is defined. Then

2 <(9, 9) (¥, ¥).

| (9, )]
In particular, if x and y are two vectors (real or complex), then
2 2
et y|% = Iy* x|® = (x* x) (3 y)

vwhere the asterisk designates the conjugate transpose.

Secular determinant -- for a given matrix A, 1is

det (A - A I),

whose zeros are the proper values of the matrix.

Seidel method -~ the term sometimes applied to the single-step iteration for

solving linear equations. See matrix inversion. Actually the method Seidel (and

Gauss) described was a method of relaxation.

Significant figures (or digits) -- those digits that can be considered correct in

the approximate representation of a quantity, whether measured or computed, other
than zeros to the right of the decimal and to the left of the first non-null digit.
Thus in 0.00123, the significant digits are 1, 2, and 3. To write a number in the
form 0.00123%0 is to imply that the final digit is known to be a zero, and that the
four digits, 1, 2, 3, and O are all significant.

Simplex method -- a method due to George Dantzig for solving the linear programming

problem. Let it be required to find that vector x satisfying

A x=h, xX=0
such that ¢ = o + aT x is minimized, where the matrix A has n rows and N > n col-
umns, and the vectors x and h are of dimensions N and n, respectively. It is
assumed that A is of rank n. It is required that.initially one find a particu-
lar solution x of the inequalities, with N - .n of the elémentsinull, and such:

that the metrix of coefficients of the others is nmomsingular. -~ = . .
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After a possible renumbering, it can be supposed that the null elements are the

last N - n. Partition the system with x° = (y~

5 zT), where y and z are of di-
mension n and N - n, respectively, and write
By+Cz=h, y=B " h-B~C z
At this stage the elements of y are called the basic variables, those of z the
nonbasic variables, and the initial solution of the inequalities has y = B—l h =0
and z = O.
Now @ can be written

P =a + bTy + el g = (a + v* 57t h) + (cT B C) z.

If cT - bT B_l C 20 the problem is already solved. If not, consider one of its
negative elements. By allowing the corresponding element of z t0 become positive,
but holding all others a% zero, ¢ can be decreased, but, in gereral, scme element
of y = B_l h - B_l C z will eventually vanish. At this point, where the first
element of y has vanished, the z which has been aliowed to increase is adjoined

to the set of basic variables, and the y which has vanished is adjoined to the

nonbasic ores, and the process is repeated.

Simpson's rule -- for numerical quadrature:
X, | .
J. f(x) d x = 3 (fo + hfl + fe) + R,
X
0]
where £, = f(xo +1ih) = f(xi)

R=-1" £V (¢) / 9.

Hence

2n
2 i
J‘ P(x) d x = [‘O + hfl + 2f, + 4f5 +oee. + thn-l + fEn]'

W]
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Simultaneous equations -- ¥he solution of simultaneous linear equations is dis-

cussed under matrix inversion. In case there are more equations than unknowns,

it may be that some are redundant, and can be dropped without affecting the
theoretical solution. If not, the equations are Inconsistent, and only a least
squares or other approximation can be used. If there are fewer equations than
unknowns the determination cannot be unique, and at most it will be possible to
leave some of the unknowns arbitrary, solving for the others in terms of these.

Even with nonlinear equations it is sometimes possible to eliminate some
of the unknowns by solving and substituting, althdﬁgh this may not be advisable
since the analytic expressions tend to be more complicated. In any case, suppose
the system has the form

@i(gl, cee, gn) =0, 1i=1,2, ..., n,

assume no further reduction is possible or desirable, and suppose that a solution

a ceey O actually exists. If

l) ae)

- _ e _
then @(gl, coey gn) =0 and @(al, ceey an) = 0. Hence & is minimized for &, =aq,.

Therefore one may use the method of steepest descent as one method of solving the

system, provided the necessary derivatives exist.

(0)

Another method is a generalization of Newton's method. Suppose gi is

a8 set of numbers sufficiently close to & Then, by expanding in Teylor's series,

io

¢;(@, vee, ) =0 = ot }g (aJ - ggo))a P 0 / By + s

where the subscript O signifies evaluation for gi = géo). If the differences

a, - g(o) are small enough and the terms not written (quadratic and higher) are

J J

negligible, and if, further, the matrix of first partial derivatives

©o; /3¢,
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is nonsingular throughout a sufficiently large neighborhood of the solution aj’
then the linearized equations can be solved and the result will be approximately
equal to the differences aj - ggo). By adding these to the §§O) one obtains an
improved set, and the process can be continued as many times as seems necessary.

Single-step iteration -~ see matrix inversion.

Singular values -- of a matrix A are the non-negative square roots of the proper

values of A¥* A.

Smoothing -~ the replacement of a curve, or of a sequence of points by another
that is in some sense more regular, and yet whose ordinates, for any abscissa, are
changed as little as possible. The irregularities in a sequence of points may be
due to errors in measurement. If theory requires the theoretically correct points

to lie on a given curve, one may apply some method of curve fitting, possibly

least squares. If not, one may select arbitrarily a simple function, possibly a

poelynomial, and fit it by least squares. If the purpose is merely to obtain a
smooth graph, this may be drawn visually. Somewhat more sophisticated is to
take, say, 5 consecutive points, fit a parabola, and replace the middle point by
the one on the parabola. The next parabola requires four of these poiﬁts and one
new one.

Spectral norm -- ¥nhis term is sometimes used for the spectral radius, but this

function does not possess the norm properties. Also, and more appropriately,
applied to the function [|A] defined by
2
All" = o(a* 4),

which is a norm (see spectral radius).

Spectral radius of a matrix A -- p(A) = max lki(A)I for all proper values of A.
i
See norms; spectral norm.

Stability -- see numerical stability. vy
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Steepest descent -~ a term sometimes applied to the saddle point method. However

the term is also applied to a methed of solving simultaneous equations and of

minimizing (or maximizing) a function. Given a function of several variables
¢(§l) 52} ooy gn)
to be minimized, form grad ®, the vector whose elements are o & / d gi = 71' The

function
@(X) = lI’(gl - A 713 eooy gn - A 7n)

is a function of only a single variable. Let gio), ooy §£O) represent a point

(0)
i

substitute §£O) = A 7§O> in ¢ and minimize the resulting ¢ as a function of A. If

sufficiently close to the minimum, let 7 represent the value of 75 at that point;

this minimum occurs at K(O), then ggl) = g§0> - x(o) 7§O) will be, in general, a

closer approximation to the minimum.

Stirling formula -- if n is a large number

In n! = <£ + %)'In n-n

1 1 p)
*3 In 2% + 5= - 0(1/n”),

where the last term is of the order of l/n5. Often approximated by: ~
In n! =n fnn - n.
Stirling interpolation formula -- in the notation of difference operators

2 2 .2 2,2 .2 2 .2 2 .2
E'=1+umud+ ST 8% 4 Ei%fli—) wo + E—LET;L—l 54 + 2 -lsz(u 2) LB 4 ...

(n)

Sterling numbers -- the coefficients Sv

in the expansion (see difference operators)

(o) _ Sgn) u® + Sé?{ e U Sin)

u
(n) = 0.

For v > n, Sv

These are also called Stirling numbers of the first kind,

those of the second kind being the coefficients G;ﬁn) of the reverse expansion
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u? = G(n) u(n) + 6(n) n(n—l) ¥ oaee + 6](_n) u(l),

n n-1

It follows from these definitions that

u=0 u=0

S(n) _ a’ u(n)/ du’

v! Vi
Their importance is due in part to their occurrence in the following differenti-

ation formulas:

S(v+l) aAv+l S(v+2) AVH2
Gv = ng) o+ Y + + ee
v+l (v+1) (v+2)
(v+l) v+l (v+2) v+2
v (v) v (Sv 0 G;v 0
A = G;v 6 + + + oens
v+ 1 (v+1) (v+2)
Storage unit -- that part of a stored-program computer which stores the code or
g D: mp codae

the numerical data or both. In most current machines the storage unit is divided
into cells, usually of between 30 and 50 binary elements, these cells are ordered
and the ordinal number of the cell is its address. Generally, too, a given cell
can be used to store either data or commands, a command including an operational
code symbol and one or more address symbols for locating the operands. Operation
can begin with any cell, the contents being interpreted as one or more commands,
and will usually proceed in sequence until a transfer or Jump command interrupts,
although in some machines every command specifies also the location of the next
command to be executed.

Stored-program computer -- a computer that is capable of storing instructions as

well as data and of carrying out a sequence of operations as prescribed in advance.

The modern high-speed general-purpose computers are digital computers of this

type. Any such machine will possess a basic repertory of certain arithmetic and
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logical operations, each designated by a certain symbol, basically a binary
sequence. A sequence of such symbols constitutes & code which, when introduced

into the storage unit along with the necessary data will direct the machine

accordingly.

StOrmer method -- for the numerical solution of an ordinary differential equation

of second order;
vyt =1(x, ¥, ¥'),
uses the predictor
-yv_l+h2 (fv+-]-_-12—72 fv+-l%-2-v5 f1/+21%69-vlL fv+);35v5 r, + cee)e

y 2y

vil © Yy
It is useful in particular when y' does not occur explicitly in f. The equations

apply also when y and f are vectors. See difference operators for the definition

of v. (See Co). ¥

Sturm theorem -- for locating roots of an algebraic equation P(x) = 0. Taking

P=P.,, P' =P, apply the Euclidean algorithm for the highest common factor of
e Sl

o’ 1
Starm
PO and Pl' In thejstquence PO’ Pl’ PE’ ..o evaluated at any r, let V} represent

the number of variations in sign. Then the equation has exactly Vr distinct roots

exceeding r. While the application of Budan's theorem is simpler, it provides less

information in general. Moreover, if Pi is not a constant, Pi being the last

term in the sequence, all multiple roots satisfy P, =0 (see algebraic equations).

Subroutine -~ a portion of a routine for a stored-program computer, e.g., a part

which evaluates a trigonometric or other standard function, which has been so
coded that it can be made an integral part of any routine that calls for this

particular computation.

* S{urm Sequence - - Q& Se guenc e ot /90/7/70,%,‘4/5 Q/SS;C)Z\L%GZ/ u;ij o
Hiwe gg&&"nom;a/ f055essing Hhe prolaerf/cs hifu:re vr Appe g
i

. | - /
o e or e Hiat 7o Consecut.ve. AT Uatrish
Yhe wrm) 7"/)€ 0y E4n ) It 7 y fd%p/ a&{j& e

e s,
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Sumation of series -- In general, methods of approximate computation are based

upon the use of infinite series and sequences whose limits are the desired quanti-
ties, and in practice one must truncate the series or select a particular term in
the sequence. It is advantageous, therefore, that convergence be as rapid as pos-
sible. 1In some instances a series may not converge and yet may be regarded as de-
fining the required quantity in some sense. Thus the series 1 + x + x2 + x3 + coo
fails to converge when |x| > 1; on the other hand it is the formael development of
(1 - x)-l and may be considered to define this quantity whether or not the series

converges. Moreover, if one applies the delta-square process to the sequence of

partial sums of this series one obtains precisely (1 = x)-l. Thus the process,
in this instance, transforms the sequence of partial sums into a new sequence of
which every term is the value of the quantity formally defined by the series. It
can be regarded as a device for accelerating convergence, when convergence occurs,
or of converting from divergence to convergence otherwise, in either event a
method for summing the series.

Linear methods of summation have been most exhaustively studied, and the

Euler transformation is one of the simplest and most useful. The delta-square

Process is among the simpler and more powerful of known nonlinear methods. The
elements ui of an infinite sequence can always be regarded as the partial sums

of a serles, hence one can direct attention to a series or to a sequence, accord-
ing to convenience. The terms u of a sequence can always be regarded as func-
tional values u(x) of a function for which x = 21, Hence finding the limit of

a sequence of terms u can be regarded as equivalent to the problem of extrapo-
lating the function u(x) to x = 0, when functional values are known for x = a™L,

From this point of view one can use interpolation polynomials, continued fractions

(e.g., formed with reciprocal differences) or any other convenient method of approx-

imation.
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Symmetric function ~- of n variables x

12 +++s X,, any function f(xl, Xyy eney xn)

not affected by an interchange of any Xy and xj. If these are roots of an alge-

braic equation

then

¢, = 23xi, 02‘= ZZXi xj, c5 = 23xi x'j Xs oo
are the elementary symmetric functions, where the summations are extended over
all distinct products of distinct factors, the X; being themselves considered in-
dependently varying. Any rational symmetric function of the X, is a rational

function of the cye

Synthetic division --"§0 divide the polynomial

n n-1 n-2
P(x) = ay X +a) X + &,

by x - r, write

ao al a2 ‘e an Ir
aor blr bn—lr
ao bl b2 R
where each number below the line is the sum of those above., Then
_ n-1 n-2 n-3
Q(x) = ay X + by X + b, ¥ + eee,

where

P(x) = (x - r) Q(x) + R.

Taylor series -- for a function f(x) of a single variable has the form

£(x) = £(a) + (x - 8) £/(a) + .vv + (x - a)® £®) (a) / nr 4 R,

assuming the derivatives to exist, where Rn is the remainder. There are many dif-

ferent ways of expressing this, among them being
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1
R = (x - o)™ [ a-)® p(n+1) [a +1t (x -a)] 4t

1
0

n n.
n+l
_(x - a (®+1)
n = Sy O o, :

If f(xl, Xy wees xn) is a function of n variables the expansion has the

A
v
IA
¥

forn

f(xl, Xyy wees xn) = f(xl =By, eey X
]
+77) ) (% - a) (x; - a) £;4 (2, «ovy 8y) + oo
where the subscripts on f signify partial differentiation.

Tchebychev -- see Chebyshev.
Three-eighths rule -- the guadrature formula

j?i

%

£(x) @ x = 3n(f, + 35, + 37, + £,) / 8,

where

The remainder is
Iv
R =-3n° £V (¢) / 8o,
hence the formula is in general somevwhat less exact than the simpler Simpson's

rule.

Trace of a matrix A -- trace (A) = z: a, .
ii

ij)'

Transfer of control -~ in the usual stored-program computers commands are executed

where A = («

in the sequence in which they occur in storage unless a command of a specific type
(a transfer command) interrupts the sequence and causes the machine to look else-
where for its next instruction. The command may be conditional, to be executed

only in case a certain condition is satisfied, or unconditional.
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Trapezoidal rule -- for numerical guadrature:

J £(x) ax=(v-a)[£(a) + £(b)] / 2 + R,

R=-b £'(¢) / 12, a=<g=p h=b-o

2ero
Triangular matrix -- one in which all elements are @il above the diagonal (a

lover triangular matrix), or else below the diagonal (an upper triangular matrix).
Lhen alsc Clery d/‘WaL cle ment

=/ .

weikLs. The prodﬁct of two triangular matrices of the same type is again of that
type, i.e., (unit) upper or lower; and the reciprocal of a triangular matrix
(wvhen it exists) is also of the same type. A triangular matrix is properly tri-
angular “if the diagonal is null.

Trigonometric interpolation -- Formulas analogous to the Lagrange formula for

polynomial interpolation can be obtaineds They all have the form
£(x) = )8, T, (x) / T (x,).
Possible choices of Ti(x) are the following:

Ti(%) =j££ sin (x - xj) /2 ;
Ti(x) = (cos x - cos xj) 3
oFe

T.(x) = sin x (cos x - cos x,) ;
i s} J

Ti(x) =$Q; (sin x - sin xj) .

Triaone metric. Series - - See. Youricr series
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Triple-diagonal metrix -- a matrix A = (a,

1J

Thus nonnull elements occur only along, just above, or just below the diagonal.

) for which G5 =0 when i - 3] > 1.

These occur in the theory of continued fractions. Some methods for computing

proper values and vectors of a matrix aim first at transforming the matrix to

triple~diagonal form.

Trupcation -- approximating the sum of an infinite series by the sum of a finite
number of terms in that series. As applied to the dropping of digits in a number,
the term contrasts with rounding.

Truncation error -- strictly the error due to dropping all but a finite number of

terms from a possibly infinite series, but often applied also to the error due to
representing the limit of a sequence by one of its terms, or to representing a
function by an interpolation polynomial. See error.

Unitary matrix ~- see matrix.

Vector -- a matrix of n rows and a single column. Geometrically or physically,

it can represent directional magnitudes such as displacements, velocities, ac-
celerations, forces, etec.

Volterra equation -- the integral equation of the form

X
o(x) =£(x) - » [ K(x, y) oly) dy

X0

in which the upper limit of integration is the variable x.

Wave equation -- the hyperbolic partial differential equation of the form

Fu/d3L =k Fu/dte
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Weddle rule -- for numerical quadrature,
6 |
g‘ £(x) 4 x = 5(£, + 5F) + £, + 68, + ) + 5T + £g) + R,
0

R = - n? 110 £V (e ) 4 on? p(VIID) (£,)] / 1k00.

1

Word -- in the terminology of digital computers, a set of characters occupying
one storage cell and treated as a unit by the machine, e.g., in being transferred

to and from registers.
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