





Addendum to ORNL-2831

The units on the curves of Fig. 3 through Fig. 26 were inadverently
omitted. The density n + is in cm™3 and the current I is always in

ma..
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ABSTRACT

A complete algebraic analysis has been obtained for the variation of
the steady state ion density n+ with injected current I in an OGRA-type
fusion device (i.e., a device based on trapping of ions by breakup of
energetic molecular ions on collision ﬁith either the background gas or
trepped ions). The most general variation of n+ with I is shown to be an
s-curve with at most three roots of n+ for a given input I. A physical
interpretation of these three roots is given. 1In addition algebraic
expressions are obtained for the two currents at which the bends in the
s~-curve occur. It will be necessary to attain the larger current in order
to build up a high density plasms when the density is being increased from
below. On the other hand, once the high density has been achieved it may
be maintained by steady injection of a current larger than the lower value.
Parameters corresponding roughly to the specifications of OGRA are used
to obtain some numerical results. In the final appendix, the previously
published formulas for burnout in DCX are extended to include effects of

neutral backstreaming from the input beam and "ion~pumping."
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I. STEADY STATE RELATION BETWEEN ION DENSITY
AND INJECTED CURRENT

In two previous publications,l"2 an expression was derived for the
critical current at which formation of a plasma by high-energy injection will
begin. This previous expression was for a case in which the trapping mechanism
(although not specified in detail) was localized and did not depend on either
the neutral gas in the device, the trapped ion density or the dimensions of
the system. A trapping mechanism of this sort is provided by the arc in DCX.5

The situation is quite different in a proposed fusion device such as
OGRAah Here the injected molecular ions have a long mean-free-path L before
they strike the injector snout and trapping occurs by virtue of the dissocia-
tion of the molecule on collision with either the backgrouund gas (crgss section
+

).

Nevertheless, one might suspect on physical grounds that a critical current

) +
Oé ), the trapped ions (oﬁ ), or other molecular ions in transit (cé

also exists in this case and indeed such an expression has been found. The

result is somewhat more complex than in the case of DCX because cf a feed-

back which is inherent in the gas-breakup scheme. The onset of neutral burnout

results in a reduction of the neutral breakup centers as well as an increase of

the ion breakup centers and hence has a back effect on the input trapped current.
A complete algebraic analysis of the steady state equations has been

achieved in the case when one can neglect the contribution of the molecular

ions to burnout or to breakup of other molecules as compared to the effect of

the trapped ions and the neutral gas. (This is a highly valid approximation

in almost all cases of interest.) The total mean free path A of the injected

molecular ions is then:

o + (l)

>+
I
t41=
+
= >
Q
+
B
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1. A. simon, The Phys. of Fluids, 1, 495 (1958).

2. A, Simon, The Phys. of Fluids, 2, 336 (1959).

3. C. F. Barnett et al., Proc. Second Geneva Conf. 31, 298 (1958).
4. I. V. Kurchatov, J. Nuc. Energy 8, 168 (1958).




A
where No is the average neutral density (atomic) external to the plasms

region and n_ is the trapped energetic ion density. (It has been assumed that
the slow ions resulting from ionization of the neutrals in the plasma region
contribute equally to breakup as do the neutrals themselves. The sum of the
slow ion and neutral densities in the plasma interior should remain equal to
the external neutral density even after burnout.) The probability that a
molecule will break up after a path length x is then

p(x) = ¥/ & (2)
A
B
where
l—=§0’°+n0’+ (5)

The percentage trapping is found by integrating Eq. (2) over all space. The

result is
A
N o°L +n o-'L
A o B + B
%B.U.=-i——- ———— — (4)
B 1l + Nbcb L+ n+0£ L

The steady state rate of trapping of energetic ions is obtained by multiplying
Eq. (4) by I, where I is the injected (number) current of molecular ions. It
is assumed that trapping by dissociation of the molecular ion will dominate
over trapping by actual ionization.

The trapped ions will be lost from the plasme in two ways. Either they
undergo a charge exchange collision with a background gas atom or they scatter
on each other and go out the mirrors. Since mirror loss will be negligible
until well after burnout sets in, we ignore any contribution to mirror loss
due to scattering of the ions against the neutral gas atoms. The average
neutral density'ﬁo in the plasma interior is simply related to the exterior
neutral density ﬁb.e




A
n = ‘2 (5)
1+ =
A
A
N
= — (6)
1l + éLX n cr‘+
Vo + d

Here,ﬁ is the mean chord length of the plasma volume and A is the mean-free-
path for destruction of a gas atom (by either ionization or charge exchange)
as it enters the plasma. Equation (6) expresses this mean free path in terms
of the properties of the ions. The quantity Ga+ represents the sum of the
cross sections for ionization and charge exchange of an ion incident on a

gas atom:

+
oy =0; + O (7)

The background gas has been assumed to be of the same species as the injected
molecular ion (i.e., deuterium or hydrogen in all cases of interest). Hence
a8 single ionization or charge exchange suffices to make it impotent. The
average velocity of the gas atom is denoted by Vo and v is the ion velocity.
Throughout this paper we assume that energy degredation processes are un-
important and that the ions remain at their initial energy until they are
lost.

The steady state loss rate of ions by charge exchange follows immediately
from Eq. (6). It is:

0 + cX (8)




where V is the plasma volume. Finally, the mirror loss rate is assumed to .

be given by the usual binary expression,S
2
=n & VPV (9)
+ ¢

where og is the "effective 90-deg. Coulomb scattering cross section” by
cumulative small angle scattering and P is the probability of an ion being
in the loss cone after such a scattering. Combining Egs. (4), (8), and
(9), we have the following steady state equation for the ion density:

No® + Nno
L+no L n v
- OAB o 2 o . : = + n+20;VP (10)
v 1+ Nbob L+ n+oh L v +
l+—no.
v +d
o
) 3

An expression for Nb, the neutral density exterior to the plasma may
be readily obtained by accounting for all the sources of gas. The background
gas is assumed to come from a steady outgassing of the walls of the container
and from backstreaming of neutrals resulting from the energetic ions and
molecular ions which are injected and which finally strike the walls. We
assume that a certain fraction r7of the input molecular ion ultimately enter
the vacuum region as neutral atoms. Of course this is a rather crude account-
ing and does not distinguish between the different re-entry probabilities of
energetic ions and unbroken-up molecular ions which strike the wall. By
conservation of atoms, we see that "< 2. The steady outgassing rate of the
surface is denoted by a g-where g is the surface area of interest and a is
the outgassing rate per unit ares.

This influx of gas is balanced in two ways. First, neutrals are pumped
off directly by external pumps acting on the system. If & denotes the pumping
speed of the external pumps, this loss rate is eﬁb. The second loss is due

5. R. F. Post, Proc. Second Geneva Conf. 31, 248 (1958).




to the "ion-pumping" action of the trapped plasma. Every neutral atom which
enters the plasma volume and undergoes either an ionization or a charge ex-
change becomes a slow ion. This ion is trapped on a field line and rapidly
moves out to the mirror regions. A large fraction of these slow ions may be
permanently trapped and preveated from returning to the vacuum region, for
instance by accelerating them into a titanium plate and econtinually evaporat-
ing new layers of titanium on that region. This is one possible form of
"ion-pumping." Let o denote the fractional probability that a slow ion does
not return as a neutral. The rate of loss of neutrals by this mechanism is

then:

Fay
The resultant steady state equation for N is then:

o
A +
= A O‘N6n+oa vV (11)
[I +as = er + jf
1+=~n o‘+
Ve d

Now initially, in the absence of any input beam, the balance equation was

= _ 5
oS = 6N (12)

where N6 is the initial neutral density in the vacuum region before injection

began. Substituting Eq. (12) in Eq. (11), we have

AT o)
i - (13)




Equations (10) and (13) combined constitute an implicit equation in the -
varisbles n and I. (Some of these last considerations on backstreaming
and ion pumping have not been included in previous publicationsl’2 on ¢

burnout in DCX. This 1s done here in Appendix B.)
1. 'THE INJECTED CURRENT AS A FUNCTION OF THE ION DENSITY

We wish to determine the variation of ion density n with changes in
the injected current I. The gross features of the variation may be ob-
tained by an algebraic analysis. Equations (10) and (13) combined have

the general form:

f(n+, I)=0 (1)

Let us first determine the possible roots of this equation for fixed n+.
We shall rewrite Eq. (14) so as to explicitly display it as a polynomial
in I. From Eq. (10) we have:

A
Nnog v
I AN o + o +cx 2 ~ o _+
= o = + ‘
5 (Noo®L + n op'L) — n o VP |11+ N0l 4 1on L (15)
1+%%n 0'+
v. +4d

which has the general form, by Eq. (13),

%- (AT + B) = (CI + D)(1 + AT + B) (16)

vwhere A, B, C, and D are positive definite quantities and are independent
of I. Equation (16) may be written

IE[%—AC}+I{$-C(1‘-‘#B)-ADJ-D(l+B)=O (17)

Two cases may be distinguished:




a. % Z7C: 1In this case the product of the two roots is negative.

Hence there is one positive real root and one negative real root.

b, % <.C: The coefficient of I in Eq. (17) may be written as:

\'f
1
—-I3<V,- ) -C~-AD

Hence, in this case, it is negative. We see that the product of
the roots is positive but that the sum of the roots is negative.
This can only occur if the two roots are either both negative
real or form a complex pair. There is no positive real root.
Hence, we see that there can be at most one positive real value of I

for a given n+-

III. THE ION DENSITY AS A FUNCTION OF THE INJECTED CURRENT

Let us now rewrite Eq. (15) in order to display it as a polynomial in
n+. We define the quantity K as,

fv + O _+
K—voog+e<rdvv, (28)

and multiply through by (1 +/ﬂ’n+)2 in Eq. (15). The result is:

= [(g I+ N> n o v+ n+2chVP(l + Xn+)J . (19)

[(l+n L)(1 +Kn (FI+N)O'BOL (1 +’€vnoa+)J

(¢]

which has the general form:




e 2
An > By +Cn~  -Dn +En -F=0 (20)
+ + + + +

Here

We see immediately that the product of the roots is positive and that the
sum of the roots is negative. It follows at once that there is either only
one positive resl root or three positive real roots for n+ for a given value
of I.

The results of Sections II and III enable us to sketch the general
variation of n, with I and this is shown in Fig. 1. The curve has the general
form of an s-curve. It stould be noted that the root analysis given above
does not exclude the possibility that the s-curve behavior will occur
several times instead of just orze as shown in Fig. 1. The physical inter-
pretation of the s-curve given in the next section makes it clear, however,
that an s-curve will occur only once if at all. 1In this regard, it should
be noted that in some cases no s-~-curve arpears and instead the curve increases
monotonically to a limiting value of n . The criterion for the occurence of
this behavior is given below [see Eq. (52)1,

For comparison, the characteristic curve of n versus I in the case of

n

a fixed breakup device such as DCX is showa in Fig. 2.

6. A recent paper by I. N. Golovin (Harwell, April 1959, unpublished) states
that Kugznetsov and coworkers have numerical results indicating a

behavior of this sort.
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IV. PHYSICAL INTERPRETATION OF THE ROOTS

The multiple roots occurring in Fig. 1 have a straightforward physical
interpretation. In region 1 neutral burnout has set in. The steady state
solution is achieved by balance between charge exchange loss of the trapped
ions and feed by breakup of the molecular ions on the neutral background
(mirror loss is negligible). The second solution in region 2 corresponds
to the point at which the ion density has risen and the neutral density has
fallen such that the breakup on the ions now is the same as the previous
breskup on the neutral gas. The charge exchange loss remains the same since
it is proportional to the product non+ (vhere no is the average neutral
density in the plasma region) and since, after burnout, nofd l/n+. The
final root of region 3 corresponds to the point at which mirror loss becomes
more important than charge exchange loss.

The physical interpretation Just given makes it clear that roots 1 and
3 are stable while root 2 is unstable. For example, suppose the system is
in  steady-state equilibrium at root 1 and that there is then a slight
transient increase in the trapped ion density. The trapping rate will not
increase appreciasbly since it is determined by the neutral gas density while
the charge exchange loss rate increases linearly with n+. Hence the ion
density will decrease and this root is stable. If the system is in equilibrium
at root 2, the reaction to this increase is quite different. The trapping
rate increases linearly with n+ since trapping is now primarily by collision
with ions while the charge exchange loss rate {beyond burnout) remains
constant. Hence the ion density will continue to increase and the root is
unstable. Finally consider the effect of a transient increase at root 3.
The trapping rate increases linearly but the dominant mirror loss rate
increases quadratically. Hence the ion density decreases and this root is

stable.
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V. THE UPPER CRITICAL CURRENT (UCC)

Of course we can stop at this point and analyze the behavior of any
given device by obtaining a curve such as in Fig. 1 from Egs. (10) and
(13) by numerical means. This is somewhat laborious, particularly if we
wish to do a parameter survey and compare various proposals. Instead of
the entire curve in Fig. 1, it would be almost as useful to know the two
points at which the curve is vertical. These are denoted as the Upper
Critical Current (UCC) and Lower Critical Current (ICC) in Fig. 1. It is
clear that it is necessary to attain the UCC in order to build up a high
density plasma when the density is being increased from below. On the
other hand, once a high density has been achieved, it may be maintained by
steady injection of a current larger than the LCC. A derivation of an
approximate expression for the UCC is given below and one for the ICC is
given in the next section.

Iet us consider I as a function of n, and differentiate Eq. (1L). We
have:

of L4 o _, (21)

+
bn+ dn+ o3 §

Now the UCC and ICC are distinguished by being the points at which dI/dn+ = 0,

Hence we have

— =0 (22)

The UCC and LCC are determined by the simultaneous solution of Egs. (14) and
(22). Substituting in Eq. (22) from Eq. (10), we have
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N o® i 8
o
[ I 0B L+ 2. L _ 0 o+ cx 2
:0;1-“ v ~ o) + T on - + n+ JCVP
+ 1+ N Oé L + n+ob L + l +
° 1l + v n d.
v +d

(F \

- T+ N no v

= aa 8 °O * X ,n2wp| (23)
oy 1 +)’\n+ toc

where K'is defined in Eq. (18).

To get an expression for the UCC we neglect the second term on the right
side of Eq. (23). This corresponds to mirror loss and should be negligible
according to the physical interpretation given earlier. To get a relatively
simple result we must make one other approximation. We assume that the UCC
is well above burnout, or in other words, that )<n+ >> 1 at that point.

To first approximation, then, the bracket on the right hand side of Eq. (23)

is independent of n, and its partial derivative vanishes. Equation (23)

becomes
) .
2 NOO'B L + n+0?B L ~
=0 (2k)
on AN o +
+ l1+NO L+no0 L
o B + B
Now
dy
4 - 25)
1+ 2
ax Y (1 +y)
Hence Eq. (24) reduces to
d & _o +
— a. a. =
o, (Nb 5 L +n.0, L) =0 (26)

or




1k

-

(p ) o Iy _+

FI+N )OO L(lL+3—ndo )

ba 2] 0 B Vo “4+7°d + n+0.B+L =0 (27)
n, (1 + Kn+)

After some algebra, this equation reduces to:

Trix)e®
(1 +4n,) = <9 ’ JQ B <g) o w=g (28)
T
B
or
n, = %—l (29)

We can now eliminate n_in Eq. (14) by use of Eq. (29). The result is an
implicit equation in I, whose solution should be the UCC. This equation is
easily found to be:

G;— I+ No> o W ( L&-l) [1 + AL (Z—K'—l> 'L

I = - (30)
o) g - +
K[AO'BL+(K)033L]
where
r -1 —v +] 1
A=EI+NO [l+2—'}‘—— ’%;-O'd]a (31)

The solution of Eq. (30) gives us the UCC and the corresponding value of n
is then given by Eq. (29).

It should be noted that we assumed initially that /¥n4 >> 1 at the UCC.
In order to be self-consistent, then, the value of @ corresponding to our

solution should be large compared to unity. Our numerical results seem to
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indicate that quite good answers are obtained for the UCC even when ¢ is

of the order of 2. When ¢ is less than unity, the approximation breaks down
completely and in this case we have found no simple relation which can be
used.

It has not yet been demonstrated that there is only one real positive
value of I which satisfies Eq. (30). We have succeeded in showing this in
the limit of § >> 1. The method is similar to that used earlier and con-
sists in expressing Eq. (30) as a (3rd order) polynomial in @. It can be

shown that one positive real solution for @ exists if

) o

e cX

i (32)
(o} da

If the inequality is reversed, there is no positive real root. From the
definition of @, Eq. (28), we see that Eq. (32) is a necessary condition for
the existance of an UCC.

~ One final point before leaving this section. If we make the opposite
assumption to that made at the beginning of this section and take Kn+ << 1,
it is then easy to show that no simultaneous solution of Egs. (23) and (1%)
can exist. This verifies our physical understanding of the roots which

requires that burnout occur in order that an UCC exist.

VI. THE LOWER CRITICAL CURRENT (LCC)

The LCC is determined by the simultaneous solution of Egs. (25) and
(14). Our previous physical picture of conditions at the ILCC indicated that
the neutral background should be entirely negligible at that point. Hence we

A
neglect the terms N c%oL compared to n+6£+L in Eq. (23). Correspondingly

we assume that n o 'L>> 1 za.mi)ﬁn+ >> 1. Equation (23) becomes:

d |1 1 d (% I+ No> Ol 1

= |=(1 - - = 5 1- )t n’o vP|  (33)
+ n+Oh L + K Vo
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The solution of this equation is:

[
5 = 1 I _(5 1+ NO> o::xv (3)4.)
M EGEVP Vo%+L )42

n

which can be rewritten by use of Eq. (14) as:

)1
(EI+1\I>o'v“‘;2
PP BT P EELOLATTR: -
+ EGZVP \') )<
Upon substitution in Eq. (14), we obtain an implicit equation in I,
CEREN, s
=I+N O vwWil - J
8 o) K
T = » cX ﬂ (56)

K(l- 5+)
26053L

Just as in the case of the UCC, this expression is self-consistent onmly if
the resulting solution is such that KS >> 1 and cb+18 >21. Once again, in
this limit, it is immediately demonstrated that there is at most one real
positive root of Eq. (36) and that this root exists only if the inequality of
Eq. (32) is satisfied.

VII. NUMERICAL SOLUTIONS FOR "OGRA"

A series of numerical runs was mede using parameters which should be
roughly that of the "OGRA" experiment. These parameters were:

L= lO5 cm.

Z = 50 cm.

V= 2.55'x:106 cmj.

8 =4 x 107:liters/sec.
P = 0.388.
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Both H; and D; injection was considered, each at an energy of 200 kev.
Furthermore, since there appear to be some large differences in published
values, two sets of cross sections were used. One set, hereafter denoted
by USSR, was taken from the curves of Federenko as given in reference 4.
The other set, hereafter denoted as USA, were based on Barnett's results7
and the Bethe formula for the ionization cross section.8 These cross

sections (per gas atom) are tabulated below:

a. Deuterium:

1.26 x lO5 cm/sec

v =
(o]
8
v = 3.12 x 10" cm/sec
d'c ':2.6 X 10_22 cm2
USA USSR
v -
ob° 5 x 107 1.65 x 10 16
o%+ 5 x 10717 1.65 x 1010
o 9 x 1077 7.5 x 1077
oé+ 3,02 x 10716 2.6 x 10710
b. Hydrogen:
Vo =1.78 x lO5 cm/sec
v o=hlx lO8 cm/sec
S, = 2.6 x 10722 cm?
USA USSR
o£° 5 x 10°%7 1.5 x 10716
os+ 5 x 1072 1.3 x 10716
1.2 x 1077 3 x 10718
(¢9.4 6 ] 6
oa* 1.32 x 107+ 1.08 x 10T

7. C. F. Barnett and H. K. Reynolds, Phys. Rev. 108, 355 (1958).
8. N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions, Oxford
(1949) p. 247.
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Runs were made for a variety of values of the initial pressure No’ as well
as F and o. These results are plotted in Figs. 15-26. 1In a few cases,
exact solutions of Egs. (10) and (13) were obtained. These are shown in
Figs. 3-1L together with the values of UCC and LCC determined from

Egs. (30) and (3%6).
VIII. SUMMARY

It is shown that the general shape of the curve which plots steady-
state ion density versus injected current is an s-curve (see Fig. 1) for a
gas breakup trapping device such as OGRA. The actual curve may be calculated
by numerical means by use of Eqs. (10) and (13). Approximate expressions
are obtained for the two points at which the curve is vertical. The upper
eritical current (UCC) is the solution of the implicit Egs. (30) and (31).
The corresponding density is then calculated in Eq. (29). The lower critical
current is the solution of the implicit Egs. (36) and (35). The correspond-
ing density is then given by Eq. (35). Burnout and the characteristic
s-curve will only occur if the inequality of Eq. (32) is satisfied. If not,
there is simply a monotonic increase of the density to a limiting value
as the current increases indefinitely.

A physical interpretation of these roots is given in Section IV. A
numerical survey of UCC and LCC for an experimental device having the
dimensions of the Russian OGRA are presented in Figs. 3-26. Appendix A
considers the effect of treating the path length L as a fixed range rather
than a mean free path and Appendix B applies the ion pumping consideration

to previous formulas for burnout in DCX.
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I am greatly indebted to M. E. LaVerne for his patient and careful
handling of the numerical calculations. I am also most indebted to
R. C. Gilbert and R. E. Hester for calling my attention to the possibility

of multiple roots in the gas breakup case.
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APPENDIX A
THE PATH LENGTH L CONSIDERED AS A FIXED RANGE

It is not entirely clear whether the path length L should be considered
to be a mean-free-path (as it is in the text) or a fixed range. If all in-
Jected particles entered at the same spatial point with the same angle then
they would all ultimately strike some obstacle after traversing a fixed path
length (in the absence of transient perturbations). More realistically, the
injected beam has a rather wide spread in angle. The long path length and
nonuniform magnetic field then produce a great deal of orbital precession
and randomization and a statistical factor (i.e., a mean free path) would
seem to be more correct. Actually the calculation below indicates that the
difference is not important numerically, anyway.

Let us calculate the steady-state trapping rate if there is a fixed
path length L. This is obviously

(N o°
-(N & 4n C_+
=1 -e o B + B )L (Al)
which should be compared with Eq. (4). If we define
" o +
X = (Nooh + 1 op )L (A2)
then the ratio of these two expressions is:
-X
l-e +

X

This ratio approaches unity for x very small and for x very large compared to

unity. The table below lists numérical values of R for several values of Yy,

vhere y = e ~,

ze* o a1 w2 3 4% 5 6 .7 .8 .9 1.0

R 1 1.29 1.0 1.28 1.25 1.22 1.18 1l.1% 1.10 1.05 1




k5

APPENDIX B

EXTENSION OF THE DCX BURNOUT FORMULA TO
INCLUDE TON-PUMPING
An spproximate expression for the critical current has been derived in
reference 1 and 2. We shall now derive it in a different way and then
generalize to include ion-pumping. ILet us define '"burnout" to be that point
at which the mean-free-path of a neutral entering the plesma becomes equal
to the mean chord length of the plasma volume. In the notation of this

report:
» =41 (B1)
or
v —
e =) (B2)
vn O,
+ d

Now, since mirror loss is negligible at this point, the density is directly
related to the input current by the lifetime against charge exchange. Thus

nV=I7_ (B3)
S ! (Bb)
nod v
O ¢X

Upon substitution of Eq. (B4) in Eq. (B2), we have

|

”
<
>

Icrit N no

(B5)

bQIlo

+
%a

Now




Lv
L =5 (86)

and, by reference 2, Egs. (2) and (7),
)

N
n = —2-— (B7)
)
l+x
A
N
= 59 at burnout. (B3)

A
where N0 is the neutral density external to the plasma. Hence

fa)
B, Vof Ty
Icrit -2 % st (39)
d

This differs by a factor of 2 from the result given in reference 1. Of course,
one cannot say which one is more "correct." Burnout is not a prec:\lsely
defined event and either approximate expression is a useful measure of its
region of onset.

The external density, ﬁo" is determined by the balance of wall out-
gassing, ion pumping, external pumping, and backstreaming from the injected
beam precisely as in Section I of the text. Hance, by Eq. (13), we have

s gI+NO
N, = — (B10)
no. vv
l+§ +d
° 1
l +=
A

At burnout, Eqs. (Bl) and (B2) apply, which gives




N
N = dVv° (B11)

Upon substitution of Eq. (Bll) in Eq. (B9) and rearranging, we find

vsS o
N o cxX
0

I = GE
crit Svo o;x
l+'8—9—<0"-{-‘ -—:)
%

(B12)

It should be noted that burnout will be possible only if

) _

cx 9.2
. e oregs
d

(B13)

which differs from Eq. (32) only by a factor of 2 in the last term. Again this
difference arises from the slightly different approximations we have used.
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