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PREFACE

This preface refers to some purely technical aspects of the manuscript

concerning the enumeration of equations, etc. Equations, figures, tables,

and appendices are denoted with two numbers: the first gives the order of

appearance in their respective chapters, and the second gives their chapter

number. Thus the fifth equation of Chapter 6 is denoted by "Eq. (5=6)."

The only exception to this rule is the enumeration of equations, etc. in

appendices. For example, the fifth equation of Appendix (2-11) is denoted

by "Eq. (5~Ho2)," References appear in the text as parentheses including

the first author's initial and the year of publication. In cases where

several references would be denoted by the same symbol a small Roman letter

has been appended. The collected references appear following the main text.

Occasionally complete references appear in parenthetic insertions in the

text.
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RESONANCE ABSORPTION OF NEUTRONS IN NUCLEAR REACTORS

Lawrence Dresner

ABSTRACT

The problem of resonance absorption of neutrons in nuclear reactors

is considered. Formulae for the effective resonance integral of single

resonances are given in the "narrow resonance" approximation in homogeneous

media, and in the "narrow resonance" and "infinite mass absorber" approxima

tion in heterogeneous media. It is shown that the Doppler effect in

homogeneous media can be expressed through a certain function of two variables,

J(|,P). The properties of this function are studied in detail, and a tabula

tion given. The effect of interference between resonance and potential

scattering on the effective resonance integral is studied. In heterogeneous

media in the "narrow resonance" case it is shown that the Doppler effect can

again be expressed through the same function, J(£,P), as in the homogeneous

case if a rational approximation for the average escape probabilities due to

Wigner is introduced. Furthermore, it is shown that then a formal identity

exists between the homogeneous and heterogeneous cases for "narrow" resonances.

The error caused by Wigner's rational approximation is studied in detail, and

in the case of no Doppler broadening and no interference scattering an improved

formula is suggested. In heterogeneous media in the "infinite mass absorber"

case an approximate expression for the albedo of an absorber lump is suggested

on the basis of heuristic arguments. Precise calculations of the albedo based

on a variational method of solving the monoenergetic transport equation are



compared with this approximation, and show it to be quite accurate. Use of the

approximate albedo again permits expression of the Doppler effect through the

function j(£,0). The effect of interference between potential and resonance

scattering is also studied in the "infinite mass absorber" approximation.

These results are applicable to calculating the absorption in low energy

resolved resonances for which the widths and energy are known. In the region

beyond the experimental limit of resolution statistical considerations are

employed. The formulae for single resonances are averaged over the probability

distributions of the partial widths. The theory is then applied to the calcula

tion of the effective resonance integrals of uranium and thorium rods, and good

agreement is obtained-for uranium and fair agreement for thorium.

At high energies resonance absorption cross sections fall sufficiently

low to permit neglect of flux depression effects, and attention is focussed on

average reaction cross sections. A study of the effect of fluctuations in

the partial widths on average reaction cross sections is given. Some general

theorems are derived independent of the probability distributions of the

widths. If the widths are distributed in member distributions of the chi-

squared family, it is shown that the multiple integrals over these distributions

which express the averages x\fyJ't/P'^> can be reduced to a single infinite

integral. This integral is evaluated in the eighteen simplest cases of

interest. A Monte Carlo program for the electronic computer ORACLE for

evaluating these averages is described. It is shown that enough experimental

data on neutron reactions in U2™ exists below 500 kev to overdet^aiine the

s-, p-, a-, and f-wave strength functions. Analysis of the data including the

important effects of fluctuations in the widths yields consistent values for

VI



the strength functions, in support of the theory. Finally, the statistical

formalism of Hauser ana Feshbach is transformed from the channel spin

representation to another which is more convenient in the presence of spin-

orbit coupling. The effect of small amounts of spin-orbit coupling in the

analysis of the IT reaction data is founa to be unimportant. Finally, it

is proven that the total, the conrpouna nucleus formation, ana uMer certain

circumstances, the raaiative capture cross sections are inaependent in first

oraer of spin-orbit coupling in the neutron-nucleus interaction.

trii



CHAPTER 1. INTRODUCTION; HISTORICAL SURVEY OF PREVIOUS WORK;
SCOPE OF PRESENT WORK

1. In chain reactions in which thermal neutrons are employea as the

chain carriers it is necessary to slow aown the energetic neutrons from

fission, a process accomplishea by allowing elastic collisions of the

fast neutrons with the nuclei of some suitable material, called a

moderator. During this process of moderation the neutrons are subject to

removal from the chain by nuclear reaction with any material present in

the assembly (excepting those reactions which yield neutrons as their

products, e.g., inelastic scattering). Because, historically, the (n, 7)

reaction in the sharp nuclear resonance lines of XT was the first such

parasitic reaction considered, the entire process has been named resonance

absorption, even when the responsible cross section does not have the

typical sharp line appearance.

2. The importance of the resonance absorption problem was appreciated

even in the short time which intervened between the discovery of fission and

the successful establishment of a natural uranium fueled, self-sustaining

chain reaction. Turner (T40) writing in January, 19^0 concluded after

examination of an experiment of Anderson, Fermi, and SzLlard (A39), that,

except for the then unknown extent of resonance absorption, the chances

for establishing such a self-sustaining chain reaction seemed good. Even

before any reliable data was available on the resonance absorption process,

it was recognized that disposing the uranium in the form of lumps, rather

than mixing it homogeneously with the moderator, would substantially de

crease the amount of resonance absorption. Fermi and SzHard are creditea



with this observation in regard to research carried out in this country;

but the suggestion of lumping the uranium was also made by Harteck in

Germany, and by Halban, Kowarski, and Joliot in France (C55a)» The USSR

also claims independent discovery (F55)«

3« The lumping of the uranium, however, is not without aisadvantages.

In aaaition to decreasing the parasitic capture of resonance neutrons in

the uranium, it also decreases the fission-producing capture of thermal

neutrons in the uranium. Thus, the early problem of reactor design

was the choice of an optimum lattice of uranium lumps and moderating

material in which the multiplication constant was a maximum. The first

experimental work done on the resonance absorption of uranium in bulk was

carried out by activation techniques by E. C. Creutz, R. R, Wilson, and

collaborators, at the Princeton University cyclotron in 19^1 (sU6)„ This

work was finally reported in the open literature in the third and fourth of

a series of four articles published in the Journal of Applied Physics (C55b,c)

The first of these four articles (C55a) is a review of the work which

preceded the Princeton work; since such a comprehensive review already

exists we shall merely allude to it and not mention further any of the

prior works it cites. The second of these four articles (W55) is a

pioneering theoretical paper of Wigner et al., in which nearly all of the

basic physical phenomena which play important roles in the resonance ab

sorption process are mentioned, and, in most cases, their effects studied.

The rationale in Wigner's work, as in all subsequent theoretical work, was

to relate the absorption in bulk to the nuclear properties of the

individual absorbing nuclei. The measurement of the uranium resonance



parameters was first accomplished by Anderson (A50), and it was his data

that Wigner ueedo

4. The necessity of obtaining experimental data on heterogeneous

resonance absorption was also apparent in other countries in the early

19l+0's. Creutz et al. (C55a) mention a considerable number of British

and French workers, whose reports, at the time of the writing of C55a,

were still classified. Their works' bear dates from 1942-19M*-. The

earliest Russian experimental work on heterogeneous resonance absorption

known to the author is a measurement of Popov and Shapiro (P55) done

by activation techniques in the exponential assembly presumably used

in the design of the first Soviet uranium graphite reactor. The date of

this research is not known and the issue is further complicated by the

fact that it is not known when the first Soviet reactor went critical,

although it is thought by some to be between I9W4- and I9V7 (R56). After

it went critical further measurements of the activation type, also of

uncertain date, were made by Egiazarov et al. (E55)° Further work on DJ3

exponential assemblies was done by Burgov (B55)° Burgov also mentions

measurements by Rudek on the uranium-D20 reactor of the Soviet Academy of

Sciences, which went critical in April 19^9 (R56). The resonance

absorption in both these works was studied indirectly through a knowledge

of all the other factors in the four factor formula. According to Burgov,

who compared his results with earlier Soviet experiments, the method is

unsatisfactory. Beginning in 19^3 Soviet theoretical research on the

resonance absorption problem was actively pursued (G55)« The Soviet

work, while instructive, suffers the defect of ignoring moderation by



the uranium nuclei. This particular issue is complicated and will be dealt

with at greater length in Chapters 6, 7> and 9.

5. Interest in the resonance absorption problems in the United States

was not abated by the very successful beginning made by the Princeton group.

In l$kk activation measurements at the Indiana University cyclotron were

made on homogeneous mixtures of uranium and various moderators by

A. C. G. Mitchell et al. (MM). Nearly simultaneously with this experimental

work, Dancoff and Ginsburg (Dkk) completed a very detailed theoretical study.

Experimental work similar to Mitchell's on homogeneous systems was reported

for uranium by Hughes and Goldstein (Ek6) in 19^6, and for thorium by Hughes

and Eggler (H45) in 19^5• In 19^9 Muehlhause and Untermyer (M^9) obtained

further experimental data on lumped uranium by the pile oscillator technique.

In 1951 Risser et al. (R5l) performed activation experiments on uranium rods

in the X-10 graphite reactor; in late 1950 Untermyer and Eggler (E50)

reported danger coefficient studies on thorium rods.

6. At the time of the International Conference at Geneva three experi

mental, one theoretical, and one survey paper on resonance absorption were

presented. A Russian experimental paper (S55) by Spivak et al. mentioned

only results on the resonance absorption of very thin foils, which, while

interesting, is not germane to the study of absorption by uranium in bulk.

Similar results of research in the United States aire given in the survey

paper of Macklin and Pomerance (M55). This paper also mentions much of

United States research on bulk absorption already cited in previous

paragraphs. An experimental paper (C55d) was presented by V. S. Crocker of



the United Kingdom who used self-indication techniques in a collimated neutron

beam. A third experimental paper (E55a) was presented by Eriksen et al. of

JENER describing interesting work done on lumped uranium by the pile

oscillator technique. A theoretical paper, which suffered considerably

from the insufficiency of the available nuclear data^ was presented by

van der Held (H55) of the Netherlands.

7. Since the Geneva conference several very excellent experiments on

resonance absorption have been reported. One, by Hellstrand in Sweden (H57),

was done by activation techniques in the Swedish heavy water reactor. Hell-

strand considered not only rods of uranium and uranium oxide, but also a

variety of more complex fuel assemblies consisting of hollow tubes and

bundles of cylindrical pins. These more complex shapes were studied in

response to the questions raised by the increasing sophistication evident in

fuel element design. Rods of uranium and thorium were studied by Davis (D57)

in the Hanford Test Pile by danger coefficient techniques. A similar reactivity

change technique was used by Dayton and Pettus (D57a) in the Pennsylvania

State swimming pool with thorium and thorium oxide rods and plates. A

technique of the activation type, but somewhat more complicated than the

usual Cd-covered rod plus monitor foil, has been employed by Niemuth at

Hanford (N56).

8. Excellent measurements, basically of the activation type, have

been made on slightly enriched uranium rods of two sizes in a water

moderated critical assembly by Klein et al. (K56) at Bettis; and by

Sher (S57) in several exponential assemblies at Brookhaven. These mea

surements are complicated somewhat by the fact, originally noted by



Dancoff (D^a), that the rods are close enough to partially shield one

another from the resonance flux in the moderator. Sher has tried to turn

this fact to advantage in the following manner: A functional dependence

of the resonance absorption on the rod size suggested by the theory of

Wigner is assumed, with three disposable constants. With the data for the

two available rod sizes, for thin foils, and for the dependence of resonance

absorption on the lattice spacing through Dancoff«s effect, the disposable

constants can be determined. Results obtained in this manner have been

reported by Sher for both uranium and thorium rods (S57).

9. Another avenue of approach to the problem is through the theoretical

analysis of lattice experiments both of the critical and exponential type.

Such an approach was taken in the USSR by Burgov (B55) as we have already

noted. Work of this sort was undertaken in 1951 in the United Kingdom and

culminated in a series of papers by Davey (D55) and Mummery (M56). A

similar, somewhat later, analysis, including data from many published

United States, British, and Russian exponential experiments, was reported

recently by Kouts and Sher (K56a).

10. A considerable burgeoning of the theory of resonance absorption

has occurred since Geneva, largely along three rather distinct lines.

Firstly, there has been a renewal of effort on the problem of homogeneous

resonance absorption, largely because it is felt to be tractable. Papers

have been published by Spinney (S56), Weinberg and Wigner (W56), and

Comgold (C57). Secondly, there has been an attempt to understand resonance

capture in realistic heterogeneous situations by numerical methods,

especially the Monte Carlo method, which require the use of



electronic computers. Papers along this line have been written by

Richtmyer (R56a), Sampson (S56a), St. John (J56), Chernick (C56), and

Stein (S5613). The last approach, to which the present author adheres is

based on the hope of solving the combined slowing-down transport problem of

resonance absorption approximately in analytic terms. That such a hope is

reasonable is indicated by Wigner"s original analysis (W55)> where several

basic approximations are exhibited which considerably reduce the complexity

of the problem. Some preliminary efforts following this approach have

already been published by the author and by others (D55a, D56, D56a, K58),

and it is felt that the present work successfully continues these be

ginnings.

11. The history of resonance absorption in bulk presented in the

previous paragraphs shows the problem to have originated largely in the

early attempt to achieve maximum possible neutron multiplication. As enriched

uranium became available for reactor purposes and reactor design became more

sophisticated, emphasis in the resonance absorption problem broadened.

With interest in reactors of intermediate or fast spectKmicame interest in

the process of resonance absorption in the energy range from about 10 kev

to fission energies. The significant differences of this high energy problem

from the classical resonance absorption problem are four, viz.:

(i) The resonances in the high energy problem are unresolved, so

that statistical models must be employed in relating the absorption

to the nuclear properties. This problem exists partially in the

classical problem because of the necessity of estimating the

effect of the unresolved resonances on the absorption.
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(ii) Higher partial waves (i.e., p-, d-, f-, etc. waves) contribute

to the absorption effects,

(iii) Other nuclear reactions, notably inelastic scattering and

sometimes fission, appear at high energies. These reactions

are important to the absorption process both because they

compete with it directly, and because their cross sections

are related.

(iv) Often, but not always, the problems introduced by the distribution

of uranium in bulk simplify considerably.

12. Points (i)-(iv) above indicate that the high energy resonance

absorption problem is largely a problem of pure nuclear physics, whereas

the classical problem is largely, but not entirely, a problem of neutron

transport theory. Until very recently our information on neutron reactions

was not really adequate for a treatment of the resonance absorption problem

including points (i), (ii), and (iii) above. A summary sketch of our

knowledge, for example, at the close of 1950 can be obtained from the

"Final Report of the Fast Neutron Data Project" (F5l). In the past few

years our knowledge has increased enormously, and we are presently in an

excellent position to successfully attack the problem of high energy

neutron cross sections.

13. From an experimental point of view the most impressive achievement

of the last five years is the development of higher resolution instrumenta

tion, largely based on the time-of-flight technique, for investigating

neutron resonance cross sections in the 0-1 kev energy range. A wealth

of such resonance data exists and nearly all of it has been carefully



studied and tabulated in BNL-325 and BNL-325 Sup. 1 (H55a, H57a). Several

other reviews exist, among them two papers by Harvey et al. (H56, H57a, E56).

Tables of resonance parameters are available in these references. In

addition these references, especially BNL-325 and BNL-325 Sup. 1, contain

nearly all available information concerning high energy neutron croais

sections. It is not possible nor is it purposeful to review this literature;

we shall cite it as needed, and content ourselves at present with noting

the existence of considerable data on neutron total, radiative capture,

inelastic scattering, and fission cross sections.

lU. In regard to progress in theory, the last few years have seen the

emergence of four important ideas concerning nuclear structure, viz.;

(i) From a study of neutron total cross sections, Feshbach, Porter,

and Weisskopf (F5*0 were led to introduce the notion of a complex

potential to describe the neutron-interaction-with the nucleus.

Their discovery precipitated an avalanche of analysis of data in

terms of complex potentials, with some small but still

significant improvement over the original work,

(ii) Wigner, Lane, and Thomas (L55) found a satisfactory interpreta™

tation of the complex potential model on the basis of the

dispersion theory of nuclear reactions,

(iii) Following' intuitive arguments Porter and Thomas (P56) discovered

excellent statistical distributions for the neutron and radiative

widths of nuclear resonances,

(iv) Hill and Wheeler (H53), and independently Bohr and Mottelson (B53)>

call attention to the non-spherical shape of many nuclei, and

to the consequences of this fact.
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15o These developments make possible the approach taken in this work

to the resonance absorption problem at high energies. This approach is a

phenomenological one; in it the dispersion theory of nuclear reactions

suitably including points (i), (ii), and (iii) abovej is used to obtain

forms for the cross sections for various reactions involving only a limited

number of constants. These constants are then found by comparison with

experiment, and the resulting expressions used to predict unmeasured

quantities wherever possible. Such a phenomenological approach has been

tried in the past to compute the capture-to-fission ratio in XT in the

epithermal range by Wigner (W55a) and by Oleksa (056). Hurwitz and Greebler

(G57) have attempted the phenomenological calculation of fission product

capture cross sections in the epithermal range. All three of these calcula

tions were largely based on experimentally known resonance parameters for

several resonances. Recently, Lane and Lynn (L57) and Cameron (C57a) have

done phenominological calculations of radiative capture cross sections at

high energies.

16. Having completed this brief history of contributions to the problem

of resonance absorption, we shall close this chapter with an outline of

the scope of this work and a summary of the innovations it contains. For

this purpose it is convenient to consider the problem in three parts, viz.:

(i) Resolved resonances - low energy; (ii) Unresolved resonances, only

s-waves - intermediate energy; and (iii) High energy.

Let us consider (i) first. In problems of heterogeneous resonance

absorption results are only possible, at this writing, either by assuming

the absorber to have infinite mass, or to have absorbing lines very much
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narrower than the energy lost by a neutron in a single collision. In both

these approximations it is necessary to incorporate the Doppler effect, as

suggested originally by Wheeler (W55)« In both approximations the Doppler

effect can be described by a certain function of two variables, which has

been tabulated by the author (D56), and whose properties are studied in this

work in great detail. It has also been studied by Dancoff and Ginsburg

(Vkk) and by Roe (R54). An effect which has not been considered before, but

which is considered in this work, is the interference between potential

and resonance scattering, which gives rise to the clearly discernible

dips just preceding the high peaks of the low energy s-wave resonances in

most nuclides. Among the results of this analysis is the fact that the

effective absorption cross section of the nuclei in an absorbing lump can

be written as the product of two factors, one of which depends only on the

lump size and not on the resonance parameters, and the other of which depends

on the resonance parameters and not at all on the lump size. This very

important separation was first noted by the author (D56a) on a much more

restricted basis than is derived in this report. It implies a sort of

universal geometric dependence of the resonance integral, largely independent

of the details of the resonance structure.

18. In the intermediate case (ii) the main problem which is considered

and solved is that of averaging the formulae for the effective absorption

cross section derived in case (i) over the statistical distribution of the

reaction widths. Serious statistical consideration of the unresolved

resonances was not previously possible because of lack of precise knowledge

of the statistical distribution of the reaction widths. Finally because
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of its practical importance, the statistically averaged absorption cross

section for a thin foil was integrated with a = Fermi spectrum. The re-

suiting formula is very useful in comparing thin foil data such as reported

by Spivak (S55) or Macklin and Pomerance (M55) with the predictions made

from measured resonance parameters.

19. In the high energy range the transport aspect of the problem has

been ignored, and the main effort devoted to the reaction cross sections

themselves. In the first place* the statistical formalism of Feshbach and

Hauser (H52) [actually the neutron one-level formalism of Blatt and Biedenharn

(B52) with the statistical assumptions of Feshbach and Hauser] has been

generalized to include the effects of fluctuations in the reaction widths.

Some general theorems have been derived independent of the precise statistical

distribution of the widths. A large number of cases have been investigated

analytically under the assumption that the statistical distributions of the

widths belonged to the chi-squared family. Finally, a novel machine code has

been written for the ORACLE electronic computer, which analyzes the effect of

the fluctuations on the cross sections. Secondly, the statistical formalism

has been rewritten in another representation convenient for situations in

which spin-orbit coupling is present.

20. With the results mentioned in paragraphs 17, 18, and 19 above a

detailed comparison of theory and experiment was made for all the data on

resonance absorption in XT^ rods, and for all the available data on U2^

neutron reaction cross sections. The above summary of the content of this

work is, of course, a barest outline and omits mention of much important
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work to be founa in the text. It serves, however, to orient the reaaer

ana is so intenaea.



CHAPTER 2. SUMMARY OF NECESSARY RESULTS OF NUCLEAR THEORY

1. The purpose of this chapter is to summarize a wealth of background

material on which we shall have to draw frequently in subsequent chapters.

In discussing those points in this summary that can be found in the literature

we shall employ the utmost economy of expression; we shall, however, deal

fully with new material.

2. In their review article Blatt and Biedenharn (B52) have explicitly

related the differential and total scattering and reaction cross sections to

the elements of the scattering matrix. They describe a number of simple

situations in which explicit expressions for the scattering matrix are avail

able. Two of these situations are of interest to us here, viz.:

(i) Scattering and reaction cross sections associated with a single

s-wave resonance level of the compound nucleus.

(ii) Averaged reaction cross sections, in general, under the statistical

assumptions of Feshbach and Hauser (H52).

3. Let us consider situation (i) first. Insofar as s-wave reactions

are concerned it follows from Eqs. (5.9) and (4.5) of B52 that

tf(aa,a'B') •*xg .2Ul± .- ^ Pa's' a's'/c* (1-2)
a 2s +1 - „ ,2 fr\2(E -EQ) +(LJ

The meaning of the symbols is as follows:

o~(as,a»s') is the cross section for reaction from channel a with channel

spin s, to channel a* with channel spin s1. * is the reduced neutron wave

length (neutron wave length divided by 2jt) in channel a. J is the total

angular momentum of the compound state formed. E is the center of mass

energy of the system; Eq is the resonance energy. [^ are physical parameters

Ik
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called partial reaction widths; the ones appearing in Eq. (1-2) refer to

s-waves only. There is one such width for each distinguishable mode of decay

of the compound nucleus. I , the total width, is the sum of all the partial

reaction widths, including even in the s-wave case, all those which refer to

modes of decay of higher angular momentanithan zero. Note that Eq. (1-2)

describes spin-flip elastic scattering, i.e., a = a*; but s ^ s9.

4. For s-wave scattering the formula is somewhat more complicated.

From Eqs. (6.1), (6.2), (6.3), (6.4), (5°9), and (4.5) of B52 it follows that

(P )2^ x ^2 2J + 1 M as' ^ ,,^2 .2 to(as,as) = nfc • • —p + krcK sin £

0 2S +1 (E-Eo)2+^2

±1 f(E 'V sln *a C0S *a +̂ 5in2 *a} ^.2 2J+ 1 I v o' *a *a *a) 'as (o 0\

(E -if +(g)2s + 1

£ is the s-wave hard sphere scattering phase shift in channel a and is given

by

l„ --̂ (5-2)
'a *a

where R is the channel radius in channel a. At low energies, where ± is

large, £ <"<• 1. The trigonometric functions can be approximated by the first

2
terms in their Maclaurin series; secondly, the last term in sin £ can be neglected.

This is because it is only for E very nearly equal to E that it is larger

than the sin £ cos £ term, and under this circumstance it is almost always
*a a

negligible compared to the first term in Eq. (2-2). With these changes

Eq. (2-2) can be written
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,2

<5tos,as) = **2 .^-^J: . OS + 4jtR2
"a 28 + 1 „ Aa2(E-Eo)2+^J

+̂ r.SJ-Hi . (E 'E°} ras (,.2)
2S +1 (E-Eo)2+(0

The three terms on the right hand side of Eq. (4-2) are called resonance,

potential, and interference scattering, respectively. Differential cross

sections are unnecessary in the case of s-wave reactions since the angular

distributions are isotropic.

5. For situation (ii) we proceed as follows: The differential cross

section for reaction from channel as to channel a's' averaged over an energy

interval including many states of the compound nucleus can be written,

according to Eq. (4.5) of B52, as

oo

dq{as,a's«) =(2g +1}-1 ^2 £ <-BT(as,a's')> PT(cos9) (5-2)
an. a l=o L L

The brackets stand for an average over many resonances of the compound

nucleus. If we perform this average in Eq. (4.6) of B52 and assume, as do

Hauser and Feshbach (H52), that interference terms between levels of different

total spin, J, or channels of different orbital angular momentum, JL, sum to

zero, we obtain

<BL(as,a's')> =(-)S'"S .\ .Z Z , EL ZCij/j;sL)z(^J^»Jjs'L)
00 J+s J+s*

z X EL
J=0 i= |J-s| I'=|J-s

2

\t Sc*As'Sa« -Sas>,a's'i'| > <6"2)
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Here the Z's are the Z-coefficients mentioned in reference B52, and are

related to the Racah coefficients. The last term in Eq. (6-2) is the

averaged element of the scattering matrix connecting channel aaJl with

channel a's1^1 through compound states of total angular momentum J and total

parity n. If the scattering matrix for neutrons is given by the one-level

formula , Eq. (4.6) of B52, viz.:

Jrt
= e

i(*a£+la'if) fiU~i! 8^

E - E .t i^

then the average in Eq. (6-2) becomes for a's' ^ as

J* 2^ qOJl I -^ _2«_ /"asl'a's'i
< sasi,a'sU*| / ~DJjt \^ h

(7-2)

(8-2)

In Eq. (7-2) g ;=+/T a• The sign is uncertain. The calculation of

this average involves an integration over the resonance line shape and it is

assumed in carrying ou^ this integration that the energy dependence of the

widths can be neglected. The braces on the right hand side of Eq. (8-2)

now represent an average to be taken over the statistical distributions of the

reaction widths. As a final point it is worth noting that separation of

asi. and a's'i' given in Eq. (8-2) does not depend on the assumption of the

one-level formula but follows from the general Bohr assumption of independence

of formation and decay of the compound nucleus, and the reciprocity laws

for nuclear reactions (B52a).

The formulae (5-2) must be averaged over initial polarizations and

summed over final polarizations to obtain cross sections for unpolarized

beams-and..unpolarized detectors.;"' The result of thin procedure gives
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2*tSk2!l *3_^ X(BT(a,a')) PT(cose) (9-2)
dO. 2(21 + 1) L=Oxlj ' L

I+i I,+ i
(b (a,a«))= 21 21 <B (as,a's-)) (10-2)

8»|I- || S'=
2

and I and I' are the nuclear spins of the target and,residual nuclei,

respectively.

6. The formulae presented In-the last paragraph have all been derived

in a representation in which the neutron spin c7 the nuclear spin I, and

the orbital angular momentum are coupled as follows: First o~ and I are

coupled to form the channel spin, s. Then s and I are coupled to give the

total angular momentum, J. Such a representation is convenient for most

purposes. However, for the study of reactions in the presence of spin-orbit

coupling such a representation may prove inconvenient because s is no longer

a good quantum number. Instead, it is better to couple o~ and^£ to a sum j,

and then to couple j to I to form J.

The transformation of the scattering matrix from the <5l(s)/j

representation to the 0^(j)lJ representation can be accomplished with the

Racah coefficients as the transformation coefficients (B52b). In

particular,

i+cr i'+o-« 1 1

Sasi,a's.i. - £ Z <2s +D^J +DWi;sj) . S^a9jlI,
j=li-cr| j'= i'-cr'l

1 1

(2s' + l)2(2j« + l^d'cr'J^'js'J') (11-2)
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The W's are related to the Racah coefficients and discussed, along with the Z's,

in B52b. Substitution of Eq. (ll-2) into Eq. (9-2) and rearrangement gives

v oo J+I J+I» j+cf j'-HT /

V^))'^ EL EL JL JL </S S S -sg ,y
vL / 4J=o j=|J-i| j"=|j-i8| i=|j-cr| f'-lJ^'l \ ^ JJ n "J1'0 Jx /

I-HT

X (2j +1) E> („)~s(2s + l)z(ijij;sL)W2(ltfji;sj)
B- 1-0*1

I'-hT

X(2j»+1) 2* (-)s8(2s« +l)z(/'jf 'Jjs'LjW^I'O-'J^s'j') (12-2)
sB=|I°-C!

The reduction of the quantities in the second and third lines of

Eq. (12-2) can be accomplished as follows:

I+o~

(2j + 1) EL (-rS(2s + l)z(£j£j; sLjW^Icsrf; sj)
s=|I-o"|

I-Kf

=(2j +l)(2i +1)(2J +l)iL(-)L-J~%00 FlliO) £ (2s +l)wtfsU;jf)
s=|l-o"|

XW(lsj|;<5J)W^sjIjJ0-)

=(2j +l)(2t +1)(2J +l)iL(-)L™J^ai00f/iL0)w(jLIj;Jj)W^Lo-j;^j)

= (2j + iK^'^^ajiji^DwCJjJj^L) (13-2)
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The passage from the first line to the second is accomplished using the

definition of Z in terms of W (Bq. 23 of B52b), and the symmetry relations

for W (Eq. 14 of B52b). Using a sum rule for the products of three W's

(Eq. 17 of B52b) enables us to pass to the third line, and again using the

symmetry relations and the definition of Z in terms of W we obtain the last

line. Taking the complex conjugate of Eq. (13-2) gives an equation whose

extreme fight hand side and left hand side are identical with those of

Eq. (13-2) except that the exponents of - 1 are changed in sign. Sub

stituting Eq. (13-2) : . and its complex conjugate into Eq. (12-2) gives

00 J+I J+I' J+cr j'+o"

X(-)I,+<5'-I-<3"(2J +l)2Z(ij/j;o-L)W(jJJj;IL)Z(i«j'i'j';c5-'L)W(jj'Jj«;I'L)

(14-2)

It can easily be shown now that in the one-level case SJlt have the
ajl,a'j 'i'

form given in Eq. (7-2). Such a form is possible if we note that the g«s trans

form like wave functions, i.e.,

I+C 1

IL
8=11-0-1

S^j! = EL (2s +1)2(2J +l)2W(j.d3-i;sj)gaa6 (15-2)

and assume the same potential scattering phase shifts, £ ., in both representa

tions. Substituting Eq. (15-2) in Eq. (11-2) will result in an identity (using

Eq. 15 of B52b) only if the total width in both representations is the same.

But this is insured by the equality

£gajl=^4i <16-2)
J s
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easily demonstrable from Eq. (15-2) and the W-coefficient orthogonality

relation, Eq. (15) of B52b.

7. In this next paragraph our present knowledge about the partial

reaction widths will be summarized. It follows from the work of Wigner

and lSJs«nbiidon the dispersion theory of nuclear reactions (see for an

excellent resume of this work reference S53) that the partial reaction width

for neutrons, |> , in the channel spin representation, can be written

Ts/ =2•s^ •^ (17-2)

p
where y is called the reduced neutron width, and sg, the penetration function.

An exactly similar relation holds in the j-representation, since the y

transform exactly like the g, according to Eq. (15-2). The penetration

function depends on the orbital angular momentum, X, and the neutron bombarding

energy. It can be expressed in terms of the spherical Bessel and Neumann

functions, but it is more conveniently generated by the following recurrence

relations:

2

x sj-lBa m_ & __ ;so =x

x2(i -A )
(18-2)

where x = — for neutrons.

The penetration function measures the attenuation of the neutron waves

by the centrifugal barrier of the nucleus; the reduced width measures the

probability of appearance of neutrons in the particular channel at the

*k '%^ >-VV5^>i\
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surface of the compound nucleus. The energy and orbital angular momentum

variation of the reduced neutron width is not expected to be very rapid, nor

is the order of magnitude expected to change profoundly. The complex

potential model of Feshbach, Porter, and Weisskopf (F54) obtains a mildly

oscillatory behavior for y in x and X due to multiple reflection phenomena

in the nuclear interior. Similar behavior is predicted by the Wigner-Lane-

Thomas model (L55) and originates from essentially the same cause. More

will be said about these models in a later chapter, and further discussion

is deferred until then.

Porter and Thomas (P56) argued on inituttive grounds that the square

roots of the reduced widths of neighboring resonances, y , should be
SZ

normally distributed. Since the transformation connecting the 7 to the
J X

7 . is linear, by a theorem of De Moivre (C56a), so also should the 7.,
bJL jl

be normally distributed. This implies a chi-squared distribution of one

degree of freedom for the reduced widths themselves (C56). Statistical

analysis of a considerable amount of resonance data available to Porter

and Thomas showed this distribution to be excellent. Another conclusion

verified by Porter and Thomas is the near constancy of the radiative width,

both from resonance to resonance in the same nucleus, and in neighboring

nuclei.

8. This last paragraph will summarize our present knowledge concerning

the spacing, D, of levels of the same spin, J, and parity, n. Two recent

studies principally are important, one by Lang and LeCo.uteur (L54) and

one by Newton (N56a). Both of these atathors emphasize a spin dependence

proportional to (2J + l)" , and both predict a similar and very rapid
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decrease of D_ with excitation energy. Both formulae are semi-empirical,
Jit

using forms suggested by theory, and constants determined from experiment.

The statistical distribution of the level spacing has been discussed

by Wigner (W56a) in terms of a very elementary model. Wigner*s distribu

tion has the virtue of predicting the observed low probability of levels

being very close together. This "level repulsion" effect has also been

studied by Gurevich and Pevsner (G56 ). There is at this writing in

sufficient evidence to conclusively obtain a good statistical distribution

for the level spacing.



CHAPTER 3- SLOWING DOWN THEORY IN HOMOGENEOUS MEDIA

l* This third chapter has three purposes: (i) to introauce the few

funaamental results of slowing aown theory necessary for the aiscussion

of the resonance absorption problem, (ii) to augment the historical survey

of low energy resonance absorption in homogeneous meaia begun in Chapter 1,

ana (iii) to serve as a vehicle for introducing certain conventional

terms, e.g., flux, macroscopic cross section, resonance escape probability,

effective resonance integral, etc.

2. In this paragraph let us consider the process of moderation of

neutrons by elastic collision with nuclei of mass A; let the unit of mass

be the neutron mass. Further, let us consider only s-wave interaction

which will nearly always be appropriate for energies less than 100 kev.

This restriction has the consequence of causing the scattering to be

isotropic in the center C mass coordinate system. In this coordinate

system before collision the neutron and nucleus move toward one another

along a line parallel to the direction of motion of the incident neutron in

the laboratory. The laws of energy and momentum conservation in the center

of mass system require that the speeds of the

neutron and the nucleus, be the same after collision B

as before, and that their velocities continue to

point in opposite directions. With this fact ap

preciated the dynamics of the collision can be

explained with the help of Fig. (1-3).

In this figure OP is the direction of

incidence of a neutron of speed v on a nucleus of mass A. 0A represents

the center of mass velocity, of magnitude J . AB is the velocity of

24
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the neutron in the center of mass system after collision, its magnitude

Avis the same as before collision, viz.: . 1 . 9 is the angle of scattering

in the center of mass system and 03 is the velocity of the neutron in the

laboratory after collision. From the law of cosines it follows that

2 2

«' -v' -f 1 ^ • /^A-^ •-2A cos@ (1-3)
E ".2 \A + 1J " IA +V (A +!)2

Here.E' is the final neutron energy and E the initial neutron energy in the

laboratory. It is clear from Eq. (1-3) that E" has the limits

E- E' - (ftt) E~ ^ ^2~^

From the statistical distribution of 9 a distribution of E* can be

found. For isotropic scattering in the center of mass system

P(E') = P(cos9)
d(cose)

dE8 (1 -a)E (>5)

Thus the scattered neutrons are distributed uniformly in the interval given

by Eq. (2-3). For future reference let us express the distribution of

scattered neutrons in terms of a variable, u, called lethergy, and defined

by the relation u=in (~J ,where Eq is some reference energy.

P(u3) = P(E')
dE'

du1

u-u"

3. The scattering distribution (4-3) can be made the basis of an

integral equation to describe resonance absorption. This equation can be

solved explicitly for the case of moderation by hydrogen; the solution was

first given by Bethe (B37). The integral equation can be written as in this case
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u

2Lt(u)jjl(u) = I £s(u«)0(u')eU'"U du, +s(u) (5_5)

The symbols mean the following: 0 is the flux of neutrons as a function of

lethargy; aefinea as the product of density per unit lethargy and velocity.

Xs is the macroscopic scattering cross section at lethargy u, defined as

No''(u), where N is the atomic density of scatters and <f (u) their

microscopic scattering cross section. 2> is the reciprocal of the scat

tering mean free path. A similar definition applies to E , the macroscopic

total cross section. If the absorption is due to some heavy, non-moderating

material the macroscopic total cross section is given, by the usual rules

for composing mean free paths, as H = No"(u) + N o'(u) where N is the

absorber atomic density, and <r the microscopic absorption cross section.

The product of a macroscopic cross section and a flux per unit lethargy gives

a reaction rate per unit volume per unit lethargy. S(u) is the neutron

source strength function. The situation becomes Very mucn simpler and no

less general, if we consider a unit monoenergetic source of neutrons at

the reference energy Eq(u =0). Let us then take for S(u) the source of

once-collided neutrons, which for hydrogen is, from Eqs. (2-3) and (4-3),

S(u) = e" , Oiu^oo (6-3)

With this choice, differentiation of Eq. (5-3) leads at once to the

differential equation

d(Jl 0) £
*- +•=*& J) =0 (7-3)

du ^
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A suitable boundary condition can be obtained by setting u = 0 in Iq. (5=3)=

This procedure gives

The unique solution of Eqs. (7-3) and (8-3) is

Z+(u)0(u) -exp(- /g^au'J (9-3)

4. A measure of the extent of resonance absorption is given directly

by the slowing down density at u, q(u), defined as the number of neutrons

slowing down past lethargy u per unit volume per unit time. It is given,

in the case we are concerned with, by the expressions,

u oo oo

q(u) =|£s(u')0(u»)du« . /eU'"U" du" + / e~U° du' (10-3)

The u" integral simply represents the probability that a neutron scattered

at ue will be slowed down to a lethargy u" > u, The first term on the right

hand side of Eq. (10-3) is the slowing down density of already collided

neutrons, the second term is the slowing down density due to first collisions.

If we perform the u" integral, and substitute Eq. (9-3) for the flux, we

obtain



4<u) -

u

r

= e \

z.-jr- exp

u

u
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"a , - u'-u . ,
-=r— du"y e du' +

u

e du'

(11-3)

The integrand in Eq. (11-3) i» a perfect differential. Performing the

integral finally gives

d(u) exp (12-3)

q(u), normalized to a unit source, as it is here, is called the resonance

escape probability, p(u), at lethargy u. It directly measures the fraction

of source neutrons surviving resonance absorption to lethargy u.

5. The problem just solved above is the only one in which the slowing

down problem with absorption can be exactly solved at all lethargies.

There is another very important problem, however, which can be solved

at lethargies considerably above source lethargy (u = 0). Let us consider

slowing down from a monoenergetic source at u = 0 in a medium of nuclear

mass, A, and with a constant ratio, B, of scattering to total cross

section. If we use the symbol F(u) for the total collision density,

•"+(u)0(u), the slowing down integral equation can be written, far from

source lethargy, as
u

u'-u

F(u) = (5
u

u-6

F(u') I du*
v ' 1 - a (13-3)
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where € =Jtn (- )and is the maximum lethargy loss in a collision with a

nucleus of mass A. Let us take as an ansatz an exponential form for F(u),

viz., eXu. If we substitute in Eq. (13-3) we get the following equation

for determining X:

.. 1+X,

1 + X = B .1 " a (14-3)
l - a

The slowing down density is now given by the expression

u u»+£

f u'-u"
BF(u')du' . I _q 'du" (15-3)q(u) =

u-€

XuIf we substitute e for F(u), integrate, and simplify using Eq. (l4-3)> we

obtain

q(u) --i~JB eXu (16-3)

Some well known conclusions follow from these equations in the case

P = 1, i.e., pure scattering. It is possible to expand X in powers of

8 - 1; the first two terms of the series are

x l (6 „i) .LzJL (b- l)2+ ... (17-3)
« r

1 *2

where £ =1 - ° and 7 =1 -77 4 . | is the average lethargy change
1 - a ^-L - ayi;

per collision, and 2t-y is the average squared lethargy change per collision.

When 8 = 1,

F(u) = 1 and q(u) = |. (l8-3)
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These equations represent the well known asymptotic solution to the slowing

down problem without absorption. The scattering density and slowing down

density are both constant and in the ratio £.

6. An important application of this problem is to an approximate

solution of the slowing down problem for slowly varying absorption to

scattering ratio. The procedure is a WKB type approach developed by

Hurwitz (H5l ). Let us write the integral slowing down equations as

u

u'-u

G(u') f—-^du» (19-3)

u-e

where G(u) is the scattering density. Let us choose a solution of the

form

u

jX(u')du8
G(u) = H(u) e° (20-3)

where X(u) is given in terms of B(u) by Eq. (14-3). Let us approximate

G(u') in the integral on the right hand side by writing

H(u') =H(u) +|3 (u- -u)

and u u

2 du

u u

JX(u")du" JX(u")duf+X(u)(u'-u)+ I£ (u'-u)2
o o

e * e

u

JX(uH)duw+X(u)(u»-u)
o-e i +±£ (u. _ U)-J. (21-3)1 dX / , ,2)
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If we substitute Eq. (21-3) into Eq. (19-3) and keep only terms linear in

the first derivatives we obtain, using Eq. (20-3),

u u

[x(u)+l] (u'-u)

uV

du'+G(u).|f

u

u-£

. [x(u)+l] (u'-u)
+G<u> • i S I (u' -u)du'

1 - a

It follows from Eq. (l4-3) that

rx(u)+l](u'-u)
du' =

u-6

1 - a

u-fr

1

[X(u)+l] (u'-u)
(u' - u) du"

1 - a

(22-3)

(23-3)

Hence, Eq. (22-3) can be written, after rearrangement, and cancellation of

some terms as

'2 AN dinH d (1
dX

or

1 $k <£_ /i\ = djnH d_ (Ei
2 du ' „2 {$) du dX VB/

dlnH H/n /|d (I)
du " 2 duX I dX

mce d(iny) = din(-y) = dJn(|y|). Finally, then,

1

d I1)
2

dX wH(u) - ^r i

(2%-3)

(25-3)

(26-3)
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The solution (26-3) is unique up to a constant. An important situation

in which the constant can easily be related to the source strength and an

explicit expression for the resonance escape probability obtained is the

case of an absorption cross section which is zero for some distance from

source lethargy, then rises slowly and then falls slowly again to zero.

When 0=1, F(u) =f1'2 from Eqs. (26-3) and (17-3). If we wish to

normalize to a unit source at lag?'- lethargy, before there is any absorption,

we must multiply the value of H(u) given by Eq. (26-3) by £ ' „ After

we have passed through the region of absorption, F(u) is given by

u

)du'J X(u')c
F(u) =\ e ° (27-3)

and the slowing down density, which with the normalization chosen equals

the resonance escape probability, is given by

u

J X(u)du
q(u) =p(u) = |P(u) = e° (28L3)

7. Formula (28-3) takes a particularly simple form and one very

reminiscent of Eq. (12-3) for hydrogen if B is near 1. We can then write,

according to Eq. (17-3) Y

X = - 7-=— (correct to first order in 0 - l) (29-3)

ZaX =- rrr—+ y> (correct to second order in 0 -l) (30-3)
'"s a
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Equation (29-3) is known as Wigner's approximation, Eq. (30-3) as the

Goertzel-Greuling approximation.

8. Formula (29-3) or (30-3) can be used, for example, to calculate

the resonance absorption in a homogeneous mixture of uranium and graphite,

even though the absorption in the uranium takes place in high sharp

resonances, if the uranium atomic density, N , is low enough. For —*- is
a ^^ du

proportional to N and will be small if N is sufficiently small. On the
a a

other hand, if the uranium is present in high density, the WKB approximation

of Hurwitz is inapplicable because of the narrowness of the resonances.

However, Wigner (W55) bas indicated how this circumstance can be turned to

advantage. Let us consider an absorbing resonance whose extent in lethargy

is very much less than £, the average lethargy decrement per collision.

This restriction has two important consequences: (i) no neutron can make

more than one collision in the region of significant absorption, and (ii)

neutrons which make a collision in the region of significant absorption

made their last collisions at lethargies far from the resonance. But this

last statement implies that the rate of supply of neutrons to each

infinitesimal lethargy interval in the range of significant absorption is

independent of whether there is a resonance or not. But, at steady state,

the rate of supply of neutrons at a lethargy equals the collision density

at that lethargy. Hence

rt(u) 0(u) -i (31-3)

Here j is the collision density without the resonance, normalized to a
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unit source, 0(u) is the true flux iat1! the resonance. The total absorption

rate in the resonance is then

A- jl (u)0(u)du = ^ U du (32-3)
a' €Ht(u)

The integrals extend over the entire resonance. The escape probability

through the resonance, p, equal to 1 - A, is given by

f Vu>
P = 1 - clu (33.3)

J «*t<u>

If the integral is small compared to unity, as frequently happens, we can

write, approximately,

P = exp - --2 du ) (34-3)

9. Equation (34-3) also applies for a mixture of elements for all

of which £ is very much larger than the range of significant absorption.

In such a case Eq. (31-3) still holds but with the right hand side re

placed by j where £ is the average lethargy decrement per collision with

the mixture and is given by

I - E LC; c = 5i_ (35,3)
i i i x £(£. .)^ si'

where £. is the average lethargy decrement of element i, and £ is its

macroscopic scattering cross section.
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The collision density we seek obeys the equation

u

/u'-u

C^u') e—£-du» (36-3)

u-^

and the slowing down density related to it is

u u'+f
P n u'-u"

q(u) =E / C^u'Jdu' • I _a du" (37-3)
u-€J u

It is easy to show that setting F(u) equal to a constant, a, solves

Eq. (36-3). Inserting the constant in Eq. (37-3) gives, after integration,

q(u) = E C * a =|a (38-3)
i

Thus if q = 1, a = F(u) = « .



CHAPTER 4. HOMOGENEOUS RESONANCE INTEGRALS

1. By far the most frequently occurring problem in the calculation

of resonance absorption is that dealt with in paragraphs i&-3) and (9-3).

It is conventional in this problem to discuss not the resonance escape

probability itself, but rather a related quantity, the so-called effective

resonance integral, I. Let the macroscopic scattering cross section in the

absence of the resonance be £• , let the density of absorbing nuclei be N .
P a

Let us then define I by the equation

exp f„JL_J,p=exp j_±j __s du j (1_4)

The integral on the right hand side now only extends over the resonance.

It now follows that

1= / v °^ du (2-4)
res,

2. The resonance cross sections involved in Eq. (2-4) are given in

Eqs. (l-2) and (4-2). The total absorber cross section, summed over final

channel spins and averaged over initial channel spins, is given by (dropping

the channel index a)

T I (E -E )P

Here I is the neutron width, [ , summed over channel spins, and
•^ CCS

2J + 1
gj= 2(21 + l) ° The resonance absorption cross section, averaged over

36
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initial channel spins, is given by Eq. (1-2)

\ " ** ,gj' 7"2 ^_J^
(i -e/ ♦(g

I is the radiative width. It is assumed that radiative capture is the

only reaction possible, which is nearly always true at low bombarding

energies. If this is not so I must be replaced by [ - | . In any event

r +r =r.
In '7

It is important to note that all the equations of Chapter 1 apply to

the center of mass coordinate system. Frequently widths and resonance

energies are quoted in the laboratory system of coordinates, in which case

A + 1
they are larger by a factor —r— . X, however, must always be computed

in the center of mass coordinate system.

If we define the auxiliary quantities

r
C = kick og«

o J

n

r

<r = 4nR2
pa

E - E
o

x = ••—-

r
2

(5a-4)

(5h-4)

(5c-4)
r
2

we can write succinctly,
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r io- . <£(! +x2)-1 +(0-^g.j Ji )2 2x(l +X2)"1 +cTa (6a-4)

P

Vtfop1 +x2)_1 (6b-4)

With this notation we can wrj.te

E = N a* + T (7a-4)p a pa ^m *fa *>

and

^t =Vt +^m (7b-4)

where A^ is the macroscopic scattering cross section of the moderator.

As our final three definitions let us write

<% • r* (8-*)
a

r =gr tt ° o^ (9-4)
I p

<s~

0^^ (10-4)
o

Some of these new symbols have the following physical significance: <r is
o

the total resonance cross section at exact resonance (x = 0), o~ is the
pa

potential scattering of the absorber nuclei, and o" is the total energy

independent (potential) scattering cross section per absorbing nucleus.

3« If we substitute equations (6a- 6b-, 7a-, 8-, 9-4) in Eq. (2-4)

we can write finally,
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€ L L. (1 +x2)-i
p I o p v r

"A ,1 " T7P g'.1 ~ ** p? (H-^)
o- (1 + x ) + (0-0-7) /c2x(l + xc)"x + a-
0 vOTJ P

res. * *

dE P
Here we have used - du * -=r «= •%= dx. Because the nuclear resonances are

very narrow, i.e., because, generally, P << E, it is a very good approxima

tion to ignore the energy dependence of d", | , and E over the range of

integration and simply evaluate them at E . Moreover, the limits of

integration on x can be extended to + 00. With some minor rearrangement,

E.q. (11-4) can then be written

+00

I-^ [ wf 2 (12^>
2Eo i 1+ (07)1/2 2x + 0(1 + x2)

-00

This integral can easily be evaluated and leads to the following result

for I:

r
z. * Ll
2 °% ' E

I - ° - (13-4)

\/0(l +0-7)

If 0 <•* 1 - 7 as often happens in the low energy resonances of

uranium or thorium or other absorbers in fairly concentrated mixtures, I is

proportional to JcT . This rule is roughly verified by Mitchell's data

(M44) and by the data of Hughes and Eggler (H45). » There is,

however, a good reason why the rule ought not to be exact, as we shall

see in the next paragraph. If 0 •> * 1 - 7 as often happens when the

mixture is very dilute
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1=*«> "I 6o E2 ( <<*-+*> ) ^'^
o ^

This is the so-called "infinite dilution" resonance integral. The sum of

I over all resonances has been measured for many materials (M55, S55).

4. The results presented in the last paragraph, with the exception

of Eq. (l4-4), are not directly comparable with experiment because they

have been derived on the basis of stationary absorber nuclei. In actual

fact, the absorber nuclei are in thermal motion and this motion strongly

affects the absorption of neutrons by them. The effective cross section

for neutrons of laboratory velocity v for any resonance process involving

moving nuclei is given by

v«<Tff(v) = /|v -v| o-(| v-v|)P(v)d5V (15-4)
-» >

where P(V) is the distribution of target laboratory velocities, V.

The definition of o^ has been chosen to give the correct reaction rate.

v \ AE/ where kT is the absorber temperature in energy units, A is the

absorber nuclear mass and E is the neutron energy. Usually this ratio is

<=-<-l (for XT^ at 300°K it is 0.004 for the 6.7 ev resonances), and the

first factor in the integrand varies very little from v as V varies.

Equating v - V and v we have

cTff(v) = / cJt|v - vlMvJd^v (16-4)
J

The relative energy, E', associated with the velocity v - V in the

center of mass system is given by
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— — 2
K' -|u |v -V|

where u is the neutron reduced mass equal to A + ^
V ,» V

smallness of - we can expand E' in the powers of -

the direction of v. Then to first order

E•=|^uv -uvVz

= E - (2uE) V

(17-4)

In view of the

Choose for the z-axis

(l8a-4)

(l8b-4)

where E=^uv2 is the relative energy for stationary nuclei. If we take
Iv - V to be only a function of V ,as indicated above, we can perform the

V and V integrals, and replace the three dimensional probability distribution
x y

P(V) by a one dimensional distribution P(V ). Using Eqs. (17-4) and (l8b-4)

we can write

^•ffW = o"(E*)«P
dE! (19-4)
hiE

where P is the statistical distribution of V .

The question of what the correct distribution P for Vz is has been

discussed (L39); for most solid materials a Maxwellian distribution is

appropriate and we shall accordingly choose it. Thus

P(V M/2l^nkTy exp (20-4)
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5. If we choose for 0<E*) Eq. (4-4) and substitute Eq. (4-4) and

(20-4) into Eq. (19-4) we obtain after simplification the result

+°° f t2 o?7 * T exp [- f (x -y)2
^a eff(E) "of'Tr / T^ dy {21~k)I 2/jt J 1 + y

-oo

(E - E ) (E1 - E )
where as before x = —— and where y = —°— and

2 2

X1/2

A ts called the Doppler width of the resonance. In taking o"" and j outside

the y-integral use has again been made of the thinness of the resonance.

If we rewrite Eq. (21-4) in terms of laboratory system widths and energies

its form remains unchanged. In the expression for C, fc must still be

calculated in the center of mass system. £ remains unchanged in both

definition and numerical value but A is given by

1/2

A-(SS) (23-4)

where E is the neutron laboratory energy.

6. The second factor on the right hand side of Eq. (21-4) is called

the Doppler broadened line shape and is denoted by %£,x). It is the counter-
2 -1

part of the natural line shape, (l + x ) , in Eq. (6b-4). This section will

be devoted to a detailed analysis of its properties.

In the first place when kT-*-0, £-*-oo and
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f (x -y) •S(x - y)

Here $ is the Dirac delta function. Hence

y.(co,x) = (1 + x2)"1

(24-4)

(25*4)

Another important property of Ht,x) is that its integral over all x

is independent of £. It is easy to show that

+oo

/ rt«,x)dx =n (26-4)
-00

by first performing the x-integration and then the y-integration.

An asymptotic series valid for large values of x has been derived by

several authors (B33, M54). (M54) obtained this series by using the

Fourier integral expansion of the integrand in Eq. (21-4). Since

and

we can write

i- 2 +0° - 2

/-, 2x-l(1 + x )

-co

+00

-co

i e"H

fi}

10X Ane d<u

(27a-4)

(27b-4)
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+oo +O0 eS" +00

Kl,x). / dx. ±- / e^^e **).*/ e-l^'l^'^' (28-4)

-oo •00 •00

If we note that

+co

c dx - 2*S(X) (29-4)

-oo

we can perform the x and go' integrations in that order, and obtain

+00 dJ

fit,*) «§ / e
2 -|cO|+i&x

dO (30-4)

-oo

By completing the square in the exponent and rearranging we can obtain

/u,*) - ¥*
r

g— |.Re^exp (1 + lx)j
Erfc

(1 + lx)*
(31-4)

Finally, the complementary error function has an asymptotic expansion, viz.;

-s2 -
Erfc(s)~ S-_ !_.=_ +__^_ ._^^_ + _ (32A)£~ 1 _JL + 1°3 _ 1.3-5 +

2s2 (2s2)2 (2s2)5

In this way the authors of (M54) obtain the following asymptotic series

Us,*)'
1 + x

1 2_ 1-3x2 12 1-10x2 +5x^
(33-*)
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It is evident from Eq. (33-4) that sufficiently far in the wings of a

resonance the natural line shape is correct; the condition for this is

EL— « l. The authors of (M54) also derive a series valid for small £x
£ x
by employing the power series for the complementary error function. It will

be less useful to us in what follows than Eq. (33-4) and we will not note

it down. It follows, however, trivially from Eq. (31-4) that

HS,0) -^«/^Erfc(f) (34-4)

When ^cl, Wigner (W55) has indicated that, at least near the center

of the line, we can approximate 'by setting y = 0 in the exponential, since

2 -1
then the natural line shape (l + y ) will be narrow compared to the

exponential. This procedure gives

*2 2
=Ete*X (35-4)

Numerical tables and graphs of /(i;,x) are available from a variety of

sources (M?4, R54a, M53)•

7. The generalization of the interference scattering line shape,

2x(l + x2)"1, in the case of Doppler broadening, can be written similarly to

Eq. (21-4) as

+00

2/n J
-f (x -y)<

-oo

X(£,x.) is related to /(|,x) by the relation

2y
2

l + y

dy (36-4)
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X(l,x) =2x/(|,x) +iL .VlLll (37A)
| dx

From Eq. (37-4) it is immediately obvious that

X(oo,x) =2x(l +x2)"1 (38-4)
+00

2(£,x)dx =0 (39-4)

-00

X(£,x) ~ 2x(l +x2)"1 if |2x2» 6 (40-4)

tU>°) =0 (J,!_4)

8. Now let us consider the generalization of Eq. (ll-4) for I to the

case of Doppler broadening. Let us first consider the case 7=0, and

defer consideration of interference effects until later, y will be near

zero for (i) a purely absorbing resonance (P << p) or (ii) a dilute

mixture (<T&^ <r)„ The latter case is the most frequent in practical

situations. The correct generalization of Eq. (ll-4) is then obtained by
9 "i

replacing (l + x )" by /(£,x); it can be written as

oo

1=<rpif° I A{Xl 0** ^)

The integral on the right hand side of Eq. (42-4) will be denoted as J(£,0)

and the next few paragraphs are devoted to studying its properties.
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9> It follows either from Bq. (13-4) or from Eqs. (42-4) and (25-4)

that

J(to,W -
2

/P(l + P)
(1*3-4)

- tf;-.

1 .2
It is furthermore the case that for very small 0, in particular 0 <i^ £ £

j(£,0) is asymptotic to j(oo,0), i.e.,

J(6P)^ J(os,0) if 0^ ||2 (44-4)

To prove this let us first note that if 0 is very small the integrand in

Eq. (42-4) is virtually unity until f(£,x) = 0. If the value of x at

which this happens is sufficiently large, /(£,x) may be replaced by
2 -1(l + x ) not only for large x but for small x as well. For the integrand

is virtually unity for small x Whether A£,x) or (l + x ) is used. If

this replacement of the Doppler broadened line shape is valid for all x,

then Eq. (44-4) must hold, If when V(|,x) = 0, ><(£,x) « (l +X2)"1

then x is determined to be approximately 0
•1/2

The approximation of

replacing "/(/-, x) by (l + x )" will be a good one only if 60/| «• 1,

as can be seen from the discussion following Eq. (33-4).

If on the other hand 0 > Y(£>0), we can prove that

§0 > J(*>f» > k

For

oo oo

J(6P) J *U,x) +0
dx •

fi-^o)"
0

00 kH (-)k
k=o

*«,*)'
P J

1 k+1

(45-4)

(46-4)
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If 0 > 7u>°) 2" Y(£>x) the series will converge uniformly and can be

integrated term-by-term. Since the terms alternate we can write

00 00

£|^dx>ju,0) >r< 0 p2 1 dx> i.3tL2i
P

CD

2lizx2
p

dx (47-4)

Comparing Eq. (47-4) with Eq. (26-4) gives Eq. (45-4). One can easily see

from Eq. (45*4) and Eq. (43-4) that as 0 becomes very large compared to

unity

J(£,P)~ fp-^J(co,p) (48-4)

A simple physical way of understanding Eq. (48-4) is simply that if

0 is sufficiently large compared to fonly the area under A|,x) is

significant in evaluating the integral. Since this area is the same as

for the natural line shape we are immediately led to Eq. (48-4). It is

for this reason that Eq. (l4-4) for the resonance integral at infinite

dilution is correct even in the presence of Doppler broadening.

10. Another important general property of J(£, 0) is that it increases

as £ decreases. We prove this as follows: First note that

oo oo

•ffr?> te . I" JllLa*
W«,x) + 0

(/•+?>'
o o

Now from Eq. (21-4) or iq. (30-4) it follows that

9x2 *' '•
if 6/
2 5|

(49-4-)

(50-4)
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Hence, substituting Eq. (50-4) into Eq. (49-4) and integrating by parts we

have

oo ar£ oo

& 20 \ dx2 20 f ov* d ,^f nS-2

o o

since Ig" ' =0 at x = 0 and x = co . Performing the indicated differentia

tion gives

3j 4p
94 "^3

.2

f(S) tf+P>"3*< (52-4)

ft TSince the integrand in Eq. (52-4) is positive, §7^0 which is what we wished
pi j

to prove. It is also true that ^ < 0, and this is very easy to prove.

These inequalities imply that the resonance absorption increases with in

creasing temperature.

11. In addition to being able to evaluate J(£,0) exactly in the case

of no Doppler broadening Erq. (43-4), we can also evaluate J(£,0) accurately

(although not exactly) in what may be termed the case of extreme Doppler

broadening. By this we mean £ <** 1 and also lKk>0) >> P>>7?2. If

the sense of any of these inequalities is reversed we have seen that J(£,0)

is given by Eq. (43-4) or Eq. (48-4). If these inequalities are satisfied

we can use Eq. (35-4) for /(£,x). It is true that this expression for

iiifX.) is incorrect in the wings where Vis asymptotic to the natural line

shape, but under the stated conditions the wings contribute little to the

integral. That is to say, the region where x » — andV,^(l + x2)"1,
r
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2

7"is of the order of •*- which is ^.^-0. Thus the contribution to the

integral is small. Indeed it is easily shown for the natural line shape

that

oo

•*(°°'*? dx =J(oo,0) j1-farctan (x [EKE ) (53Jt)
^(oo,x) +0 L * V1 +B J

Since J(|, 0) > J(oo,0) the fractional contribution to the integral from the

region of x ? 7- is less than 1 - — arctan f /—Hl£_ \ which is
* * y 1+0J

2 nr~ 12approximately equal to — / ts under the conditions 1 **• *• 0 >•> 2— .

By hypothesis this last quantity is <<• 1. Thus we can write with good

accuracy under the stated conditions:

.2

°2 £* "fX
J(£,0) = j -E- — ax (54-4)

If the parameter * >* 1 we can approximately evaluate the integral
dp

in Eq. (54-4) by a method suggested by Wigner (W55)° The integrand will be

nearly unity until x = j / Jn I *•£ J , and then fall rapidly to zero.

But then, approximately

— A*. V

series for j(£,0). j(£,0) can be written

On the other hand if the parameter *• <^ 1 we can obtain a power



51

co J2. . n y2 2\ "I
x

j^p)-^ [e (i+JyLe j ^ (56a-u)

rt 7 _l!x2 oo /y- \k _k|!x2=A_i / e *- ^ (.}k /A_ij e r to (56b.u)

1 °°oo / ,— \ k 2
«£ y r.)k f£i) f e-(k+1)y:(_)* <«A e-v*~vj dy {56c_k)

6 kTo ^ v2S

i_. y (-)k f^i)k
26 k=0 /F+-T I,2*/

(56d-4)

Equations (55-4) and (56d-4) are not entirely adequate for the computation

of J(ij,0) because.th.eyp5r0vide.no infprmation when the

-4-1 1£
20

remedy the situation by analytically continuing the power series (56d-4)

parameter ^~- is only somewhat larger than unity. It is possible to
20

by the following artifice: Let us abbreviate the series in Eq. (56d-4)

,2? k xby EL \* • If we define y =± + x tnen
k=0 00

x = E /+1 (57-4)
X=o

00 .

If we substitute Eq. (57-4) in the series JE1 Ax and collect coefficients
k=o

00

•" k
of the powers of y we obtain a series J._s By . The relation of the B's

k=o

to the A's is given by
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k

EBQ -AQ ; Bv =E cfj; A (58-4)

where the Cp are the binomial coefficients. For the series in Eq. (56d-4)

the B. decrease and hence the y-series converges rapidly even for values of

y corresponding to x > 1. For future reference we note that if

A^. =(-)k(k +l)"1'2, the first few B's are:

B - 1.00000 B^ = - 0.02784

Bn = - 0.707H Bc = - 0.01710
1 0

B0 at - 0.12976 B- = -.0.01150
<= o

B = - 0.05241 B = - O.OO823 (59-4)

If we note from Eq. (55-4) that J(£,0) •— approaches zero as *^E approaches
It dp

CO

infinity we see that E B, = 0. If all the B, are negative, except B >
k=o °

then the error in taking K + 1 terms of the series is less than

K \ K

E Bfc y . For K=1, H B^ =0.04605-
k=o J k=o

12. The properties studied in paragraphs 8, 9, 10, and 11 tell us

much about the general behavior of j(£,0), but in order to have accurate

numerical values available a tabulation of the function was carried out by

the author (D56) using the Oak Ridge National Laboratory electronic

computer, ORACLE. J(|,0) was calculated in the form
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kA

J(«,P) =H / ^*'*? dx +§-arctan /nA iCg^J
k=l J f(|,x) +0 ^ \ 11+±l (60-4)

<"* ^(77^

/U,x) in the form

x+f
mx)=-L /

2A ^a
XT

exp. 1- £ (x -»•]

and the arctangent in the form

arctan x =

X

f ^
j 1 + y2
o

*

dy (61-4)

(62-4)

The integrals were evaluated using Gauss' integration rule ([143 ), which as is

well known is very accurate. In Eq. (60-4) 64 points of integration were

used per interval A, in Eq. (6l-4) l6 x 2 points were used, in Eq. (6l-5)

'HI

16 x 2 points were used. The parameters A, N, a, n, and m must now be

fixed; their determination involves striking a balance between computing

time and accuracy.

Let us first consider the parameter a. It can easily be shown that the

error involved in the use of Eq. (6l-4) is given by

* 2
/U,x) - Y (^x)/X e"a'v*' ' 'approxvs' 'S pr- n-arctan f ~ + x ) - arctan (|2 - x

* 7 ^ *
(','3a-4)

.2,^^ e"a ' w (65b-4)
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From Eq. (63a-4)
we see tbjj,t at x « 0 the relative error in '/'will be

V(£,0) - y. (4,0)
7 * ' approxVb' '.

<§

At x = N,A, the relative error will be

W
Erfc (i)

f(£,NA) - * (£,NA)

7*U,NA)
'W"U'^ ^f •[i +(NA)2}

1 2
-a

e

(64-4)

(65-4)

since at NA = x,y* is supposed to be accurately given by the natural line

shape.

The value of NA also affects the error involved in using Eq. (53-4) to

evaluate the contribution from the wings. If we define

oo

then

oo

Sj' =

N4

J'(£,0,NA) =
V(f,x) + 0

NA

[1u>*) +pIj
dx <

?u7xT
Max

x >NA

dx

• p.
4hK^x) + p

(66-4)

J' (67-4)

Max

x > NA

Thus the fractional error in J' is less than the maximum fractional error in

7 for x »Nfl. From Eq. (33-4) it follows that Sj'/J' approximately equals

•p r 5 T7 if tne latter quantity is small. Thus according to
r { (ma) +p }
Eq. (53-4) the total relative error in J from the natural line shape ap

proximation to the wings is



55

J J J 1 + (na70)2 r(NA)2

The maximum value of the first factor occurs for NA /0 ~ ^ and is about

y- . In the tabulation carried out only values of £ were considered between

T-rr and 1; N was taken equal to 256. The maximum error in J is then

about y- # and occurs for £ = 0.1 and 0 ** 4 x 10 .

A much better estimate of this error can be obtained by setting

%%,x) =%r . x g (69-4)
** (1 + x2)5

in Eq. (67-4) (cf. Eq. 33-4). The resulting integral can easily be carried

Sj'
out and gives for —=- the estimate

J

^ (NA70)2 (P +I)[l -farctan (Nil /YTJ )"/p(l +P)(l -§arctan (Na|

I N^ v/0(l + 0)

II 1 + (NA70)2 + 0
1-- arctan (Nil / P )

Z1 +P ' 42(N^)2

(70-4)

Evaluating Eq. (70-4) for the choice of parameters Nk =256, NA J$ =%
gives —7-^ 3°4 x 10~ . Hence the error from the choice NA = 256 is

negligible.

Insofar as the value of a is concerned it was taken to be 4 in

-a2 -7
tabulation actually carried out. e is then close to 10 , and the

resulting error in 1 is very small whether calculated from Eq. (64-4)

or Eq. (65-4). A reduction of a to 3 halves the computing time, but costs
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about a factor of 1000 in the error: hence the choice a = 4.

13. When 0 is very large compared to wT the relative error involved'in

choosing, N =256, given by Eq. (£8-4), say, is very small; for $ =0.1

k = 26 (0 = 671.I) it is of the order of 10 . Thus the errors are due

to the choice of n, A a and m. In all cases these errors are worst for large

0 for the following reasons. First

Thus the larger 0 the more nearly a relative error in r will reflect itself

in a relative error in the integrand of J. Secondly, the smaller 0 the more

nearly constant the integrand of J is, and the more accurate the integration

rule will be for a fixed number of points. Hence the largest error occurs

for large 0. Finally, the density of integration points is least for the

arctangent for large 0. Clearly, also, the relative error one expects

will rise to a constant value as 0 increases, and will already be achieved

when 0 >>1 > >* (S,x).

To determine this relative error let us note that for the very largest

0(£ 800, roughly) Eqs. (45-4) and (34-4) imply that J=|g to at

least four significant figures for £ = 0.1. Presented in Table (1-4)/

calculated by the author in 195& (D56), are values of J(£,0) calculated

for £=0.1 (0.1) 1.0 and 0=2k x 10"5, k =0 (l) 31 with the parameters

N=4, n =3, m=5. Comparing j(0.1,0) with |g for k >26 (0 ^670) gives

agreement within one unit in the fourth decimal place, indicating a

combined error due to our choice of Jl, n,a and m of at most about one part

4 '*sXi Sb'^wY)}
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TABLE 1.4 THE FUNCTION ;(£,# FOR £ = 0.1 (0, 1) 1.0 AND /3=2*x 10"5

k
Hi. 13)

£ = 0.1 £ = 0.2 £ = 0.3 £ = 0.4 £ = 0.5 £ = 0.6 £ = 0.7 £ = 0.8 £ = 0.9 £ = 1.0

0 4.979(2)* 4.970(2) 4.969(2) 4.968(2) 4.968(2) 4.968(2) 4.967(2) 4.967(2) 4.967(2) 4.967(2)

1 3.532 3.517 3.514 3.513 3.513 3.513 3.513 3.513 3.513 3.513

2 2.514 2.491 2.487 2.485 2.485 2.484 2.484 2.484 2.484 2.484

3 1.801 1.767 1.761 1.759 1.758 1.757 1.757 1.757 1.757 1.757

4 1.307 1.257 1.248 1.245 1.244 1.243 1.243 1.243 1.242 1.242

5 9.667(1) 8.993(1) 8.872(1) 8.831(1) 8.812(1) 8.802(1) 8.796(1) 8.792(1) 8.790(1) 8.788(1)

6 7.355 6.501 6.335 6.278 6.252 6.238 6.230 6.225 6.221 6.218

7 5.773 4.777 4.562 4.485 4.450 4.430 4.419 4.412 4.407 4.403

8 4.647 3.589 3.328 3.230 3.183 3.158 3.143 3.133 3.126 3.121

9 3.781 2.759 2.471 2.354 2.297 2.265 2.245 2.232 2.223 2.217

10 3.045 2.153 1.867 1.741 1.675 1.638 1.614 1.598 1.587 1.579

11 2.367 1.676 1.423 1.301 1.235 1.194 1.168 1.151 1.138 1.129

12 1.730 1.268 1.074 9.718(0) 9.119(0) 8.739(0) 8.484(0) 8.304(0) 8.174(0) 8.077(0)

13 1.164 9.081(0) 7.815(0) 7.087 6.629 6.322 6.107 5.950 5.833 5.744

14 7.172(0) 6.014 5.342 4.914 4.624 4.419 4.268 4.154 4.066 3.997

15 4.088 3.658 3.371 3.V69 3.022 2.911 2.826 2.759 2.706 2.663

16 2.204 2.067 1.966 1.889 1.829 1.781 1.743 1.712 1.687 1.666

17 1.148 1.109 1.078 1.053 1.033 1.016 1.002 9.904(-l) 9.805(-l) 9.722(-l)

18 5.862(-l) 5.757(-l) 5.67K-1) 5.599(-l) 5.539(-l) 5.488(-l) 5.445(-l) 5.408 5.376 5.348

19 2.963 2.936 2.913 2.894 2.877 2.863 2.851 2.840 2.831 2.823

20 1.490 1.483 1.477 1.472 1.468 1.464 1.461 1.458 1.455 1.453

21 7.468(-2) 7.452(-2) 7.437(-2) 7.424(-2) 7.413(-2) 7.403(-2) 7.395(-2) 7.388(-2) 7.38K-2) 7.375(-2)

22 3.739 3.735 3.732 3.728 3.726 3.723 3.721 3.719 3.718 3.716

23 1.871 1.870 1.869 1.868 1.868 1.867 1.867 1.866 1.866 1.865

24 9.358(-3) 9.356(-3) 9.355(-3) 9.352(-3) 9.350(-3) 9.349(-3) 9.348(-3) 9.346(-3) 9.345(-3) 9.344(-3)

25 4.680 4.680 4.679 4.679 4.678 4.678 4.678 4.677 4.677 4.677

26 2.340 2.340 2.340 2.340 2.340 2.340 2.340 2.340 2.340 2.340

27 1.170 1.170 1.170 1.170 1.170 1.170 1.170 1.170 1.170 1.170

28 5.85K-4) 5.85K-4) 5.85K-4) 5.85K-4) 5.85K-4) 5.85K-4) 5.85K-4) 5.851(-4) 5.85K-4) 5.85H-4)

29 2.925 2.926 2.926 2.926 2.926 2.926 2.926 2.926 2.926 2.926

30 1.463 1.463 1.463 1.463 1.463 1.463 1.463 1.463 1.463 1.463

31 7.314(-5) 7.314(-5) 7.315(-5) 7.315(-5) 7.315(-5) 7.315(-5) 7.314(-5) 7.314(-5) 7.314(-5) 7.314(-5)

*Numbers in parentheses are powers of 10, which multiply the entry next to which they stand and all unmarked

entries below it.
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in 2000 (0.05$)» The computing time for this calculation is about

N2 minutes for each £ and all 0, or about ten hours for the entire

calculation. Recently, Nordheim (N57) has recalculated J(£,0) for

£ = 0.05 (0.05) 0.5 and k = 4.0 (0.5) 20.0; agreement with the author's

earlier paper is always to one unit in the fourth decimal place.

14. Plotted in Figs (1-4) and (2-4) is the function J(£,0) vs

0 with £ as a parameter. As we can see, it has the general shape we

might have predicted from its properties already derived. In particular,

J decreases with increasing 0 or £; and it is asymptotic to j(oo,0) for

either 0 very large or very small. In this connection it is worth noting

that J(£,0) for £ = 1.0 is quite close to j(co,0) for all 0. Finally,

we note that J assumes a -*/2 behavior for smaller 0 the smaller £ is,
0

in accordance with Eqs. (45-4) and (34-4).

The table may be used to check the validity of Eqs. (54-4), (55-4),

and (56-4). In Fig. (3-4) — J(£,0) has been plotted versus |^ using
Jt dp

these equations. The dotted region is a graphical interpolation between

the series on the left and the logarithmic asymptotic expression on the

right. Plotted also are exact values for £ =0.1 and 0.2. The agreement

is good in general shape and magnitude. For £ =0.1 the agreement is

within 5$ or less for £*~ less than about 20; the margin of error then

increases somewhat, being about 30$ near ££- = 100. Also plotted in

Fig. (3-4) is a curve based on the following rational approximation to

J(!,P)

J(«,P) =-—*-=- (70-4)

2P+/§ *
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This rational approximation has the property that the first two terms in

the Maclaurin series in £yjt/2p are the same as the first two terms of

Eq. (56a-4). It should only be good for £yfr/2P ^ < 1, but as one can see

from Fig. (3-4) it is quite good for much larger £y*t/2p.

15« In paragraph 8 we began the study of the effect of Doppler

broadening of resonance lines on the effective resonance integral in the

case 7=0. When y ^ 0, Eq. (42-4) for I must be replaced by

00

1"rv fr -S f 2^k ** <71-U>
-OO

1 2
Let us first consider the case p «^< 7 £ . For the natural line

shapes one can easily show that the maximum fractional contribution of the

interference term to the total denominator occurs when x = - /—^-*-

and is equal to ^. . If -*j <<: 1, then this will also be true for
i-Tr t 16

the Doppler broadened line shape, because for x # — » — , the

/p yr
Doppler broadened line shape is very close to the natural line shape.

In the center of the line, on the other hand, the interference term can

be neglected. It is easy to prove, for example, from Eq. (37-4) that

»->+{t ^ -.-, (72-4)

We simply note that the two terms in Eq. (37-4) have opposite sign, and

that 3,(£,x) has the sign of the first. Thus in the center of the line

the interference term makes a fractional contribution to the denominator

of the integrand of less than 2\x|(Pr) ' . Thus if -| « 1 we can find
r



59

constant C between — and —, such that for /x| ^ C the interference term

is negligible, and for|x)^C the effects of Doppler broadening are negligible.

If we call the integral in Eq. (71-4)2J(£,P,7) we can write:

C 00 -C

2J(£,0,7) = [ *<fr*? dx+i^r +
-C C -00

X 2-1 ^ *1/2 3-T to (73-4)(1 +X2)'1 +(pr)1/22x(l +x2)"1 +p
We can furthermore write

C 00 -C
2%-l

2J(oo,P,7) = / ^ o\ —' &+( / +
J (l+x2)-1+0 V
-C C -00

fl -u 2v-l
X 2,-1 [ , \)o 2-1 dx (74-4)(1 + x2) X+ (07)1/22x(l + X2)"1 +0

and

C 00 -C

-C C -00

By subtracting Eqs. (74-4) and (75-4) from Eq. (73-4) we obtain

J(£,P,7) -J(oo,p,7) -J(£,p) +j(oo,p) »0 (76-4)

Comparing Eq. (76-4) with Eq, (13-4) we have

£

J(£,P,7) - , 2 F + J(£,p) -J(oo,p) (77-4)
/p(l + 0 - 7)
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Equation (77-4) is a quantitative expression of the fact that when
c

0 -=-•" —= , the effect of Doppler broadening of resonance lines is caused

r
mainly by alteration of the line center, while the effect of interference

between potential and resonance scattering is caused mainly by alteration

of the wings. Since, Eq. (77-4) was derived on the assumption that

6&~ ^< 1, the last two terms will nearly cancel, as we can see from

r

Eq. (44-4).

When 0 is sufficiently large it is again possible to prove in

equality (45-4)o We again proceed by noting that

oo

J(£,P,r) =I
-00

CO

* k=0

p

+co

k

-co

\ +Al,x) + (P7)l/27(£,x)
-l

a„ MR* ),\X 1 "••"»""•

p

P

**,*) +(Pr)1/2Z(i
P

b*)
k

dx

(78b-4)

Now all the integrals in this series are positive, since only products of

even powers of X (which must be positive) and any power of ^(positive)

survive. Hence, since the series alternates, and

CD CO

-co -00

1

\-2-! ^t,x) +(P7f%(£,*)
P

dx (79-M

This immediately becomes Eq. (45-4) if we note that the^-integral vanishes,
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16. If £ <£L*L. 1 and A^0)^2* P ^*>£ £ we can mak* the approxima

tion which leads to Eq. (35-4) in Eq. (36-4) or substitute Eq, (35-4)

in Eq. (37-4). In either case we get^(£,x) Jfc 0. This conclusion

simply meano that in the line center the thermal motion of the moderator

atoms averages the interference cross section over its positive and

negative parts with nearly equal weight. Hence, under the stated con

ditions it is a very good approximation to write

J(^P,7) = J(*,P) (80-4)

17. We have made no tabulation of j(£,p,7) comparable to that for

j(£,p). The reasons for this are threefold:

(i) The first, and controlling reason, is that for practical
<r

homogeneous situations the ratio -&— , which always exceeds 7,
P

is very much less than unity. For example, for an aqueous

solution of uranium salts containing as much as 500 grams of U
o~

per kilogram of water, the ratio -^ is of the order of 0,0085.

1 ^ P(ii) Nearly all of the resonances of absorbing materials have

values of £ « 1 at room temperature or at the higher tempera

tures at which power producing reactors are run. Unless p is

very small, J(£,p,7) = J(£,P)°

(iii) The most conspicuous resonances for which (ii) above fails are

the resonances which occur at fairly low energies (e.g., the

6.7 ev resonance in IT ). In such resonances it is frequently
Pnthe case that — << 1 (e.g. *J 0.04 in the example mentioned).



CHAPTER 5. TRANSPORT THEORY FUNDAMENTALS

1. In the following two chapters we shall study the resonance absorption

problem in heterogeneous media. As a necessary aid to this study we shall

develop in this chapter certain special results of neutron transport theory.

These theorems all concern the transport of neutrons in situations in which a

convex lump is embedded in an infinite purely absorbing medium. In the next two

chapters these theorems will be applied to the resonance absorption problem by

interpreting the convex lump as the absorber, and the surrounding medium as the

moderator. That the moderator can be considered in these applications as a

purely absorbing medium depends on the following considerations:

Since moderators are nearly always materials of small mass number, the

average lethargy change per collision with a moderator nucleus is assumed to be

very much larger than the extent of the resonance in lethargy. This assumption

is valid in the vast majority of situations, although exceptions are possible

(e.g., the 0.3 ev resonance in Pu ). The assumption has consequences similar

to those mentioned in Chapter 3 in connection with Eq. (34~3)> viz.: (i) Neutrons

which appear in the moderator at the resonance lethargy due to last collisions

in the moderator made those last collisions at lower lethargies at which the

resonance cross section was substantially zero, (ii) If such moderator neutrons

at the resonance lethargy collide with a moderator nucleus before reaching the

lump, they will be moderated from the lethargy interval of significant absorption,

and need not be considered further for the calculation of absorption in this

particular resonance, (iii) A neutron leaking out of the lump in the resonance

lethargy interval cannot return to it in the same interval since at least one

moderator collision must intervene. Hence, such neutrons also need not be

considered further.

62
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Consequences (ii) and (iii) imply that insofar as absorption in the

particular resonance is concerned, the moderator appears to be purely absorbing.

Consequence (i) implies that the collision source density in the moderator at the

resonance lethargy interval is spatially uniform, since it originates from last

collisions at lethargies where there is no absorption.

In Chapter 6 moderation by the absorbing nuclei is also assumed to cause an

average lethargy change per collision very much larger than the resonance lethargy

interval. In such a case, the so=called narrow resonance case, scattering by

the absorber nuclei in the resonance interval can also be treated as absorption.

The details of this treatment are given in the next chapter, but in the next

three paragraphs, (5-2), (5-3)* and (5-4), some necessary theorems of transport

theory applicable in purely absorbing media are proven.

2. Let us consider a finite mass of purely absorbing material in the shape

of a convex body, V, immersed in a medium also purely absorbing in which a

spatially uniform, isotropic neutron source of strength Q exists. Let us

calculate the neutron current into the

body at each point of its surface, and

the angular distribution of these neu

trons about the normal.

In Fig. (1-5) S represents the

convex absorber surface, T the tangent

plane at some point P, and PN the normal

pointing into the source medium. The

Fig. (1-5) inward current at P is clearly

azimuthally symmetric around PN. The inward current in the differential cone

between polar angles 9 and 9 + d0 is given by
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0=2rt r=co #

j(cose)d(cos0)dS = / / Q-r2dr sin9 d9 d0. ^ CgSg •e a (1-5)
0=o r=o

The first factor on the right is the isotropic source strength, the second

factor the infinitesimal source volume, the third factor the fraction of

source neutrons oriented in direction so as to cut S in an infinitesimal
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area dS at P, and the last factor the probability of reaching P without

collision in the source medium. E is the macroscopic absorption (total)

crose section of the source medium. Carrying out the integral immediately

gives

j(cos9) •!.JL .CO80 (2_5)

The total inward current is given by

e=i
J- / J(cos0) sine d9 =i•-\ (3-5)

9*o a

3. The next theorem which we shall prove is that flux at any point,

r, of the body, V, due to the uniform, isotropic source, Q, outside V, is

given by -~*- P(r), where P(r) is the probability that neutrons from an

isotropic source at r in V will escape from V without collision. The

theorem is a special case of a general reciprocity theorem for the neutron

transport equation proven by Case, Placzek, and deHoffmann (C53).

To prove it, let us first derive a general expression for the flux
-*

at R due to a unit isotropic source at the origin in a purely absorbing

medium. It is given by
R

Vs N
£jR)0(R).R2dRdfl =J£ -dje ° J (4.5)

The left hand side is the collision rate in an infinitesimal volume at R, the

right hand side is the product of the probability of the source neutrons
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being properly oriented to intersect the volume at R, and the probability

that they will reach R, but not R + dR, uncollided. The exponents is

the so-called optical path length from the origin to R, and is defined as

the positive line integral of E over a straight line connecting the

end points. From Eq. (4-5) it follows that
R

4nR2

ds
a

0(?) -£-1-3 : (5-5)

The escape probability of neutrons born at r in V can now be obtained

by integrating the absorption density over the volume outside of V, V*.

Thus

(6-5)

Here -^ is the absorption cross Section of V*. The flux at r due to a

uniform source Q in V* can be written as

f -I V°
0(r*) - Q/ S-^- jo ^' (7-5)

J 4rt|r - r'T
v*

Thus

0(7) =^ P(?) (8-5)
a
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as we wished to prove. As we shall see in the next two chapters Eq. (8-5)

occupies a central role in the problem of: resonance absorption In heterogeneous
media.

4. A quantity useful in what follows is the average of P(r) over V,

PH I /PfrVr (9-5)

It is possible to get a simple expression for P using Eq. (8-5) as

follows:

The total absorption rate of neutrons in V can be written in two

equivalent ways, viz.:

(10-5)

The term in parenthesis on the left hand side is the average flux in V,

as can be readily seen from Eqs. (8-5) and (9-5). The first term in the

integrand on the right is the inward current into the. solid angle du =

sine d9 d0 at dS. X is the length of the chord proceeding from the

infinitesimal area dS in the direction da. The last parenthesis on the

right hand side in Eq. (10-5) is the capture probability of neutrons

entering dS in direction aft. £ is the absorption cross section in V,
a.

Equation (10-5) can be rewritten as
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where

fCf') =1/ dS /^^ •*tf-^). (12-5)

f(i') is a particular distribution of chord lengths in V, weighted with the

element of surface, the element of solid angle', and the cosine of the angle

with the normal appropriate to the chord. It is clear that Eq. (12-5)

for f(/!) is normalized.

When X. —* 0, it is obvious that P -* 1, in view of its definition as
a

an average escape probability. From Eq. (llc-5) we obtain

lim P=1=fv /ft?)cli. lim fi-=-% j (l3a-5)

-W /f(^ -iai-fv '^ (15b"5)
Thus i, the average chord length with the distribution (1S5), is given by

— . This theorem is originally due to Gauss. Wigner (W55) has suggested4v

s

a rational approximation for P, viz.:

p = (i +Ely1, (14-5)
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By comparison of Eqs. (llc-5) and (l4-5) it can be seen that the rational ap

proximation has the correct value for very large and very small values of <£ i.
a

It has the twofold advantage of being easy to handle in calculation, and of being

independent of the details of the shape of the body, but it has the disadvantage,

as we shall see in the next chapter, of introducing a fairly sizeable inaccuracy

in some calculations.

5. In Chapter 7 collision of the neutrons with the absorbing nuclei is

treated as producing a negligible energy change. The conditions under which this

approximation (wide resonance approximation) and the approximation of Chapter 6

(narrow resonance approximation) are valid are discussed in detail in Chapter 9„

In the wide resonance case the interior of the absorbing lump can be treated by

monoenergetic transport theory, and multiple collision phenomena must be taken

into account. The moderator, for the same reasons as before, can be treated as

purely absorbing. Many of the results of Chapter 7 will be obtained from a

simple approximation to monoenergetic transport theory called diffusion theory.

In the remainder of this chapter the diffusion approximation will be discussed,

and the remaining analysis of the wide resonance case deferred until Chapter 7.

The diffusion approximation can be derived as follows: for a medium with

isotropic scattering the relation between flux and current across a particular

plane, T, is given by an equation similar to Eq. (3-5), viz.:

0=2n 9= -r r=co y
J»/ J J £s0(r).r2dr sine de d0 .£25| .e" *' (15-5)

0=o e=o r=o *nr

Here E is the scattering cross section of the medium and E^ its total cross
s t

section, r, Q, and 0 are polar coordinates with the point at which j is being

calculated as origin, and with the normal to the reference plane T which points
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toward the source neutrons as polar axis. 0(r*) is the flux at point r*.

Because of the exponential attenuation of the contribution from radius r,

only points within a few total mean free paths of the origin are important.

If 0(r) varies slowly in a total mean free path we can express it approximately

as
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0(r) = 0(0) + r*. 70(0) (l6-5)

Equation (l6-5) is the essence of the diffusion approximation. If (e ,0 )

are the polar angles of a unit vector pointing in the direction of <70,

this can be rewritten as

0(r) =0(0) +r|v0(O)) <jcose coseQ +sine sineQ cos(0 -0)1 (17-5)

If we insert Eq. (17-5) into Eq. (15-5) and carry out the integrals we find

that

h _ .1 ^S
2

kt

•̂ (l ^(°) +̂ *•^0(°) ) (lfib-5)

where n is the normal to T pointing toward the source medium. Equation

(l6-5) will not be a good approximation in general unless iT « 7... In
a t

this latter event Eq. (l8b-5) can be written

j=i0(o) +A- n »V0(O) (I9.5)
o^s

The net current in the direction of n is clearly

Jnet =fj ^°) '*^ *•'**)• (\ 0(°) +£r*'W°>
=--^-n«V0(O) (20-5)

J-i •̂ •0(o) +Ip cosQo /v0(o)/ (l8a_5)
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From Eq. (20-5) a second order differential equation for the flux can

be obtained by writing a neutron balance over an arbitrary volume V with

surface S.• If the neutron source density at r is Q(r) then

dS .V0(r) + / Hs0(r)dV = / Q(?)dV (21-5)
3X / - / -a- J

s L/

Using the divergence theorem to convert the surface integral to a

volume integral and noting the arbitrariness of V we have

._L_y2^ +£^(?) =Q(^ (22.5)

The boundary condition most frequently used at an interface between two

media is the continuity of the partial currents in both directions across

the surface. From Eq. (19-5) one can see that these conditions are

equivalent to the continuity of flux, 0(r), and net current,

- •—— n oV0(r), across the surface.
52. s

6. Let us now consider the problem of the albedo of a convex body

in the diffusion approximation. The albedo is defined as the probability

that a neutron entering the lump will leave again without being absorbed.

Instead of looking for an exact solution for each possible geometric shape,

we shall, in this paragraph, look for a universal, approximate expression,

like Eq. (l4-5), for example, which does not depend on the details of the

shape but just on some mean linear dimension.
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If the body is very large it appears locally as an infinite half space

bounded by its tangent plane. From Eq. (22-5) in one dimension with

Q = 0, we see that the solution for the flux must be

0(x) =Ae~*X (23-5)

where A is a constant, 7C = J3SI £ , and x is a distance measured
v S 8.

normal to the plane bounding the half-space (x = 0) and measured positively

into the medium whose albedo we want. From Eqs. (23-5) it follows that

where n is the outward normal to the absorbing medium at its surface.

If the lump is small we can assume that both the flux and its outward normal

derivative are independent of position on the surface of the lump, and that the

surface flux equals the volume averaged flux. Then from Eq. (21-5) with

Q = 0, it follows that

An expression for •* ^f- which has Eq. (24-5) for its limit when }(/ >>1

and Eq. (25-5) for its limit when j(X <^ 1 is

* XI +4

From Eqs. (19-5) and (26-5) it follows that the albedo is given by

1

c i+# l(£a51s)2-f ZaJ>
5= — a s± 2 — (27-5)

i+f J(v/ +|v
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which is the expression we have been seeking. Equation (27-5) has the

same advantages and disadvantages as Eq, (l4-5)«



CHAPTER 6. HETEROGENEOUS RESONANCE INTEGRALS - NARROW RESONANCES

1. In this chapter we shall consider the problem of calculating the

effective resonance integral for a heterogeneous arrangement of absorber

and moderator. We shall restrict ourselves in this chapter to the narrow

resonance approximation, i.e., we shall assume £ for both the moderator and

absorber is very much larger than the lethargy extent' of the resonance under

consideration.

Let us consider a lump of absorber in the shape of a convex body sur

rounded by an infinite moderating region. Let us calculate the absorption

of neutrons by this lump in a single narrow resonance. For this purpose

let us divide the neutrons which make a collision in the lump in the vicinity

of resonance energy into two classes according to whether their last col

lisions were made in the lump or in the moderator. In any case, their last

collisions were made at energies far above the resonance, where the flux, 0,

is uniform spatially and lethargy wise in both lump and moderator. Let us

consider the neutrons whose last collision was in the lump. The rate at

which theee neutrons appear per unit lethargy in the resonance is independent

of whether, there is a resonance or not because these neutrons came from

collisions far above the resonance energy. If there is no resonance this

rate is equal to the collision density of the lethargy in question, since

the spatial uniformity of the flux then prohibits any net transport of

neutrons. Thus the source density per unit lethargy in the resonance in

the lump is Just £^0, where tp is the potential scattering cross section
of the lump material. If the lump is a chemical compound of the absorber,

e.g., U02, or amixture,2 may consist of two parts, £ and £ , as
P pa m'

72
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in Chapter 4. Since at the lethargy of last collision the flux was spatially

uniform and equal to 0, the source, £L 0> is also spatially uniform.

In the presence of the resonance the flux near resonance is not spatially

uniform and neutron transport can occur. Since the source density, £, 0,

is uniform in the lump, the total collision rate in the lump of neutrons whose

last collision was in the lump is

Ej \i -HE.)} v (1-6)
PL c J

where P is the average escape probability defined by Eq, (9-5)> hut evaluated

for a lump cross section equal to ZL> the total cross section in the lump

including the resonance contribution. Any source neutron which escapes the

lump is lost for, by hypothesis, a single moderator collision is sufficient

to moderate the neutrons well below the resonance energy. Similarly, any

source neutron which makes a scattering collision in the lump is lost for

precisely the same reason. Hence, the total absorption rate in the lump of

neutrons whose last collision was in the lump is

21 0
p'

i -p(£t) V •^ (2-6)

3° Let us now consider neutrons whose last collisions were in the

moderator. By precisely similar reasoning as employed in paragraph 2 we

see that the flux per unit lethargy in the moderator at resonance energy

is just 0. By the theorem of paragraph 3-5> the density of first collisions

of these neutrons in the lump is

0P(£t)vHt (3-6)
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Again the fraction of these collisions which are scattering collisions cause

the neutrons involved to become unavailable for absorption. Hence, the

total absorption rate in the lump of neutrons whose last collision was in

the moderator is

E0p(LJv$V .^s (h-6)

4. From the definition of the effective resonance integral given in

Eq. (1-4) it is clear that it is the lethargy integral of the effective

absorption cross section, i.e., that cross section which when multiplied

by the flux which would exist in the absence of the resonance gives the

true absorption rate. In the heterogeneous case being considered here the

same quantity, I, is defined by the equation

vXs du +/ ^V^t IT du (5-6)NI0V = v «£t)

which can be simplified to

NJ = ^*u +
(£ - L )T

t ^ p ap(Lt)du

Here N is the atomic density of absorber nuclei in the lump.

5» If for P(S.t) one substitutes Wigner»s rational approximation,

Eq. (14-5), the expression for I can be rewritten as

(6-6)

1=1 + (7-6)
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Now according to Eqs.,(6-4) and (7-4)

L .-n<jr +£. -n (o- +<r) + ZL (8-6)
t t m s a p

where tf* and d" are the resonance scattering and absorption cross section
s a

respectively. But then

^t +(i)"1-N(<rs +«5;)+Xp/i +-^=J (9-V

Hence if we define b = 1 + (£. i)" Eq. (7-6) can be rewritten in precisely

the same form as Eq. (2-4) except that we must replace <f_ by bcT everywhere.
ST Jr

Thus we have reduced the heterogeneous case to the homogeneous one in the

narrow resonance approximation, and all the results of Chapter 4 apply

mutatis mutandis.

6. The conclusion reached in the previous paragraph gives rise to two

very interesting and practical rules. The first of these is the following:

Let us consider lumps containing a particular absorbing material and various-

amounts of other moderating materials. All such lumps with the same value

of cT + (N: £)" have the same effective resonance integral, I. The proof

of this is trivial; it consists in noting that in Eq. (71-4) that cT only

occurs in the combination bol = ©1 + (N l)~ . It is worth noting explicitly

that the coefficient of the interference line shape, (P7) ' , is actually

independent of cf as can be seen from Eqs. (9-4) and (10-4). An example

of the significance of the rule we have just proven is that if one knows the

resonance integral for a series Of Th rods one can immediately obtain the

value for a related series of ThO^ rods (or spheres, or any other shape

for that matter).
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The second rule, proven in exactly the same way, states that the

effective resonance integral for a lump is the same as that for a homogeneous

mixture of moderator and some absorber in whi'ch the potential scattering

cross section per absorbing nucleus equals d* + (N I)"1, where d" refers
P p

to the lump. It is of considerable importance to note that these rules do

not depend on any knowledge whatever of the resonance parameters. They can

be used both for predictive purposes and as a check on the theory.

7. Another very interesting rule of a more approximate nature than

those just considered, but which also has the advantageous feature of not

depending on the resonance parameters, concerns the dependence of the effective

resonance integral on geometry. Let us first consider only the natural line

shape. The effective resonance integral is then given by Eq, (13-4)

appropriately modified, viz.:

pb /l +0b -£ /

The approximate equality is based on the requirement that 0b •<< 1, a

condition nearly always fulfilled for the important resonances in most

materials. Plotted in Fig. (1-6) is the second factor on the right hand

side of Eq. (10-6) for all b and several values of y. As we can see from

the figure all these curves are asymptotic to the value /b . Thus with

increasing b the dependence of the effective resonance integral on the

interference between potential and resonance scattering disappears. For
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any absorbing material in which the resonances responsible for the bulk

of the absorption are narrow, the dependence of I on geometry for not too

small b should be proportional to v/b . This geometric dependence was

previously noted by the author (D56a) in the case 7=0, and an attempt

was made to exploit its independence of the resonance parameters. As we

shall see later, however, the strongly absorbing resonances are frequently

not narrow.

The effect of Doppler broadening of resonance lines on this geometric

dependence ought not to be too great for the following reasons: Most

heterogeneous arrangements contain the absorber in relatively pure form

(e.g., U, UO' Th, Th0o). Usually, then, <r ~ 10-20 barns, d" for the
<=- d p O

low energy, strongly absorbing resonance lines, on the other hand, is

usually of the order of 1-2 x 10 barns, so that 0,-vlo"5. For these low

energy resonances £ is usually^ 0.3 or more. Hence, — is generally of the

r

order of 0.1. Thus we are never very far from the natural line shape limit.

The /b geometric dependence for heterogeneous systems is equivalent

to the yd" law for homogeneous systems mentioned in paragraph (3-4). This

is an immediate corollary of the second rule of paragraph (6-6). The rules

we have discussed in this and the last paragraph are of vital practical

importance. They make it possible, for example, to obtain the effective

resonance integral for a considerable range of heterogeneous and homogeneous

arrangements from a measurement on a single lump or a single homogeneous

system.
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8. All of the preceding work depends on the use of the rational ap

proximation (14-5) for the escape probability. The rest of this chapter

will be devoted to an analysis of the error involved in the use of this

approximation. Average escape probabilities for slabs, cylinders, and

spheres have been tabulated by Case, Placzek, and deHoffmann (C53). Plotted

in Fig. (2-6) are their results along with a plot of Eq. (l4-5). As it

happens, the exact average escape probabilities for sphere and cylinder

never differ by more than 2$ for any value of XL $. , and are essentially the

same for S1J2. •? 3. The average escape probability for a slab is about 10$

at most below that for a sphere for XL X ^1, and is essentially the same as

that for a sphere (or cylinder) for^i.^ 3. The rational approximation,

on the other hand, is consistently low, often by as much as 23$ near

LJL~2.

In order to discover the effects of these differences on the effective

resonance integral, let us consider absorption by lumps in the absence of

Doppler broadening and of interference between resonance and potential

scattering. Under these conditions the term in the expression for I involving

the average escape probabilities can be written

I' =

NK

1 + x2
e

u

00

o- (cf + d" ) . P ," , ,a a_s! p(fi )du =E.-L. / f{J)U I to
at t n£ E! j"l +0(1 +x^)_

(11-6)
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Here we have used Eq.(llc-5) for P and interchanged the order of the x and

X integrations, x is defined as usual by Eq. (5c-4). The x-integral can

be done approximately employing an artifice due to Gurevich and Pomeranchouk

""* 2 2(G55). If Njcr >•> 1, 1 + x can be replaced by x in the exponent; for

the exponential is only significant when x ^ N^cT >> 1. If we make this

replacement and then make the substitution y = (Nxo** ) ' /x we obtain,

after rearrangement

2, _ / „/_ 2

0 (y2 +N^p)2I' -(Hi)" 2-F^" /f(i)al 4 / o7dy o 6- ~̂ (12-6)

In arriving at Eq. (12-6) we have also neglected 0 in comparison with unity.

9. Let us consider the two functions, L(a) and K(a), defined by

and

oo

oo

L(a) =/ e-y2 /% g (l3a-6)
(y + a )

K(a) -/ /2% (l5b-6)
J (y + a )
o

in terms of which I' can be calculated. To evaluate L in terms of tabulated

functions we proceed as follows: We note first that

oo oo
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The second equality follows from the substitution y = az. If we denote by

F(a) the infinite z-integral on the extreme right hand side, it can easily

be shown that it obeys the following first order linear differential

equation and boundary condition

dF

d(a2)
F=--;F(0)=§

The unique solution to this system is then

2

F(a) = ea / jt Vtc
2 " 2

-x dx

/T

By substituting x = y in Eq. (l6-6) one can obtain the result

F(a) =| ea Erfc(a)

(15-6)

(16-6)

(17-6)

where Erfc(a) is the complementary error function. Substituting this ex

pression in Eq. (l4-6) gives for L(a)

2

L(a) =j^ J(1 +2a^) ea Erfc(a)
f

(18-6)

By integration by parts it is easy to prove

«*)=& (19-6)

Using Eqs. (l8-6) and (19-6) one can write Eq. (12-6) as

k ^jb1/z
i' - M) 2-V

Jt

E

/ NicT

X (1 + 2Ni<T )Erfc (Jml<f ) +— / N^d" (•20-6)
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where the bracket denotes an average with respect to the distribution of

chord lengths. If to I1 we add Eq* (13-4) with 7 = 0 and 0 neglected in

comparison with unity, we obtain the appropriate total effective resonance

integral. It is possible to rearrange Eq. (13-^) as follows

s,tp-V* .(rfj-V* ¥EE
2 p E E 2

NJ2dL

Thus I can be written as

I = (M)
-1/2 <VP

2^/2

E f /<*, +
it

5

Jil
P

/ 1- (1 +"feNfo•) Erfc( /W ) +E: /Nid_
\ p p ' /*

(21-6)

(22-6)

The corresponding expression in the rational approximation can be written,

similarly to Eq. (21-6), as

,2a/2

E

I » W Nid- (23-6)

10. Since the average escape probability is nearly the same for cylinders

as for spheres, the respective values of I will be nearly equal. Hence, if

we evaluate the average indicated in Eq* (22-6) for spheres we may also apply

the results to cylinders with good accuracy. In order to carry this program

through we must first calculate the distribution of chord lengths from

Eq. (12-5).. Since all points on a sphere's surface are equivalent the surface

integral disappears, and since there is azimuthal symmetry about the normal

the integration is trivial. Noting then that J= 2R cos© where 0 is the

angle of the chord to the normal, we have from Eq. (12-5)



82

Tt/2

t(j() = / sin© d0 .2cos0 •&U -2R cos0)

2R

=-~ / d(2R cos0) •2R cos© •S(i -2R cos0)
2R J

J
=-E- 0 <X < 2R
2R

(24a-6)

(24b-6)

(24c-6)

Now the quantity in the braces in Eq. (22-6) can be written as the

following power series:

4_ (Ni0p)V2 .£^ +1w^)3/2 .1_ (rf )5/2

7/2 (^R)9/2(NjecT)
+ *- T s e • o

210 1512
(25-6)

This series can be averaged with respect to the distribution (24c-6) by

noting that

2R

X nk+

o

2R

1 /\k+ 21 k+i ,[3 ^ ,1
2flP M2R) 2 ^/ ,7,k+2

(1)dJP
2k + 5 2k + 5

If we write a for N./d' we can then write for the square brackets in

Eq. (22-6) the series

(26-6)
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13 5 1

4 fl\2 l 4 fc\2 l 4 (j\2 21 4 fl)2 o3 lll|l +3'7'\$) a-30-9'(2J a +210-ll'(f a -1512
9_

~~ * 24 (jf 4
13 ' 2 a + 0.9798 + 0.3499a - 0.04082a

1 ^4
+ 0.007158a^ - 0.001262a + ... (27-6)

The corresponding expression in the rational approximation is ^ /l +a .

Presented below in Table (1-6) are values of the relative error incurred

through the use of the rational approximation for the escape probability.

The exact values to which these errors are referred are correct for spheres

and cylinders. It is clear from Fig. (1-6) that the difference between the

exact results for cylinders and spheres is very small. The difference can

not exceed 2% and is surely very much less. For curves which differ as much

Table (1-6). Error Due to the Rational Approximation for
Spheres and Cylinders

a = N/cT 0 0.25 0.50 0.75 1.00 00

fb Error - IO.656 - 7-5# - 5-5# - 4.2# - 3-3# o#

as the extreme upper and lower curves in Fig. (l-6) the errors are given in

Table (1-6). The escape probability curves for sphere and cylinder have a

relative difference which is always better than 10 times smaller than the

extreme curves, and consequently, lead to insignificant differences in the

effective resonance integrals. The errors for slabs will, be smaller than

the values in Table (10-6) since the escape probability for slabs lies

between that for spheres and the rational approximation.
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The values in Table (1-6) are correct for 0 «1, and overestimates

for larger values of 0. This can be seen as follows: The error due to the

use of the rational approximation is mainly due to the wings of the resonance

where /Lj ;S 1. In the center of the line, where E.t » 1, the rational

approximation is correct. The relative contribution of the center of the

resonance is least when 0 « 1; then the flux suffers a depression in the

neighborhood of the resonance. As 0 increases the depression in the flux

decreases and the relative importance of the center of the resonance in

creases. When 0 ">> 1 the resonance integral given by Eq. (10-6)

approaches the infinite dilution value which is correct for no flux

depression at all.



CHAPTER 7. HETEROGENEOUS RESONANCE INTEGRALS - WIDE RESONANCES

1. In this chapter we shall consider heterogeneous resonance absorption

in the case that the width of the resonance in lethargy greatly exceeds the

average lethargy decrement per collision, £, of the absorbing material. We

shall -specifically exclude, at first, lumps in which any strong moderator

is included, e.g., U0p. These conditions suggest the idealization of taking

the absorber mass infinite, in which case monoenergetic neutron transport

theory is applicable to the interior of the lump. The resonance is narrow,

on the other hand, with respect to the lethargy decrement per collision in

the moderator surrounding the lump. The flux in the moderator, 0, is

therefore uniform spatially and lethargy-wise for reasons similar to those

mentioned in the previous chapter. The effective resonance integral, I,

defined as in the last chapter, is then related to the lethargy integral of

the albedo by the following equation:

NVI0 =|S/(1 -o)du (1-7)

Both sides of Eq. (1-7) represent the absorption rate in the lump by the

resonance being considered; the left hand side expresses it as the volume and

lethargy integral of the product of the flux and effective cross section, the

right hand side expresses it as the difference of the incident and excident

currents. It follows from Eq. (1-7) that

I=(ii)'1 J (1 -8)du '(2-7).

2. The remainder of this chapter will proceed according to the following

plan: First, an approximate expression for the albedo will be proposed.

Secondly, the integral in Eq. (2-7) will be evaluated, and I expressed

85
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explicitly in terms of the parameters of the resonance and the lump size.

Finally, the accuracy of the proposed approximation for the albedo will be

studied.

The approximate expression we propose for 1 - S is

i -S —-: 2 • ——- (3.7)

l^^W^^l-^
111 the event that Z>t J. >>1and La <i<Lt ^ £ we anticipate that dif
fusion theory would be applicable. But under the circumstances mentioned

Eqs. (3-7) and (27-6) are essentially the same. The only differences are

the replacement of Eq by £t and -by 1-^f . The first replacement is

surely valid if E <<• E. . The second replacement can never cause more

than 7$ error (when Xg =0and E&f- = Z^X. >>1) and under the condition
E& << E. will clearly cause much less.

When E =0, Eq. (3-7) gives
s

l-S =ilaI(l+Zai)-1 (4-7)

We can prove this to be correct as follows: Since the flux, 0, outside the

lump is spatially uniform the absorption rate in the lump is given by

0P C&.a)iIaV, according to the theorem of paragraph (3-5). If we equate this

quantity to the right hand side of Eq. (1-7) we immediately obtain

1-S=E&1 •P(Za) (5-7)

If we use the rational approximation for P Eqs. (5-7) and (4-7) are

identical.
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If EtX *< 1, we need only consider absorption on the first collision,

since second and higher collisions are very unlikely. Hence, by a precisely

similar analysis as that leading to Eq. (5-7) we obtain

i-s- \xnzt) «jcax d +^xy1 *z&Z <6-7)

Since 'L^X <<L 1. The limit (6-7) is indeed the limiting value of Eq. (3-7)

for very small lumps. The expression (3-7) for the albedo thus has the

correct limiting value for either very black or very transparent lumps, and

very large and very small lumps. As we shall see later it is quite an

excellent approximation to the albedo presented by a medium to a uniform

source outside.

3. If we insert Eq. (3-7) into Eq. (2-7), and make use of the definitions

given in Eqs. (5 to 10-4) we can write for I the result

+oo 1 „

2

+f1 -r)af +P
-1

(7-7)

Here we have used the variable y =x [$, with x given by Eq. (5c-4). Finally,

a is defined in Chapter 6 as N*d". Since we have excluded any diluent in
pP

the lump, d" = d", and y = g_ -= .pa p' ' BJ p

If r- a(—2-1 « 1, it is relatively easy to evaluate the Integral in
2 /? /T \V2Eq. (7-7) approximately. When y >> ^ a|_ZJ the first term in the
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integrand greatly exceeds the second, and little error is incurred by re-

2 ./* /T,\l/2
placing the curly bracket by unity. When y «. 4 'LI the curly

bracket is essentially unity (if 0 <^< 1 is assumed). Replacing the curly

bracket by unity gives an easy integrand of the form

1/2

>+̂*h?)+<i--w*

z = 1 cr Ll p
2 p E P

* o

4.. In case -^ « 1 and 0 « 1 it is possible to evaluate the integral

in Eq. (7-7) exactly, and test the accuracy of Eq. (8-7). This is probably

the most important case in which the infinite mass absorber approximation

will be used, for wide resonances occur only at low energy, where, usually

r r
I « P. If -—• « 1, so is y; let us set y = 0, •=£ = 1, and ignore 0
n Qcompared to unity in the square root. Then the integral,^, in Eq. (7-7)

can be written

•1/2 .

r.
n

S .

oo

2I ay
o

I can then be written

ft \i/£

2 /\ 2~y + u yi + y +

-1/2
(8-7)

(9-7)

where u =f^ a and v = (1 - j-2- Ja+ 0. If we make the change of variables
2w

1 - w

, Eq. (9-7) can be. rewritten as

S - (v - u) + w (4 - 2v) +(u + v)!I dwQ+.w < v

2 2
If 0 and a are the negative roots of the equation

(10-7)
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v-u^Q 1

89

? ♦ iti2c x +2L±_S =o
V - u V - u

dw

2 2
1 - a _ 1-0
2 2 2 Q2

w + a w + 0 i

(11-7)

(l2a-7)

Q2 2
0 - a

1 - a'^- arctan (i) -i—i. arctan (±J > (l2b-7)

Presented in Table (1-7) is the relative error in percent for several values

of <*J.

Table 1-7- Relative Error in Eq. (8-7) vs Cb

Cb 1.76 1.00 0.50 0.20

Relative Error + 8.7# + 5.956 + 3«3# + 1.60

For fixed (X» the error in using Eq. (8-7) may be expected to decrease

P P
as —2- decreases. When -=*. is very small compared to unity, we may take 7 * 1

(if the nucleus has zero spin so that g- = l). In this case we can also find

<=/ exactly. Again ignoring 0 in the square root we can write

+00

J dy

-00

2
y + u y + 1 + V (13-7)

where U and v now mean rr- a | 7-^-/ and 11 - 'j— I a -^ + 0, respectively. The

absolute value signs arise because the square root is proportional to the

^ AVY-/2 / /?MVjp a(rf-J and f1 - ^—Ja -f- + 0, respectively.

inverse diffusion length, 7f = /3£ Jl > which is always positive. Writing

z = y + 1, we have
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2z + (u - 2)z + (1 + v)

-1

-1 2
z + (u + 2)z + (1 + v)

90

00

♦ /a.
O

(14-7)

An explicit expression for-*^ in terms of tabulated functions can be obtained

with the standard integral

dx

2,-1/2(IT - A")

.2

arccos (!)

(i)

B > A

2 2
x + 2Ax + B

= <

(A - B )" ' arccosh

Taylor's series expansion of-=7 from Eq. (l4-7) gives

J= *(u +v)"V2 +gu2(u +v)-3/2 .u+̂ u4(u +v)-5/2 _4

(15-7)

B

uv +

(16-7)

Using the first term in this expansion corresponds to using Eq. (8-7) for I.
2

As we see the fractional error in this procedure is of the order wr-^ r .
8(u + v)

Choosing the case a = 1, corresponding to the second entry in Table (l-7),

and choosing -f- = 0.1, we find the. error estimated from the second term of

series (l6-7) to be about 1.20, while that calculated exactly from Eq. (15-7)

is about 0.70.

Thus for not too large a, Eq. (8-7) is a good approximation, being worst

rfor a purely absorbing resonance and improving with decreasing •=•£ , Then,

if 0 <^ 1, the geometric dependence of Eq. (8-7) is proportional to a-1'2,

which when expressed in terms of the variable b is /b -1 . This variation

asymptotically approaches a/b -law. Hence, for not too small b the very

same gedmetric dependence applies asymptotically in the infinite-mass-

absorber case as in the narrow resonance case.
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5. Equation (8-7) has the following very interesting property, viz.:

that it \a independent of a~ and is the correct result obtained for I if we first

let o~ approach zero in Eq. (7-7) and then perform the integration. In order
p

to take the limit of Eq. (7-7) as:..cT >0, we must first transform the

integral«? back to the variable x=y/0. Doing so and then letting <r —> 0

we obtain

',1

I =
o •)

2E

+00

dx c2 +1+£n^0(£) +11 £ o r (l7a-7)

•00

-£«[#*Gf-M)""'^,^
1-1/2

(l7b-7)

It is very easy to show that Eq. (l7b-7) and Eq. (8-7) are identical.

This possibility of neglecting 6"" has the following explanation: In

the line center resonance processes far outweigh potential scattering,

since d" > •> cr . In the wings of the line where d~ <- < d", very few absorptions
o p _ °P

at all occur if a = N/fcr is not too large, for even the likelihood of col-
P

lision is small. Hence d" is never very important. The error in letting
P

*0 as a function of lump size is given by Table (1-7)•

6. The observations made in the last paragraph simplify the infinite-

mass-absorber approximation sufficiently to allow inclusion of the Doppler

effect. If we set cT = 0, but use the Doppler broadened line shape, Eq. (7-7)
P

is replaced by the equation:

cr
P



00

92

- I"1
Nd-oi -zy(«,x)

dx (l8a-7)

^^f^f^^^-fj^K-'

<T r21 / y7^'^ dx (l8b-7)
o E / , /u + v

o i77ipj*fo,)
p r

=cfp / (u +v)"1 .j[ £,0(u +v)"1
o

where u and v are defined as in Eq. (13-7). Again the Doppler effect enters

through the function J(£,0) which has been studied in Chapter 4. Finally

since the resonances we shall be concerned with in this approximation occur at

o

low energies, they will be very high and narrow, and 60 •<•< £ . The effect

(l8c-7)

of Doppler broadening will be slight, especially on the yb - 1 geometric

dependence.

7» The entire procedure on which our final result, Eq. (180-7);, is based

depends on the accuracy of the expression (3-7) for the complementary albedo,

1 - o. The next portion of this chapter will be devoted to studying the

accuracy of Eq. (3-7). Let us first consider the case &.X £ 1, applicable

to either very small lumps or in the wings of the resonance. We can find the

complementary albedo accurately and easily by use of a variational technique.

It will be convenient in the calculations which are described below to choose

the total mean free path in the lump as the unit of length, and to set

C = -=— = number of secondary neutrons produced per collision in the lump.

Finally let the flux outside the lump be spatially uniform, and of unit

magnitude. The analogue of Eq. (1-7) for 1 - S is then
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(1 -o) iS= /P(r) d3r -C /0(r)P(r) d5r (19-7)

Here both sides represent the absorption rate in the lump. The left hand

side represents the difference of incident and excident current through the

surface, S, of the lump. The first term on the right hand side is the density

of first collisions in the lump. Here P(r) is the escape probability function

defined in paragraph 3 of Chapter 5« The second term on the right hand side

is the rate of escape of collided neutrons from the lump; 0(r) is the collision

density in the lump.

0(r) is determined by the integral transport equation, viz.:

0(r) =C/0(?') exp (- |tj. r^f) ^ +p(?)
d 4n I? - r» I
V

(20-7)

The two terms on the right hand side represent the contributions to the col

lision density at r from previously collided and previously uncollided neutrons,

respectively. The kernel in the integral is essentially that of Eq. (5-5).

It is very easy to show that the function J£0J written below is stationary

for the solution of Eq. (20-7)

j[t] =cj d5r / dV 0(7) e^(;l;;j2l? 0(?t) - j f& *5r

+2 /0(rV(r) d3r (21-7)
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Moreover, the stationary value is just the second integral on the right hand

side of Eq. (19-7), i.e.,

J[0*] = /0*(r)P(?) d5r (22-7)

where 0 is a solution of Eq. (20-7). From Eqs. (19-7), (21-7), and (22-7)

it then follows that

1-8=i<|i /P(?) d5r-£J

V

C

V [*(?).

<J
V

(23a-7)

J<$ /p(r)d3r-f IA ;/A^(?)»f (;<;;f;S(?)
4jt |r - r'j

|Jf(r) d5r -|£ J0(r)P(7) d5r (23b-7)

V

This equation has the very important advantage that the error in the

complementary albedo, 1-8, is of second order in the error in a trial

fuhction for the collision density. In general, the integrals are difficult;

but with a constant trial function they can be expressed in terms of the

average escape probabilities, P, which have been tabulated (C53). Let us

chopse 0(r) = A. Then

J[a] =CA2V(1 -P) -VA2 +2AVP (24-7)

Use has been made here of the identity
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/d3r /d3r, exp(-|?-?'l)=1
J J kn |r - r'T

(25-7)

which is clear, since both sides represent the collision probability averaged

over the lump volume. The best value for A is now determined from the re

quirement that dJ/dA vanish; it is

A =

1 - C(l - P)
(26-7)

Substituting Eq. (26-7) into Eq. (24-7) and this result into Eq. (23a-7) one

obtains

!_8= J(i-o)p
1 - C(l - P)

(27-7)

This expression has the interesting property that it can be derived from a

successive generations approach, assuming all generations to have a spatially

uniform collision density. The absorption rate is then calculated for each

generation, and the result is a geometric series

JS(1 -8) =JS P(l - C) + PC-(1 - P)(l - C) + PC(1 - P)C-(1 - P)(l - C)

(28a-7)+ ...

=|SP(l -c) 2„2
1 + (1 - P)C + (1 - P) C + ... (28b-7)

which when summed gives Eq. (27-7). The latter equation was suggested by

Pershagen (P57) on the successive approximations basis. He applied it to the

calculation of thermal utilization and noted, by comparison with numerical

solution of the linear Boltzmann equation, that it was very accurate.
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It is now apparent that the high accuracy is due to the variational nature

of the equation.*

8. A precisely similar variational procedure can be followed in the

alternative case Xt i >> 1. In this case the surface of the lump can be
treated as a plane, and the albedo will be nearly that of an infinite half-

space. (In the limit i —» oo the infinite half-space results will be exact.)

Hence we shall consider the albedo of the Milne problem for a cosine current

at the interface. A cosine current at the interface is equivalent to a

uniform source strength outside the reflecting medium [cf Eq, (2-5)].
Before proceeding with the development of the variational equations it

will be necessary to derive two integral kernels analogous to that of Eq. (5-5),

but appropriate in plane geometry. Let us first consider the uncollided

current at one plane due to a source of unit strength and angular distribution

G(cosO) onfa parallel plane removed a distance x (see Fig. 1-7). Let us

again take the unit of length as the total mean free path. Then

j(x)dS =

*i
.[«(d n(x tane)£ dS

J (x sec0)
cosQ G(cosg) -x seC0

o " —^r~—•- ' e
2k

0=0

The first term in the integrand is the source

strength of a ring source on the source plane,

the second term is the infinitesimal solid angle

the infinitesimal area dS subtends, the third

term is the probability of a source neutron

being oriented in velocity so as to intersect dS if

source

piA^e

/EEtfPro?

ffc/MT 4S

Fig. (1-7)
♦Some time after completion of this work it came to the author's attention that
the variational treatment of the albedo problem in the case treated in para
graph {7-J){ZtJ <<1) had been suggested by G. W. Stuart (Nuc. Sci. Eng. 2
617* 19i>7) • ~
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it remains uncollided, and the fourth term is the non-collision probability.

Writing ^i = cose,'Eq, (29-1} can be:'simplified to .' }

1

j(*) » / e"*^ G(p) dxi (30-7)
o

G(u) is normalized on the y\-interval (-1, +1). The corresponding collision

density at the receptor plane is given by

1

0(x) =-aJ& - f .-*& <ty) Si (31-7)
o

For isotropy G(u) = —, and

00

J(x) =| / e^xp= |e2(x) (32a-7)

00

0(x) =| / e"ixf s |Ei(x) (32b-7)
1

00

where 5=jx~ . The En-functions,defined by / e~?X — =E(x), have been
i J

studied extensively; a tabulation and bibliography are given in reference C53.

For a cosine distribution G(u) = |u| , and

00

i(x) . y e-& MSe3(x) (35a.7)
1

QO

0(x) -J e"*X 5§ 2e2(x) <3Sbml)
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9. With these preliminaries established we shall now derive the

variational expression for the albedo. The analogue of Eq. (19-7) for a

semi-infinite reflecting medium located to the right of the plane x = 0 is

co

I (1 -8) =(l -c) / 0(x) dx (34-7)
o

where 0(x) is the collision density. The flux to the left of the plane

x =0 is taken spatially uniform, and of unit magnitude. The integral

transport equation corresponding to Eq. (20-7) is

oo

0(x)=| / 0(x')El(|x -x'|)dx' +|e2(x) (35.7)
o

The inhomogeneous term, the density of first collisions, is proportional to

E2(x), as follows from Eq. (33b-7). The factor of | is to normalize the
incident current, j(o), to the value ^,rather than |as follows from
Eq. (33W)°

If we integrate Eq. (35-7) over x we obtain after rearrangement

00 00

d-0) / 0(x)dx -J-§ / E2(x)0(x)dx (36-7)
o o

Here we have made use of the following properties of the E -functions
n

En(0) =^J' En{co) =0 07a-7)

En(x)dx -i-En+1(x) (37b.7)
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to show that

CO

I^lx -x'|)dx «2-Bg(x') (38-7)
o

Thus from Eq. (36-7) and Eq. (34-7) we can write

co

8-2C / E2(x)0(x)dx (38-7)
o

A functional which is stationary for the solution of Eq. (35-7) is

oo co

[0] =| / dx / dx' 0(x)E1(|x -x'|)0(x')
0 o

00 CO

02(x)dx + / 0(x)Eo(x)dx (40-7)
o o

Finally the stationary value of J is

00

[<?*] -| / 0*(x)E2(x)dx (41-7)
o

where 0 solves Eq. (35-7). Combining Eqs. (4l-7) and (39-7) gives a varia

tional expression for 9 whose error is of second order in the error in the

trial function for 0, viz.:

8-4CJ [0] (42a-7)
CD 00 00

0 0

dx' flxjE^lx - x«|)0(x»)

00

+ 4C j 0(x)E2(x)dx
0

(42b-7)
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10. If C is not too small, suitable trial functions are suggested by the

spherical harmonics approximations to the linear Boltzmann equation (D57b).

These solutions are always of the form of sums of negative exponentials.

In order to evaluate the integrals in Eq. (42b-7) explicitly we will first

of all need to know the integral

oo. co

3^,^) =/ dx j dx' e-kx-k'x' E;L(|x -x'|) (43-7)
O 0

We can write ^f(k,k") as

<F(k,k') =J(k,k') +#(k',k) (44-7)

where
co

^(k,k») = j dx j dx- e-kx-k'x' Ei(x .x.) (45a-7)
o o

X 00

dx I to'e-kx-k,x' / f e"$(*-x*> (45b-7)
CO 00 X

& t ,..-(k+^x f B-(k'-I)x' „v,

o

J dx .-<**>* J (45c-7)

oo oo r 1

- / -x&YJ / -* e-(k+^x-e-(k+k')x (45d-7)
1 o

00

— I1 i dS v-M1'*^ (45e-7)+ *' J KFT3T k(k + k«) we-r;k + k'

1

The second integral which we need is
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00 00 00

1 E2(x)e"kx dx = f dx e'1" /
0 o 1

d-s -rx

CO

( /(k+T)

k - in(l + k)
k2

(46a-7)

(46b-7)

(46c-7)

11. Let us now consider a trial function of the form suggested by dif

fusion theory. According to diffusion theory

0(x) =Ae"^ (47a-7)

where

?f * y3(l -c) (47b-7)

The constant A can be determined from the condition that the partial current

into the medium be i ; but we shall not do this, but instead choose A to

make & stationary in accordance with Eq. (42a-7). As it happens, the

difference is very small where this trial function is expected to be valid.

In principle the same procedure can be used for If, but it becomes tedious,

and We shall see in practice unnecessary.

From Eqs. (47a-7), (46c-7), (45e-7), and (42b-7) one finds that

8 =- M()() A2 +2N(-»p A (48a-7)
where

MM =2C • Y- CHl +X) (l£b-7)
' X2

and

NW „aC . "T- Ml *T) (Wc-7)
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The value of Awhich makes $ stationary is ||
of 8 is

The corresponding value

8 =
N2

mot, (49-7>

A similar result applies for the case of a P,-approximation to the
3

Boltzmann equation, in which case

~^X0 =A1 e + A2 e
7£x

(50-7)

The values of^ and )f2 depend only on the medium, and are the positive roots

of the equation

9ft -[35 +55(1 -c)J*2 +105(1 -C) =0 (51-7)

These roots have been tabulated by Davison (D57b). The values of k. and A

are again chosen to make o stationary. The final result is

MQfjJN2^) +M(^2)N2(?f;L) +2Q(?CL,>r2)N(yC1)N(^)
M(X!)M(Y2) -Q2(7C1,T2)

8 =

where M and N are defined in Eq. (48-7) and

2C

ZiKx'V
\+\[

Mi+r-t) Mi+X>)
C i_ + c £-

^ to

(52-7)

(53-7)

12. The results expressed in Eq. (48-7) or Eq. (52-7) are only useful

when diffusion theory of P -theory are at least approximately true, i.e., if

C is not too small. In the opposite extreme of very small C we can obtain a

very useful expression for the albedo by considering only the neutrons which

escape the medium after one collision. As in Eq. (35-7) the density of
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first collisions is -? Ep(x). Since the scattering is isotropic, the reflected

current originating from first collision at x is given by Eq. (32a-7).

But the reflected current is j- ; thus

oo

S=C^ E2(x) dx (54a-7)
o

•c / ^/v"1/! *""* <^-7>
o 1 1

CO

1

dv

2
V

OD

/
1

du 1

2 u + v
u

00

dv u - yfn(l + vl

(54c-7)

(54d-7)

=C•|(1 -in2) (54e-7)

The transition from step (c) to step (d) employed the partial fractions

expansion

1 11 + 1 (55-7)
2 2 2 2

U (u + v) U V V U V (u + v)

The logarthmic integral in step (d) can be done by parts. Equation (54e-7)

always underestimates.8 as is clear from its definition.

13. Presented in Table (2-7) are values of the albedo calculated in

several different ways for three different values of C. It follows from

these results, in the.first place, that the variational results for the dif

fusion theory and P, trial functions never differ by more than 0.20. Thus
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Table (2-7). Albedo of a Half Space

Method C =0.7 C = 0.5 C - 0.3

First Collision - Eq. (54e-7)

Diffusion Theory

P, Approximation
3

Variational-Diffusion Theory Trial Function O.256O
- Eq. (49-7)

Variational-Pj Trial Function
- Eq. (52-7;

0.1432 0.1022 0.06137

0.2252 0.1010 Oo01723

0.2443 0.1370 -

O.2560 0.1461 0.07413

O.2565 0.1464 0.07423

the P, trial function will then give nearly exact results, while the diffusion
3

theory trial function will give results accurate to the order of tenths of

a percent. In the second place, neither diffusion theory nor the P, ap

proximation will give very accurate results except for 1 - C •*•*- 1. Their

respective errors are -140 and -50 at C = 0.7 and -450 and -7$ at C = 0.5.

As a matter of fact for C as high as 0.95 the error in the diffusion theoretic

albedo is already -10. Thirdly, it appears that the variational result

approaches the exact result from below. Plotted in Fig. (2-7) is the albedo

calculated with the variational method with a diffusion theory trial function,

with ordinary diffusion theory, and with the one collision approximation.

The variational calculation was carried out for C 2 0.3 and graphically

extrapolated to C = 0, using the slope and value at the origin given by

Eq. (5^e-7)» Also included in the figure is a curve for C ? 0.5 marked

"P,-approximation." It is based on the two points in Table (2-7) and a

graphical extrapolation in the direction of C =1. Its absolute accuracy is

not great and it is only meant to indicate what a considerable improvement
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one can make passing from diffusion theory to the P, approximation.
3

Table (3-7) shows a comparison between the complementary albedo, 1 - o,

derived from Eq. (3-7), and that calculated from the variational method

with a diffusion theory trial function. The error in Eq. (3-7) in the limit

X —* oo is less than about 10 for all C.

14. Let us now consider small X . Let us first note that the varia

tional expression (27-7) is exact in the limits C = 0 or C = 1. In the

limit C = 1, Eq. (3-7) is also exact. In the limit C = 0, Eq. (27-7) gives

i. P for the complementary albedo, and Eq. (£-7) gives the same thing except

that P is replaced by Wigner's rational approximation fcf Eq. (4-7) noting

that for comparison with Eq. (27-7) the unit of length must be chosen as the

total mean free path!] Thus for C=1, Eq. (3-7) is exact, and for C=0
it is an underestimate, the amount being given in Fig. (2-6). Given in

Table (4-7) are values of 1-8calculated from Eq. (27-7) and Eq. (3-7) for

Table (3-7). Error in Eq. (3-7) When X -»oo

l - h

0 Errorc Approximate Exact

0 1.0000 1.0000 00
0.1 0.9771 0^2770* 00
0.2 0.9514 0.9525* - 0.110
0.3 0.9221 0.9259 - 0.410
0.4 0.8881 0.8931 - 0.570
0.5 0.8479 0.8539 - 0.700
0.6 0.7999, 0.8058 - 0.850
0.7 0.7566/

A.6J15
0.7440 - 1.000

0.8 0.6587 - 1.130
0.9 0.5165 0.5183 - 0.340
1.0 0.0000 0.0000 00

♦Graphical estimate.
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for cylinders withy^ = 1, 2 for all C. The error in these two examples is

always about the same as it is when C = 0, except when 1 - C is quite small.

Table (4-7). Error in Eq. (3-7) Wheni =1,2

i-1 X == 2

c Eq. (27-7), Eq. (3-7) 0 Error Eq. (27-7) Eq. (3-7) 0 Error

1,0 0 0 00 0 0 0*

0.8 0.1761 0.1530 -150 O.3098 0.2478 -250

0.6 O.3147 0.2665 -180 0.5055 0.3998 -260

0.4 0.4265 0.3579 -19* 0.6405 0.5104 -250

0.2 0.5187 0.4346 -190 0.7390 O.5966 -240

0.0 0.5960 0.5000 -190 0.8143 0.66$7 -220

Since Eq. (3-7) is nearly correct in the line center, where much of the

resonance absorption takes place, the error in I will not be as large as

the error in 1 - S. It is possible to calculate this error exactly in the

case C = 0 (pure absorption), since in this case we must compare the

integral

I =E 1 X ' Pdu = / cr Pdu (56-7)
Nij a J a

> Lhwith the corresponding one when P is replaced by the ratXoM/m1'approximation.

But integral (56-7) is the same as integral (11-6) vjfjp"we set cf = <f =0.
s p

According to Table (1-6) the approximate value of the integral is 10.60 lower

than the exact value. Finally, it should be remarked that the error induced

by the use of Eq. (3-7) is largest when C = 0, for the wings give the largest
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relative contribution for a purely absorbing line. The reason for this is as

follows: When %t X <^ 1, the flux in the lump is nearly flat. If we keep

Lt constant but increase the proportion of scattering, the flux will be

flattened by the increased diffusion but the relative change cannot be much.

In the center of the line where 2. X >> l the flux falls very steeply and an

increase in the proportion of scattering will cause the greatest relative change

there.

15. The last thing we will consider in this chapter is absorption in lumps

composed of a chemical compound or mixture of a resonance absorber which alone

may be treated in the infinite-mass-absorber approximation, and a non-resonant

moderating material. E.g., let us consider absorption by a lump of U0 embedded

in a block of graphite in a resonance which in pure U metal may be correctly

treated in the infinite-mass-absorber approximation. Let us furthermore assume

that the resonance is narrow in the sense of Chapter 6 with respect to collisions

in the graphite or oxygen. It is difficult to solve this problem directly, but

we can get some information by the arguments given below. Let us denote the

macroscopic cross section of the oxygen by X and define <T = H /N . Let us
m m nr a

divide the neutrons which make collisions in the lump in the vicinity of the

resonance energy according to whether their last moderating collision was in the

graphite or the oxygen. First, consider neutrons which made their last moderat

ing collision in the graphite, and let their contribution to the integrated

effective cross section (effective resonance integral) by I . Then

1 ti

where ^ is calculated assuming the oxygen does not moderate, and I is calculated
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by counting only absorptions on the first resonance energy collision. Now

consider neutrons which have made their last moderating collision in the oxygen;

let their contribution to the effective resonance integral be Ip. Then

T2 - X2 -X2 (58~7)

where Ip is calculated assuming no leakage from the lump and I is calculated
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counting only absorptions on the first resonance energy collision.

The sum I" + I" can easily be calculated by the methods of Chapter 6,

e.g., the analogue of Eq. (5-6) is

z*V1! +*B> "/£m[l -P<£t'J I: dU + /V<£t>** (59-7)

The total cross section L., includes the moderator cross section iL , as well
t m

as the absorber resonance absorption, resonance scattering, and potential

scattering cross sections. If we employ the rational approximation for the

escape probability, Eq. (59-7) can be written

b"1 +d^ f d-(bcr)j.-' + r- = E . / §__£ du (6o_?)
b /d"+cr+ (be )

J a s p

where b = 1 + (2. H) and d" is the sum of the moderator cross section and

the potential scattering cross section of the absorber, i.e., d* + d" . The
' pa m

integral in Eq. (60-7) is identical with that of Eq. (7-6), and the results

of Chapters 6 and 4 apply mutatis mutandis.

I' can also be calculated as in Chapter 6, for by hypothesis the only

way neutrons can leave the resonance is by absorption or moderation by (f .
m

Thus

or

*& = [ *m' _ a . ^ (61-7)
a ^m

m a - (62-7)
cT + d*
a m



109

r
IJ has exactly the same form as Eq. (11-4) with 7 = 0 and d" = 6 — . Hence

d p m P

again the results of Chapter 4 apply mutatis mutandis.

I' is precisely the quantity considered in this chapter, except that

we must generalize d~ to 6" + d" instead of C as was its meaning in the
p pa m pa

first part of this chapter. 7 is again defined as in Eq. (10-4).

As a practical illustration of these inequalities let us consider the

rn
case of a purely absorbing resonance, i.e., — « 1 and 7=0. Then

I = I, + I_ obeys the inequality

%f <b -H'M* - Dj +\ r J(«>e f ) '- 1

r»
d*

1+ f.
p -

6- |-J(^,pb) (58-7)
v o

In case J(£,0) ^ J(oo,0) this equation can be written ^.

y^r +g)1/2, i(f, ^^ l^is/ (59.7)
For sufficiently large b both sides of Eq. (59-7) are asymptotic to/b .



CHAPTER 8. THE STATISTICAL ESTIMATION OF RESONANCE ABSORPTION

1. In paragraph (l6-l) the problem of resonance absorption was divided

into three parts0 The first part, dealing with resonance absorption in re

solved s-wave resonances, was treated in Chapters % 4, 5, 6, and 7. The

second part, which will be dealt with in this chapter, is concerned with

estimating resonance absorption in the unresolved, but nonoverlapping, s-wave

resonances. The first problem we shall consider along these lines is the

case of infinite dilution in homogeneous media (cr —>co), or equivalently

the case of heterogeneous absorption in very small lumps (b —•>co), e.g.,

thin foils. In both these cases the effective resonance integral of a

single resonance is given by the formula

1 - f^ e2 ^-8)
o

The contribution to the total resonance integral, I*, from all the resonances

of the same spin and parity in a small energy interval dE about E is then
o

*?••£- («S.\ ^ (2-8)'A (°°r'>
where Dj is the average spacing of levels of the given spin and parity. The

braces denote an average to be taken with respect to the statistical dis

tribution of the reaction widths. The total contribution to the resonance

integral from resonances above some cutoff energy E is then

00

E

110
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It has been assumed that in the energy range of significant absorption no

change in D_ need be considered. The important energy range usually does not

extend beyond several tens of kilovolts, so that this assumption is justified.

We can write Eq. (3-8) in a somewhat more explicit form by using Eq. (5a-4)

for d~, and using a chi-squared distribution for the distribution of reduced

neutron widths, and choosing F constant for all resonances. For the sake

_ , also

conventionally called the reduced neutron width, and defined by

p = P E* ' . By reference to Eq. (17-2) for s-waves we can see that /V is1n n o J * \ i / n

2
proportional to y with an energy independent factor of proportionality.

P is anticipated to be energy independent and to be distributed in a chi-
n

squared distribution of one degree of freedom, viz.:

o o (2< \1/2 f P°n A <HP°HP° -f ~—" exp[ - —4- —S- (4-8)n n{<o; \2<oJ <?:>
With these preliminaries Eq. (3-8) can be rewritten as

/IToo # op / —%

*-H &/ £ •f- / « r- P 7^ (5"8)
4-

E*

J*<rl> rl
p°

2 E n
If we employ the variables of integration y = =r and w = , and

<>n>
define the parameter B = ——' ' , we can interchange the V and E integra-

tions and write '
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CO 00

J J J y (y +v)
(6-8)

where

P(w)dw = (23tw)_1/2 e"W/2 dw (7-8)

The y-integration can be carried out using the partial fractions expansion

If B\

The result is

I = rt<roD:

w

B

oo

w w

2 J2 _,2/ B,\y By B(y +-J

2-in (l +^
P(w)dw .2L_ V w

U

(8-8)

(9-8)

2. The evaluation of the integral in Eq. (9-8) is relatively difficult

and a rough result can be obtained by choosing a delta function distribution

around w = 1 (the mean of distribution 7-8). This procedure gives immediately

I* -*<r* i •B--Ml +B)
o D,

J B

This result was previously obtained by the author (D55a) and used by him as

the basis of a rough systematics of resonance integrals. The value of the

integral I in Eq. (9-8) was calculated by Kuhn and Dresner (K58); it is

their method we now describe.

3« If B >> 1 we can obtain an asymptotic expansion for the integral

in Eq. (9-8). First we can rewrite

(10-8)
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(2)o vwy

oo oo

=(ajT1/2 B"1 / e-V2 wl/2 dw .(2n;l/2 B-2 ^ fV) if .-w/2 y
o

00

+(2,)-1/2B-2 / J'* e"»/2 Jn (f

CO

5/2 dw

-(2«)-1/2 b-2 / w^/2 e"V/2 £A+|\dv (n_8)
o

It can easily be shown that

oo

l w1/* e"V/2 dw =2/2~r(f) -(2«)1/2 (l2a-8)
o

00

/* w5/2 e"W/2 dw =4/i r(|) -3(2«)1/2 (12b_8)
o

00

w3/2 e-w/2 in ^j dv =̂ ^ p' ^ =(2jt)l/2 (8 .3c +6Jn2) (l2c.8)

Here I is the gamma function, C is the Euler-Mascheroni constant (= 0.577 2l6 ...),

and the prime denotes differentiation of the gamma function. Using Eq. (12-8)

the first three terms in Eq. (11-8) may be evaluated. To evaluate the last

term we proceed as followsi
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Maclaurin's series for any function can be written

U k , „x u+1f(x). n tM (0) 2L +f(u+D (0x) _*— (l>8)
k=o ki (u + i):

If for f(x) it happens that |f(k) (x) |*| f(k) (o) | and that f(k) (x) is of one
sign for all x> , then the error in using only the first n terms of

Eq. (13-8) is less than the term neglected in magnitude, and of the same

sign. For f(x) =in (l +|),.;...• f(k) (x) =(-)k+1(k -l).'(x +B)"k,
which does fulfill the stated conditions. Hence

oo 00

f wV2 a""/2 Jb (l ♦ f) d. -I vV2 .-/* £_ (_,*ljj dv (1W8)
o o

^^.(r1.^ d4b-8)
k(i;

=(2«)1/2 £ (.}k+l (2k +3).'.' (lW8)
k=l kBK

where the double factorial is'derived by x.' = x(x - 2)(x - 4)...2 or 1,

and the error is less than the (u + 1) term of the series (i.e., the first

term neglected). The series (l4c-8) is asymptotic, since for any value of

B it is clear that the terms first decrease but ultimately begin to increase.

Combining all these results we obtain for the integral in Eq. (9-8) the

asymptotic series

B k=l k BK+2
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4. If B <<• 1 a power series for I* in powers of /b can be derived

as follows:

2 w
First let us rewrite I' using the variable co defined by cJ = — . Then

B

-m
1/2

OO

2 4 Q /1 + k)cE - <a Jh
-;/

B 2

e dcJ (16-8)

The limiting value of the quantity in the curly braces as co —»oo is — , so

it, by itself, is not integrable. If we add and subtract — to it we can

then write I' as

-&*?!>' dO

I¥)
1/2

co

1 2 4 r 1 +

«o

i "I*2' e d6J (17-3)

-2The quantity in the curly braces, y (dj), now vanishes like &J as co—» oo

and is integrable. Hence we can integrate the second term in Eq. (17-8) by

parts. It can readily be verified by

fQ(co )dO = i j +(}jn ii« u
to

-£ jn/iia!)-^ +̂ +|
«o

5 10 5
arctan &J (18-8)

Now using the formula of partial integration in the form
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B 2

y> (O)e * do)
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co CO

d / /rv)dv.
co

B 2

2tt

oo oo oo

fay>o(a))dW- B / we doj / ^Q(v)dv

iO

we can write for I' the result:

1 1 1 3 oo

doJ.O.e

B, 2
2*

f-^f^W -^-f -ctan^
CO

(l9a-8)

(19b-8)

(20-8)

This procedure can be repeated by adding and subtracting ^to the curly
bracket in the last integral. The details are tedious and similar to those

presented. The result ie

1 i i 3
I..i-USE B2 +IB.i2«}!B2+...

14
(21-8)

It is of interest to note that the integrated term in Eq. (l9b-8),
oo

/ fQ(0)dW, is just what one would obtain by setting B=0in the integral

in Eq. (17-8). It is clearly an overestimate in magnitude. Hence, the

error in using Eq. (21-8) is less than the first even order term neglected.

In both Eq. (21-8) and Eq. (15-8) one can improve the magnitude of the
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error by at least a factor of two, and often by much more by adding half

the first term ordinarily neglected. This procedure has the disadvantage

of rendering the sign of the error unknown.

Using Eq. (21-8), Eq. (15-8), and three numerical integrations of

Eq. (l6-8) near B = 1, the curve of Fig. (1-8) was calculated for the ratio

of Eq. (9-8) to Eq. (10-8). As one can see, the correction to Eq. (10-8)

introduced by the statistical fluctuations of the neutron width is never

more than 300, so that Eq. (10-8) is suitable for rough estimation.

5. The infinite dilution case is the only case in which the integration

over energy and the average over the distribution of neutron widths can be

carried out explicitly. In all other cases we shall indicate how to obtain

results for the effective absorption cross section (corresponding to E Al* ),
0 L E

and rely on a numerical integration to obtain the effective resonance integral

(corresponding to I*). Our main problem in calculating these cross sections

will be averaging the function J(£,3) over the distribution of neutron

widths.

In finding the average of a function f(x, y), a very useful approximate

formula is

<f(x,y)) =f( (x) ,(y> )+|var(x) f^\
V9x / (x) ,(y)

+|var(y)/^f] (22-8)
I* k) ><*)

This formula can be derived by expanding ofy(x,y) in a Taylor's series

around (x) , /y> , and dropping all but the first two nonvanishing
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terms. In calculating (j(£>P)/ we shall use Eq. (22-8); however, we

shall not use the obvious variables £ and 0, but rather the variables £~

-1/2
and p ' . As we shall see immediately below, J(£,p) varies roughly

linearly with these variables over considerable ranges and this will tend

to make the second derivatives in Eq. (22-8) small. Then the series of

which Eq. (22-8) is the first two terms will converge rapidly.

If £^< 1, />(4,0)» p*v ££2, and|^ >^1, J(|,p) is given ap
proximately by Eq. (55-4) which, excepting the very slowly varying square

root term, indicates a £~ dependence on £. On the other hand, if any of

the inequalities above has its sense reversed in the £-dependence of J dis

appears, and again the curvature of J in the variable £~ disappears. In

the transition region between these behaviors there is some curvature of

J in the variable £~ but it is small if £ *<• 1 as we shall presently see.

Let us now consider the P-dependence of J. If £ << 1, ^"(1,0)

>^ 6p -yy i ,and =^- >^1, Jis again given by Eq. (55-4). On alog
J-log p plot, such as is given by Figs. (1-4) and (2-4),this equation

gives the slope of log Jas -~ \Xn |g£ - R^^. it IiM.Hence, if /~g- j is not

too large the slope will be near -— . For example, if *£- ~ 7, the

1 -1/4 -1/2
slope is ^ - r . The curve p ' when plotted vs P ' for p < <• 1, looks

like /x plotted vs x for x >?1. The latter function varies linearly

with x over quite large ranges of x for large x. A scrutiny of the log J-log

P plot for small P substantiates these considerations by revealing a strong

similarity in shape between j(0.1, p), for example, and J(co,p), which latter

function is proportional to —~ in this range. Furthermore, from Table (1-4)
ft
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it is possible to find linear relations between J(0.1,p) and j(oo,(5), which

hold quite accurately over considerable ranges of p. One such example is

given below. The slope and value are correct at the point k = 10, and have

been obtained from Table (1-4). Such linear laws imply a linear relation

between J and over quite large ranges of p.
/p

k =A2(105 p) 8 9 10 11 12

J(0.1,P) 46.47 37-81 30.45 23.67 17.30

1.301 J(oo,p) + 9.907 50.51 38.75 30.45 24.59 20.41

In the foregoing discussion we have added another condition, viz., p <<. 1.

This condition implies high, narrow resonances and is always fulfilled in

the situations where this analysis is intended to apply.
o

If either £>>lor6p^'6 £ J takes the value appropriate to the

natural line shape, and if p <<. 1 is proportional to -E. . Finally, if
r— /ft

£ ** 1, 6p >? £,and |j~ *< 1, the P-dependence of Jis proportional

to - ; however, in the cases where this occurs the corresponding term in

Eq. (22-8) will be small. Consequently, the use of the variable -E. ±s

justified in all cases.

6. Equation (22-8) can now be written in the form

<J(*,P)>« J({*,P») +|/^> *o\ ,Vl &2J
9(r1)2

£*,p*

2

|*,p*
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-1 • (i-1) • and

/t

It will now be shown that:

jo) -a +*)Jh°*/2™ (J\
5°> (1 +B)'

2B
7 2B

B/2 (1 - B)Erfc

yF/
'1 + B eB'2 Erfc B

p

f) - (1 +B) - rt /2B B/2 _ _1 - 2 / — e ' Erfc

B I /zB -B/22y+ y~e x.

(24a-8)

(24b-8)

(24c-8)

(24d-8)

Case (i) Eq. (24a-8)

, r fa) Vf »^rT fa) /I+i; fa) ^'+>;
fa) ^

2 = 6 . w + B
;o* 1 + B

Hence:

oo

(2*w)

= (1 + B)

A

-1/2 e-w/2 1_±_B
,» + B)

2_
«B

00

>-B/2 1

i + y2

(25-8)

dw (26a-8)

dy (26b-8)

The second line follows from the substitution w = By . The integral in

Eq. (26b-8) is the same as the integral denoted by F(a) in connection with

Eq. (14-6). It has been evaluated in Eq. (17-6); employing this equation

and Eq. (26b-8) one readily obtains Eq. (24-8).



Case (ii) Eg. (24b-8)

Proceeding as before we have

co
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(2*w)
•1/2 -w/2 /l + B

dw

(1 +B)2 IT

If we denote by G(a) the integral

oo

G(a) =

^o

we can immediately write

w + B>

oo

e-B/2 y
ti 2v2
(1 + y )

2 2
-a z

(i ♦ *¥
dz

ao(a)

d(a2)
G(a) = - F(a) = -| ea Erfc(a); G(0) =

(27a-8)

(27b-8)

(28-8)

4"
(29-8)

where F(a) is again given by Eq. (17-6) and defined in the text following

Eq. (14-6). The solution to the system (29-8) is

2
r

r

2

G(a) = e
4"- 2

Erfc(/3c) dx (30-8)

The integral in Eq. (50-8) can be written in terms of tabulated functions

as follows: First changing the order of integration we obtain:



a a

ErfC$5?) dx =

o o

=— / dy e~y
/*"

2_

r*

oo

dx E / e-y dy
r*

^
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2
dx + %

r«

(31a-8)

oo a

2 r
dy e"y / dx (31b-8)

a o

dy y2 e"y + a Erfc(a) (31c-8)

By partial integration we can show

E y2 e~y dy =J Erf(a) -— ae
^ V^

(32-8)

Collecting the results of Eqs. (32-8), (31c-8), (30-8), (28-8), and (27b-8)

yields Eq. (24b-8).

Case (iii) Eq. (24c-8)

By definition

cr r c /r°> 7^+ r /r°) A"w +̂
P

p J p_ \ n/ Y 21 \ n / Y y. q w + B

4**2 Pn "4k*2 (p^ J? ' ,((P°n) &+ r)"P° '̂ ^^
(33-8)

Hence:

00

1/2 -w/2(anr)"4-'* e w(l + B)

w + B

1/2
dw (34-8)

Equation (24c-8) follows immediately from the substitution w + B = 2y .
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Case (iv) Eq. (24d-8)

Proceeding as before we have

oo

(fo) . f (anr)-V* .•*/* *±±*1 av (35^,

[E~ f 2 -B/2 y2
- 2(1 +B) 2H / y/ 2 «y (35b-8)

v/ i+ y
o

2
if we set By = w. But

00 oo o°
2 -aV /• 2 2

2 2— dy = / e"a y dy - F(a) (36a-8)
1 + y

/« rt 2

g-fea Erfc(a) (36V8)

Combining Eqs. (36-8) and (35b-8,0 one obtains Eq. (24d-8).
J2 j . 2

Using Eqs. (24-8) the quantities \-f//\^/ - 1and
/P\ l/[fi0\2 '
\p/ /Vp / "1haVe bSea calculated and are plotted in Fig. (2-8); the

quantitiesW g^y and (t~)are plotted in Fig. (3-8).

7- Next we turn our attention to the calculation of the second

derivatives. We restrict ourselves to the case in which | is small and

P is not very much less than |- . This is the only case which will arise

in practice,, If |jp ^^1, then differentiation of Eq. (55-4) immediately
yields
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* r H§)^

i a2j
I g(|-l)2

If, on the other hand f— <£ 1, one can differentiate the power series
dp

(56d-4) to obtain

co

23

(37a-8)

(37b-8)

a(P_x/c)
%tt-*£ (-)k /*TT (2k +1) (*&)* (38a-8)

oo

It is again possible to extend the radius of convergence of these series

by the analytic continuation technique described in connection with Eqs.

(56d-4) in Eqs. (57-to 59-4). The B-coefficients for Eq. (38a-8) are

B = 1
o \ = 0.13725

B1 = - 4.24263 B5 = 0.04750

B2 = 4o4l762 \" O.02228

B = - 0.92213
3 V

- 0.01218

nts for Eq. (38b-8) are

B = 0
0 B4 = - 0.07763

B = - 1.41421
V

- 0.02814

B = 2.04989 B6 = - O.OI366

B_ = - 0.43601
3 V

-.0.00770

(39a-8)

(39b-8)
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Using Eqs. (37-^ 38- and 39-8) the second derivatives have been plotted in

Figs. (;V8) and (>8). The left hand side of the solid curve was obtained

with the power series, and the right hand side of the solid curve with

Eqs. (37-8). A graphical interpolation (dashed curve) was then performed

between them. Since Eq. (37-8) is not accurate unless |^ >>1 the lack of
2p

agreement of the dashed and full curves for 4 < ^~ <- 10 is understandable.
I— 2P -

8. In the case |g- <«- 1above it is possible to use Eq. (70-4) for
J(£,p). It follows then from Eqs. (25-8), (33-8), and (7-8) .that

00 T
— - —

3{l>&) = / (2*w) 2e 2- -dw (40a-8)
OA . v + B . /*" t w + B2Po w(l +B) +J 2 ' *o TT1

00 T/_ 1 w

(2itw) 2e 2 £ dw (40b-8)
(w + B)(w + 9)

o

-1 1 ^o^
where 9 = — • —— . Using a partial fraction expansion of the integrand,

72 *po

we can write at once

oo

<J(^> "*0 •fff•j <">*
W r -

Lw^B-wT-e|dw ^-8)
o

2
e w

But these integrals are the same as those of case (iv) of paragraph (6-8).

Hence, from these results we immediately obtain

/j(i,p)) =gs- ed +B) m-zMii {k2a_Q)
\ ' wo 9 - B

where M(5) =1-§ If- e2 Erfc fJg J (42b-8)
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The results of the last three paragraphs permit the averaging of the

function J(£,P) over the distribution of widths, and allow the calculation

of the effective absorption cross section in all cases previously discussed,

except that of Eq. (77-4). It yet remains to average the difference of the

first and third terms. This difference can be written, when generalized

to include heterogeneous media also,

j(oo,Pb)
1 + bp

1+bp -£
*| (bP) b - y

(43-8)

The approximate equality depends on the assumption pb « 1. If b = y = 1,

the right hand side of Eq. (43-8) becomes singular; even the non-singular

left hand side becomes equal to the infinite dilution value. However, this

situation never arises. In homogeneous media, b = 1, 7 is usually small,

as indicated in paragraph (17-4). On the other hand, in heterogeneous

media, when 7 can equal unity, b is usually a good bit larger than unity.

We shall therefore consider the case in which £ is at least somewhat less
b

than unity. In such case

1

§ (Pb)

T 'n
Now p cC — and 7 OC —-

'n

can be written

f Ob)

1 =5 (3b)" 2
* 2 _ 3

lZ+3z_ + 57 + (44-8)

Thus p = P and the average of Eq. (44-8)

=5 (P b)
2 vlo '

o

2b

16 V

3y\

8b

(1*5-8)
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To complete the evaluation of Eq. (45-8) it is necessary to calculate

' n+l/2\
the quantities ( n+l/g / * Wov

7o /

=̂ ag /n=Sag (Pn> &" (1 +B)v<S Sj n cT SJ ^ ^v +̂ "7o w+Br'lT^-f'ir 6.T /»;, 7 - r„ ' Ae^^ (W-8)
7

Hence

1 w r ^ n+1/2
7~'~'~ \ _ / f^E 2 _' 2•n+V2\ /• . .-= - 5 rv(1 + B)n

w+B Jr71
(2jtw)

B °°, B 2

dw (47a-8)

The second line follows from the substitution w + B = By . Expanding the

binomial we can write

where co

1

By partial integration we can easily show that

\(a.)=.ea I e"0^ •y-2k .dy (49a-8)

(2k + 1)N (a) = 1 - 2a N (a) (50-8)
'k+r~7 ~ "* "k

Finally,

No(a) -l yf e°Erfc (A) (51-7)



CHAPTER 9. NUMERICAL CALCULATIONS

1. In the previous eight chapters a complete theory of resonance ab

sorption has been developed in two extreme approximations, viz.: the narrow

resonance approximation and the infinite-mass-absorber (wide resonance) ap

proximation. The first of these extreme approximations corresponds to a

small mass absorber, so that neutrons in a single collision with an absorber

atom can jump entirely over an absorbing resonance. A simple condition for

the validity of this approximation has been stated by Wigner (W55) in terms

of a parameter of the resonance called the practical width, A . The practical

width is defined as the energy interval between the two points at which the

resonance cross section (absorption plus scattering) equals the potential

scattering cross section. Wigner's definition properly applies to large

lumps (b ^l), and for smaller lumps the replacement of CT by bo" should

be made, as previously noted. The practical width A is a measure of the

interval over which appreciable flux depression takes place. E.g., if we

consider a narrow resonance with no interference term (i.e., 7=0) and

bp £.<C 1 half the absorption takes place inside the practical width and half

outside for the natural line shape. The half that occurs outside is equal

to almost 80$ of the absorption contributed by this part of the resonance

line in the infinite dilution case, while the half which occurs inside

equals a fraction - /ib" (<< l) of tne corresponding quantity in the

infinite dilution case. Hence, if the average energy loss per collision in

the absorber, £E , is very much greater than A, the narrow resonance ap

proximation will apply.

2. Let us next consider a resonance in which £E << A, and for the

moment in which -& << 1 (absorption resonance). As we shall see next for

128
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such a resonance the wide resonance (infinite mass) approximation is valid.

Let us follow the life history of a neutron which is absorbed in the

resonance but outside of the practical width. For the natural line shape

and b somewhat larger than unity such absorption in the wide resonance ap

proximation is again about 50# of the total absorption, and about 8o£ of

the corresponding quantity in the infinite dilution case. A neutron entering

the resonance in the wings cannot enter the line center by elastic collision

with absorber nuclei since £E«:.A. Indeed the contribution of neutrons

moderated by the absorber into the line center to the total absorption is

qV = iE$V, where q is the slowing down density associated with a flux Gf

in an infinite medium of absorber material. The contribution of this process

to the resonance integral is then only £<5"~ which is of the order of 0.1 b in

IT and Th . Hence neutrons which enter the wings simply diffuse in the

lump with small amounts of energy loss. In the wings in the neighborhood of

the practical width, A is the order of magnitude of energy change required

to produce appreciable change in the resonance absorption cross section.

If |E<-^-Aand the neutrons do not make too many collisions in the lump the

cross sections they experience do not change much and their spatial distribu

tion can be accurately calculated by one velocity transport theory.

Concerning the last point, viz., the average number of collisions a neu

tron makes in the lump, one can say the following: It can be shown [cf Ap

pendix (1-9)J thatinone velocity transport theory the average number of col

lisions made by neutrons which are inci"denton a lump, collide in it, and

leak out again is given by

C /d<S'
(») =rV I (-9)
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where C is the average number of secondaries per collision, S is the albedo,

and 8=1- Xp, where P is the escape probability. Again we have used units

in which the total mean free path is unity. If & is given by Eq. (22-7),

which is appropriate outside the practical width, then for pure scattering

(C-l)

<n> = i (2-9)

For small lumps this number is fairly small; e.g., for cylinders for which

X = 1 (b = 2) <n> = 1.67-

In the center of the line neutrons incident on the lump through the

surface are absorbed on their first collision and hence one velocity transport

theory is permissible (and trivial) for calculating their spatial distribu

tion. Hence, for not too small (b > 2), purely absorbing (-~ « 1J lumps,

for a resonance for which £E << A the wide resonance formula should be

applicable.

P
n ^^

3. If we now relax the condition -=- 1 of the last paragraph and

keep everything else the same we can proceed as follows:

By the same arguments as in the last paragraph we can show (i) that

the absorption of neutrons moderated into the practical width by the absorber

nuclei is very small and (ii) that one-velocity transport theory is applicable

outside the practical width. However, some of the neutrons which are incident

on the lump with energies near the line center undergo more than one collision

in the lump, and the moderation which occurs after the first collision will

change the cross section relevant to the second collision unless £E << ',

which is, practically speaking, a condition never realized. However, as we

Pn
shall next show, even for rather large —- the error introduced due to this

moderation is small.
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First note that deep inside the practical width where the cross section

changes most rapidly C - -*• , and is independent of energy. Further note that

deep inside the practical width the surface of the lump can be treated as a

plane surface. Let us choose for the sake of argument C = 0.3 and roughly

calculate effect of moderation by the absorber on the amount of absorption as

follows: In the first place, only 30# of the incident neutrons make more than

one collision. As shown in Appendix (1=9) in one velocity transport theory

the average number of collisions made by neutrons which leak out is 1„20 for

C = 0.3. We shall therefore assume that all the leakage occurs between the

first and second collisions. This procedure is admittedly rough but it

allows us to assess the importance of moderation by the absorber. In the

one velocity case, the actual absorption is given by Eq« (52~7) by 92»59#,

and in the one-collision-leakage approximation as 93.86$. These two figures

are sufficiently close to justify our approximate procedure.

If moderation occurs on the first collision the first collision albedo

is given by

CD

%=C / E_(x) E0frx) dx
2' >9)

where ^is the ratio of the cross section at the lower energy to that at

the higher energy. By an exactly similar technique to that used in con

nection with Eq. (54a-7) we can show that

S<?) - §
2

El— .I1 +g J log(1 +j) +j!0g r
(4-9)
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It is very important to note that in the line center the line shape is

symmetric, so that while a certain number of neutrons are moderated from an

energy at which the cross section is 0£, say, to an energy at which the

cross section is oc on the first collision, an equal number are_^moderated from

0 to 07. Hence, we must compare S(f »l) with - 6(f) +o( f
last quantity is concave upwards when plotted vs f it always exceeds

8(f = 1). For moderation in which the cross section changes by a factor

of 2 (f = 2), the absorption in the one-collision-leakage approximation is

89.31$, or about 5$ less than if no moderation occurred at all. In the case

for C =0.5 it is about 9$ lower. If the cross section changes by a factor

of 5 the corresponding percentages are 2$ and 3$, respectively. In addition,

it must be remembered that these errors really affect only the half of the

absorption occurring inside the practical width, and, moreover, that if the

change in cross section is a factor of 2, say, near the line center, it will

be less far from it. Finally, the Doppler broadening of resonance lines tends

to smooth out the line shape and decrease the cross section change in a given

energy interval compared to the natural line shape. In sum, if £EQ <<£ A
p

but^P and -pp is . not too large we expect the wide resonance ap

proximation to be valid.

Finally, in order to apply the criterion developed in the previous

paragraphs explicit expressions are necessary for A. For the natural line

shape, it can easily be shown that

Since this

*-r-^F (5"9)
A

This expression is only applicable if in the neighborhood of x^=- the

natural line shape applies, and if p <*•! this will only be the case if
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,2
>> 1, or equivalently, £b « (l + 7) |- . On the other hand, in the

case of the extreme Doppler broadened line shape, Eq.(35-4), is given by

r-fAdi (6-9)
4. Presented in the first two columns of Table (1-9) are- the energies

and neutron widths of the resolved resonances of XT^ as reported by Hughes and

Schwartz(H57a). The third column is the ratio — and is based on the assump

tion of a constant radiative width, P , of 25 mv. A constant radiative width

is indicated in the work of Porter and Thomas (P56), and the numerical value

of 25 mv is taken from Hughes and Schwartz(457a). The fourth column, p, is

based on a value of cf of 10.75 barns, as recommended by Seth($56c). The

fifth column, £, is based on an absolute temperature of about 300°K

(kT = 0.025 ev).
>2

In the first column of Table (2-9) is the parameter 4^=- , and in the
£E bpb

second column the parameter -g-0- .A was calculated with either Eq. -(5-9)

or Eq. (6-9) according as the entry in the first column was greater or less

than unity. In the next three columns are values of the resonance integral

calculated for b=4/^ =0.33cm /gm\ and kT =0.025 ev, according to
(i) the narrow resonance approximation including interference effects,

Eq.(71-4), (ii:) the narrow resonance approximation without interference

effects, Eq.(42-4) and (iii) the wide resonance approximation. For b = 4

and -n-t: 0.5 approximation (ii) will vary from approximation (iii) by from

-17$ for — = 0.5 to +13$ for -p = 0. This is a fortunate circumstance

because in cases in which neither of these extreme approximations is strictly
|EQ

applicable (i.e., when -^— ~ 1) one may conjecture that neither of them can

be in very great error.
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Table (1-9). Parameters of Resolved Resonances in Uranium

P7 m25 mv
cr = 10.75

kT = 0.025
1) f 18 ev

b

ev

EQ (ev) Pn (mv) V
r r = p x yy h

6.68 1,48 0.05589 49.43 0.4998

21.0 9.0 0.2647 32.80 0.3620

36.8 33 O.569O 26.74 0.4664

66.3 23 0.4792 57.21 0.2876

81.1 2.1 0.07749 432.8 0.1468

90 0.09 0.003587 10370 0.1290

103 72 0.7423 57.36 0.4663

117 17 0.4048 119.5 0.1894

146 0.8 0.03101 1947 0.1042

166 2.8 0.1007 681.7 0.1053

191 138 0.8466 93.32 0.5754

211 41 O.6212 140.4 0.2217

239 35 0.5833 169.4 0.1894

258 1-3 0.04942 2159 0,07989

278 40 O.6154 186.8 0.1902

297 40 0.6154 199.6 0.i84o
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Table (2-9). Effective Resonance Integrals for Resolved
Uranium Resonances for b = 4

kT - .0258 kT = .Q25b kT = .025° kT • 0* kT = 0b kT = 0C

*Va r/6(bp) I (barns) I (barns) I .(barns) I (barns) I (barns) I (barns)

0.09422 21.06 5.921 5.882 5.175 5-725 5.686 5.036
0.1879 16.65 2.362 2.286 2.228 2.297 2.220 2.166

0.1743 33.90 1.551 1.439 1.721 1.515 1.403 I.671
0.5550 6.024 0.6107 0.5757 0.6461 0.5674 0.5324 0.5913
1.299 0.2075 0.2746 0.2731 0.2252 0.1598 0,1582 0.1414
00* 0.01512 0.03940- 0.03940- O.03673 0.02913 0.02912 0.02525

0.4272 15.80 0.3915 0.3544 O.5181 0.3793 0.3422 0.4899
1.618 1.251 0.2777 O.2662 0.2852 0.2202 0.2088 0.2206
6.003 0.02324 O.08728 0.08712 O.07874 0.04162 0.04146 0.3635
2.382 O.06775 0.1332 0.1325 O.II73 O.O6236 O.06160 0.05559
0.6014 14.78 O.1690 O.1507 0.2642 O.I63O 0.1447 0.2473
2.012 1.459 0.1416 0.1321 0.1752 0.1162 0.1068 O.1334
1.768 0.8823 0.1225 O.II55 0.1462 0.09284 O.08580 O.IO35

0D 0.01232 0.04939 0.04927 0.04532 0.02242 0.02228 0.01968
1.939 O.8069 0.1019 0.09582 0.1261 0.07639 O.07026 0,08723
2.033 0.7067 0.09433 O.08879 0.1170 0.06917 O.06362 O.07898

12.33 11.97 11.90 11.53 11.17 11,43

♦Infinite dilution value = 0.04523.

♦♦Infinite dilution value = O.O758I.

a. Narrow, including interference.

b. Narrow, no interference.

c. Wide.
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For the most important resonances, i.e., those at 6.68, 21.0, and 36.8 ev,

however, the wide resonance approximation is surely preferable, for in none of

*Eothese cases does -r— exceed 20^6. These three resonances alone contribute about

75$ of the total absorption of the resolved resonances. In addition to the

three approximations mentioned above let us define a fourth, the preferred

approximation, which consists of selecting one of the first three according as
|E .2

the parameters —r— and Tgr are ^ 1. For b =4 and kT = 0,025 ev the preferred

approximation gives 11.85 b. To this figure several approximate corrections

need to be applied: In the case of wide resonances two errors arise, one due

to the fact that Eq. (3-7) does not give quite the right albedo in the wings for

small lumps cf, paragraph (l4-7) and one due to approximating the integral in

Eq» (7-7) by neglecting cf cf. paragraph (5-7)J « For b = 4 these corrections

combined increase ly by roughly 8$, according to Table (1-7) and the discus

sion following Eq, (56-7)« For narrow resonances an error is introduced by the

use of Wigner's rational approximation for the escape probability cf. paragraph

(8-9) ff. land according to Table (1-6) increases I by about 7$« If we apply

a uniform 7° 5$ correction the preferred approximation we obtain a value for the

resonance integral of the resolved resonances of 12.7 barns.

Insofar as the calculational uncertainties in this, figure are concerned

very little can be said. The main error arises from the inapplicability of one

of the extreme approximations (wide or narrow). Let us first consider the

resonances at 6,68, 21.0, and 36.8 ev. For these resonances, especially the

first two for which —- is small, we expect the wide resonance approximation to

be quite good. Some corroboration of this point is available from some calcula

tions of Comgold and Chemick on uranium water lattices. Comgold(£56*0)
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considered an alternating lattice of thin slabs of uranium and light water,

with uranium slabs corresponding to a parameter, b, of about 3. He carried

out exact calculations of absorption in the uranium resonances by solving the

Boltzmann equation for the case A = co and A = 238. Comparison of these cases

showed the former in error by +yf> for the 36.8 ev resonance, and +0.5$ for the

20,9 ev resonance. No calculation is reported for the 6,68 ev resonance, but we

*Eo ^n
may infer from the above figures a negligible errors since —g- and ~n~ are

smallest for this lowest resonance. In the higher resonances which Comgold con-

£E
sidered, in which -j— is always about 0,6 or greater, the error in the A = 00

case ranged as high as 25$ but fluctuated in sign, A Monte Carlo calculation

reported by Chernick (C?6) on the 36.8 ev resonance in uranium, in a lattice

of cylindrical rods with b = 2, indicated an error in the infinite mass ap

proximation of about +1$. In this connection it is worth noting that, although

the statistical accuracy of I is estimated at about 3$, Richtmyer(R56a) has pointed

out that differential effects such as we are concerned with may be obtained with

higher accuracy than I itself.

All the resonances below 300 ev except the first three contribute only

2,9 barns, and as much as 20$ error in this part would produce an error the

total of I of about 0,6 barns, which is less than 5#» Actually 20$ error is

a rather high figure, for since the errors in the contributions of individual

resonances fluctuate in sign considerable cancellation can be expected. Such

cancellation occurs in Corngold's calculation.

Similar calculations for b=8 (— =0.76 cm /gmi are presented in

Table(3-9). Quite a similar discussion applies to these results as to the

results of Table (2-9). The preferred approximation gives l8„5 barns for I
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without correction; after a correction of about 9$ for the effects previously

discussed, I becomes 20.1 bams.

5. In order to complete the calculation of the resonance integral of

uranium for b = 4 and 8 an estimate must be made of the contributions from the

unresolved resonances above 300 ev. These resonances are described in terms of

the following parameters: An average spacing, D., of 1.8 ev, a reduced neutron

width, P° , of 2.5 mv and a radiative width, 1 , of 25 mv. These data are

consistent with the resonance parameters reported in reference H57a for the

resolved uranium resonances. The effective absorption cross section has been

calculated according to the narrow resonance approximation, and Interference

effects have been neglected. This Is in view of the fact that the parameters

i2 *Eo
>3r- and -r— are less than, and greater than unity, respectively, when evaluated

at the point (|*,P*) |* and p* are defined in Eq. (23-8n . These calculations

have been carried out at 300 ev, 1500 ev, 7500 ev, and 37*500 ev. At the first

three points the averaging of J(|,p) over the distribution of neutron widths

was accomplished with Eq, (23-8). At the last point Eq. (42-8) was used.

Presented in Table (4-9) are the results of these calculations. Since the

tabular entries are at constant intervals in MiE we can use the "three-eighths"

rule of Newton to find the contribution of this energy range to the resonance

integral. These figures are written directly below their respective columns.

To them one must now apply the correction factors previously discussed, ob

taining for the corrected contribution to the resonance integral, 3«4 b and 4.6 b,

respectively, for b - 4 and 8.

Presented in Table (5-9) are the values of J(£*,P*b), /j(|,Pb)^ and

J(£ >$ b) employed in the computation of the effective absorption cross
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Table (4-9). Effective Absorption Cross Section of
Uranium Lumps for b = 4, 8

b = 4 b = 8

E (ev) «f 0.) °a eff (b)

300 1.302 1.943

1500 0.8642 1.160

7500 0.4269 0.4922

37500 0.1017 0.1075

3.185 4.229
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Table (5-9)« Effect of Fluctuations on the Resonance Absorption
in Uranium for b = 4 and 8

b - 4 b = 8

E j(|*,P*b) <J(«,Pb)>» j(!0,e0b) J(£*,p*b) <j(*,eb)> J(*o'Pob>

300 24.33 21.80 24.25 18061 16,27 18,91

1500 17.12 14.47 15.96 10,82 9.715 11,51

7500 7.493 7.148 7.466 3.97.3 4.121 4,518

37500 - 1.703 2.144 - 0»8995 1,131
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section. Comparison of the first two quantities found in columns 2 and 3,

and 5 and 6 of the table is an index of the rapidity of the convergence of

the procedure employed in performing the average over the distribution of

neutron widths. The second order terms in Eq. (23-8) are never more than

about 20$ of the leading term, and for most entries in the table are con

siderably less, indicating good convergence. Comparison of the last two

quantities, found in columns 3 and 4, and 5 and 6 of Table (5-9)* indicate

that the effect of fluctuations in the neutron width is to reduce the

effective absorption cross section. The resultant reduction in the resonance

integral from the energy range 300-37500 ev is about 9$ for b = 4 and 14$

for b = 8.

6. A simple estimate of the remaining contribution from energies

above 37500 ev can be made by ignoring the effects of fluctuations entirely.

This neglect will be valid if B <*• 1 and 0 ->y 1. For the first require

ment says that P <<\P y and that P/ Pis nearly unity except with

very low probability. The second requirement says that J is given by

Eq, .(70-4) and that the term in £ is very small compared to the term in p.

It can then be straightforwardly shown that

oo oo

/s^-i/^^-t'^K) (7-9)
"E P 'H

c Kc

Evaluating this quantity in the case E = 37500 for b = 4 and 8 (and

replacing p by bp) one obtains additional contributions to the resonance

integral of 0.14 b in both cases.
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Finally then, the calculated total resonance integrals for uranium for

b = 4 and 8, respectively, are 16.2 b and 24,8 b. Because most of this

absorption is due to wide levels aJt -1 law of geometric dependence

ought to be good. This proves to be the case; the expression 9.36 Jh - 1

fits the calculated points at b = 4 and 8 exactly. Since b - 1 is

proportional to S/M a /b -1 law of geometric dependence implies a

dependence on S/M proportional to /s/M . In particular, the expression

9.36 y b - 1 gives for the resonance integral of uranium lumps in barns

I=28.4/|~ (8-9)
when S/M is expressed in cm /gm. Equation (8-9) is only valid in the range

4 £ b± 8 and perhaps slightly outside this range; this range corresponds
2 2to a range in S/M of 0.33 cm /gm 1 S/M< O.76 cm /gm.

7. Precisely similar calculations have been performed for Th * for

b = 4 and 8, and are summarized in Tables (6-9), (7-9), (8-9), and (9-9).

After correction by the 7»5# and 9°h previously mentioned in connection with

uranium lumps the preferred approximation gives for the resonance integral

11.5 and 17.2 barns for b = 4 and 8, respectively. These last figures contain

0.18 b from energies above 37500 ev, in addition to the contributions already

noted in the tables. The expression

I=18'6 /l (9-9)
fits -ttie two calculated points within 1$, which is well within the uncertainties

of the "calculation. Concerning these uncertainties we can only anticipate

that they are somewhat larger than in the case of uranium. In that latter
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Table (7-9). Effective Resonance Integrals for Resolved
Thorium Resonances for b = 4

«2/6pb *E0/A kT = 0.025a kT = 0.025b kT = 0.025°

2.770 0.4767 1.464 1.454 1.254

4.654 0.3818 I.683 1.662 1.489

O.9158 0.9059 0.5534 0.5465 0.4882

11.93 0.4099 O.7630 O.7087 O.8588

0.6450 1.289 0.3133 0.3062 0.2939

2.130 1.831 0.3305 0.3132 0.3545

0.5508 1.409 0.2713 0.2649 0.2575

0.6116 1.495 0.2395 0.2323 0.2359

4.845 1.014 0.2284 0.2090 0.2966

0.9921 1.608 0.1890 0.1796 O.2087

0.4479 I.782 0.1765 0.1705 0.1645

O.03365 4.200 O.O965I 0.09611 0.08602

2.144 2.327 0.1595 0.1500 O.1870

0.01543 00 0.06229 0.06213 O.05607

1.320 2.356 0.1368 0.1277 O.1690

O.3185 2.140 0.1300 0.1255 0.1371

1.235 2.592 0.1168 O.IO87 0.1494

3.088 1.695 0.1055 0.09582 0.1154

a. Narrow resonances with interference.

b. Narrow resonances with no interference.
c. Wide resonances.
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Table (8-9). Effective Resonance Integrals for Resolved
Thorium Resonance for b = 8

|2/6pb *VA kT = 0.025a kT = 0.025b kT - 0.025°

1.385 0.6741 2.193 2.I86 2.078

2.327 0.5399 2.490 2.475 2.415

0.4579 1.027 0.8524 0.84760 0.8333

5.965 0.5797 1.066 1.030 1.373

0.3225 1.475 0.4829 0.4780 0.5044

1.065 2.589 0.4904 0.4788 0.6005

0.2754 1.622 0.4177 0.4133 0.4412

O.3858 1,712 0.3675 O.3626 0.4038

2.423 1.434 0.3227 0.3100 0.4843

O.4961 1.554 0.2856 0.2793 O.3561

0.2390 2.064 0.2697 O.2656 0.3090

O.OI683 00 0.1266 0.1263 0.1232

1.072 3.291 0,2381 0.2317 0.3190

0.007715 00 0.07511 0.07500 0.07206

0.6600 0.2029 O.2023 O.1963 0.2854

0.1593 2.532 0.1971 0.1941 0.2301

0.6175 2,148 0.1724 0.1671 0.2508

1.544 2,397 0.1495 0.1432 O.1835

a. Narrow resonances with interference.

b. Narrow resonances with no interference.

c. Wide resonances i •
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Table (9-9)• Effective Absorption Cross Sections
of Thorium Lumps for b » 4 and 8

E (ev) °*ff(b)
a v ' «r 0.)
b=4 b=8

300 1.602 2.355

1500 1.082 1.440

7500 0.4973 0.5478

37500 0.1135 O.1360
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case fully 60# of the resonance absorption was contributed by only three

resonances, for which the wide resonance approximation was anticipated to

be quite good. In thorium this is not the case.

8. Presented in Tables (10-9) and (11-9) are comparisons of Eqs. (8-9)

and (9-9) with experimentally determined resonance integrals. As is apparent

from Table (10-9) agreement among the various experiments for uranium is

only fair. In the table the formulae of Creutz (C55b), Risser (R50), Sher

(S57)> Davis (D57)> and Eriksen (E55a) have not been evaluated beyond

S/M = 0,40 cm /gm, since this limit is well outside the range of these experi

ments. It is apparent that a linear dependence on S/M predicts a too rapid

rise in I for large values of S/M. The experiments of Davis (D57) and

Eriksen (E55a) should be ignored in a comparison of theory and experiment

because of the apparent presence of systematic errors. Davis"(D57) experi

ment gives results ^ 20-30$ higher than the first five experiments noted

in thr table; Eriksen's (E55a) experiment is /^20# too high. The agreement

of Egiazarov's (E55) results and Hellstrand's (H57) is always within 8$ or

less, the former lying lower than the latter. Hellstrand (H57) quotes an error

of +2$ in his formula, not including errors in I to which the results were
— CO

normalized. Agreement of the theory and Hellstrand"s (H57) experiment is

within 5$ in the range 0,30^ S/M ±. 1.00. At low values of S/M the extrapolated

theoretical values will be underestimates, since there the extrapolation tends

to weight the wide resonances too strongly. For better values another calcula

tion should be attempted. In sum, in the range of applicability of the

calculations carried out here, the theory predicts the resonance integral of

uranium rods quite well.



Table (10-9). Comparison of Theory and Experiment for Uranium Rods

Reference

Resonance Integral

(barns)

Creutz (C55b) 8.5+27-M^

Risser (R50) 8.4+28.o(|J

Egiazarov (E55) 5-85+21.5[5
1/2

Hellstrand (H57) 2.8l+2U-.7[S
,V2

Sher (S57,S57a) 0.1+53.5(7;
1/2

Davis (D57)

Eriksen (E55a)

Theory

6.o{l+l5.6|
[1-2.18 §+2.19(|)2jj
9.6+51.9(5

28 A
f/2

(I)

Approximate
Range of S =0_1Q

Calibration Experiments M

I = 0.05-0.15
00 2
280 barns* cm /gm

11.2

| =0.25 | =0.UO
M M

15-1*

| =0.55 | =0.70 | =0.85 | =1.00
M M M M

A=8.4 barns* 0.02-0.15 11-2 15A

19-5

19.6

17.4 19.8

18.4 21.1

21.5

* * 0A0-U.8 10.6

I
00

280 barns

0.07-0.55 10.6

Unknown 0.18-0.22 10.7

1U.6

15.2

16.9

Unknown 0.1-0.55 15.5 19-8 25-9

I (ln15)= 0.02-0.15
00

5200 bams*

00

285 barns***

12.8 17.6 22.4

9.0 11*. 2 18.0

21.8

25.5

21.1 25.8

25.7

25.6

25.h

27-5

26.2 28. k

*These data have been renormalized to the most recent cross section data by Hellstrand (H57)- The original data of Risser were based on a
"volume" absorption term of 9.0 barns as measured by Hughes and Goldstein (HM>). This measurement is based on certain assumed values for the
indium cross sections and the thermal U^38 cross sections. When renormalized to recent values of these data the "volume" term is &.k barns.

**Renormalized by E. P. Wigner, BNL (455)-C2l+, September, 1956.
♦♦♦Iq-, = 285 barns for the resonance parameters employed in this calculation (including an estimate of the contribution of the unresolved

resonances by the methods of Chapter 8).



Table (11-9). Comparison of Theory and Experiment for Thorium Rods

Reference

Resonance Integral

(barns)

TT^Dayton and Pettus I=-0.6+24.l/^)
(D57a) W

Davis (D57) I=6.1lll+5.0 |jl-0.87C|J J] Unknown
1/2

Sher (S57,S57a) 1=2.2^+17.^(jO

Theory I=l8.6|©
W

Approximate

Calibration Extents I=0"10 |=°-5° f=°^° f=°-70 |=0.90 §=1.10 §=1.30

o. (B)=769b 0.1-1.3^-
th gm

0.1-0.5

rJO.k

7-0„

9.1,.

5.8„

12.6

14.6

11.6

10.2

16. h

18.06

ik.k

13.2

19.6 22.5 2k.7 26.9

15-6 17.6 19.5 21.2

OD
P
(0
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In the case of thorium rods the situation is not nearly so good. Only

one experiment, that of Dayton and Pettus (D57a) spans a large range of S/M.

In the entire range 0.3 5 S/M 51.3 the measurements are larger than the

calculated results by /v25#° The cause of this discrepancy is not understood.

One can, however, offer a plausible reason why some doubt concerning the

experiment may exist. By comparing the results of calculation in the narrow

and wide resonance approximations one sees that for the rod sizes corresponding

to the range b ^ 4 the resonance integral does not depend significantly on

the approximation employed. For the resolved resonances in uranium, for example,

the sums of columns 4 and 5 of Table (2-9) are essentially equal, and a similar

condlusion holds for thorium in Table (7-9). One might then assume that this

independence of the approximation made to describe the moderation holds as

well for the oxides of uranium and thorium. In such a case, the effective

resonance integral of the oxides could be obtained from those of the metals

in the narrow resonance approximation, according to the first rule of para

graph (6-6). Hellstrand (H57) has measured the effective resonance of both

uranium metal and oxide. The resonance integral of the oxide calculated

from that measured for the metal according to the rule of paragraph (6-6)

agreed within 5$ with those directly measured in the range 0.25 - S/Mf 1.00

cm /gm (corresponding to 3.3 -b ± 10.2). As expected the error vanished near

b = 4. Dayton and Pettus have measured the effective resonance integrals of

thorium and thorium oxide. The resonance integral obtained for the oxide

from that of the metal by the method of paragraph (6-6) exceeded the directly

measured one by 20-30$ in the range 0.5 5 S/M <1.3(5±b5 11.4), although
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agreement was good for S/M = 0.3 (b = 3.4), This poor agreement raises a

doubt which could be settled by further measurements on Th,

APPENDIX (1=9)

The current leaving any lump of material irradiated on the surface by

an infinite isotropic spatially uniform source producing unit inward current
co

can be written as 8 = S\ &> °C , where S is the excident current of neutrons
•*—• n n
n=o

which have experienced n collisions for a purely scattering lump. This form

follows from the obvious fact that the absorption probability, 1-C,'is

independent of position in the lump. Then

(1-9.1)

where <^n)> is the average number of collisions made by neutrons which collide

in the lump and leak out again. S is the current, of neutrons which escape

collision in the lump, and is clearly given by 1 -^P, since ^P is the first

collision rate in units where the lump total mean f->*ee path is unity. For

an infinite lump (Z-*oo), o —»Q„ By definition, o is the lump albedo.



CHAPTER 10. THE EFFECT OF FLUCTUATIONS IN THE WIDTHS ON

REACTION CROSS SECTIONS

1. In the previous chapters the problem of resonance absorption in the

s-wave resonances of the absorbing material was considered. In treating this

problem the simplifying assumption was made that only scattering and radiative

capture of neutrons by the absorber are possible. However, the effects of

flux depression by the absorber and the associated effects of the Doppler

broadening of resonance lines, as well as effects introduced by the spatial

distribution of the absorber, were carefully taken into account. At high

energies, usually of the order of 100 kev or more, the problem of resonance

absorption is peculiarly inverted. Resonance cross sections fall sufficiently

low so that flux depression effects and their attendant difficulties become

unimportant while the effects of other reactions, e.g., inelastic scattering

and fission, and higher angular momenta become important. In the remainder

of this work emphasis will be placed on the calculation of resonance integrals

with spatial and flux depression effects ignored. This problem is really the

same as the problem of calculation of reaction cross sections averaged over

many resonances in a small energy band. Since the flux in the 100-kev range

and above is generally not a slowing down flux f-g] , the total resonance

integral depends on the form chosen for the flux. Hence, in the remainder of

this work we shall calculate only average reaction cross sections as functions

of energy.

2. It has been pointed out in Chapter 2 that average reaction cross

sections in both the asl and ajl representations are proportional to sums, each

term of which contains an average squared S-matrix element, whose form is

given in Eq. (8-2). In order to conduct an analysis of experimental data the

149
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properties of such averages must be studied, and rapid means of evaluating

them acquired. It is the purpose of this chapter to accomplish this

desideratum.

If we restrict ourselves to situations in which fission is unlikely,

then for the heavy elements only elastic and inelastic scattering and radiative

capture need be considered. In such a case the only widths which appear in

Eq, (8-2) are neutron and radiative widths. According to the results of

Porter and Thomas (P56) the neutron widths are statistically distributed in

chi-squared distributions of one degree of freedom, while the radiative

widths are essentially constant. Frequently, in the expressions for total

reaction cross sections averages of the type appearing in Eq, (8-2) occur in

which one of the neutron widths must be considered as having two degrees of

freedom. Such a situation arises as follows;

In schematic theories of nuclear reactions (H57, F54 ) the assumption

is frequently made that the average reduced neutron widths are independent

of channel spin, s. If this is the case and if the reduced widths for dif

ferent channel spins are statistically independent Eq, (10-2) for B (a,a')
o

can be written

B(a,a') -i £ §5- & £ _-_^__».™«L„™_- __2* (i_io)
0 4 J=0 DJjt i=0 JL'=0 EL €. (i "I"«";Jsr) F i

jTl'V a

Here £(i;I "it ;Jk) is the symbol of Hauser and Feshbach, and equals the number

of channel spins which can combine with orbital angular momentum J?, target

spin and parity I and jr , to form a compound state of spin J and parity it.

For neutrons g can only equal 0, 1, or 2. From the addition theorem for
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the member distributions of the chi-squared family ( C56a ) it follows that

gf7 imay be interpreted as a random variable with mean £/F A and € degrees

of freedom. We shall therefore be interested in the averages of quantities

like PJ1t/(f18 +Pt +PT +—) where P, P%, P^ etc. are independently dis
tributed in member distributions of the chi-squared family with 1, 2, or

infinitely many degrees of freedom, (infinitely many degrees of freedom

corresponds to a delta function distribution.) In the next part of this

paper we shall evaluate explicitly in terms of tabulated functions averages

in which there are three or fewer widths. Table (1-10) summarizes the cases

done.

Table (1-10)

r. rt fr

1 1 absent, 1, 2, oo

1 2 absent, 1, 2, oo

2 2 absent, 1, 2, oo

1 00 absent, 1, 2

2 co absent, 1, 2

The entries in the table represent the number of degrees of freedom in the

distribution of the corresponding width. We can find the averages of expres

sions like P2/(P + P. + P)from the identity:
S S o I*

,2

o=i^E>EE4-^)E-^> (-,
\s t r/ \ s t r/ \ s t r/
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Reduction of the Multiple Integrals

In general, the averages will be represented by multiple integrals, one

integration for each random variable (width) present. For widths distributed

in the chi-squared distributions an artifice exists for reducing these

multiple integrals to a single integral. The result is general, but we prove

it only in detail for the case of three widths.

A normalized chi-squared distribution with 2o (= y) degrees of freedom

is

P(x,yo) =j^y (pxf1 e~PX (3-10)
where P(p) is a gamma function. If we let a =(P ) then

\ od oo oo

st )= / dx / dx+ / dx

XP(x ,p )P(x ,pJP(x ,o ) gXs '&t t (4-10)
a x + a, xx + a x
s s t t r r

If we now set

ax + a,_x^ + a x
s s t t r r

o

oo

-\(a x +a x +a x )dX e s s t t r r (5_1Q)

in the right hand side of Eq. (5-10) and interchange the order of integration

so that the X-integration is last, the x-integrations are independent, and

easily carried out. The result after some simple rearrangement, is
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/Vt \ ? / *.V<V1}
-Vt ' /1 +n + p< + p / B * J V />B

^ s 't r/ " x
o

+(1+>d (1+^rJ * (6-10)
When a given ok approaches co, the corresponding bracket in Eq. (6-10) ap-

proaches e .For convenience we shall express our results in terms of the

ratio R, defined by

/r/1 \ a + a, + a

V + P. + /• / aa+\s t r/ s t

4. Let us first consider the two-width cases, i.e., those in which

P is absent.
' r

Case (i): p% =pt -|

According to Eqs. (6-10) and (7-10) we can write

co

R=(as +at) / (1 +2X.as)'5/2(l +2X.at)"3/2 dX (8-10)

If we set u = 2 • /a a •Xwe obtain for R the expression

oo

IZ • / (u2 +2pyu +l)"5/2 6xx (9-10)
a + a,

R = —5.

2 /a a.
— s \ °

1 / /* /^t~ Iwhere P=£( /a^ +/a~ /' Ifwe change the variable of integration to ^

defined by ji +p=(p2 - l)1/2(l - sY^'2, the integral in Eq. (9-10)
becomes

'•A
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<

".2 ~~ p + 1
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Vp

Combining Eq. (9-10) and (10-10) it is easy to show that

a + a

R = S t • (11-10)
(fE +J^y

Case (li); pB -\,f>t ~1

In this case

oo

R = (a + a.
^ s t

) / (1 +2ag\)"5/2(l +atX)"2 dX (12-10)

2 2as
If we define the auxiliary parameter r = - 1 and change the variable

at
2 2

of integration to B , defined by 1 + 2a X = r tan 9 R can be written as
s

it/2

HjK + at} 1 P . 2 2R =—£. • * .i_ / (csc^0 . 2 + sin 0) d9 (13-10)

at r J +•
arccotr

These trigonometric integrals can be performed easily, and give, after re

arrangement

R=i|_£ f^~ -3i^arctan r) (14-10)
Case (iii): p =o = 1

In this case

co

R=(aa +at) / (1 +Xag)"2(l +Xat)"2 dX (15-10)



Setting u=JEE^ Xgives

a + a.
8 t

R =

a a.
s t
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oo

(yx +2pu +l)~2 dn

where p is defined as in case (i). If we set u + p = (p - 1)£ the

integral in Eq. (16-10) can be written as

(p2 - D-J/2
p2/ -2

/ iJo 1
2 ,\2

G£

^d? = (p2 - i)-3/2 x
s2)2

(16-10)

/
1 1

+
l 1 d5 (17-10)

_(1 - Sf (1 + Xf 1-5 1 +sj

The integrals are elementary, and when carried out yield after rearrangement:

2

R =

'a. + a. ,

a - a,
s t.

Case (iv): ^ =- ,pt = oo

In this case

2a a. /a

^•rt* af
as - at V *'

co

R=(a +at) / (1 +2Xas)"3/2 e_Xat dX

(18-10)

(19-10)

If we change the variable of integration to 5 defined by c = l + 2a X,
•^ s

Eq. (19-10) becomes



a + a^
d s t s
R «= — • e
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t co

2a

at ..2
2a -„

s d*

f
(20-10)

The integral in Eq. (20-10) is just n [-£-] ,where N is defined in

Eq. (49a-7). Using Eqs. (50-7) and (51-7) It can be evaluated and gives

for R:

R

a, + a
t s i IE / t1"J* J2a~ e

v s

2a !

•Erfc

Case (v): p = 1, p = oo

In this case

R = a, + a
t s

"Xat ?
e (1 + Xa ) dX

s

If we make the substitution 5= 1 + Xa , R becomes
s

a,

a + a a

H = ^ s e s
a

s

oo

a„ ^^ a* + a as ajs t s s „
-2 a 21 a
o s \ Sy

oo

(21-10)

(22-10)

(23-10)

The E functions, defined as
n '

— e" , are tabulated in reference (C53),
z

Corresponding formulae for the three width cases are noted for reference

in Appendix (1-10) of this chapter, together with some brief description of

their manner of derivation,

5» In Figs, (1-10) and (2-10) the ratio R for the preceding two width
a a

cases is plotted vs ~ in the range 0.03 < — i 30. All of the curves have
at a at

minima in the neighborhood — = 1; the symmetric curves (those for which
at
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a

Z's "Pj haVe mlnima exactly as —• =1. For the cases plotted in Figs. (1-10)
t

and (2-10) R is always less than unity.

R cannot be less than one for all reactions, however, since the sum of

all reaction cross sections equals the cross section for compound nucleus

formation, for which R = 1 irrespective of the distribution of widths. Thus

Z&1 Arm\if we define R^ =—- (—- \ , it can easily be shown that

£ \(\a ' V =° (24-10)
k

Hence, if some of the R^ are less than unity, others must be greater. For

two width reactions we have seen that R fi 1 (and consequently R R > l)

For two widths this is a general conclusion and we can establish it as follows:

Let us consider the inequality ((Pq +X./^)2/^ +pj\> 0. By expanding
the square it can be shown easily that

a

X^ -£• R, + 2XR .+ -§• R > 0 (25-10}a tt st a, ss Kd.?-xv)
s t

Since Eq. (25-10) must be true for all real X the discriminant of the quadratic

form must not be positive. Hence

R2 i R R
st ss tt

If we define R=l+Dwe can rewrite Eq. (26-10)

(26-10)

as

"Dst +2Dst ^Dss Dtt +Dss +Dtt (2?-10)

It follows from Eq. (24-10) that

Dst = a7 Dss •T Dtt (28-10)
t s
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Combining Eqs, (27-10) and (28-10) yields

Dst ~ 2 (bss +Dtt) (29-10)

Since D and D., must have the same sign, and opposite sign to D ., it follows
SS wT> Sw

that D . is never positive, and if it vanishes so do D and D.. »
St * 88 tt

It is a general theorem that D is never negative, even when there are
SS

more than two widths. For the purpose of deriving this inequality we can

replace the sum of all the widths which appear in the total width except

those for the entrance channels by a single random and variable, [ . Then
r

from the results of the two width case

r(r + P ) \ a ,(a+ + a )
sv t r' \ . s v t r'

P + (f. + r )/ a + (a. + a ). s v t r/ s x t r'

From Eq. (30-10) we can prove that

(30-10)

a.D . + a D < 0 (31-10)
t st r sr \* i

Since, however, Eq. (24-10) in this case is written

a D + a.D . + a D =0 (32-10)
s ss t st r sr \*- i

we must have D 2-0 always.
SS

One may inquire, then, whether D , is always ^ 0? The answer is no as

we can see as follows: If P >f + V with very small probability t> . will

be very close to its value for '_ - 0 which is less than one. On the other
r

hand, if / 5 ' + ' with very small probability D , will be close to the
* r s % st

value y ) a, which is greater than oae«* These considerations indicate

*We prove this with Schwartz' inequality. If f(x) isanormalized probability
distribution,

1 = (fjteT/xM Jv^dxJ//f(x)xJ=<;x-1><c> .
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that there may be considerable enhancement of a cross section due to fluctua

tions. The appropriate circumstances may arise, for example, in the radiative

capture cross section when there is strong inelastic competition by several

excited states. The inelastic width may then greatly exceed the elastic

(entrance) and radiative (exit) widths,

6. The analytic formulae derived in the previous paragraphs suffer two

defects: (i) The effects of reaction channels competing with the entrance

and exit channels must be approximated by a single random variable with 1, 2,

or infinitely many degrees of freedom, (ii) The numerical evaluation of R

from the three width formulae is tedious and time consuming. For these

reasons the computation of R has been coded for the ORACLE-. The Monte Carlo

method was used for the computation. In this method a large number of values

of R are formed by choosing each width from its appropriate distribution, and

substituting them in Eq. (7-10). From this sample various moments of the

R-distribution can be found; in this coding the first and second moments are

calculated. The first moment is the value of R given in Eq. (7-10),

The manner of choosing random numbers from chi-squared distributions of

1 and 2 degrees of freedom is instructive and will be described briefly below.

Fundamental to these procedures is the method of choosing numbers distributed

uniformly on the interval (0,1). These numbers are generated according

to the algorithm Rq =55n mod (2 °) x2" . The success of this method is
2 p"1"2based on the theorem that if x =5 mod 8 then :. x, x , ... x are

distinct mod (2^). Thus the algorithm provides one fourth of all possible

residues mod (2^) and furthermore, since they are all powers of 5, only those

whose last two binary digits are 01. Clearly these numbers are nearly

uniformly distributed.
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Let us now consider a chi-squared distribution of 2 degrees of freedom.

According to Eq. (5-10) such a distribution is an ordinary exponential, e"x.

Random numbers may be drawn from an exponential distribution by the following

method due to Von Neumann and described by H. Kahn ( K54). Choose random

numbers, x^x^x ,..., uniformly distributed on the interval (0,1),' until

one exceeds the one before it}, i.e.,

•xQ > x± 2 x2 ... > xn < xn+1 (24-10)

Then if n is even keep x . (We define this as a success.) If not (a failure)

repeat the procedure until an even n is obtained. If the number of repetitions

(failures) is k, k + x is distributed exponentially. The proof of this is ,

as follows: The probability that x will lie between x and dx is dx. The

probability that x } .,„, x will be less than x is x11 ; the probability

that they will be ordered as in Eq. (24-10) is ~ . The probability for the
- n«

sequence (24-10) Is then

xn+1 \
.---£. . dx (25-10)
(n +1)1J

The probability of a success on the first try with x^x < x + dx is then
oo °

the sum of (25-10) over all even n, i.e., E ±rf- x dx = e ° dx. The
k""™~»---» J£ Q

=o

probability of a failure on ar.y try is
1

J (l - e ) dx = e"' . Hence, the probability of k failures and a success

° -(k + x )
with x£ x i x + dx is just e ° dx, q.e.d.

o

The usefulness of this rather oblique method is that when used in

conjunction with high speed electronic computing machinery it is very fast,



161

involving only addition, subtraction, multiplication, and logical decisions.

To choose from a chi-squared distribution of one degree of freedom the

following method, due to R. R. Coveyou, is employed, z is chosen as described

from an exponential distribution, and two random numbers u and v satisfying

2 2
the inequality u + v £ 1 are chosen from the uniform distribution. Finally,

2 2? ^ ^ ^
w1=2zu /(u + v )and w = 2zv /(u + v ) are formed. It can be shown that

w and w are statistically independent and both are drawn from chi-squared

distributions of one degree of freedom. The first time the subroutine

employed in this calculation (coded by R. R. Coveyou) is used both w and

w are calculated, and w is used as output; the second time the subroutine

is used w is used as output, and the subroutine returned to its original

form.

The code contains the subroutines just described for choosing random

numbers from chi-squared distributions of 1 or 2 degrees of freedom. This

restriction to v - 1, 2, (or oo) is not essential, however, for if it is

desired to compute averages in which one of the partial widths, P , has,
s

say, v - 3 the addition theorem for the chi-squared family can be employed

to write P either as the sum of three widths with v = 1 and mean — < P / ,
s 3 x s

P /
or two widths, one with v = 2and mean — <C P /> , and one with v = 1 and

3 s

mean —\i \ . As a matter of fact, as we have already seen, even the sub-
j s

routines used for choosing from the v = 1 and v = 2 distributions are related

by the addition theorem. Thus the code is quite general and can be used for

calculating R for widths with any v. The only restriction on the code is that

there be no more than 20 partial widths. The running time is about

(N + 2) 2 minutes, where N is the number of partial widths, and 2 is
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the number case histories (values of R) computed. Thus for 6 widths and

4096 cases, the running time is 4 minutes.

In the calculations described in the remaining chapters the numerous

calculations of R-factors were performed on the ORACLE. Sufficiently many

cases were used so that the statistical accuracy was always of the order

of 1$ or better.
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Appendix (1-10). R for the Three Width Cases

Let us first consider cases in which none Of the widths have p = oo.

Case (i): /o, -/Qt -/», -§

According to Eqs. (6-10) and (7-10) we have

co

P -2 - 1 . i
R=(afl +at +ar) / (l +2Xag) 2(l +2Xat) 2(l +2Xar) 2dX (1-10.1)

o

If we set u = 2X /a a we can rewrite R as

+ 1 1 °°
R = ? (2-10.1)

iT J0 (^ +t)(^ +i)y(/x +t)(^ +i)(^ +i)
where t =larger/ -^- , /— yand q= EL— . The integral, I, appear-

V * s/ /Vt
ing in Eq. (2-10.1) is elliptic and can be found in the tables of Byrd and

Friedman (£54). Three subcases occur:

(Case (i-i): t> | >q (B54 - 231.13)

I=2,^f/2^(^ k'2 F(0,k) + (1 +k2)E(0,k) +k2 sin0

x ™^ +±EL*l
4(0,k) cosp (3-10.1)

I/2 ' / a/2where k=(lj^qt)^fl -*) ,0=arccos /j) ,k'2 =l-k2, and
1 - k sin 0 . F and E are the incomplete elliptic integrals

of first and second kind respectively.
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Case (ii-i): t> i "» i (B54 -231.12)
. , SL £

1 = 2

t2 - l) k^'2
(1 -2k2)E(0,k) -k'2F(0,k) +k2A(0,k) tan0 (4-ld.l)

\V2where k=(t2 -̂ (t2 -l)'1/
are defined as before.

)"J"/ and 0=arccos (r) • k», A, E, and F

Case (iii-i): t>^>^ (B54.- 231.11)

5
.2

1•2 (*"fr) ~b (1 +k'2w>k) - 2k'2F(0,k) -k g^g°»?
\qt ^ k«V L 4(0,k)

where k=(t2 -l)1/2^2 -|)-1/2 and 0=arccos (^^ 2.

Case (ii) />s =/>t =|>/>r =X
In this case

co

(5-10.1)

_i
R=(a8 +at +ar) j (l +2Xag) 2(l +2Xat) 2(l +Xa^"1 dX (6-10.1)

If we again set u = 2X ya a. R becomes
8 t

00

R = §*♦*♦» }i+(^+k))l +1 (i +a^)"1 ^i (7-10.1)

where now t = /— and q=—£ . The integral in Eq. (7-10.1) can
at 2

j.

Va a,
V s t

be performed with the aid of Pierce (F29 ) No. 199, No. 162, and No. 195. The

result is:
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*+§M)
<«-*>(»-1) JI/(»-t)(,.i)
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(t +i +o-i"
log

-H**|)-/(«-*)(«-!), 1+l(t+y J

Case (iii): pa = 2 ' Pt ^ lf Pr = 2

R = (a + a. + a )
v s t r'

00

(1 + 2Xa ) 2(1 + Xa.)"2(1 + 2Xa ) 2 dX
s v r

/a a,
s „ - *- , q = -

r

if we set u = 2X /a a , t =
2 /a a

/ s r

and p=§ (t +i

(8-10.1)

(9-10.1)

R = l(t+E +qJ (u2 +(t +i) p+1) 2(1 +̂ t)"X(l +̂iq)"2 du
J o (10-10.1)

Using the partial fractions identity:

t^q -t)"2 qt(q -t)"2 ,q(q -t)"1
2 ~ '2(1 +/ut)(l + uq) 1 +^it 1 + uq (l + ^iq)

(11-10.1)

R can be written as the sum of three integrals which can be performed with

the aid of Pierce 195/ 196, and 197. The result is

R =

<1 + §M
(q " t)<

<t

*" t

t (q - 1) + l(l - 1)

t^V"1 *'* /U-t)(q-l)

f (t+i)-l-/(q-t)(7^)
(12-10.1)
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Case (iv): p^ . | , pt «l, ^ =i

CO

R=(ag +at +ar) / (l +2Xafl) 2(l +Xat)_2(l +Xa^-1 dX (13-10.1)

2a
If we set u = X /a a , t = / — , and q * —"s ' r we have

/ r w / a__ /
a a.
r t

00
3

1 n 2R =
'♦*♦§*
"?^1

a, 1 x-2(jx +-) '(y. +t)"X(p +i^ du (14-10.1)

Using the partial fractions identity:

</> ♦ ±>0> +t)(r ±)2 (t.iKi.i^.i) (i.t)(i.t)a^ +t)

(15-10.1)

R can be written as the sum of four integrals which can be performed with

Pierce 101, 114, and 119. The result is

1 + V1 - qt

2 jfilR =
t+i+i*

tqW [<* -£">< \ ~\ )2 +<I" &V-YI8

+£
t 1/1 i\" 2

2 \q t

1 +

log A- f£ 1,,. A*/1- f

ci - i )a (* - %)

_,= ( f - t - i ) log -

q t )'/c(t - f y

(16-10.1)
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Case (v): ps =1,^ =1,^=1

co

R=(ag +at +ar) j (l +Xag)"2(l +Xat)"2(l +2Xar) adX (17-10.1)

With the notation u = X ja a, , t =/— , and q =
' s Xt j a.

oo

2a

t /a a
s t

1

2

R
t +M'

AT
(/> +£ )"2(u +t)"2^ +i f 2du

v
o

Using the partial fractions identity

<f +i)(^ +t) (t -i)(/1 +i) (t -i)(^ +t)'

(t -i)%+i) (t -i)\p+t)

(18-10.1)

(19-10.1)

R can be written in terms of four integrals which can also be evaluated using

Pierce 101, 114, and 11^. The result is:

t 1 /l l\ .x\ -1/2 (1 + /l -
t

R =

t+± +fi /* •A^T
VT(t - i)1 V q t ;

i i ,1 .-1/2
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F7!
tni" t';

U?2

Case (vi): />8 -/>t -/>r - 1

00

168

^ log/

+ 2

1 + /l -

1 - /l - qt

1/2
(t - i)(i - t)

a*

R=(aB +at +ar) / (l +Xag)"2(l +Xat)~2(l +Xa^"1 dX

If we set

R =

t + — + q
t

s t

00

/a a

u = X 7aCTa+ , t = j— , and q = r we have
/a a.

v s t

-2 •-!

(u + t)~ (u + ^) fyi + -) du

Using Eq, (19-10.1) and Pierce 39 and 42 we have

R =

log(|)- 1+| log(qt) - 1+E

kt q'

Mil
t"'it

+ 2

;t - V

~)(t q'

(20-10.1)

(21-10a)

(22-10.1)

(23-10.1)

Let us next turn to cases in which one p = 00, There are seven such cases

in all; in only two can the ratio R be expressed in terms of tabulated functions.

In the remaining cases we must be content with an expansion which will, in

general, be a good representation when the radiative width (p = od ) is small
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compared to the geometric mean of the other two (neutron) widths. This latter

requirement is usually fulfilled in practice.

Case (vii): ft, «/>t -§,/>r -«

co

R =

2 -2 .Xa
(afl +at +ar) / (l +2XaJ 2(l +2XaJ 2e rdX

I l i [*~ rV IMaking the substitutions u=2X /a a ,p =- |/— + /— J} and

a a,
s t

, we can write

oo

H - (P + §)

o

3 1
,2 x" 2 " 2 ^2/ , (/a + 2pu + 1) * e ^

<y~

du

(24-10.1)

(25-10.1)

If we integrate twice by parts and add and subtract u + p to the integrand

of the resulting integral we obtain

2 co

R(p +g) = <* +-| (U +P) 1-/l --2-=-E
' \J (/1 +p)'

2 qu

1 + p • p - 1

If we expand the square root In the integral in- the powers of -E—EE
(Jt + P)-

and- integrate term-by-term we obtain the followiiig series for R: 'H

R =
a a .x/, ,-i . a ,2 2 pq

P + g q (1 + P)"-1, - te q)(l + P)_X + (± q)' e x

00 \

z n^jhuE (i ji^i
n=l (2n)i1 2n"1 2 V p ^

n-1

du

(26-10.1)

(27-10.1)
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where the E's are the E functions defined in connection with Eq. (23-10).

The double factorial notation was defined in paragraph (3-8). The convergence

2
of this series is good if q ^•*t-l or p - 1 « 1.

Case (viii): pg =- ,pt = 1, pr = oo

write

co

"• ™ f*. ""A»a

R = (a + a, +a ) / (l + 2XaJ 2(l + XaJ e r dX (28-10.1)
s t r °

o

2 /2as ar 2 2
If we set u = 1 + 2a X, t = / , q = , ... , and r = t - 1, we can

T s /a. /,->„„

/*Vt

R=t2(t2 +2+qt) e* / f gg.e * (29-10.1)
J n (^ +r )

Now

oo

2k

u2(u2 +r2)"2 =E (~f (k +1) 2(l +3) (30-10.1)
k=o Z1

Thus

CO

R=t2(t2 +2+qt) xX (")k (k +1) r2k \+5(^) (31-10.1)
k=o

where N. is defined in Eq, (49a-7)» This series converges rapidly if r << 1,

but if r > 1 and q is small it does not. This defect can be remedied as

follows:

From Eq. (50-7) it follows that

jj (2k - 2m-l%..'« , vk+l> ,k+l
it Aa) =E (-)m — (2a)m +kl (*£— n(a) (32-10.1)

K+X (2k + l).'.« (2k + 1).'.» °
m=o \ i
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Inserting this series in Eq. (31-10.1) and interchanging the order of summation

one obtains

00

R=t2(t2 +2+ qt) n <-)n m E (.)k (2*+3-2n);: (k +l)r2kl>
k=max(0,n-2) ^2k + 5^'Jn=o

|a
oo

/q) ^ (n +1) 2n /
o Vt/ ^ (2n + 5).'.' V

n=o

,n+3

(33-10.1)

The curly braces (k-series) can be summed in closed form for the various values

of n as follows: For n = 0, it follows from Eq. (30-10.1)

oo

oo
k k + 1 2k

r

^ v ' 2k + 5
k=o

6u_ =K (r -I arctan r+J ^ ) (34-10.1)2, 2 2x2 5
u (u + r ) r 2 , 2i

1 + r /

Any of the other k-series may be generated from this relation by multiplying

by an appropriate power of r and integrating. E.g., the k series for n = 1

can be obtained as follows:

co

e (-r(k +1)
k=o

r2k -3 /dr / 3 ' 1 r= r / —? [r - •§ arctan r + ^ ^
(2k + 5)(2k +1) J r^ V ^ 2 1 +.r ,

1 1 .3 + r2 ^ -1= —=r j- + **—=— tan r (35-10.1)
2r 4r _ kr"

This procedure is particularly useful when q is small and r is not, so that

only a few terms need be taken in the n-series, while many must be taken in

the k-series.

Case (ix): /Pg =pt = 1, pr = co

CD

-Xa

R = (a + a, + a )
v s t r'

-2(1 + Xa )"c(l + Xa.)'* e r dX (36-10.1)
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Substituting u =X/aa, t=/— , and q =i 'st y at / a a.
s t

oo

R=(t +\ +q) / (ji +£f"(/a +t)"2 e_<^ dp

If we make use of Eq. (19-10,1) and the equality

oo

-bx

— dx = a e E (ab)
n n(x + a)

We can write the final result:

a.

' a N 2et e /a
te*E2(* +ie^(gt). 1

W t--

we have

R =

t + - + q

(t-i)2

qt*
2e Eit 2e Ei(<lt)

t -

Case (x): p& =|,̂ -00, pr =|

co

(37-10.1)

(38-10.1)

(39-10.1)

R = (a + a.+ a );
x S t T1

•Xa

(1 + 2Xa ) 2e *(! + 2Xa ) 2 dX (40-10.1)

If we set u = 2X /a a , t * ,
/ * s r ' /a

oo

a.
r t

, and q = ———— then
a a
r s

_ 3 _ 1 _ 1

R=\ (t2 +1+qt) / (p +t)" 2(p +i)" 2e" 2V dhi

An integration by parts gives after some rearrangement

00

1

2

,♦-4 / .Wx-*"*R=\ (t2 +1+qt)
1 - t t

o
P + t.

*

(41-10.1)

(42-10.1)
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*-?Expanding the root in powers of and using Eq. (38-IO.I) one obtains
u + t

.-f (t2 ♦ 1♦ *, [^ -j *£ il^ali" vi qt, Al, ^
(43-10.1)

Case (xi): p& =- , ^ = &>> PT =1

oo

R=(as +at +ar) / (l +2Xag) 2(l +XaJ"1 e ** dX (44-10.1)
s' * r'

o

/a

Setting u =1+2agX, t= /-£ ,q= t ,r2 =2t2 *1, we can write
/ r /a a

</ s r

00 q 2J2L Z5 "It/1'
R=2(1 +t2 +qt) .e2t / eg f (45-10.1)

J p (p + r )

Now:

00 2k

k=o P

Hence:

R=2(1 +t2 +qt) E (")k r2k Nk+2 (±S (47-10.l)
k=o

Substituting Eq. (32-10.1) in Eq. (47-10.1) and interchanging the order of

summation we obtain
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OD

R = 2(1 + t + qt) £ (-)" (?)
oo

E
/_xk 2k (2k + 1 - 2n).'.'

(2k + 3)1!n=o k=max(0,n-l)

n+2oo 2n /q\

+* fe zo V2t

n=o
(2n + 3>.'' -

(48-10.1)

The k-series can be summed explicitly starting from the n = 0 k-series:

CD

oo , 2k
~ (.)* r

Av * > 2k + I
k=o

2 "1^—27 =^ (1 " - arctan r) (49-10.1)^ (u + r ) r

Case (xii): ^ = 1, ^ = oo, pr =-

00

-Xa,

R= (a + a + a ) / (l + XaJ" e *(l + 2XaJ ~ dX

2 /ar at 2If we set u = 1 + 2Xa , t = /— , q = _ •, • , and r
/ r /a / _
' y s / a a

Since

R= 4t2(l + t2 + qt)

oo

2 2x-2 v , xk ,, n x. r
+ r ) = 2± (-) (k + 1)

s r

<* -SLu2
. 2t r

IP
2 2x2

r ){ V*

2k

(r 2(k + 2)
Pk=o

00

(50-10.1)

= 2t - 1, we have:

(51-10.1)

(52-10.1)

R=4t2(l +t2 +qt) E (-)k(k +1) r2k Nk+2( SL) (53-10.1)
k=o
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Substituting Eq. (32-10.1) in Eq. (53-10.1) and interchanging the order

of summation we obtain

oo oo

L2,^2R=4t*(t* +1+qt)|E(-)" (£) <J Z (-)k(k +1) r2* (gfc +l-gn)» \
n=o ^' lk«max(0,n-l) (2k +3).*.'

vn+2

n=o
(2n + 3).'.'

(54-10.1)

The k-series can be summed explicitly starting from the n = 0 k-series

oo
ao

2k£ („)kiL±_ik
k=o a + 5

-&_ i A i— '- arctan r =-(/ +r2)2 2r2^ 1 + r

Case (xiii)
: fa'^Pt'^'Pr'1

s t r'

oo

R=(a„ +a+ +aJ / (l +Xas)'2 e &t (l +Xar)"1 dX

If we set p=Xyasar ,t= /^ ,and q= J^_ rbecomes
r

oo

a a
s r

(55-10.1)

(56-10.1)

t + qt + 1
R = 72

1 "2 1(jx +^) (u +t)--1 e"^ du (57-10.1)

Using the partial fractions expansion

(u +i)2(u + t) (t +i)(^ +i)2 (t-i)2(u +i) (t-i)V +t)
(58-10.1)
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and Eq. (38-10,l) we can write finally

2 Vt/ \2
R =

t + qt + 1

t2 - 1
t, a), *Ei(vt) +«**i(*>I- a

t2-lt - 1

(59-10.1)



CHAPTER 11. AN ANALYSIS OF NEUTRON REACTIONS IN U25^

1. In the previous chapter a formalism was developed permitting rapid

calculation of the effect of fluctuations in the widths on reaction cross

sections. With this preparation we can attempt the calculation of average

reaction cross sections. The rationale which will be adopted in this chapter

is to attempt to deduce the strength functions for the various partial waves

from experimental data.- As we shall see for lf*> some rough theoretical con

siderations together with the low energy resonance data serve to determine

the s- and d-wave strength functions. The available reaction data can then

be used to determine the p- and f-wave strength functions. As it happens,

there are enough reaction data to overdetermine the p-wave strength function,

so that agreement among the individual determinations gives the theory a

measure of absolute significance.

In order to carry out an analysis of the data it is necessary to know

the spins and parities of any states excited in the reaction. A 2+ state

has been observed(H54,D55b) at 44 kev, and states have been observed (A57>C57b)

at 146 and 306 kev. From the energy ratios it has been concluded that the

latter states are the 4+ and 6+ members of the ground state rotational band.

States have also been observed at 700 kev and above(C57a,B56) but no informa

tion is available concerning their spins and parities. For this reason only

reactions which occur with bombarding energies between 0 and 0.5 Mev will be

considered.

2. A number of further assumptions have been made which limit

the number of unknown quantities involved in the analysis. These are:

(i) P is taken constant in energy, and independent of Jit. It has

been chosen equal to 24 mv. At the time these calculations were

carried out this value was believed to be best; it agrees quite

177



178

well with the value of 25 mv used in Chapter 9, the difference

being well within experimental error,

(ii) D is taken proportional to (2J + l)" with an energy dependence
Jit

given by Lang and LeCouteur (L56). With this assumption
_ (2J + 1)D

D«=—2Y2T + l) is tne level spacing observed with X* 0 neu

trons 0 It is taken as 18 ev at zero bombarding energy.

;iii) The ratio Sj =yjnsj?//DJrt> the strength function, is taken
independent of Jit and s. We have chosen S = O.O36 which is

o

consistent with choosing f1 = 2.5 mv, D = 18 ev, and a nuclear

radius of about 9f» The assumption of Jn ,and s independence

deserves some further comment. A model for calculating the

dependence of S on Jits and has been, suggested by Wigner, Lane,

and Thomas (X55-), On their view, the interaction of the neutron

with the nucleus can be described in terms of an average potential,

a point of view adopted by other workers (F54 ) on less fundamental

grounds than those of CL55), The single particle levels of the

average potential then "share" their reduced neutron width with

nearby levels of the actual compound nucleus. The energy interval

over which this sharing is considered appreciable is taken to be

somewhat less than the separation of the single particle levels,

giving rise to the now well known "giant resonance" phenomena. If

the average potential is a spherically symmetric one with no spin

dependent terms then Sp is independent of Jit and s, and depends

only on/. It is worth noting at this point that then the

B (a,a') take exactly the same form in either the Ij or &X
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representations (see Chapter 12). In this chapter we shall use

the more familiar channel spin (si) representation. It has been

suggested, however, that the average potential does contain a

spin-orbit coupling term, and the effect this will have on the

following analysis is discussed in Chapter 12.

(iv) The fourth and last assumption is that S_ = S~, and that both

these quantities are constant in the energy range 0 to 0.5 Mev.

This assumption is based on the following qualitative considerations:

If one examines a plot of S (at zero bombarding energy) vs A (see, for

example reference Zf.-6) one notices that mass number 238 is situated at

a minimum. Now, if the range and depth (only the product VR is important

here) of the average potential are taken to be smoothly varying functions of

mass number, then the single particle levels will move smoothly past zero

2
bombarding energy, E, into the well as VR increases. Minimum S in this

o

simple picture corresponds to s-wave single particle levels roughly symmetrically

placed around E = 0, so as to insure that dS /dE vanishes at E = 0. For, if

the range and depth of the well parameters are smooth functions of mass
dS dS

number Tg^^ -57^ =0° In such a case, if the width of the single particle

levels is much larger than,,0.5 Mev, S will not vary much in the first 0.5 Mev.

The absorption width of the single particle levels is of the order of twice

the imaginary part of the potential in the complex potential model (which

is formally identical with that of L55 ); for the potential suggested

by Weisskopf (W56b) this is about 7-0 Mev,

Near each s-wave level lies a d-wave level with a very similar wave

function. Let us first consider a square well, and let us define the position
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of a level by the vanishing of the logarithmic derivative of the radial wave

function. [The radial wave function, uis defined by Jp=* WL'.L, ^(0,0),
This boundary condition corresponds to a level shift, upwards of A, the orbital

momentum quantum number, times the single particle reduced width of the level,

at zero bombarding energy.J As is shown in Appendix (l-ll), the s-d splitting

is then given by

2 E x 2 K± x±)
x

where E is approximately the energy of either level measured from the bottom of

the well, and x = R/k? the ratio of the well radius to the inside reduced

neutron width. Equation (l-ll) is based on the assumption that x =» "->£, which

is true for the virtual levels we are considering. For a well about 40 Mev

deep, and 9 f in radius, Eq. (l-ll) gives a splitting of about 1.5 Mev, at

zero bombarding energy. This difference corresponds to about a 2$ difference

in wave length.

One can argue that if the edge of the well is tapered the splitting

calculated with Eq, (l-ll) will not change much, i.e., the s- and d-levels

will travel together. This is because after several oscillations the wave

functions have roughly the same shape, they have the same phase at the nuclear

surface, and very nearly the same wave length. Only when the perturbation

extends into the region where the action of the centrifugal potential is

important will the splitting be altered. By an extension of the foregoing

argument it may be expected that the contribution of these levels to their

respective strength functions will be nearly the same, since the latter

quantity depends only on the value of the wave function on the nuclear
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surface. Hence we expect that S2 = S and that both quantities are fairly

constant in the first 0.5 Mev of neutron energy.

It is possible to verify these conjectures by exact calculation in the

case of a complex square well. Results of such a calculation are given in

Table (l-ll). X is the ratio of the nuclear radius to the inside wave

Table (l-ll). s- and d-Strength Functions for a Complex Square Well

J°

E = 10 kev E = 500 kev

X
o

S
0 S2 S

0 S2

11.65 0.03 0.01237 0.01017 0.009338 0.007733

11.95 0.03 0.007167 0.006320 0.006070 0.005434

12.25 0.03 0.005287 0.004902 0.004794 0.004609

12.55 0.03 0.004695 0.004563 0.004470 0.004642

12.85 0.03 0.004965 0.005093 0.004927 0.005608

length at zero bombarding energy, and ~$ is the ratio of the imaginary and real

parts of the potential. When X = 12.55> which roughly corresponds to a

minimum in S as a function of X , S and S„ appear constant and equal within
o oo2 ^

some 5$ or less. Changing X from this value by +0.30, which corresponds

to about a +2 Mev change in the well depth and level positions for uranium,

keeps the constancy of S and S_ within about 13$ or less.

3. A considerable amount of data has been reported for inelastic scat-
P38 (H55a,H57a,A57,C57b,

tering and radiative capture in XT below 0.5 Mev R55,B56,N56b). Enough

data is available on inelastic scattering to draw a continuous curve from

150 kev to about 2 Mev. Unfortunately, most of these data suffer from a

systematic defect, viz.: only partial resolution of elastic neutrons and
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neutrons scattered from the 44 kev state. Perhaps the easiest way to see

this is to compare the time-of-flight measurements (C57b) at 550 kev with

measurements made by other techniques at the same energy. The time-of-flight

measurements clearly resolve the 44 kev level, as can be seen by inspection of

the reported time spectra, and give a total non-elastic cross section of

1800 mb. On the other hand, the work of Allen (A57) and Batchelor (B56), both

of which were done by sphere transmission and proportional counting, fail to

resolve the 44-kev level as can be seen from an inspection of the reported

pulse-height spectra. Both these experiments give a non-elastic cross section

of about 800 mb, which is significantly lower than the time-of-flight value,

Allen discusses the effects of this imperfect resolution on his experiments and

concludes that his values for the excitation cross section of the 44-kev

state, cT(2+)j, by 150 kev neutrons and for the excitation cross section of the

146 kev state, o" (4+), by 250 kev and 500 kev neutrons are probably correct.

However, comparison of his value for 0^(4+) at 500 kev, viz., 490 + 250 mb,

and at 250 kev, viz., 290 + 159 mb, with the time-of-flight value at 550 kev,

viz., 290 + 60 mb, indicates that Allen's values of o" (4+) are probably too

high. Since these values were obtained by a rather uncertain "unpeeling"

technique we are inclined to the opinion that a systematic error is present in

the analysis favoring too high values for <S (4+), No such possibility of

error arises in the case of the 150 kev data, where only the 44-kev state is

excited; according to Allen inelastic neutrons ought to be separable from

elastic neutrons at this bombarding energy.

4, Let us consider the available data at 550 kev, summarized in

2
Table (2-11). In this table B(2+) is the coefficient of the cos 9 term
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Table (2-11). Experimental Values of Cross Sections for E = 550 kev

Quantity Measurement Reference

<r(2+) 1430 + 200 mb C57b

<r(4+) 290 + 60 mb C57b

B (2+) -0.45 + 0.10 C57b

<f(n,y) 135 + 15 mb B56, H55a

2
in the angular distribution, 1 + Bcos 9, of the neutrons inelastically scat

tered from the 2+ state. It has been determined experimentally that the

coefficients of higher powers of cos0 and zero. Only one value of o(n, 7) is

given, and it represents an average of several excellently agreeing data

reported in the corresponding reference.

According to Eq. (9-2), (10-2), (6-2) and (8-2), if we only consider s-,

p-, d-, and f-wave^, we can write

5*2+1 /_V^_ \ +/ VT1 +V
2 \ ' / \ 1 1 11

itX \T + 2T_ + T / \Tn + T. + T-. + T, + T\o 2 7/ \1 1 3 3 7/

+ 2

P ' '
T (T + 2T_)

v o 2
1 t 11

,T0 + T + 2T_ + T_ + 2T / \T + 2T- + 2T2 + 2T3 + 2T0 2 2 7/_ \ 1 1 3 3 7

i+ 2-

+3( VTo +2Tg) h \ +5/ T^ +2T')
\T2 +Tq +2Tg +2T2 +3T / VT +2T^ +2T' +T^ +2t" +3T

2 + 2

T(T* +2TJ \
+k( 1 , 5 ,, n ) (2a-ll)

T, + T.. + 2T, + 2Tn + 2T, + 4T /3 1 3 1 3 7/7

3
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ti

2 \ »—r- " 7 + 2 \ • ' »itJC \T1 +Tx +T3 +Tj +Tr// \T2 +TQ +2Tg +Tg +2T^

+2 ^^ . \ ,./ ^V+ 2 ( —— • , r tt— / + 3 < j ; r

itK \T + 2T_ + T / \T, + Tn + T-. + TT- + T .0 2 T/1 \1 1 3 3 7/x
2 + 2 "

T (2T ) \ / T (2T )
+ 2 ( 7 2—; n — ) + 2 / x ' j,.VT2 +T^ +2T2 +Tg +2t/ \Tl +2T^ +2T3 +2^ +2^/3

2+ . 2
T(3T ) \ / T(3T )

+3/ r h ft— ) +3/ 1 2L- _ n
^T2 +Tq +2T2 +2T2 +31 / \^T5 +2TX +2T? +^ +2T? +3T /

2 + 2

/ T(4T ) \
+4 ( rE—L- „ „ \ (2c-n)

kT + T1 + 2T + 2TX + 2T +4T /
2 "

The notation is as follows:

•2

ST.. + 2Tn + 2TT + 2T.. + 2T / YP_, + T + 2Trt + 2T„ + 3T
\1 13 3 7/» \2 o 2 2^7_

2 '" 2 +

T(t" +2TJ \ / T(2T" +2TJ
+3/ ? 1 , P „. - ) +4(- ,? \ ?H n

VT3 + 2TX + 2T + Tx + 2T + 3T / VJ" +^ + 2T? +2^ + 2T, + 4T ,

2 " 2"

(2b-ll)

<fai =/^4_\ +/—!i!z_

T^ = 4*°s£. ~x- = 4it»s^.Sfl (3-11)
Jit
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We have omitted the subscript s on the reduced width, since we are specifically

assuming it independent of the channel spin. To of course is independent of

Jit, and is the penetrability factor of Hauser and Feshbach (H52). An unprimed

T refers to the entrance channel (lit = 0+), a singly primed T refers to the

exit channel in which the 44-kev state is excited (lit = 2+), and a doubly

primed T refers to an exit channel in which the l46-kev state is excited

(lit = 4+). Excitation of higher states in the ground state rotational band

has been ignored because of the high angular momentum changes involved.

Finally

2itT (2J + 1)D
T7 =-5^ where D= 2(2I +l) <^>.

In accordance with the level density law of Lang and LeCo.uteur (L5'4) D has

been taken to be 7*2 ev at 550 kev. The subscripts at the lower right of

each term give the spin and parity of the associated compound state. The

brackets denote averages with respect to the distribution of widths. For

the purposes of this averaging each T has as many degrees of freedom as the

coefficient which multiplies it (6 = 0,1,2), except T which always has y = oo.

Equations (2a, b, c-ll) possess a very useful property which arises from

the fact that all the states excited in the reactions we are considering have

the same parity. The orbital angular momenta involved in the formation and

decay of a given compound state must always have the same parity. Hence some

terms in Eqs. (2-11) only involve s- and d-waves, while others only involve

p- and f-waves. Thus if a fixed ratio is assumed between the p- and f-wave

strength functions, and if the radiative width is a small part of the total
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width, Eqs. (2a-11) and (2b-ll) can be written as linear functions of the

p-wave strength function,* viz.:

^-^even^oddRJ <5-U>

Here cris the contribution to the cross section from the even parity

terms calculated for S = S„ = 0.0358, and cr ,, is the contribution from the
o d odd

odd parity terms for a value of the p-wave strength function equal to S. .

This linear relation allows rapid solution for the values of S. required to

fit the experimental values of o"(2+) and cf(k+)o If the ratio of p- to f-

wave strength function has been chosen properly the two values of Sn determined

from cf(2+) and o"(4+) will be identical. Furthermore, by similar reasoning,

ofn,y) should be nearly independent of the p-wave strength function, except

for very small values which make T an appreciable part of the total width

in the odd parity terms,
q
3 #If we choose the ratio -g* = 3 and S1 = S, we obtain from Eqs, (2-11)

the results

o-(2+) = 570 + 760 (S^) Et (6a-11)

6(k+) =88 + 180 (S^/S^ mb (6b-ll)

otn7) = 140 mb (6c-ll)

The linear law for d(2+) and cf(4+), and the constancy of <S(ny) ought to hold

quite accurately since T is never more than about 5$ of the total denominator

7 Slin any of the terms in Eqs. (2-11). Choosing — = 1.13, gives ot2+) = 1430 mb,
S
o

*This linear relation has been checked by direct calculation; these results are
reported below.
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tf(4+) = 291 mb in excellent agreement with experiment. Hence, the initial
S,

choice -=2 = 3 vas correct. Finally, the value of 0"(n7) is in excellent agree-
Sl

ment with experiment.

Sl S3
It may be asked with what precision the values of tt=- and —5- are

*t 5S1
determined by the above procedure? This question can be answered roughly as

follows: As it happens the f-wave contribution to the total width in the odd

parity terms of Eq. (2-11) is about 5 to 8$ of the total. Hence, Eqs. (6a-11)

and (6b-ll) can be written

Sltf(2+) = 570 +^
S0

<J(U+) = 88 + -i
s0

520 +210 Ql) +26 (fjj-
2

(7a-11)

(7b-ll)

The first term in the bracket in Eq. (7a-11) represents events in which a

/S3\p-wave neutron is incident and excident; the terms linear in •?£-) represent

events in which a p- (f-) wave neutron is incident and f- (p-) wave neutron

is excident; the terms quadratic in I-—-J represent events in which an f-wave

neutron is incident and excident. Plotted in Fig. (l-ll) are four curves

defined by Eqs. (7-H) and obtained by setting cr(2+) and 0"(4+) equal to the

reported value + the reported experimental error. Any point inside the area

defined by these curves will give value of cf(2+) and (5(4+) within the reported
S S

errors. The cross marks the most probable values of — and -rr-. Since the
S0 5S1

reported errors are stated to be 50$ larger than the standard deviation of

the measurements (C57b), the probability of any point lying inside the area

is about 75$. The vertices are rather improbable; indeed, the probability
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of lying outside both sets of lines is only about 2$. A rough estimate of
S S

the precision in the determination of — and -=£- is ^ 30#.
S0 5S1

5. The importance of correctly taking the fluctuations in the widths

into account can be seen by analyzing the results analogous to Eqs. (7-11)

in the case of no fluctuations, viz:

Sl
o(2+) = 850 + ~

so
900 +245 (ly +20 (bL

««U).87+ i[190 gl) +10 (!i>

.2

(8a-ll)

(8b-ll)

S3 Sl•=g- = 2.70, — = O.34 is a solution to these equations; as one can readily
5Si so s s
see it is much different from the correct solution. For -r£- = — = 1 for

3S1 SQ

which Eqs. (6-11), (7-11), and (8-11) are exact, o*(2+) and cf{4+) equal 1330 mb

and 270 mb, respectively, with fluctuations and 2020 mb and 290 mb, respective

ly, without fluctuations. <S[ny) in these two cases is 140 mb with fluctuations

and 130 mb without.

o"(4+) and o(n, 7) are not strongly affected by the fluctuations in the

neutron widths, although the individual terms in Eqs. (2-11) are. In (5*(4+)

and <5{ny) a substantial portion of the cross section comes from terms in which

a competing width greatly exceeds the sum of the entrance and exit widths.

As pointed out in paragraph (5-H) such terms may be enhanced by the effect

of fluctuations. The remaining terms are decreased by the fluctuations, and

quite fortiutously, a near cancellation occurs. The case is otherwise with

o(2+) where the net effect of fluctuations is to decrease the cross section

by about 40$.
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6. According to Eqs. (9-2) (10-2), (6-2), and (8-2), if we only

consider s~, p-, d-, and f-waves, we can write

T T
2 2

•2.400
T (T - T )V 1 x3\4B2(2+) = -2.857

xT2 + 2T2 + T2 + 2T T., + 2Tn + 2T.. + 2T, + 2T
11 3 3 7/

-0.6857
T T

3 1
ii ti

TT = 2Tn + 2T, + T. + 2T.. + 3T ,
3 1 3 1 3 7/

+3.543 ( -
T T

3 3
8 II II

+5^714

+8,254

T3 + 2T.. + 2T, + T, + 2T, + 3T .
3 1 3 1 3 7/

T3T1
0 8 It II

VT, + Tn + 2T- + 2T, + 2T-. + 4T
,3 1 3 1 3 7/

T,T \
T^ + T, + 2T, + 2T, + 2T, + 4T

3 13 13 7'

(9-11)

The notation is the same as before. The Z-coefficients were obtained from

% *
the tables of L. C, Biedenharn (B5*a), Again choosing — = 3 and S = S_

we have

2it?c2B0(2+) =- 40 - ~
2 S0

120 -57 (J"!
It follows from Eqs, (10-11) and (9-2) that

10
3S,

mb (10-11)
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B (2+) 2it*2B_(2+)
B(2+)=rr-R> R=r(2+r= a(£) (n-n)

s s

Choosing L± =1.13 and -jfr- = 1, B(2+) =-0.10 which is too low by a factorSQ 3S1

of about 4.5, and differs from the experimental value by more than 3 times
S

the quoted error (4.5 standard deviations). Reasonable changes in -=• and
S S0
-^- cause very little change in the calculated value of B(2+). This dis-
^1
crepancy will be discussed in some detail later.

7. Table (3-H) summarizes the available data at 150 kev. If we again

Table (3-11). Experimental Values of Cross Sections at 150 kev

Cross Section Measurement Reference

°1n7) 160 + 8 mb B56

200* mb H55a

240* mb N56b

<5t2+) 440 + 200 mb A57

♦Graphical interpolation.

S3 *
choose -^g- = 1 and S1 = SQ and choose D = 13-9 ev in accordance with reference

L54 we obtain

ol2+) =190 +490 (Ej (I2a-ll)
o'(n7) = 180 mb (l2b-ll)

S

For this case the linear dependence of <s(2+) on ~ has been checked by direct
s5 * 0

calculation. For ^g- = 1and S1 = 3SQ we obtain 6(2+) =1760 mb directly,

and 1660 from Eq. (I2a-ll), a difference of only 6$. For otn7) we obtain
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205 mb directly, verifying the rough constancy of the radiative cross

section. Since the linear law holds fairly accurately over such a large

Sl ,range of — (a factor of 3) it should be much more accurate for smaller

changes in ^- . Moreover, it should hold more accurately at higher energies,
b0

where the radiative width is a smaller fraction of the total width. For

~ = 1.13, tf(2+) is given by Eq. (12a-11) as 740 mb, which is somewhat larger
G0
than the datum in Table (3-11). In view of the strong possibility that the

datum in Table (3-H) is an underestimate we are not inclined to look upon

this discrepancy as serious.

8. The insensitivity of the radiative capture cross section above the

Sl
inelastic threshold to the value of •=— makes it useless for a determination

S0
of this ratio. However, it can be used to check some of the assumptions

used in the calculations. For example, if D_ is chosen to be independent
Jit

of J rather than proportional to (2J + l)~ , the inelastic cross sections

remain the same, but the radiative cross section will fall. At 150 kev
S, S-

(with -=2_ = — = 1 ) this fall is about 45$ from 180 mb to 125 mb, sub-
^1 b0

stantially worsening agreement. Again if the decrease of about 30$ in the
j

level spacing predicted by Lang and LeCouteur (l;>4) in going from zero

bombarding energy to 150 kev is not permitted, the inelastic cross section

remains unchanged, but the radiative cross section falls by about 30$ to

140 mb. At 550 kev the decrease is by more than a factor of 2. This

necessity for using the level density law of Lang and LeCouteur to calculate

the radiative cross section correctly has been carefully pointed out by

Lane and Lynn (L5?)»
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Below the inelastic threshold, the radiative width becomes a substantial

portion of the total width in the odd parity tenns, and the radiative capture

cross section is no longer independent of the ratio — . Hence, the radiative
S0

capture cross section can be used to determine S.. Plotted in Fig. (2-11)

are some experimental points of Newson, (N56b) together with the 95$ confidence

limits of error (see Appendix 2-11). Also included in the figure are several

curves calculated with Eq. (2c-ll). Below 44 kev, of course, all singly and

doubly primed T's vanish. In addition, f-wave contributions are to the total

widths are extremely small, and have been neglected. The points above 10 kev

agree quite well with the curve for -5- = 1.35> although any curve for which
S S0
— is between 1 and 2 is probably consistent with the data. The radiative
S0
capture cross section at 25 kev has been measured independently by Macklin,

Lazar, and Lyon (M57) who obtain a value of6lO+6l mb, in good agreement with

Newson. Their single determination gives -5- = 1.6 + 0.5« Agreement of the
S0

calculated curves for which S.. >j Sn with the data points below 10 kev is not

too bad except at 6 kev. Whether the apparent point of inflection in the

range 6-9 kev is real or not has already been the subject of considerable

discussion. Newson has suggested that the inflection is due to the appearance

of a rapidly rising p-wave contribution, but the smooth behavior of the

calculated curves seem to contradict this hypothesis.

Cameron (C57b)nas suggested a way of fitting the radiative cross section

below 200 kev by allowing a dependence of the radiative width on the neutron

orbital angular momentum. In particular, for p-waves he recommends

p = 80 mv. Plotted in Fig. (3-11) are several curves calculated with this
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assumption (and P =P =24 mv). The curve for S, =| Sn fits the data
78 7a- 1 3 0

very well, except perhaps at 6 kev. Cameron's assumptions unfortunately have

another important and disadvantageous consequence. To illustrate, let us

consider radiative capture at 150 kev, where the f-wave contribution to <S{ny)

will be small. With Cameron's assumption the s- and p-wave contributions to

6(ny) are already about 270 mb which is comparable with the experimental

value. The additional d-wave contribution, calculated assuming f1 for

d-waves is 24 mv, is about 50 mb, making the total about 320 mv. This is

considerably larger than the experimental value. At 550 kev, a similar

situation occurs, where the sum of the s- and p-wave contributions is 150 mb,

which is again comparable with experiment. The estimated d= and f-wave

contributions (assuming F = P = 24 mv) raise this about 230 mb, which

is much larger than the experimental value. Only if radiative capture of

d- and f-wave neutrons nearly vanishes are Cameron's assumptions tenable.
S,

9. By way of summary^, then, it appears that the ratio ™ ^ 1,1 at 550 kev,
SQ S

and perhaps slightly higher (^ 1,4) at ^ 10 kev. The ratio -=£_ ^> 3, at 550
3S1

kev. These choices appear to satisfactorily explain all of the total reaction

cross seetion data within the limits of experimental uncertainty. With re

gard to the single datum concerning the angular distribution of neutrons

inelastically scattered from the 44-kev state, the agreement of theory and

experiment is poor. It has been suggested by Chase and Wilets (C57c) that an

improvement might be expected if a significant portion of the excitation of

the 44-kev state occurred by direct interaction with the non-spherical surface

of the uranium nucleus. Calculations by these authors using a spheroidal

variant of a typical optical model potential indicated about a 100 mb direct
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excitation cross section for 550 kev neutrons. As a further check on this

point a rough calculation was performed by the present author with the

perturbation theory of Brink (B55a). The nucleus was assumed black with

a radius of 9 b and a depth normalized to the measured s-wave strength function.

This choice at least insures that the s-, p-, and d-wave strength functions

are roughly the same as we have previously found, and that the s-wave

potential scattering length is nearly equal to the experimental value found

by Seth (S56p). With these parameters Brink's theory gives a cross section

for direct excitation of the 44-kev state for 550 kev neutrons of 100 mb.

If this direct cross section is assumed to have a B -coefficient of -1,

which is the maximum possible if no higher Legendre components are present

(as appears experimentally to be the case), then B(2+) is increased in

magnitude to about -0.20 which is still much too low. Indeed, the direct

excitation cross section would have to be nearly 400 mb and as anisotropic

as allowable to account for the observed anisotropy in the total 44-kev

excitation cross section. Finally, Cranberg (C57a)has stated that the

results of successive runs on the accelerator used in the time-of-flight

work did not repeat within the statistical uncertainties, and further that

the conditions which gave the best data were only achieved once. In light

of these remarks we are inclined not to attach too much significance to the

discrepancy in predicted and measured B(2+) at 550 kev.
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Appendix (l-ll). Virtual Levels of a Square Well

The virtual levels of a square well are defined by the condition

f. = 0, where

t

Xjo
fj =1+-J- (1-11.1)

and where jn are the spherical Bessel functions and the primes denote dif

ferentiation with respect to x, the channel radius in units of the inside

reduced wave length. Now it has been shown by Feshbach, Porter, and Weisskopf

(F.54) to follow easily from the recurrence relations for the j^, that

2

tB = X (2-11.1)
A - fX £-1

Furthermore, if we differentiate Eq. (l-ll.l) with respect to x and then

use Eq. (l-ll.l) and the second order differential equation for the jn to

eliminate the second derivatives we dan write

dfg (X+ 1-f^)(i +f£) -x2
dx"

(3-11.1)

Now by two applications of Eq. (2-11.1) we can write

Thus if f. _x(x_) = 0,

2

x — - (i + 1) (4-11.1)
+1 " 2

2i + 1 - x
X i-1

2
x

f)+1(x_) = = r -(i+ l) (5-n.i)
^ X

Suppose fp ,(x ) = 0. If x - x is small we can write
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fi+l(x-) =(x- "x+) dT^ (6-11.1)

It then follows from Eqs. (6-11.1), (5-11.1), and (3-11.1), after rearrange

ment, that

x - xx ^ x2-/e(i+D
X

+

i = (2£ + l) — -= —- (7-n.i)[x2- (i +l)(i +2)] [x2-i(2i+l)J

When x >->JL , Eq. (7-11.1) reduces to

^ - Si+1 (Q.U.D
X

X

Clearly Eq. (7-11.1) is only valid when the left hand side is -t-d, 1, for which

the condition is x >>JL .
p

The reduced neutron widths, y , of these levels can now easily be found.

According to the method of "perturbation of boundary conditions" described

in the book of Blatt and Weisskopf (B?£a)

im -S) (9-11-1)
evaluated at the point at which fn = 0. But from Eq. (3-11.1) it follows that

dJl\ JdA) fe\ ftl+1)-*2
>aE /f^O V3x /^ =0 V*% =0 2<E +v)

where V is the depth of the well. Then

(10-11.1)
r -.. v ,t .. x ,r ~ 2(E + V)

r| . a2(«*V) (lx.lla)
x -1U + 1)



197

If the potential well has a small imaginary part, the virtual levels also

have an absorption width given by

WjL=-2 (Itafj)^^ (12-11.1)

o

where y. is the reduced neutron width (which is still calculated for the real

well as described above), and Ixafp is the imaginary part of fa evaluated at

the point where ft = 0 for the real part of the potential. If

x = x_ + ix , and if xj <d x

fp(xR +ixr) =f%(xR) +iXlf^(xR) (13a-11.1)

Ml + 1) -4
= ix • - (I3b-ll.l)

XR

since ft (x ) =0. If T is the ratio of the real to imaginary part of the

square well, x /x = 1/2 ^ if ^« 1 and V >> E. In such a case

W = 2J(E + V) ^ 2$V (14-11.1)
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Appendix (2-11). Estimation of Statistical Errors for Newson1s Data

Newson*s reported data does not include any error estimate, but it is

possible to obtain one since at some energies the results of two independent
-i

determinations are given. If we assume that individual cross section

determinations are normally distributed with mean m, and variance cf, then

we may ask the following question: If we choose n independent determinations

with mean Mand variance S, what is the probability that |m -m) £kS? This

question is answered by a theorem of statistics (C56a) which states that M

is normally distributed with mean m and variance <ff /n~, and that the random

variable nS /cr is distributed in a chi-squared distribution of n - 1 degrees

of freedom. For n = 2, the variable ~S= /2 m " is normally distributed

with zero mean and unit variance. The probability that Im -m/ ^ kS is the

probability that /$/^k /2 |. (which equals Erfc [k /2~ |_JJaveraged
over the d^-distribution. Since the square of the variable -^= =t is

o-

distributed in a chi-squared distribution of one degree of freedom, we

can write

co

P -1 -iT2
P(|m-M|>kS)= / Erfc(kr)(2rtT2) 2e 2 d(T2) (l-ll.2)

Now

and

co P l o

dP /z P "<k +Vr , 2 & 1
J k +-
o c

P(0) = 1 (3-H.2)
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Thus

00

P»constant x / gdy (4-11.2)
i r y +1
k/2

The integral is elementary; combining Eqs, (4-11,2) and (3-11,2) we obtain

P(|m -M|t kS) =| (| -arctan(k/2 ) (5a-ll,2)

| arccot (k/2 ) (5b-11.2)

Some numerical values are given in Table (1-11.2) below. The distribution

has a very slowly vanishing tail, very unlike the normal distribution in

which nearly all the area is concentrated with three variances of the mean.

Table (1-11.2)

k 0 1/2 1 3/2 2 5/2 3 5 10

P(|m-MJ>kS) 1 0,6l 0,40 0,2.8 0.22 0,l8 0.15 0.09 0,04c
I >



CHAPTER 12. ANALYSIS OF NEUTRON REACTIONS IN U238 (continued)

1. It is the purpose of this chapter to analyze the effect of spin-

orbit forces in the optical potential on the conclusions of the last chapter.

We shall carry this program out in the following steps:

(i) First, we shall derive the connection between the strength

functions of the actual nucleus and the parameters of the

levels of the optical potential,

(ii) Using the strength functions deduced from experiment in the

last chapter we shall then determine the positions of the

single particle levels using the results of (i).

(iii) Thirdly, we shall estimate the level splitting induced by the

spin-orbit part of the optical potential,

(iv) Then we shall use these split levels to obtain the strength

functions in the presence of spin-orbit coupling,

(v) Finally, we shall examine the changes which result in the

calculated cross sections.

2. According to Feshbach, Porter, and Weisskopf the optical potential

is so chosen that the diagonal elements of its scattering matrix, n

are equal to the averages over many resonances of the diagonal elements of

the actual scattering matrix, /s * A . This stipulation implies as

it is intended to that the total cross sections in the various channels

of the actual nucleus averaged over many resonances are correctly given

by the optical model. This can easily be seen by slightly generalizing

the procedure outlined by Feshbach, Porter, and Weisskopf in connection

with Eq. (2.7) of their paper (F54) to Eq. (4.7) of reference (B52) in the

Ij representation [see Eq. (ll-2)j. Let us first consider the case of target
spin zero (i = 0, J = j).

200
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The average of S .» .. can be obtained from Eq. (7-2) using the relation

It is

= ijt; e > 0 (1-12)

/sJ* ) =e2i^fl -iQjsmL\Saj*,aj*/ D.

It then follows from Eq. (2-12) that

i- l , fMr^fx^-<^ii
1 roctlalJll D,„ 2 D_T„Jit \ Jit

(2-12)

(3-12)

At fairly low energies, where the resonances are well separated, the second

quantity in the parenthesis is usually quite small compared to unity. Even

at 0.5 Mev, in the calculations described in the last chapter, — ^*=—
Jn

never exceed about 0.15. In view of the comparatively large uncertainties

in the strength functions calculated in the last chapter, we feel nothing is

lost by setting the parenthesis equal to unity in Eq, (4-12). Finally, the

scattering matrix for the optical model is also given, in the vicinity of

/ X *
a single particle level, by Eq, (7-2), If we identify the parameters of

the single particle levels by dots above them, then it follows that

*Since the optical scattering matrix is not unitary, the usual derivation
of Eq, (7-2) is not applicable. The result can be obtained using the
channel elimination procedure of Teichmann and Wigner f_cf• R» G. Thomas,
Phys. Rev, 97 224 (1955)} , or more simply, by the method of "perturbation
of boundary conditions" of Blatt and Weisskopf (B52a).
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2jt <pMf>, V-Mr. - • •, (t-12)

The resonance energy E contains the so-called level shift, and can be written

o

where A» is defined in Eq. (l8-2), and E*. is the formal resonance energy,

defined by the vanishing of the logarithmic derivative of the radial wave

function on the nuclear surface. Combining Eq. (4-12) and (3-12) we can

write
o o

i^L b .ZgL {LlL2£ (6-12)
dj« <«i 2* _ ; + *2 x2/r\2(E-E^j +̂ 7^)+^

where S .. is the strength function in the channel aj^, assumed independent of

J and it. Equation (6-12) has been arrived at assuming the target spin, I, is

zero. If this is not so and the equality of rj . .. and \S p/must be

replaced by

J+I + \^,OJi =^ (2j +J1)(2I +1) (^j^Oji/ ^'^
If we assume that S ,»is independent of Jn, then so is /s• * „</}/• ^iie
summation then gives unity, and the final result is again Eq. (6-12). ("The

correct many level generalization of Eq. (6-12) is

, _ i * f«i.i

^ * <* faij -4/ +(lm fa;j ""/>*
(8-12)

where fi is the logarithmic derivative of the radial wave function cor

responding to a scattering function 17 * «j.



203

3. As we have seen in the last chapter from a study of the uranium

s-wave and strength function, near zero bombarding energy a condition of

s-> (and d-) wave anti-resonance exists. We expect, therefore, that there

are odd parity single particle states near zero bombarding energy. We shall,

therefore, try to explain the p- and f-strength functions deduced in the

last chapter on the basis of one single particle level approximation

using Eq. (6-12). According to the arguments presented in paragraph (2-11)

the reduced widths for the odd-parity levels ought to be nearly equal, since

near the nuclear surface the wave functions are very similar. Furthermore,

as previously pointed out, the p-f level splitting for the actual optical

potential ought to be the same as for a square well of comparable depth and

radius. Finally, the single particle reaction width, W = P - P .., of the

actual optical potential should be very nearly equal to that of the comparable

square well if the only difference between them is a rounded edge.

According to Weisskopf's latest calculations (W56b) the best optical

potential is

V (1 + it)
V(r) = ° _. -* (9-12)

1+exp |_2(r -R)/dJ
1

with V =42 Mev, J" = 0.08, d= 1.15 f, and R = 1.35 A3f. For this potential

W s 2 ?V =6,7 Mev (10a-12)

E - E^, ^2.9 Mev (lOb-12)
p f '
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It is possible to obtain easy confirmation of Eq. (10-12) by inspecting

the published calculation of S vs A, The widths of the S-wave peaks at

A = 55 and A = 160 are related to W; this relation can be approximately

derived by assuming that for particular s-wave single particle levels KR

is a slowly varying function of radius. Here K is appropriate to the related

square well (d—s>0) for which KR is exactly constant. Then
«

dE 0 V

o

when E corresponds to zero bombarding energy. From Eq, (7-12) for E ~X = 0

we then obtain

W.(I Vo) ^ (12-12)
where A corresponds to a maximum in S , and AA is its full width at half maxi

mum. According to Eq, (12-12) both the peak at A = 55 and the peak at A * l60

give W = 7 Mev, confirming Eq. (lOa-12). The maximum value of S permitted by
2 °

Eq. (6-12) for E=i =0is § §- . With W=7Mev the peaks at A=55 and
°o

160 give y. =1.7 and 2,2 Mev, respectively,

°2 °2 'Using the value W = 7 Mev, and assuming y*_. = 7- in Eq, (6-12), one can

°P
obtain the p- and f-wave strength functions at E = 0.5 Mev as functions of rT ,.

For v =2,5 Mev the values deduced in Chapter 11 are reproduced and the single

particle p-wave level is found to be at =6.3 Mev and the f=wave level at -9,1

Mev, Finally, the p- and f-level splitting is 2.8 Mev, making the choice

7. , unique.

4. To estimate the level splitting caused by the introduction of a spin

orbit force in the optical potential we must solve Shrodinger's equation. This

can be done easily in two cases: (i) a square well central potential plus a

square well spin-orbit potential of the same radius, and (ii) a square well

potential plus a surface spin-orbit potential.
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Case (i)

Schrodinger's equation can be written

n

(I3a-12)

-vy< =E^ r> R (I3b-12)

We can choose our eigenfunctions as simultaneous eigenfunctions of

2 —> ~T ~* 2 2
j (j = X+ S), J r and s since all of these operators commute with the

Hamiltonian, i,e,,

u"(r) +

1 m
m

^Xb"-v<}s^) H (J-islism^))^ (90)^ms
•* m jm

A. S

""""* "^ T O O O

Since J's =p (j -J? -s )Schrodinger's equation becomes

(14-12)

2| [E +Vso j(J+1) -W+1) - b(b-H)) 2m _jtf+l) u(r) =Q

u"(r) + 2111 tt i(l+l)_ E _ —2
n r

u(r) =0 r > R

r*. R (15a-12)

(I5b-12)

Equation (15-12) has the same structure as the Schrodinger equation for an

ordinary central square well except for an energy shift from E to

E+-V |j(j+l) -^(i+1) -s(s+l) , This immediately gives the desired
et SO I J -,

X J+ llevel splitting, viz.: E -E = - £ V ,E -E = Z V , where E
* + o 2 so' - o 2 so +

denotes the energy of the virtual state for which j = X + s> e^c° Note

that the space part of the spin-orbit potential is taken as attractive.
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Case (ii)

Before we can treat case (ii) we must first obtain appropriate boundary

conditions to use at a surface on which a delta function potential exists.

We can do this as follows: Consider a one-dimensional region in which the

W

potential looks like it does in Fig. (1-12).

Let the dotted line denote the total energy.

The wave function appropriate to this problem

is

Fig. (1-12)

7p= A cos kx + B sin kx

•/>= A' cos k'x + B' sin k'x

-/= A" cos k"x + B" sin k"x

Region I

Region II

Region III

> (16-12)

The conditions of continuity of the wave function and its derivative at

x = 0 and x = a can be written, after some rearrangement as

kB
A cos k'a + -r-r sin k'a = A" cos k"a + B" sin k"a

k'
(17a-12)

- k'A sin k'a + kB cos k'a = - k"A" sin k"a + k"B" cos k"a (l7b-12)

Now let the potential hole in Fig. (1-12) become infinitely deep and

infinitesimally narrow, i.e., let k'—*oo and a—»0, but let k,2a, which

is proportional to the integrated potential in region II, remain finite.

Then Eqs. (17-12) can be rewritten as

k"B'

A"

kB

A

An equivalent form for Eq. (18-12) is

k,2a (18-12)
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4#V V(r)dr (19-12)

where V(r) is taken as negative in the case of a potential hole. Hence, the

logarithmic derivative of the wave function has a discontinuity of magnitude

2m
times the integrated delta function potential. If the delta function

-If

potential in region II is a spike rather than a hole, the trigonometric

functions in the region II wave functions are replaced by hyperbolic functions,

and the derivation then proceeds as before. The result is again Eq, (19-12),

but with the sign of the potential reversed, as it should be, .

With this boundary condition we can now study the Shrodinger's equation

for the nuclear problem. The counterpart of Eq. (15-12) in the case of a

delta function spin-orbit potential on the nuclear surface is

u"(r) + ~ (E + V )
H2 2

u(r) =0 r c R (20a-12)

u"(r) + '2S F.i(l+D u(r) =0 r > R (20b-12)

(r dxx\
.U dr/r=R+

5 J.u
U dr

t.

r=R-

2m

2
•n

V R
so

.j(j+l) -XX+D -s(s+l) (2Qc_12)
2

where V is the integrated value of the space part of the spin-orbit
so

potential (taken positive for an attractive force).

Now f— —) is, by definition, just fntf whereas f— —J is
lU d7r=R+ ij VU dr/r=R-

fp of the same problem without spin orbit ©oupling. Hence,

fXi =fi '^VsoR 'Ij(j +X) ~M +1} "s(s +1)] (21"12)
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Now suppose fj,(E*.) = f^(Ejg) = 0. Then

0=fyOSjj) - («flj ~Ez)fi(Eje) - *f VsoR | [j(j +1) -i(i +1) - s(s +1)]
* (22-12)

Since f j(Ej) = - -r% , we have finally, ;.

EiJ =KX ' ll ' T? VsoR *I |J(J +lJ -iU+1) - *(• +#1 (23a-12)
or

\±= Ei -? •f vsoR • i -^ y (23b-i2)

5. It is rather conventional in analysis of spin orbit coupling to

choose the spin orbit potential as some multiple, y , of the Thomas potential,
SO

which is given as

v -i f-3& -i ^ /ks) (24.12)
Thomas 2 ^ r dr ( v2 / x.^-1^;

V^ mcy \^h y

where V is the central potential. For an attractive square well Qt depth

C 2m Vof V , Eq. (24-12) gives for the quantity ^ V R the value --~ .
O jjd SO d

Ti mc

A number of workers have analyzed various nuclear data using Eq, (24-12)

for the form of the spin-orbit potential (L56a, F58, R56b, G56a) and various

central potentials. All these analyses have given values of 7 -^ -30 to
so

-50. For the remainder of this work we shall take 7 = -40. With this value,
so '

7. 1 =2.5 Mev, and Vq = 42 Mev, E ,g -E ,g = 6.8 Mev. Adair (A54) has

analyzed some reaction data using a potential of type (i) and finds V
so

about 2 Mev, giving E .,2 - E , =3.0 Mev, In the remainder of this work

we shall use the larger value. In this case the level positions are:
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E(pl/2) = - 1.8 Mev, E(p3/2) = - 8.6 Mev, E(f5/2) « - 0.08 Mev,

E(f7/2) =-15»9 Mev, Because these levels are not shifted by a very large

fraction of their energy relative to the bottom of the potential well, we

°p
shall assume for them also W = 7»0 Mev, y. = 2,5 Mev, With these

assumptions we then have S(pl/2) = 0,077, S(p3/2) = 0.027, S(f5/2) = 0.060,

S(f7/2) = 0.025 at E = 0.5 Mev,

5» Let us now complete the final step of the program outlined in

(1-12), i,e., consider the effect of these new Jfj strength functions on

the reaction cross sections. Let us begin by considering radiative capture

below the inelastic threshold. The odd-parity contribution to this cross

section is, with extremely small error, due only to p-waves, and is given

by Eq. (9-2), (14-2) and Eq. (8-2) modified in accordance with the dis

cussion after Eq. (l4~2) as:

/T(p f)(2T7)
+2\ ~7~Ts " / (25"12)\T(pf) +2T

7 3
2 2 "

Where T(p |) ~ T(p |)^ T >>T,the right hand side of Eq, (25-12)
approaches 5T independent of T(p -), T(p ^), or T. (T is the value to

which T(p -) and T(p ^) tend when V —>0.) Thus in this limit the odd wave
ci cL SO

contribution to 6\rxy) is independent of the extent of the spin-orbit

1 3coupling. If, on the other hand, T(p -)^ T(p ^)~ T << T, the right

hand side of Eq, (25-12) approaches T(p -) + 2T(p ^), Now we shall show
d d

below that under the circumstances pertaining to our calculation this last

sum is very nearly equal to 3T., and is consequently also independent of

<S(n.y)
p-wave <

/T(p |) Ty \
\

i\(*2 \T(p |) +Ty//
1
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the extent of the spin-orbit coupling. In view of the behavior of the

p-wave contribution to o\ny) in these extreme limits we expect it to be

very nearly independent of the extent of the spin-orbit coupling. This

point is tested by direct calculation below.

To prove T(p ^) +2T(p ^) = 3T-, we proceed as follows: If |e j. -Ejl
is not too large compared to / we can write

% ' si +tJk)" "J* 4/ (26'12)

>|i-1|

Furthermore, if the level splitting |E». - E» is small compared to Efl

(measured from the well bottom) it also follows that

H
Z (2J +DE^ =2(2J+l)Ei (27-12)

This result can be derived from first order perturbation theory, or in

case (ii) from Eq. (23b-12), or from the energy shift derived in case (i)»

It follows from Eqs. (26-12) and (27-12) that

;+|
Jl (2j +l)Sp =2(2i +l)Sj (28-12)

from which the desired result follows when X is set equal to 1.

These results are true for any angular momentumH, but depend on taking

zero target spin. In such a case

- Ml
<*»,) =4- F ^i, (2J +Dfr- (^-h ) (29-12)

2 i-» Hi- II j*
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0 p
since j = J and it = (-) . No other neutron width but' • can appear in the

total width since 1*0 and parity is conserved. Proceeding as before we

can show that for orbital angular momenta for which ',„>"* Vt
i 1 JJ 7

(0) t-,2 2*V*
c?X'(ny) = £ (2j + 1) -zr2- (30-12)

J- il
D

J'
J*

while for orbital angular momenta for which P . << P, we can use Eq.

(28-12) to show:

cf*-\ny) «(2i +1) 4its^ (31-12)

Both of these results are independent of V .

Thus as long as Eq. (28-12) holds, ef(ny) should be independent of

V . For p-waves the level shift E«. - EJis of the order of 2.5-4.5 Mev,

compared to a tptal width, ', of 7 or more Mev and an energy of ~ 40 Mev

above the well bottom. Hence, we expect Eq. (28-12) to hold. Indeed, for

the strength functions given at the end of paragraph (4-11), — T(p —)

2 3+- T(p ^) is only 9$ larger than T .

Presented in Table (i-12) are calculated values of the p-wave con

tribution to o"tn7) at several energies spanning the range T > > T to

Tn <-<. T . Values have been calculated for T, = 0.040, and T(p i) = 0.077,
1 7 1 * 2

T(p ^) =0.027. From the tabular entries the anticipated independence of the

strength of the spin-orbit coupling is verified. At the lower energies the

relative contribution of the p-waves is rather small compared to the s-waves,

and the change in the total radiative capture cross section caused by the

introduction of the spin-orbit coupling is never more than 3&.
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Table (1-12). P-Wave Contribution to a(ny)

Energy With Spin-Orbit Force Without Spin-Orbit Force
(kev) (mb) (ab)

3 289 245

9 302 292

15 276 271

21 249 247

27 224 224

For nuclei with a non-zero target spin and spin-orbit independence of

G(ny) cannot be demonstrated even if Eq. (28-12) holds, since then other

orbital angular momenta besides that of the entrance width can enter the

total width. There is one exception, however, and that is in the range in

which only s- and p-waves need be considered. Since these partial waves

cannot appear in the same term, by parity conservation, Eq. (29-12) again

holds, but with the /-sum restricted to 0 and 1. The circumstance is of the

greatest importance because it allows unambiguous analysis of data like that

of Macklin, Lazar, and Lyon (M57) [<f(ny) for Sb-Be neutrons! for the
quantity - S(p - )+- S(p ^ )= S±. These results have several important

consequences: In the first place, the analysis of Newson's data carried

out in Chapter 11 gives physically meaningful results in the sense that

independently the precise extent of the spin-orbit coupling the parameter

5S(p - )+- S(p - )=S1 is well determined by the experimental data. In

the second place, the procedure can be inverted, for if So = yffi"-/ * X
X 2(2/.+ 1)
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y^ 8. only is' known, and if the spin-orbit coupling is not too large,

oXny) may be reliably calculated below the inelastic threshold for the spin

zero nuclei, or for any nucleus if only s- and p-waves are important.

This last point has an important practical significance because an in

dependence theorem similar to that for the radiative capture cross section below

inelastic threshold also holds for the cross section for compound nucleus forma

tion, and the total cross section for any target spin. This can easily be

shown as follows: From the results of Chapter 2 we can write

2 co J+I J+I' j+o" j'+O"'
.gfoa') = ** E E E E E (2J +1)X

2(21 +1) j=o j=|j-l| J'-fj-I'/ J=|j-oj i-'-J'-O-
2

'Sca'8i£'5jj- -SSj?,a'jrl (52"12)
If'we sum this equation over all a' f a and carry out the indicated sums over

^* and j', we obtain
oo J+I j+ef

<T («) - ** £ H I ,<2J +l)§5-/f' > (33-12)
c 2(21 +1) j=o j=|J-l/ /=/j-cr| DJ« Xa^

where cf is the cross section for compound nucleus formation. Here we have made
c

use of the equation obtainable from Eq. (7-2)

If we assume the strength functions to be independent of J, then we can carry

out the J-sum obtaining

<T(a)-^-51 •£> ,(2j +l).4*a -a, =rt*2 H (2i +l)4«a,Sfl (3^-12)* 2^ j.^ i yj ^ 7 -t
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from Eq. (28-12). This last result is clearly independent of V .

If we carry out the sum over all a including a', and over /.' and jf,

we obtain

2 oo J+I j+d^

^)=2T#rir£ ^ j,?^"****'?• <&"^ (55-12>
Using Eq. (3-12) for the averaged diagonal S-matrix element one obtains

P oo J+I j+cT

^t^ =g/PT +1^ E E E 2(2J +1)t 2(21 +1) J=0 j,^ J=M

[l -cos (2^(1 -2«s/S^)J (36.22)
If we take S^ independent of J the J-sum can be carried out, and the j sum

as well, giving:

co

c-(a) =*fc2 £ (§/ +1)2 [l -cos (2«^)(1 -2*spS^] (37a-12)
00

=fl*2 II (2i +1) [4 sin2 ^ +cos (21^) •4*8^] (37b-12)

which is again independent of V .
so

The optical model of Feshbach, Porter, and Weisskopf is based on fitting

0^ and CT as functions of neutron energy. From Eqs. (37-12) and (34-12) it

follows that it is not necessary to consider a spin-orbit part in the

optical potential. Since the radiative capture cross section below inelastic

threshold also depends only on the central potentials it follows that cal

culations of the latter quantity based on such an optical model should
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be quite reliable for spin zero nuclei or when only s- and p-waves are

important.

Another example of a cross section which is independent of V is the
so

inelastic scattering cross section near its threshold. The inelastic scat

tering cross section can be written

2 oo J+I J+I' j+cT j'+o-'

<**«')-g/g +1i E E E z ELdKdX +X) J=Q j^jj.jj j.^J^.j J*|j-tfj /=|J'-0*'|

.{2J +1)^/ra^aTi\ (38.12)
Jit \ P /

Now if we are very close to threshold (of the first inelastic level), and

if radiative capture is small,I =E P 0• We can then write

co J+l» ,j;+o-« (p )
^a') =2T2T+-TT X * ^ (2J +D K«V*%2t21 +^ J=o j'=|J-I'| i=|j'-o-| Dj3t

J+I j+o"

. H il /_2&A (39-12)

\ a' 1•V' /Carrying out the last two sums gives unity. Since -n— is
Jit

assumed to be independent of Jit we,,.can carry out the J sum first and then the

j' sum, using Eq. (28-12) giving finally:

co

6{a,a') = idc2 ~~rr £• (2/' +1) kitsfe} (40-12)d.X + Xj,=q

This is just the reciprocity relation

(21 +DoW) =(gl'+l)<#a')
i^^= *? {kl-l2)
a a
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which under the stated circumstances must hold. Since the right hand side

of Eqs. (40-12) and (41-12) are independent of V , so is ota,a»).
SO \ / /

6. In general, however, the partial reaction cross sections are not

independent of V . In the Ij representation the equations analogous to

Eqs. (2-11) and (9-11) are:

Ql2+) / T(S|> &'(d|)+T'(d|)]
iti2 \T(S |) +T'(d |) +T'(d |) KT^

2 +

+ 2

T(p|) [T'(p|) +T'(f |)]
vT(p |) +T'(p |) +T'(f |) +T"(f |) +T

2

T(d|) |>(s|) +T'(d|) +T'(d|)]
\T(d |) +T»(a|) +T'(d |) +T'(d f) +T"(d §) +2T

h

T(p |) [T'(p |) +T'(P |) +T'(f |) +T'(f |)]
^T(p f) +T'(p |) +T'(p |) +T'(f |) +T'(f |) +T"(f |) +T"(f h +2T

2 "' 3
2

, T(d|) [t'(s|) +T'(d|) +T'(df)]
vT(d |) +T'(S |) +T'(d |) +T'(d |) +T"(d |) +T"(d |) +3T

I+
, T(f |) Er'(p |) +T'(p |) +T'(f |) +T'(f 1)]
vT(f |) +T'(p |) +T'(p |) +T'(f |) +T'(f I) +T"(p |) +T"(f |) +T"(f |) +3T

_ 2 "

+̂ ( T(f lj[T'(p|) +T'(f |) +T'(f 1)]
T(f I) +T'(p f) +T'(f |) +T'(f I) +T»(p |) +T"(p |) +T"(f |) +T"(f I) +4T

7/I.
2"

(42a-12)
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**») - / T(p t)T"(f I}
** V(P §) +T'(p |) +T'(f §) +T"(f I) T

T(d J) • T"(d |)

1

2

\T(d |) +T'(S h +T'(d |) +T'(d |) +T"(d |) +2T

T(p |) [r"(f |) +T"(f |)]
h

tf(p |) +T'(p |) +T'(p |) +T'(f §) +T'(f 1) +T"(f |) +T"(f |) +2T

T(d|) [T"(d |) +T"(d f)]
vT(d |) +T'(S |) +T'(d |) +T'(d §) +T"(d |) +T"(d |) +3T

f-
T(f |) tT"(p |) +T"(f §) +T"(f J)]

1
2

xT(f |) +T'(p h +T'(p |) +T»(f §) +T'(f I) +T"(p |) +T"(f |) +T"(f I) +

T(f |) [T"(p |) +T"(p |) +T"(f |) +T"(f h]

5
2

+ 4<

\?(f f) +T«(p f) +T'(f f) +T'(f |) +T"(» |) +T"(p |) +T"(f |) +T"(f |) +4T

olny) . / T<S 2> T7
JtK2 \T(S |) +T'(d |) +T'(d f) +T

T(P §) Ty

1 +

sT(p |) +T«(p J) +T»(f |) +T"(f J) +T
2' 7,

1

2

I
2

(42b-12)
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= 2<

+ 3<

21ft

T(d|)(2Ty)
vT(d f) +T'(S |) +T'(d |) +T'(d |) +T"(d |) +2T7

h
T(p|)(2T )

xT(p |) +T'(p |) +T'(p |) +T»(f |) +T'(f |) +T"(f f) +T"(f |) ♦ 2T

T(d|)(3Ty)
\T(d |) +T'(S |) +T'(d |) +T'(d |) +T"(d |) +T"(d |) 3T7/

!♦

3
2

T(f f)(?Ty)
sT(f |) +T'(p |) +T«(p |) +T'(f |) +T»(f |) +T"(p |) +T"(f §) +T"(f |) +3T

T(f |)(4Ty)

5
2

+ 4<
J(f |) +T'(p |) +T'(f |) +T'(f 1) +T"(p |) +T'(p |) +T"(f |) +T"(f |) +^/l-

4B (2+) =
2 \p(d |) +T'(S h +T'(d |) +T'(d |) +T"(d |) +2T

T(d |) [2.400T'(d |) +0.4572T'(d |)]

h
T(p J) [- 2.400T'(p |) -0.472T'(f |) +2.856T'(f J)J

j(p |) +Ti(p i) +T.(p |) +T.(f |) +T,(f I) +T"(f |) +T..(f I) +2^

T(f |) [- 0.6858T«(p |) +0.6858T'(f |) +2.858T'(f I)]
sT(f |) +T'(p |) +T'(p |) +T'(f |) +T'(f I) +T"(p J) +T"(f |) +T"(f |) +3T

/ T(f I) [5.713T'(p |) +3.8lOT'(f |) +4.444T'(f |)j
\?(f J) +T'(p |) +T'(f |) +T»(f I) +T"(p E+T"(p |) +T"(f |) +T"(f J) +

3
2

2' 7/

(42c-12)

5
2

2
2

(42d-12)
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Let us first consider d"(2+) at 550 kev. If we assume no change in the

d-wave strength function (which is reasonable in view of the discussion of

paragraph 11-2), then only the odd-wave contributions to the cross sections

show dependence on the spin-orbit coupling. For 0*(2+), the main odd wave

contribution (~ 70#) comes from pure p-wave interactions [cf. Eq. (7a-11),

for example]. The corresponding terms in Eq. (42a-12) are those labelled
1 3
X - and * - . The sum of these two terms is coincidentally not very sensitive

to the extent of the spin-orbit coupling, which we can show roughly as follows:

Let us ignore in these terms the effects of the statistical distribution

of the reaction widths, the f-wave and radiative widths, and let us further

assume that T«. = T»«. at 55° kev (in truth the ratio T'n./T^, =0.94 at this

energy). In such case the p-wave term has the form

T(p f)T(p §) T(p §) [T(p f) +T(p h]
p = £ £ + 2 =-— - • =—• (43a-12)

T(p f) +T(p |) 2T(p |) +T(p |)

with the constraint

2T(p |) +T(p |) =3TX (43b-12)

It can easily be shown that
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dT(p |) 3>
=-̂ (44-12)

T(p f)^

Thus achange of s(p| )from 0.040 to 0.027 (about 33#) will cause roughly a
10$ reduction in P. Exact calculation including the effects neglected above,

and using the strength functions of obtained at the end of paragraph (4r12)

gives about a7$ reduction in the contribution to 6(2+) from the \ -and --

compound states. For, according to Eq. (7a-ll) this contribution is about

590 mb when S1 = 0.040, while in the presence of the spin-orbit coupling

assumed in this chapter it is about 550 mb.

The total calculated 6(2+) cross sections with spin-orbit coupling is

1220 mb, which is just barely outside the quoted experimental error. Because

the s-, pj- and d-wave parts of this result are essentially independent of V ,
so

and because the f-wave part is both a small contribution (~* 15$) and comparable

with the experimental uncertainty (+l4#), 6(2+) tells us nothing about S or
3

Vso* Jt does> however, give information on S (since the p-wave contribution

is nearly independent of V ) and indeed indicates that S. ~ S , in accordance
so 1 o

with our findings from the analysis of Newson's data on (5(n7). This agreement

between two separate determinations of S increases our confidence in this

result.

<5"(4+), on the other hand, depends quite strongly on the f-wave strength

functions. Of the 180 mb contributed to <5"(4+) by odd-waves in Eq. (7b-ll),

145 mb come from the ^-and -^ -compound states, 40 mb from the ^-state,
and 105 mb from the - - state. The corresponding contributions using this

chapter's strength functions are 17 and 29 mb, respectively. These contributions
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are roughly in the ratios of S(f o):S3 and s(f p):S5> indicating that the

dependence of these terms on V through the p-wave penetrabilities is rather
0O

slight (as one might expect from the form of these terms given in Eq. 42b-12),

The total 4+ cross section is 145 mb using the spin-orbit strength functions,

which is much too low.

In order to increase this value we must increase S(f ^), S(f £), or both.

Because of the large splitting of the f2. and f^ levels is not possible to

increase them both. Furthermore, increasing S(f ~) to its maximum allowable
•*2

2*3 7value „ a- 0.18 and setting S(f £)^ 0 will give a total contribution from
5 7the ^ - and ^ - states of the order of 60 mb, which is still much too small.

7 SIncreasing S(f ^), however, to the maximum value, and decreasing S(f 2.) to
5 7zero gives a contribution from the ^ - and -^ - states of the order of 160 mb

which is nearly right. Hence, we are inclined to think that the level

structure proposed so far is incorrect, and that the correct one is characterized

by the following requirements:

(1) When V = 0, S.. # 0»040; and moreover the extent of the spin-

orbit coupling is such that Eq. (28-12) holds for p-waves.

(2) After the spin-orbit coupling has been introduced, the f !•

partial wave is in nearly perfect resonance at E = 0.5 Mev,

i.e., S(f E) ~" 0.15 - 0.20 when E = 0.5 Mev.

(3) In all likelihood the unsplit p-level lies at positive rather

than negative energies. If it lies at negative energies, then as

the bombarding energy decreases the total width decreases while

the level shift increases pushing the effective level position

closer to the bombarding energy, both of which phenomena cause a
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rapid rise in S,. On the other hand, if the level is at positive

energy, these effects work in contrary directions. In any case the

resulting level scheme must maintain S. reasonably constant over the

range 0-0.5 Mev, as required by our analysis of Newson's data and

the 6(2+) data at 550 kev. Finally, since the f^ level is the

lowest of the four we are concerned with, if it is to resonate at

0,5 Mev, the other levels must be at positive energies.

°2
If we again assume W = 7.0 Mev, 7-, = 2.5 Mev, y = - 40 we find that

x SO

E1 = 5.6 Mev will give S., = 0.040 when E = 0.5 Mev. We can determine the

position of the f^ and fXlevels from the requirement E.. -E =2.8 Mev,

and from Eqs. (23-12). The results are E(f |)= 11.8 Mev, s(f ^]= -4.0 Mev.
E(p^)= 10.1 Mev and E(p^)= 3«3 Mev. The corresponding strength functions

are s(p |) =0.020, S(p J) =0.060, s(f |) =0.0086, S(f |) =0.170. The
p-wave strength functions again approximately obey Eq. (28-12). Finally,

S at E = 0 is O.O36 which is near S at E = 0.5 Mev as required. For the

previous choice (E = - 6,3 Mev) S at E = 0 was about 0.10 which was too

large.

7. With the above choice of strength functions exact calculations at

550 kev give 6(2+) = 1420 mb, c<4+) = 270 mb, and 6(ny) = 140 mb in excellent

agreement with experiment. A similar calculation gives B(2+) = - 0.25 in

better agreement with experiment than before, but still far outside the quoted

experimental error. The increase is primarily due to the increase in the P^ -

p - term in Eq. (42d-12). It is probably possible to make slight adjustments
•x.

in the level scheme so as to increase s(p fj ) somewhat and improve the
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agreement of B(2+) with experiment, without disturbing the other quantities

too much. Furthermore, a small amount of highly anisotropic direct excitation

may affect B(2+) considerably. 200 mb of direct, excitation with a P -

component of - 0.8 (the value obtained by Chase and Wilets) of its isotropic

component brings B(2+) to - 0.35 which is just barely within experimental error.

8. In concluding this chapter let us recapitulate our findings: As we

have seen 6(rxy) at low energies and 6(2+) at 550 kev seem rather independent

of V and hence can be used to analyze the central part of the optical

potential. Assuming S = Sp as usual these data overdetermine the p-wave

strength function and indicate that it is slightly larger than the s-wave

strength function, and fairly constant in the first 0.5 Mev of neutron

bombarding energy. This constraint, plus the measured s-wave strength function

and potential scattering radius, together with the general properties of

reasonable optical potentials-known from survey works of the type of

reference (F54) should determine the central optical potential. This central

potential can then be tested by calculating the total cross section. To

this a spin-orbit potential should be added whose strength is of the order of

- 40 times the Thomas term, and which brings the f X strength function near

its maximum at a bombarding energy of 0.5 Mev.
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