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DENSITIES OF SOME MOLTEN SALT MIXTURES CONTAINING NITRATES

G. Pedro Smith, Guy F. Petersen^ and William M. Ewing

Values Df the densities of molten salt mixtures have been determined

as needed for the computation of molar extinction coefficients from

absorption spectra. Constants in the density function measured during the

past eighteen months are reported here. A report of experimental details

and estimates of limiting errors will be published upon completion of a

full statistical analysis of the data.

Experimental

Densities were obtained with a high precision apparatus operating on

the principle of determining the buoyancy of a platinum bicone immersed in

the fused salt and suspended by means of a fine platinum wire from one arm

of an analytical balance. The molten salts were appropriately purified and

were measured under an inert atmosphere. Careful consideration was given

to the measurement and control of temperature, to the elimination of thermal

and compositional gradients, and to errors arising from, decomposition and

volatilization of the salts.

Results

The results of the density measurements are reported in the accompanying

tables in terms of the constants a and b of the conventional density function

p = a - bt

where p is density in g/cm , t is the temperature in °C, and a and b are

constants for a fixed composition. The data were fitted to this equation

by the method of least squares. The adequacy of fitting is indicated in the

tables by standard deviation (Stand. Dev.) between the measured density

values and those computed from the least-squares equation. In several

instances, determinations were made at only one or two temperatures. For

these the density is listed in the "a" column and the corresponding

temperature in the "Temp. Range" column.
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It is to be noted that the standard deviation is only a measure of

linearity for these data and is by no means a measure of over-all accuracy

or reliability. The reliability of these data varies considerably. Thus,

the values for the KNO^-iLINO,, binary system are based on repeated deter

minations at many temperatures each while the values for the KNO^—Zn(NOo)P

binary system represent single determinations at single temperatures.

Intermediate to these extremes are the 30 mole $ Ca(N0.Jp-70 mole $ KNO^
mixture for which determinations were made at eleven temperatures and the

30 mole <fc Sr(N0_,)2-70 mole # KN0~ mixture for which determinations were
made at only four temperatures. Following complete statistical evaluation

of the data, it is probable that the number of significant figures will be

decreased for a number of compositions.

In several instances the temperature range is given as exceeding

500°C. For these instances it is likely that decomposition occurred.

However, this was not reflected in a deviation of the higher temperature

values from linearity.

Table I lists our values for the pure, alkali nitrates (except RbNO^).

These are in substantial agreement with older, precision determinations.

In particular, the constants for NaNO-, were very carefully checked and

found to lie intermediate to previous precision determinations which were

already in substantial agreement.

The unit of concentration for binary mixtures (Tables II and III) is

mole fraction based on gram-formula weights for the formulae as written.

The unit of concentration for reciprocal systems (Table TV) is the ionic

fraction based on the gram-formula weights of the ions taken to be K , Li ,

NO ~, and Cl~ for the KNCL-LiCl reciprocal system and K+, Cd++, NO ~, and
Cl" for the KN0_-CdClp reciprocal system.



TABLE I

PURE ALKALI NITRATES

Nitrate a b Stand. Dev. Temp. Range

g/cm
g/cm3/°C
x 10-5

3
g/cm,
x 10 °C

LiNO 1.9221 0-5557 6 276 - U20

NaNO 2.12U8 0.7010 5 ^320 - i+52

KNO 2.1101 0.7329 8 3^6 - 505

CsNO 3.278U 1-1353 h ^29 - 553
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TABLE II

BINARY SYSTEMS - MIXED CATIONS

Camp. a b iStand. Dev. Temp. Range

Mole

Fraction
0

g/cmJ
g/cm3/"C

x 103

0

g/cm.
x hA °C

KNO^-LiNO^ System
LiNO^

0.107 2.1017 0.7352 3 318 - U52

0.2^5 2.0830 0.7290 6 29U - U25

0-375 2.0553 0.696^ k 3O6 - k$k

0.500 2.033^ 0.6827 7 275 - ^73

0.625 2.0100 0.6572 k 328 - 476

0.680 1.9965 0.6376 9 219 - 41+5

0.801 1.971+2 0.6233 2 26k - 350

O.876 1.95U0 0.5988 k 257 - ^03

KNO -Sr(NO )2 System
Sr(N03)2

0.10 2.2175 0.7^01 5 361 - 501

0.20 2.3162 0-7373 Ik 348 - 497

0.30 2.1J-025 0.7210 2 J+21 - 452

KN03-Ba(N03)2 System
Ba(N03)2

0.10 2.30^7 0.7727 3 324 - 520

0.20 2.4749 0.79^6 8 377 - 518

0.30 2.6289 0.80U8 k 438 - 517

(continued)



TABLE II (continued)

Comp. a b Stand. Dev. Temp. Range

Mole

Fraction

g/cm3/pC g/cm3
5/cmJ x 10J x 104 °C

KN0v-Ca(N03)2 System
Ca(N03)2

0.10 2.1319 0.7093 3 396 - 469

0.20 2.1715 0.7348 11 296 - 470

0.30 2.1924 O.7129 5 231 - 449

KNO -2ia(N0 )2 System
Zn(N03)2

0.20 2.064 247-5

0.40 2-142 205.8

KNO -Cd(N03)2 System
Cd(N03)2

0.33 2.419 223.5

0.55 2.710

2.690

201.0

221.8
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TABLE III

BINARY SYSTEMS - MIXED ANIONS

Comp. a b Stand. Dev. Temp. Range

Mole

Fraction g/cm
g/cm3/!-C
x 103

o

g/cm,
x 10^ °C

KNO-r-KCl System

KC1

0.087 2.1013 0.7275 7 349 - 540

0.205 2.0898 0.7120 12 429 - 580

0.298 2.0691 0.6804 14 485 - 633

LiNO^-LiCI System

LiCI

0.100 1.9113 0.5374 4 278 - 446

0.201 1.9026 0.5380 2 34o - 497

0.305 1.8891 0.5240 3 378 - 497

LiNO^-LiClO^ System

LiClO^

0-75 2.1342 0.6293 4 225 - 336

0.54 2.0883 0.6292 4 198 - 347

0.25 2.0144 0.6102 4 240 - 357
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TABLE IV

RECIPROCAL SYSTEMS

Comp. a b Stand. Dev. Temp. Range

Cation

Fract.

Anion

Fract

0

g/cm.-'
g/cm3/!C
x 10°

g/cm?
x 10 °C

KNO^-LiCl Reciprocal System

K+ NO "

0.25 0.50 1.9191 O.5568 4 350 - 398

0.25 0.75 1.9654 0.6179 2 296 - 376

0.4l 0.25 1.9108 0.5509 30 302 - 473

0.41 0.50 1.9509 0.5773 11 253 - ^50

o.4l 0-75 1.9985 0.6497 4 300 - 449

0-75 0-75 1-799.
I.78I

366.9
395-8

KN03-CdCl2 Reciprocal System

Cd Cl~

0.30 0.40 2.6627 1.0597 7 266 - 297

0.42 0.21 2.542 236.8

0.51 0.10 2.670
2.62a

205.1

246.6
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