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ABSTRACT

We have derived from the Boltzmann equation a new integral equation

governing the slowing down of neutrons in a lump, assuming a spatially

uniform neutron flux inside it. In the first approximation we have

solved the equation using the asymptotic energy dependence of the neutron

flux and proposed a new resonance integral formula. In the limit of both

the narrow resonance and the wide resonance, the formula tends to be equal

to that derived in the conventional narrow and wide resonance approximations.

In the second approximation we calculated effects of the deviation of the

Placzek function from its asymptotic form by a method similar to that used

by Weinberg and Wigner for homogeneous systems. We have shown that the

resonance integrals of the usual narrow and wide resonance approximations

become equal for a certain value of I /[, irrespective of the resonance

width. Some numerical results are given.
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INTRODUCTION

The resonance absorption of neutrons in a lump has been calculated by

two approximate methods: the narrow resonance approximation and the wide

resonance approximation, referred to hereinafter as the N.R.A. and the

W.R.A., respectively. In the N.R.A., we assume that the values of £

(the average lethargy change per collision) for both the moderator and the

absorber are very much larger than the lethargy extent of the resonance

line under consideration. Thus, resonance neutrons which collide elastically

with moderating and absorbing nuclei are slowed down well below the resonance

region. On the other hand, in the W.R.A. we assume that the width of the

resonance in lethargy greatly exceeds £ of the absorbing nucleus, and the

slowing down of neutrons by collisions with absorbing nuclei can be neglected.

2
Recently, Dresner proposed a new resonance integral formula in the W.R.A.,

taking into account multiple scattering of neutrons in the lump.

However, the width of the resonance line is finite and the above-mentioned

approximations correspond to the two extreme cases. We must consider the

slowing down of neutrons by absorbing nuclei correctly to improve the

3
approximate formulas. Spinney proposed the modified narrow resonance

formula considering this effect and obtained improved results in a homogeneous

system. Corngold estimated errors due to the assumption of an infinite

mass absorber for the resonance absorption of a slab lattice. Recently,

5
Spinrad, Chernick, and Corngold derived an approximate formula for a lump

immersed in an infinite moderating system, assuming a flat flux inside the

lump.



As Weinberg and Wigner indicated for the resonance absorption in a

homogeneous system, neutron absorptions are equivalent to negative sources,

and the strong absorption induces the flux oscillation represented by the

7
Placzek function. They obtained the second-order corrections to the

resonance escape probability by introducing the correction term £.(u)

(u is lethargy) to £.

In this paper we shall derive a new integral equation for the neutron

flux inside a lump immersed in a strongly moderating infinite system, con

sidering correctly the neutron slowing down by absorbing nuclei and assuming

the spatially flat flux. This equation corresponds to an extension to a

heterogeneous system of an equation derived by Weinberg and Wigner and by

8
Corngold for a homogeneous system. In the first approximation, we shall

derive a new resonance integral formula assuming the asymptotic energy

dependence of the neutron flux in which the neutron slowing down by collisions

with absorbing nuclei and multiple scatterings inside the lump are taken

into account. In the limit of both the narrow resonance and the wide

resonance, the formula tends to that derived from the N.R.A. and the W.R.A.,

respectively. Since we do not make any assumption concerning the width of

the resonance line considered, it gives an improved formula compared to

the usual ones. In the second approximation, we shall consider the deviation

of the Placzek function from its asymptotic form by making use of a treatment

similar to that of Weinberg and Wigner. In the heterogeneous system, the

flux oscillation is induced not only by neutron absorptions but also by

variations in the first-collision density of neutrons impinging from the

outside of the lump and by variations of the neutron leakage from the lump.



In the last section, we shall discuss the validity of the flat flux

assumption and show that resonance integrals of the N.R.A. and W.R.A.

become equal for a certain value of y /I, irrespective of the resonance

width. For this value of p /I the correcting term derived from our formula

to the N.R.A. or W.R.A. vanishes. For a simple case of a square resonance

cross section, comparisons of our results to that of the N.R.A. and W.R.A.

are made.

I. MATHEMATICAL FORMULATION

We shall consider the resonance absorption of neutrons in a single

line inside a metallic lump immersed in an infinite moderating system. We

assume that the value of £ for the moderator is very much larger than the

lethargy extent of the resonance line under consideration and that resonance

neutrons are slowed down well below the resonance region by only one collision

with a moderating nucleus. As the resonance energy is very much lower than

that of fission neutrons, the neutron flux in the moderator at the resonance

energy can be considered to be spatially flat and to have the asymptotic

energy variation. We normalize the flux in the moderator to unit magnitude.

The neutron flux inside the lump, 5(r,u), satisfies the following Boltz-

mann equation:

u

,-» v ,-*
exp •£t(u)|r- r'jj

y(r,u) =P(r,u) + / du'K (u - u')2 (u«) / dr' z 1- £(r',u'), (l)
m s / i, I• -* -», 12

4« r - r*

where the integration with respect to r' is to be extended over the lump whose

volume and surface are denoted by V and S, respectively. For the origin of



lethargy, u = 0, we choose an energy which is very much lower than the fission

energy and very much higher than the resonance energy but otherwise arbitrary.

P(r,u) is the first-collision density of incident neutrons from the outside

of the lump and is given by^

•l-IL(u) r - r
P(r,u) = / dS'(n,X) * ' — , (2)

krt\r - r'|
,^-. expl

-»

where X = (r - r')/|r - r1 and the point r1 is on the surface of the lump.

In Eqs. (l) and (2) we have used the following notations:

K(u) =e^ (~uj for 0^ u< q_,
m (1 - a ) im'

v m

= 0 otherwise;

q^ =log [(m +l)/(m -l) , 1-am =ljm/(m +l)2;
m = mass of the absorbing nucleus;

H.(u) = macroscopic total cross section in the lump;

21 (u) = absorption cross section;
9.

£ (u) = scattering cross section;
s

£. = potential scattering cross section.

In the following, we assume the neutron flux inside the lump is

spatially flat and denote it by ^(u). We shall discuss the validity of

this assumption in the last section. Integrating over "?, Eq. (2) becomes

50u) =P(u) +gjz] [l "POO / du'Kju - u')iIB(u')S(u'), (3)



V

V

where P(u) = (l/V) / drP(r,u) and we have used the following relation:

1 'a? /a?.."*^00''-1'H?-*f—-2^[1-p(u)- (*)

Equation (3) is identical with the fundamental equation of Spinrad, Chemick,
5

and Corngold. Putting

1 +i£
5(U) . -_JE^i u(u) (5)

l+i^.(u)

and expanding U(u') on the right-hand side of Eq. (3) in Taylor series, they

transformed the integral equation (3) into a differential equation with

respect to U(u) by retaining at most linear terms in u?. Ji is the mean chord

length of the lump and is defined byJ? = (W/S). However, these methods

seem to be inadequate for the problem in which cross sections vary rapidly

with energy.

In the following we shall transform Eq. (3) into a new and completely

equivalent equation by using a method similar to that used by Weinberg and

6 8
Wigner and by Corngold in homogeneous systems. We rewrite Eq. (3) as

follows:

£t(u) } r , £>')
X(u) =T - T P(u) + / du'K (u - u') 1-P(u') -2 X(u') , (6)

[l -P(u)] J m L J £ (u»)

where

Z.(u)
X(u) --—S T 5(u) . (7)

[l -P(u)]



We denote the Laplace transformation of f(u) by hi f(u)l

Laplace transformation to Eq. (6) to obtain

and apply the

LJ X(u)[ = L- Y^\PCu)}+ LK(u)} Lf" P(U)J JS *»} •
Here we have used the convolution theorem:

u

LJ 7 du'f(u -u')g(u')l =L|f(u)j L|g(u)l .
o

To obtain the final equation we rewrite Eq. (8) as follows:

[l -L{Km(u)i ll X(u)> = L<
Ht(u)

[l -P(u)J J

LJKm(u)j. Lj[>-[l-P(u)]^

(8)

(9)

(10)

X(u)L' .

Dividing both sides of Eq. (10) by 1 - LJk (u) j, we have\ m j

L ^X(u)^ = L.
ZAu) j L
* P(u)W

[l - P(u)]

L(Km(u)}

Ht(u)
L J.- * _P(U)

[l-L|Km(u)|] [[l-P(u)]

[l - L{Km(u)|]
Here we have made use of the following relations :

T 1 Vu) f r 1£»!

L/ P(u) + jl - P(u)
A(u)^

KjuJl x(u)f.

1 —l|f(u)| =L|F(u)> +l-L{Km(u)j]
(W

[l - L(Km(u)}; L^F(u)^.

(11)

(12)



k(u)}/ 1-UK^ is the Laplace transform of the Placzek function

8,100 (u), ' i.e., the neutron flux in an infinite no absorbing system with a
m

neutron source at u = 0. 'Thus we obtain by inverting Eq. (ll) :

X(u) =

u

Z+(u)

[l -P(u)
- P(u) + / du'0 (u -u') Vu'>

m [l -P(u')

u

du'0 (u
rm

u') ;p(u») +

L

,ILa(u.)
P(u')

P(u')

X(u'),

(13)

which is the new equation we have been seeking. Equation (13) is just

equivalent to Eq. (3). However, as we shall show later, unlike Eq. (3)>

good approximate solutions to the new equation may be constructed. Equation

(13) is the extension to a heterogeneous medium of the fundamental equation

6 8
for a homogeneous system derived by Weinberg and Wigner, and by Corngold.

In fact, we obtain their equation by setting P(u), the neutron escape

probability from the lump, equal to zero, except in the inhomogeneous term

$n Eq. (13). It is interesting to note that the quantity X&(u)/Xt(u)

for the homogeneous system corresponds to P(u) +11- p(u) X„(u)/X+(u)

of the heterogeneous system. The physical meaning of this fact is that the

neutron leakage from the lump given P(u) is equivalent to the actual neutron

absorption rate 1 - P(u) 2± (u)/£ (u) .

We now decompose the Placzek function into two parts,

*» -111 - p>>] -m m
(i*)



where P^ gives the deviation of 0 from its asymptotic form. By inserting

Eq. (lU) into Eq. (13), we have

X(u) =

X

[l - P(u)]

Z+(u')

P(u) + t

u

du'

u

u

^(uO
[l - P(u)

r-P(u') - i / du'P (u - u') (15)4 J m-
o

2J"')JTT^P(u'' 'I J du' Lp<u'>+ i1 -««')] f^T->(»'>
u

+? / duTm(u • u>)
o

r -, £>')
X(u').

Terms containing Pffi as a factor in Eq. (15) give rise to the flux oscilla

tion. The flux oscillation is induced not only by neutron absorptions but

also by incident and escaping neutrons.

II. RESONANCE INTEGRAL USING APPROXIMATE SOLUTION

First-Order Approximation

We are not able to obtain exact solutions of Eq. (13), just as we are

unable to solve Eq. (3) exactly, however, Eq. (13) or (15) is superior to

Eq. (3) for making clear the physical meaning and to get better approximate

solutions. Equation (13) can be solved by the iterative method to give

after appropriate rearrangements>



x(u)s
ZM

[l - P(u)] ^ ' [l - P(u)]

1- Pju - ux)] Q(u1)

S(u) =
X+(u)

i (rf I ^
Ui-2

P(u) (16)

u.
1

du,. • • * «

Vl

dup -l I1 Pm(ul-2 U>l}j Q<uj-1> / ^A1'^-! up_

xP(u^)ils(ui)

where we have used the following abbreviation:

r 1 Xa(u>Q(u) =P(u) +[l -P(u)j -g-^y (17)

The convergence of the series solution will be rapid when the width of the

resonance line is narrow.

In particular, when we set all the P (u) in Eq. (l6) equal to zero, i.e.,
m

when we replace the Placzek function 0 (u) by its asymptotic form l/£, the
m

(1),first-order approximate solution of X(u), X (u), becomes

X(l)(u) -

u

5 P(u)+i / du'P(u')iI (uf)
[l -P(u)] i

x exp
1

I

u

du"Q(u")

u'

(18)
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where we have used the following relation;

u u u . u
1 n-1/i n-i n

du1Q(u1) J du2 .... J dunQ(un) j" *un+1P(un+1)i;s(un+1) (19)
o o

u u

=\[ du'P(u')ils(u') i/du^u^
u'

r '

Of course, we can easily obtain X1, '(u) directly from Eq. (15) by setting
P (u) = 0.
m

To show that our method is consistent, we shall obtain the neutron flux

above the resonance energy from Eq. (18) for the case of no absorption, i.e.,

^a =°> ^->t =^p.g,* Denoting p(u) for this case by P and noting
Q(u) = P , we have

o'

^p-s. JD 5L- p

^^
Tf'M "F^TT po +£,... i--p -^ » . (20,

t1 - ^
o p.s. I VI

As we have chosen the origin of the lethargy at the energy very much higher

than the resonance energy, the term containing the exponential factor can be

neglected and f (u) =1. In the case of no absorption and constant scattering

cross section, the neutron flux inside and outside the lump become equal, as

they should be. This result is important, and will not hold when we choose an

incorrect solution.

Next, we shall show that our solution given by Eq. (l8) coincides with

the usual one in the wide resonance limit. When £ is very small, the integrand



11

in the second term of Eq. (l8) remains finite only for u' very near to u and

we may replace Q(u") and P(u»)£s(u') in the integrand by Q(u) and

P(u)iT (u) to obtain
s

^t(u) Jl),, zt(u) „,,r ;(u) =-—-—- p(u) (21)
[l -P(u)] [l -P(u)]

+p(u)Zs(u)oTuT t1" exp{-|Q(^
As we have mentioned above, the exponential term on the right hand side of

Eq. (21) can be neglected for a suitable value of u and employing the

definition of Q(u) by Eq. (17), V (u) can be written

?(u) +[l -P(u)J ••a

Zt(»)

On the other hand, when we neglect the slowing down of neutrons by the elastic
o

collision with fuel nuclei, Eq. (l) becomes

-> -* n P -4 exP -^+-(u)|r " r'L5(?,u) =P(?,u) +£ (u) / dr*' L,7 J,p ^(f\u )• (23)
IT I

Making the flat flux approximation and using the relation given by Eq. (4),

we easily obtain Eq. (22). Dresner derived the same result in the W.R.A.

by making use of a variational principle. The result may also be obtained

by the successive generations method.
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To derive the resonance integral formula in the narrow resonance limit,

it is convenient to rewrite Eq. (l8) in another form. Suppose the absorption

begins from the lethargy u = u . We now decompose the integral on the right

hand side of Eq. (l8) into two regions, i.e., (o,u) and (u ,u), and after

integrations we have

X(l)(u) ^t(u)
- P(u) + £_ _ exp

[l -P(u)j P'S-

1

+ I

u

u.

du'P(u')H (u') exp
s

1

1

u

u.

u

n

u1

where we have neglected the term of order of exp

du'Q(u') (2k)

du"Q(u") ,

-<po/«K].
When the absorption occurs in the region (u_,u ), the resonance integral,

R.I., is defined by the following expression:
u„

R.I. =- duil (u)3Cu),
a

(25)

where N is the number of absorbing nuclei per cubic centimeter of the lump.

From Eqs. (24) and (25) we have the resonance integral in the first-order

approximation:



U2

R.I.(1) =| / du£a(u)p(u)
u.

u

13

u

ZMI*,... / a" t1 -pw] z^Texp [-1 / to'«<u'>
U, "l

u u u

|| rdu[l -P(u)] CTJy / du'Zs(u')P(u')exp -J / du"Q(u")
u. un U'

(26)

£»r Aaw
where Q(u) = P(u) + 1 - P(u) / \ as defined by Eq. (17) • When we make £

tend to infinity in Eq. (26) assuming the N.R.A., the R.I. becomes

u

R.I. =i / dull (u) +~JL / du_ /\ •N / "a' N p.s. / Zk+W L

u.

2a(u)
1 - P(u) (27)

which just coincides with the usual narrow resonance formula.

It is interesting to consider the physical meaning of each term on the

right hand side of Eq. (26). The first term is clearly the absorption rate of

resonance neutrons incident from the outside of the lump by the first collision

with absorbing nuclei. The second term is the absorption rate of off-resonance

neutrons which are slowed by elastic collision with absorbing nuclei to

become resonance neutrons and which are absorbed before escaping to the outside

of the lump. The resonance neutron flux is then reduced by the factor,
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u

.{p(»., +[x -p(..,] ^lexp - - du

un

\M-

because of the absorption and the escape. This factor corresponds to the

well-known factor,

exp 1 L •£*(U,)L-iydu's^7j

for a homogeneous system. The third term represents the absorption rate of

the incident resonance neutrons which are absorbed after colliding elastically

with absorbing nuclei. The above mentioned three processes exhaust all of the

possible ones.

We shall rewrite Eq. (26) in another form to see the relation between

the N.R.A. and W.R.A.:

u u„

R.I.
(1) 1 £ (u)

-I / «»*.<»>*<«>♦ i£p... / ^-'wJrro (28)

u., u,

u

N p.s.
du 1 - P(u) £^7

u

1 - exp
1

du'Q(u')

u. U-,

H /du I1-p(u>J f^J / a»'£s(u')P(u')exp|-±y^ du"Q(u")

u. u'
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or, denoting the resonance integral of the N.R.A. and W.R.A. by R.I.(N.R.)

and R.I.(W.R.), respectively, we have

R.I. = R.I.(N.R.)

uo u f 1

-|| I du [l -P(u)] ^^du.JLp>s>Q(u.) -Ls(u.)P(u.)^
ul "l

u

x exp j /du"Q(u")
u'

where we have used the following relation:

u

1 - exp du'Q(u')

u.

u

dU*Q(u*)exp

u.

u

J
u"

du"Q(u")

(29)

(30)

The second term of Eq. (29) gives a correction term to the R.I.(N.R.).

the other hand, we can easily show that

On

u.

i r £a(u> i rR.I.(N.R-) -R.I.(W.R.) =i / dug-^y ^jjy II -P(u)
u.

xS^p.s.Q(u) -£8(u)P(u)

(3D
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From Eqs. (29) and (31) we can conclude that the R.I. (N.R.) and R.I. (W.R.)

become equal each other and our corrections to the R.I. (N.R.) and R.I. (W.R.)

vanish when the following equation holds:

£P.s.Q(u) - £s(u)p(u) =°- (32)

Moreover, the R.I. (N.R.) overestimates (underestimates) and the R.I. (W.R.)

underestimates (overestimates) when IL Q(u) - H (u)p(u) > (<£)0. When
]p•s • s

we neglect the interference effect between the resonance and potential

scattering, Eq. (32) becomes as follows:

ai-^Ji+^£t(u)FlM_U.
"p.s. " [l -P(u)l

Here, ,|q, and I are the radiative, neutron, and total widths of the resonance
line.

The physical meaning of Eq. (32) or (33) can be understood as follows:

The contribution to the R.I. from neutrons incident on the lump from the

moderator at resonance energies is greater in the W.R.A. than in the N.R.A.

because of the multiple scattering present in the former. In the N.R.A.

there is, however, an additional contribution from neutrons which enter the

resonance band due to last collisions in the lump. When Eq. (32) or (33)

holds, these contributions just cancel and the N.R.A. and W.R.A. become equal.
3

Spinney discussed the validity of the N.R.A. and W.R.A. in homogeneous

mixtures of U and H and derived a relation corresponding to Eq. (32).

(33)
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Second-Order Approximation

In this section we shall consider the effect of the deviation of the

Placzek function 0 (u) from its asymptotic form as the second-order approxima-
m

tion. From Eq. (l8) we have for u y u*

u

X(u') = X(u) exp | /du"Q(u")
U'

[l -P(u)J
P(u)exp

u

U'

u u1

1 / I ^t(u,)j /du"Q(u")| +T— —P(ul)
[l -P(u')]

-| /du"P(u")Ls(u")exp -| /du'-^u"')
u' u

(34)

This expression would be accurate if the asymptotic Placzek function were

used. Substituting of X(u*) given by Eq. (34) into the fifth term on the

right hand side of Eq. (15 )> we have, after some rearrangements, the following

integral equation:

f{ -«_(u)] X(u) =U-«(u)l tU P(u)
L 1 J L X J [l -P(u)J

u u

+ / du' rr P(u') - / du'P (u - u')Z, (u')P(u')
hl s[l -P(u')

u u' u' _

j I du'H^u'Mu') / du"Pffl(u -u")Q(u*')exp \j / du"'Q(u"')
o o L u"

(35)
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u

du'Q(u,)x(u'),

where we have used the following definition:

u u

^(u) = / du'Pju -u')Q(u')exp 1 du"a(u") (36)

u'

£(u)
As P(u) =0 and Q(u) =p&r \ for the infinite system, £, (u) just coincides

with the quantity defined by Weinberg and Wigner for the homogeneous system.

Equation (36) gives the extension to the lump system of £,(u).

The integral equation (35) can be solved by differentiation and the

(2)
second-order solution X (u) becomes

(2) ^t(u)X(2)(u) =~ rP(u)
[l -P(u)l

(37)

u u

o u'

u

rrwru)- / d^(u,) a -iM
u

x exp du"
Q(u")

u'



where

0 (u) =

R.I.
(2)

N

19

u u

du'P (u - u')
m

£ (u')P(u') +k(u') / duM2> (u")P(u'0
L—S

1

N

u

u„

dull (u)P(u)

u.

u

x exp^ - / du,,,Q(u"»)

u»

The second term of X^ '(u) is obtained from the second term of X^' (u) given

by Eq. (l8) by substitution of £ - |,(u) for £ and is very similar to the

case of the homogeneous system. The third term originates from the third

term on the right hand side of Eq. (15)• This term gives rise to the flux

oscillation due to variations in the first collision density of incident

neutrons. In a way similar to that for the first-order solution, we shall

(2)
show in the appendix A that Xv (u) gives the correct asymptotic neutron flux

in the absence of absorption. The resonance integral of the second order

approximation becomes

u

u"

u

(38)

(39)

du
El - p(u)] £a(u) P . m, ,,y , ,v P. q(u")p- ffl)] n^u J du'P(u.)\(u')«p. -y du ^_\pn^

u. u'



1 P, [l-P(u)j \^
NJ ^ [I -«i(u)J 5^

20

u u

du (u).^du,3(u.)rT4^
u

x exp<) - / du" rt Q^"L„m >J QU K- «i^"3 j J
u'

III. RATIONAL APPROXIMATION AND DISCUSSION

We have derived the new formula of the resonance integral for the lump

system by making use of the flat flux assumption inside the lump. At first

we shall discuss the validity of our fundamental assumption.

As already pointed out by Spinrad, Chemick, and Corngold, the flat

flux assumption is clearly valid wheni £+(u) -^^ 1, i.e., for a small lump

or at the wing of the resonance region. On the other hand, in the case

£_ >> X0 neutrons are absorbed by their first collisions with absorbing
el S

nuclei and resonance neutrons slowed down by elastic collisions with absorbing

nuclei are absorbed in their original spatial form. Therefore our assumption

is also valid in this case. When^X, (u) >> 1 and 1L ^ H , the neutron
t -^ a s

flux at the center of the lump may be reduced. However, Spinrad, Chemick,

and Corngold showed that the attenuation length of the surface absorption

averaged over the resonance region is of the order of a potential scattering

mean free path for the extreme case of a semi-infinite absorber. Therefore,

we conclude that the flat flux assumption is fairly good for not very

large J.
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2
Dresner has proposed a new resonance integral formula in the W.R.A.

which takes into account the spatial variation of the flux inside the lump.

He has shown that for lumps for which H.J. > > 1 at the line center and
t

A J_ £ 1, his formula underestimates the resonance integral, but not by

more than 10.6$. Finally, he. has compared his formula with Eq. (22) for the

Breit-Wigner line shape in small lumps in which potential scattering may be

neglected. Equation (22) is always larger, except for p /\ =1, when the

two are equal. The relative difference is 3.3$ at f /| =0.75, 8.6$ at f/P
7 7

= 0.50, and 19.7$ at p /[ =0.25. Thus the flat flux approximation appears

valid even for situations in which there is considerable multiple scattering

of neutrons in the lump. However, it is true that the flat flux approximation

overestimates the resonance integral.

We shall conclude this section comparing the resonance integral calculated

by our first order formula given by Eq. (26) or (29) with that of the W.R.A.

and N.R.A. using the rational approximation for the escape probability

12 5
P(u). ' ' In the rational approximation P(u) is

P(U) = i . (40)
l+i£t(u)

Upon substitution of this expression into Eq. (26), we obtain

*L. Dresner, private communication.



R.I

u

(i) _i r , ^a(u)
" N

du

"l
[l^^t(u)j

+| t I du
N p.s.

> i* (u)
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[i+iiLK
exp

u.

11 > ^>
+Nl / du

u

du' /

1 +i£ (u«)
av '

u.
Li+i£t(u')

£.(«•)

u.

= / du' =

[l ♦iZt<«>] J [x+izM

x exp

{, ll+ilt(u")

(41)

For the square cross section, the resonance integral can be easily

calculated and it gives almost all of the important features of our formula.

We assume the following cross sections:

r.

""a o r

= 0

L
r.s.

= Nor
n

o p

p.s. p.s.

A

"O 2
for E_--<E^E + £ >

otherwise;

for E0 -f*B*Eo +f,

otherwise,
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where lx

of the total resonance cross section. Then the resonance integral becomes

is the resonance scattering cross section and <T is the height

R.I. = <T (b - 1)
p.s.

+ [ 1 - b
'n

where

- log

i +Sjtcb-i)
u' o

p.s. p

b =

X =

- + - >

p.s.

p <r7 +_£^ (b ,
P °o

• 1)

1 +-R^b
°o

(te)

(VO

(*3)

(44)

We can rewrite Eq. (42) in another form in the narrow resonance limit, i.e.,

E
«£<<- €j

R.I. = <T b
p.s

• [l-

1 -b^

log

1+iA.
2 E

o

1-i^-
2 E -I

o

P*s

°"o
- b

p.s. p

i +i±.i,
°~o

2 X
lQg<

i 1 A
1 + 2F̂o

2 E

M,
o J

/l - i £-\
o

v 2 E /
o

(45)

(V*)-



or

R.I. = cr
p.s.

1 +

°0

A_
E
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}J . o . ;

- e i
1

>- o- t2 £
1 +

p.s.
b

o|

°o .

As easily verified, the first term on the right hand side of Eq. (42) is

the resonance integral of the W.R.A. and the second term represents the

correction term to it. Similarly, the first term on the right hand side of

Eq. (45) is nothing but the resonance integral of the N.R.A. and the correction

1 A
term is of the order of - — . Dresner's formula for the wide resonance

s o

gives

R.I.(D) = cT (b - 1) r

i-£)£+£/£ +̂ G>-i>
(46)

x log

It is very important to notice the fact that the resonance integral we

proposed can be written in either of the following two forms:

R.I. = R.I.(N.R.) i.f. > °y p.s,
(47)
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or

R.I. = R.I.(W.R.) l+(l--^bj.G|-^, VVs.'^'-Vj ' (k8)

where F and G are the positive functions ofJl, |ueind the Resonance

parameters. Therefore we can conclude that the N.R. formula overestimates

(underestimates) and the W.R. formula underestimates (overestimates) when

1 - — b >(<)0 irrespective of the resonance width. Moreover, both of

R.I.(N.R.) and R.I.(W.R.) coincide with our R.I. irrespective of the width

when

1 -•=? b = 0. (49)

Equation (49) is the specialization of Eq. (32) or (33) to the rational ap

proximation of P(u). As we shall show in the following, the relations given

by Eqs. (47), (48), and (49) are valid not only for the square cross section

but also for more general resonance cross sections, for example, for the

Breit-Wigner one level formula taking into account of the Doppler broadening.

We shall assume the following cross sections.

r
Za(u) =NO-o^V-(u), (50)

^r.B.w-^r*10' (51)

where "V(u) represents the energy dependence of the resonance cross sections.

For this cross section we obtain
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u

R.I.(N.R.) =(T b -21 / du
p.s. r

u.

u„

Jfcl

•^ b+V(u)_
o

R.I. (W.R.) = cT (b - 1) /du
p.s,

V(u)

S?*l(b-l)£. +<y(u)|
o 7

u.

(52)

(53)

R.I.(N.R.) and R.I.(W.R.) become equal qach other when Eq. (49) holds.

Moreover, we can show from Eq. (29) using the rational approximation that our

resonance integral formula becomes

R.I. =R.I.(N.R.) -(l -b—

X 0* _2 1
p.s. p £

exp

u

du
i-cr

u

1
du'W

u'

u

M du'
f(u ')

r(T

f-5r- b + V(u •)_

S^(b _d +£z^H)

-E^ b +Y(u")

(54)

The R.I. given by Eq. (54) has just a similar form as that of Eq. (47). We

can also rewrite Eq. (54) in a form similar to Eq. (48).

When we take into account of the interference effect between the resonance

and potential scatterings , Eq. (49) is replaced by

P

i-f* i - h tb - i)g
b

= 0, (55)
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where gT is the statistical weight of the compound state. It is very

interesting to notice the fact that Eq. (49) or (55) does not depend on the

width of the resonance line.

The resonance integrals of a IT metallic lump (JL ~ 2. cm) for the square

cross section, as a function of the resonance width A and V/P are given in

Figs. 1 and 2. Parameters we have used are that of 6.6 ev resonance line of

238
U (Ref. 11) and the height o" is determined so as to give the same area as

the actual resonance line.

IV. CONCLUSIONS

We have proposed an improved resonance integral formula which contains

the N.R. and W.R. formulas as the extreme cases. However, there remain many

things still to be done, e.g., the estimation of the second order correction,

and the improvement of the flat flux approximation.
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APPENDIX A

,(2)We shall prove X y(u) given by Eq. (37) represents the correct

asymptotic form in the absence of absorption, i.e., H = 0, £ (u) =H
a t p.s.

In this case P(u) becomes constant and we denote it by P . From Eqs. (36)

and (38), £ (u) and ;(u) become

u

Vu) =Po / du'pm(u -^')exp ^(u-u<)

0(U)= *p..A<u>'

Substituting Eqs. (A.l) and (A.2) into Eq. (37) we have

P_£
u

x(2)^=irbjVs.+tr^i% /«-«"»
u

-Vs. .,. FoS.S. f *l(u'>

x exp !- P / du" 7- „ / „v

u'

u

u

-Po /*»" p-
u»

(A.l)

(A.2)

-H^u")} (A.3)

We rewrite the last term on the right hand side of Eq. (A.3) as follows:



P Z
o p.s.

u

du'
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1" ?* -\<»')j

by integration we obtain

u u

u

exp - P_ / du" [I -\(u")^
u'

P /.,
o p.s.

du' exp - P / du" + r, f'/V £ (A.4)i« - ei^-y j p - «i^j
U'

u

).S.

L« " «ii»»J
{•exp - P / du1

From Eqs. (A.3) and (A.4) we have

(2) p s ^p s
x (u)' F^q' r* - ii;">]{"*

{*- T^TTJ

u

du'

{€ - MU,J!

As the second term of the right hand side of Eq. (A.5) is of the order of

P n (2), it can be neglected and 5 (u) = 1 as we expected.exp - t— u

(A.5)



32

REFERENCES

1. E. P. Wigner, E. Creutz, H. Jupnik, and T. Snyder, J. Appl. Phys. 26,
260 (1955).

2. L. Dresner, doctoral dissertation, Princeton University, 1958. See
also ORNL-2659, Resonance Absorption of Neutrons in Nuclear Reactions,
by L. Dresner (1958).

3. K. T. Spinney, Proceedings of the Brookhaven Conference on Resonance
Absorption of Neutrons in Nuclear Reactions, BNL-433 (C2TTJ (I956).
Also J. Nuc. Energy 6, 53 (1957).

4. N. Corngold, Proceedings of the Brookhaven Conference on Resonance
Absorption of Neutrons in Nuclear Reactions, BNL-435 (C24) (1956).

5. B. I. Spinrad, J. Chemick, and N. Corngold, "Resonance Capture in
Uranium and Thorium Lumps, " Proceedings of the International Conference
on the Peaceful Uses of Atomic Energy, Geneva, 1958.

6. A. M. Weinberg and E. P. Wigner, Proceedings of the Brookhaven Conference
on Resonance Absorption of Neutrons in Nuclear Reactions, BNL-433 (C24)
XT956). See also,Physical Theory of Neutron Chain Reactors, University
of Chicago Press, Chicago, Illinois (1958).

7. G. Placzek, Phys. Rev. 69, 423 (1946).

8. N. Corngold, Proc. Phys. Soc. LXX II-A, 793 (1957).

9. K. M. Case, G. Placzek, F. deHoffmann, Introduction to the Theory of
Neutron Diffusion, U. S. Government Printing Office, Washington, D.C.
(1953).

10. R. E. Marshak, Rev. Mod. Phys. 19, 185 (1947).

11. D. J. Hughes and R. B. Schwartz, Neutron Cross Section, BNL-325 (1958).



33

ORNL-2705
Physics and Mathematics

TID-4500 (14th ed. Rev.)

INTERNAL DISTRIBUTIONr

1. Biology Library 52. R. B. Murray
2. Health Physics Library 53- R. W. Peelle

3-5. Central Research Library 54. A, B. Reynolds
6. Reactor Experimental 55- E. G. Silver

Engineering Library 56. D. K. Trubey

7-50- Laboratory Records 57. T. A. Welton

31. Laboratory Records, ORNL R.C. 58. C. D. Zerby
32. A, M. Weinberg 59. W. Zobel

33. E. P. Blizard 6o. T. K. Fowler

34. W. H. Jordan 61. S. H. Hanauer

35. M. L. Nelson 62. D. Magnuson
36, J\ o Ho Snell 63- R. Becker

37. R= A. Charpie 64. R. J. Mackin

38. A, Simon 65. S. K. Penny

39- L. Dresner 66. J. T. Thomas

40. F. S. Alsmiller 67. R. L. Macklin

41. R. R. Coveyou 68. J. A. Harvey
42. J. L. Fowler 69. H. Pomerance

43. A. Do Callihan 70. D. K. Holmes

44. G. deSaussure 71. P. Kasten

45. 'E. Guth 72-107. K. Hasegawa
46. Ro Gwin 108. M. J. Skinner

47. F. L. Keller 109. P. Reyling
48. W. E. Kinney 110. C. P. Keim

49. M. E. LaVerne 111. G. C. Williams

50, F. C Maienschein 112. R. R. Dickison

51. J. H. Marable

113-115.

116-117.
118.

119-124.

125.
126.

127.
128.

129.

130.

131o

132-745.

746.

EXTERNAL DISTRIBUTION

Princeton University (Attn: E. P. Wigner)
General Atomic (Attn: L. W. Nordheim and J. Sampson)
General Electric (Attn: H. Hurwitz, Jr.)
Brookhaven National Laboratory (Attn: S. Oleksa, N. Corngold,
J. Chemick, D. J. Hughes, H. Kouts, and R. Sher)
Argonne National Laboratory (Attn: B. I. Spinrad)
Nuclear Development Corporation of America (Attn: H. Goldstein)
Jet Propulsion Laboratory (Attn: R. V. Meghreblian)
New York University (Attn: R. D. Richtmyer)
Babcox and Wilcox (Attn: M. C. Edlund)
Combustion Engineering, Inc. (Attn: S. Visner)
Atomics International (Attn: E. R. Cohen)
Given distribution in TID-4500 (l4th ed. Rev.) from Physics and
Mathematics Category (75 copies - OTS)
Division of Research and Development, AEC, 0R0


	image0001
	image0002
	image0003

