




Addendum to ORNL-2831

The units on the curves of Fig. 3 through Fig. 26 were inadverently

omitted. The density n is in cm"3 and the current I is always in

ma.
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ABSTRACT

A complete algebraic analysis has been obtained for the variation of

the steady state ion density n with injected current I in an OGRA-type

fusion device (i.e., a device based on trapping of ions by breakup of

energetic molecular ions on collision with either the background gas or

trapped ions). The most general variation of n with I is shown to be an

s-curve with at most three roots of n for a given input I. A physical

interpretation of these three roots is given. In addition algebraic

expressions are obtained for the two currents at which the bends in the

s-curve occur. It will be necessary to attain the larger current in order

to build up a high density plasma when the density is being increased from

below. On the other hand, once the high density has been achieved it may

be maintained by steady injection of a current larger than the lower value.

Parameters corresponding roughly to the specifications of OGRA are used

to obtain some numerical results. In the final appendix, the previously

published formulas for burnout in DCX are extended to include effects of

neutral backstreaming from the input beam and "ion-pumping."
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I. STEADY STATE RELATION BETWEEN ION DENSITY

AND INJECTED CURRENT

1-2
In two previous publications, an expression was derived for the

critical current at which formation of a plasma by high-energy injection will

begin. This previous expression was for a case in which the trapping mechanism

(although not specified in detail) was localized and did not depend on either

the neutral gas in the device, the trapped ion density or the dimensions of
3

the system. A trapping mechanism of this sort is provided by the arc in DCX.

The situation is quite different in a proposed fusion device such as
k

OGRA. Here the injected molecular ions have a long mean-free-path L before

they strike the injector snout and trapping occurs by virtue of the dissocia

tion of the molecule on collision with either the background gas (cross section

csi ), the trapped ions (az ), or other molecular ions in transit (or. ).

Nevertheless, one might suspect on physical grounds that a critical current

also exists in this case and indeed such an expression has been found. The

result is somewhat more complex than in the case of DCX because of a feed

back which is inherent in the gas-breakup scheme. The onset of neutral burnout

results in a reduction of the neutral breakup centers as well as an increase of

the ion breakup centers and hence has a back effect on the input trapped current.

A complete algebraic analysis of the steady state equations has been

achieved in the case when one can neglect the contribution of the molecular

ions to burnout or to breakup of other molecules as compared to the effect of

the trapped ions and the neutral gas. (This is a highly valid approximation

in almost all cases of interest.) The total mean free path X of the injected

molecular ions is then:

i - z+ Vb° +W w

1. A. Simon, The Phys. of Fluids, 1, ^95 (1958).
2. A. Simon, The Phys. of Fluids, 2, 336 (1959).
3. C. F. Barnett et al., Proc. Second Geneva Conf. 51, 298 (1958),
k. I. V. Kurchatov, J. Nuc. Energy 8, 168 (1958).



where N is the average neutral density (atomic) external to the plasma

region and n is the trapped energetic ion density, (it has been assumed that

the slow ions resulting from ionization of the neutrals in the plasma region

contribute equally to breakup as do the neutrals themselves. The sum of the

slow ion and neutral densities in the plasma interior should remain equal to

the external neutral density even after burnout.) The probability that a

molecule will break up after a path length x is then

/ x -x/X. dx , .
p(x) = e ; — (2)

^B

where

i. =iA" +n+<%+ (j)

The percentage trapping is found by integrating Eq. (2) over all space. The

result is

A o +
, N o- L + n or L

*B.U. =£- = °* +B (10
B 1 + NO" L + n or L

on + Jo

The steady state rate of trapping of energetic ions is obtained by multiplying

Eq. (k) by I, where I is the injected (number) current of molecular ions. It

is assumed that trapping by dissociation of the molecular ion will dominate

over trapping by actual ionization.

The trapped ions will be lost from the plasma in two ways. Either they

undergo a charge exchange collision with a background gas atom or they scatter

on each other and go out the mirrors. Since mirror loss will be negligible

until well after burnout sets in, we ignore any contribution to mirror loss

due to scattering of the ions against the neutral gas atoms. The average

neutral density n in the plasma interior is simply related to the exterior

f.
o

r.2neutral density
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N

\ *-*-= (5)
1,1

X

A

N

-T2 (6)

i i v ~-+1 + n cr
v + d
o

Here£ is the mean chord length of the plasma volume and A, is the mean-free-

path for destruction of a gas atom (by either ionization or charge exchange)

as it enters the plasma. Equation (6) expresses this mean free path in terms

of the properties of the ions. The quantity cr represents the sum of the

cross sections for ionization and charge exchange of an ion incident on a

gas atom:

cr + = o: + cr (7)
d i ex

The background gas has been assumed to be of the same species as the injected

molecular ion (i.e., deuterium or hydrogen in all cases of interest). Hence

a single ionization or charge exchange suffices to make it impotent. The

average velocity of the gas atom is denoted by v and v is the ion velocity.

Throughout this paper we assume that energy degredation processes are un

important and that the ions remain at their initial energy until they are

lost.

The steady state loss rate of ions by charge exchange follows immediately

from Eq. (6). It is:

N n o" vV
o + ex

1 + — n cr.
v + d
o

(8)



where V is the plasma volume. Finally, the mirror loss rate is assumed to

be given by the usual binary expression,

=n+VvpV (9)

where cr* is the "effective 90-deg Coulomb scattering cross section" by

cumulative small angle scattering and p is the probability of an ion being

in the loss cone after such a scattering. Combining Eqs. (k), (8), and

(9)> we have the following steady state equation for the ion density:

T N cr °L +n 01+L Nn <r vI __J0 _±_B o + ex +n2^ (1Q)
V n , ir ~- °t . _ — +t T + C

.+
1 + NO" L + n 0", L 0

o B + B , x-v
1 + — n cr

v + d
o

An expression for N , the neutral density exterior to the plasma may

be readily obtained by accounting for all the sources of gas. The background

gas is assumed to come from a steady outgassing of the walls of the container

and from backstreaming of neutrals resulting from the energetic ions and

molecular ions which are injected and which finally strike the walls. We

assume that a certain fraction I of the input molecular ion ultimately enter

the vacuum region as neutral atoms. Of course this is a rather crude account

ing and does not distinguish between the different re-entry probabilities of

energetic ions and unbroken-up molecular ions which strike the wall. By

conservation of atoms, we see that V£• 2. The steady outgassing rate of the

surface is denoted by a S where S is the surface area of interest and a is

the outgassing rate per unit area.

This influx of gas is balanced in two ways. First, neutrals are pumped

off directly by external pumps acting on the system. If Q denotes the pumping
/\

speed of the external pumps, this loss rate is 9N . The second loss is due
o

5. R. F. Post, Proc. Second Geneva Conf. 31, 2^ (1958).
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to the "ion-pumping" action of the trapped plasma. Every neutral atom which

enters the plasma volume and undergoes either an ionization or a charge ex

change becomes a slow ion. This ion is trapped on a field line and rapidly

moves out to the mirror regions. A large fraction of these slow ions may be

permanently trapped and prevented from returning to the vacuum region, for

instance by accelerating them into a titanium plate and continually evaporat

ing new layers of titanium on that region. This is one possible form of

"ion-pumping." Let cf denote the fractional probability that a slow ion does

not return as a neutral. The rate of loss of neutrals by this mechanism is

then:

N n cr v
= cr_?_Ll v

£v +
1 + — n cr

v + d
o

A

The resultant steady state equation for N is then:

A +
_ A cr N n cr W

pi +as = eN +—^zr-^ t11)

l+^ncr +
v + d

o

Now initially, in the absence of any input beam, the balance equation was

as = 9N (12)
o

where N is the initial neutral density in the vacuum region before injection

began. Substituting Eq. (12) in Eq. (ll), we have

r
- I + NN = 9. °^— (13)

o n CJVvV

1+f ——e -

1 + — n cC
v + d
o



Equations (10) and (15) combined constitute an implicit equation in the

variables n and I. (Some of these last considerations on backstreaming
+ 2. 2

and ion pumping have not been included in previous publications ' on

burnout in DCx. This is done here in Appendix B.)

II. THE INJECTED CURRENT AS A FUNCTION OF THE ION DENSITY

We wish to determine the variation of ion density n+ with changes in
the injected current I. The gross features of the variation may be ob

tained by an algebraic analysis. Equations (10) and (15) combined have

the general form:

f(n+, I) =0 (1*0

Let us first determine the possible roots of this equation for fixed n .

We shall rewrite Eq. (1*0 so as to explicitly display it as a polynomial

in I. From Eq. (10) we have:

i (HocrB°L +n+o-B L) -
r- A

N n cr v _
2_±-£S + n 2

— + c

iMncr;
v + d

o

which has the general form, by Eq. (15),

1 +Vi L -1 -Vb l

V
(AI +. B) = (CI + D)(l + AI + B)

(15)

(16)

where A, B, C, and D are positive definite quantities and are independent

of I. Equation (l6) may be written

I-AC + I I-C(l' 4- B) -AD - D(l + B) = 0 (17)

Two cases may be distinguished:



a. — ^C: In this case the product of the two roots is negative.

Hence there is one positive real root and one negative real root.

b. — <siC: The coefficient of I in Eq. (17) may be written as:

= Bl
V

AD

Hence, in this case, it is negative. We see that the product of

the roots is positive but that the sum of the roots is negative.

This can only occur if the two roots are either both negative

real or form a complex pair. There is no positive real root.

Hence, we see that there can be at most one positive real value of I

for a given n •

III. THE ION DENSITY AS A FUNCTION OF THE INJECTED CURRENT

Let us now rewrite Eq. (15) in order to display it as a polynomial in

n . We define the quantity ){ as,

" v d 9 d '
o

and multiply through by (l + J(n ) in Eq. (15). The result is:

I

V (? 1+No) ^+lf °d\> °B°L +Vb^1 +K^
'- I + NJ n,crv + n,2crvP(l +JfnJ

0/ + ex + c

(1 +ta ) =
+

[(1 +n+crB+L)(l +Xn+) *(£l +>\ tf/L (1 Mn+<ra+)_

which has the general form:

(18)

(19)



Here

B

q k 3 2
An J - Bu + Cn - Dn + En - F = 0

+ + + + +

crvP H2cC+L
c B

crvP* (rB+L +Y'+(^1 oj B v a

F =- (- I + N )01°L
vie ol b

(20)

We see immediately that the product of the roots is positive and that the

sum of the roots is negative. It follows at once that there is either only

one positive real root or three positive real roots for n for a given value

of I.

The results of Sections II and III enable us to sketch the general

variation of n with I and this is shown in Fig. 1. The curve has the general
+ /-

form of an s-curve. It should he noted that the root analysis given above

does not exclude the possibility that the s-curve behavior will occur

several times instead of just once as shown in Fig. 1. The physical inter

pretation of the s-curve given in the next section makes it clear, however,

that an s-curve will occur only once if at all. In this regard, it should

be noted that in some cases no s-curve appears and instead the curve increases

monotonically to a limiting value of n . The criterion for the occurence of

this behavior is given below [_see Eq. (52)J.
For comparison, the characteristic curve of n versus I in the case of

a fixed breakup device such as DCX is shown in Fig. 2.

6. A recent paper by I. N. Golovin (Harwell, April 1959, unpublished) states
that Kuznetsov and coworkers have numerical results indicating a

behavior of this sort.
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IV. PHYSICAL INTERPRETATION OF THE ROOTS

The multiple roots occurring in Fig. 1 have a straightforward physical

interpretation. In region 1 neutral burnout has set in. The steady state

solution is achieved by balance between charge exchange loss of the trapped

ions and feed by breakup of the molecular ions on the neutral background

(mirror loss is negligible). The second solution in region 2 corresponds

to the point at which the ion density has risen and the neutral density has

fallen such that the breakup on the ions now is the same as the previous

breakup on the neutral gas. The charge exchange loss remains the same since

it is proportional to the product n n (where n is the average neutral

density in the plasma region) and since, after burnout, n *-> 1/n . The

final root of region 5 corresponds to the point at which mirror loss becomes

more important than charge exchange loss.

The physical interpretation just given makes it clear that roots 1 and

5 are stable while root 2 is unstable. For example, suppose the system is

in steady-state equilibrium at root 1 and that there is then a slight

transient increase in the trapped ion density. The trapping rate will not

increase appreciably since it is determined by the neutral gas density while

the charge exchange loss rate increases linearly with n • Hence the ion

density will decrease and this root is stable. If the system is in equilibrium

at root 2, the reaction to this increase is quite different. The trapping

rate increases linearly with n since trapping is now primarily by collision

with ions while the charge exchange loss rate (beyond burnout) remains

constant. Hence the ion density will continue to increase and the root is

unstable. Finally consider the effect of a transient increase at root 5*

The trapping rate increases linearly but the dominant mirror loss rate

increases quadratically. Hence the ion density decreases and this root is

stable.
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V. THE UPPER CRITICAL CURRENT (UCC)

Of course we can stop at this point and analyze the behavior of any

given device by obtaining a curve such as in Fig. 1 from Eqs. (10) and

(15) by numerical means. This is somewhat laborious, particularly if we

wish to do a parameter survey and compare various proposals. Instead of

the entire curve in Fig. 1, it would be almost as useful to know the two

points at which the curve is vertical. These are denoted as the Upper

Critical Current (UCC) and Lower Critical Current (LCC) in Fig. 1. It is

clear that it is necessary to attain the UCC in order to build up a high

density plasma when the density is being increased from below. On the

other hand, once a high density has been achieved, it may be maintained by

steady injection of a current larger than the LCC. A derivation of an

approximate expression for the UCC is given below and one for the LCC is

given in the next section.

Let us consider I as a function of n and differentiate Eq. (1*0* We

have:

2L. +M_ ** =0 (21)
t>n dn+ 01 v '

Now the UCC and LCC are distinguished by being the points at which dl/dn = 0.

Hence we have

2L- = 0 (22)
on+

The UCC and LCC are determined by the simultaneous solution of Eqs. (ik) and

(22). Substituting in Eq. (22) from Eq. (10), we have



b

bn.

I Vb°L +Vb+L
V ^ o +

l + NcCL + ncr_L
o B + B

15

d

bn.

bn.

r Nn «
o +

<5" vex 2 _
- + n crvP

+ c

v + d
o

(Si*0 n o" v

-t^L. + n 2c5- vP
+ c

1 +An
+

(25)

where X is defined in Eq. (l8).

To get an expression for the UCC we neglect the second term on the right

side of Eq. (25). This corresponds to mirror loss and should be negligible

according to the physical interpretation given earlier. To get a relatively

simple result we must make one other approximation. We assume that the UCC

is well above burnout, or in other words, that i^n >> 1 at that point.

To first approximation, then, the bracket on the right hand side of Eq. (25)

is independent of n and its partial derivative vanishes. Equation (25)

becomes

bn.

Now

Vb°l +Vb+l
A o +

1 + N 01 L + n 01 L
o B + B

dx \1 + y

dv.
dx

(l + y)£

= 0

Hence Eq. (2k) reduces to

JL (N*B°L +V/L) = 0

or

(2U)

(25)

(26)



bn.

Ik

(S I*Q & (1 +k nV
(1+ H\)

After some algebra, this equation reduces to:

£ *+* ) <^9 o) B

O +
-— + n 01 L

+ B

U+fn+) - I
f ^ = 0

or

JB

0 - 1
n = r

+ K

= 0 (27)

(28)

(29)

We can now eliminate n+ in Eq. (1*0 by use of Eq. (29). The result is an
implicit equation in I, whose solution should be the UCC. This equation is

easily found to be:

i =

where

K[Actb°l +

A - -I + H
0 O

[1 +

") *
(50)

- 1

vo d

1
(51)

The solution of Eq. (50) gives us the UCC and the corresponding value of n
is then given by Eq. (29).

It should be noted that we assumed initially that J) n >* 1at the UCC.
In order to be self-consistent, then, the value of 0 corresponding to our

solution should be large compared to unity. Our numerical results seem to
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indicate that quite good answers are obtained for the UCC even when 0 is

of the order of 2. When 0 is less than unity, the approximation breaks down

completely and in this case we have found no simple relation which can be

used.

It has not yet been demonstrated that there is only one real positive

value of I which satisfies Eq. (50). We have succeeded in showing this in

the limit of 0 >t 1. The method is similar to that used earlier and con

sists in expressing Eq. (50) as a (5rd order) polynomial in 0. It can be

shown that one positive real solution for 0 exists if

el
Vv

ex

+£—r
°d

(52)

If the inequality is reversed, there is no positive real root. From the

definition of 0, Eq. (28), we see that Eq. (52) is a necessary condition for

the existance of an UCC.

One final point before leaving this section. If we make the opposite

assumption to that made at the beginning of this section and take /fn < <. 1,
it is then easy to show that no simultaneous solution of Eqs. (25) and (l^)

can exist. This verifies our physical understanding of the roots which

requires that burnout occur in order that an UCC exist.

VI. THE LOWER CRITICAL CURRENT (LCC)

The LCC is determined by the simultaneous solution of Eqs. (23) and

(Ik). Our previous physical picture of conditions at the LCC indicated that

the neutral background should be entirely negligible at that point. Hence we

neglect the terms Net L compared to n 01 L in Eq. (25). Correspondingly
p b + a

we assume that n cr L •>•?• 1 and An >> 1. Equation (25) becomes:
+ B +

rfr(I-No)
bn. bn.

K

cr v
ex 1 - rr-)+ n2cr vP (35)
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The solution of this equation is:

, (^i +N^cr-v
I \_9 qj ex5 1

n+ ~ 2c"vP VcrB+L

which can be rewritten by use of Eq. (l^t-) as:

n
5crvp

I \9

V "

+N)
o/

tf

cr v
o/ ex «$

Upon substitution in Eq. (ik), we obtain an implicit equation in I,

I = (Si-0 o- vV 1
ex

X 1
25crB+L,

2X5^

(5^)

(55)

(56)

Just as in the case of the UCC, this expression is self-consistent only if

the resulting solution is such that )fo" » 1 and cr+l£r >->i. Once again, in
this limit, it is immediately demonstrated that there is at most one real

positive root of Eq. (56) and that this root exists only if the inequality of
Eq. (52) is satisfied.

VII. NUMERICAL SOLUTIONS FOR "OGRA"

A series of numerical runs was made using parameters which should be

roughly that of the "OGRA" experiment. These parameters were:

L = 10 cm.

•*• = 50 cm.

6 5
V = 2.55 x 10 cm .

7
9 = k x 10' liters/sec.

P = O.588.
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Both H and D injection was considered, each at an energy of 200 kev.

Furthermore, since there appear to be some large differences in published

values, two sets of cross sections were used. One set, hereafter denoted

by USSR, was taken from the curves of Federenko as given in reference k.

The other set, hereafter denoted as USA, were based on Barnett's results
Q

and the Bethe formula for the ionization cross section. These cross

sections (per gas atom) are tabulated below:

a. Deuterium:

v = 1.26 x 10 cm/sec
o '

Q

v = 5«12 x 10 cm/sec

~ , -22 2
0" = 2.6 x 10 cm
c

USA USSR

0

°B 5
-17

x 10 -' I.65 x 10-1
+

°B 5 x 10-17 I.65 x10"16

cr 9 x 10-17 7.5 x 10"17
ex

_ + -16 , -16

^ 5.02 x 10 2.6 x 10

b. Hydrogen:

v = 1.78
0

x 105 cm/sec

v = k.k X 10 cm/sec

0" = 2.6 x
c

n~-22 2
10 cc cm

USA USSR

< 5 xlO-17 1.5 x 10

+ , -17 -16

°B 5 x 10 ' 1.5 x 10

cr
ex

1.2 x ID"17 5 x 10_1
+ -16 0 ' -l6

°d 1.52 x 10 1.08 x 10

7. C. F. Barnett and H. K. Reynolds, Phys. Rev. 108, 555 (1958).
8. N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions, Oxford

(19^9) P. 2^7.
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Runs were made for a variety of values of the initial pressure N , as well

as I and cr. These results are plotted in Figs. 15-26. In a few cases,

exact solutions of Eqs. (10) and (15) were obtained. These are shown in

Figs. 5-1^ together with the values of UCC and LCC determined from

Eqs. (50) and (56).

VIII. SUMMARY

It is shown that the general shape of the curve which plots steady-

state ion density versus injected current is an s-curve (see Fig. l) for a

gas breakup trapping device such as OGRA. The actual curve may be calculated

by numerical means by use of Eqs. (10) and (15). Approximate expressions

are obtained for the two points at which the curve is vertical. The upper

critical current (UCC) is the solution of the implicit Eqs. (50) and (51).

The corresponding density is then calculated in Eq. (29). The lower critical

current is the solution of the implicit Eqs. (56) and (55). The correspond

ing density is then given by Eq. (55). Burnout and the characteristic

s-curve will only occur if the inequality of Eq. (52) is satisfied. If not,

there is simply a monotonic increase of the density to a limiting value

as the current increases indefinitely.

A physical interpretation of these roots is given in Section IV. A

numerical survey of UCC and LCC for an experimental device having the

dimensions of the Russian OGRA are presented in Figs. 5-26. Appendix A

considers the effect of treating the path length L as a fixed range rather

than a mean free path and Appendix B applies the ion pumping consideration

to previous formulas for burnout in DCX.
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I am greatly indebted to M. E. LaVerne for his patient and careful

handling of the numerical calculations. I am also most indebted to

R. C. Gilbert and R. E. Hester for calling my attention to the possibility

of multiple roots in the gas breakup case.
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APPENDIX A

THE PATH LENGTH L CONSIDERED AS A FIXED RANGE

It is not entirely clear whether the path length L should be considered

to be a mean-free-path (as it is in the text) or a fixed range. If all in

jected particles entered at the same spatial point with the same angle then

they would all ultimately strike some obstacle after traversing a fixed path

length (in the absence of transient perturbations). More realistically, the

injected beam has a rather wide spread in angle. The long path length and

nonuniform magnetic field then produce a great deal of orbital precession

and randomization and a statistical factor (i.e., a mean free path) would

seem to be more correct. Actually the calculation below indicates that the

difference is not important numerically, anyway.

Let us calculate the steady-state trapping rate if there is a fixed

path length L. This is obviously

-(N cT +n <51+w
-1-e °B +B )L (AI)

which should be compared with Eq. (k). If we define

X=(No°B° +n+°B+)L (A2)

then the ratio of these two expressions is:

R(x) =(l-e-X)(l+x) (A3)
x

This ratio approaches unity for x very small and for x very large compared to

unity. The

where y = e

unity. The table below lists numerical values of R for several values of y,
-x

y( * e ) o .1 .2 • 3 .k • 5 .6 .7 .8 • 9 1.0

R 1 1.29 1.50 1.28 1.25 1.22 1.18 l.-lU 1.10 1.05 1
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APPENDIX B

EXTENSION OF THE DCX BURNOUT FORMULA TO

INCLUDE ION -PUMPING

An approximate expression for the critical current has been derived in

reference 1 and 2. We shall now derive it in a different way and then

generalize to include ion-pumping. Let us define "burnout" to be that point

at which the mean-free-path of a neutral entering the plasma becomes equal

to the mean chord length of the plasma volume. In the notation of this

report:

X=1 (Bl)

or

•^ =i (B2)
VVd

Now, since mirror loss is negligible at this point, the density is directly

related to the input current by the lifetime against charge exchange. Thus

n V = I t (B3)
+ ex v '

n cT v
o ex

(I*)

Upon substitution of Eq. (B*0 in Eq. (B2), we have

cr v V

Now



14-6

i -f (B6)

and, by reference 2, Eqs. (2) and (7),
A

N

nQ --2~ (B7)

A

N

=-2at burnout. (B8)

A

where N is the neutral density external to the plasma. Hence

N v S <r
T = -2. _°_ _££ f-RQl
crit 2 4 ^+ (B9J

°d

This differs by a factor of 2 from the result given in reference 1. Of course,

one cannot say which one is more "correct." Burnout is not a precisely

defined event and either approximate expression is a useful measure of its

region of onset.
A

The external density, N , is determined by the balance of wall out

gassing, ion pumping, external pumping, and backstreaming from the injected

beam precisely as in Section I of the text. Hence, by Eq. (13), we have

P

N =—2 -^— (BIO)

At burnout, Eqs. (Bl) and (B2) apply, which gives
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P
A g I + N

N0 = OVv2 (Bll)
1 +_2

29-Z

Upon substitution of Eq. (Bll) in Eq. (B9) and rearranging, we find
v s cr

N 4- —o 8 ^+

crit Sv / cr \ (B12)

1+̂ H?)
It should be noted that burnout will be possible only if

af r^+ *& (By)ex

<r, --o

which differs from Eq. (32) only by afactor of 2in the last term. Again this
difference arises from the slightly different approximations we have used.
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