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COMPUTATION METHODS FOR AVF CYCLOTRON DESIGN STUDIES

M. M. Gordon and T. A. Weiton

ABSTRACT

A development is given of the theory underlying the numerical methods

which have been developed at ORNL for computing the properties of particle

orbits in cyclotrons with azimuthally varying magnetic fields. Details of

actual computer programs are not given, but such programs can be, and have

been, simply laid out by the use of the ideas contained herein. A standard

method for describing the magnetic field is given, and the general equations

of motion in such a field are given in convenient form. These equations are

specialized to the problem of determining equilibrium orbits and properties

of small oscillations, and an iterative procedure is given for producing a

magnetic field to yield isochronism (equal times for all equilibrium orbits).

The emphasis is on a formulation which will lead to efficient use of a high

speed computer.

# On leave of absence from the University of Florida Physics Department during
the academic year 1957-58.
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CHAPTER I. INTRODUCTION

It was pointed out in 1938 by Thomas*' ' that constant orbital fre

quency could be made consistent with axial focusing in a cyclotron by

the introduction of an azimuthal variation of the median plane magnetic

field. Two three-sector electron models, using the Thomas principle have

been built and successfully operated at the Lawrence Radiation Labora-

(2)
tory,v ' as early as 1950 and the original analysis by Thomas was much

(3)
improved and extended by Judd.w/ More recently, the suggestion by

(h)
Symon, Kerst, Jones, Laslett and Terwilligerv ' to enhance the axial focus

ing by spiralling the magnetic field pattern has made the fixed frequency

cyclotron economically more attractive at moderately relativistic energies.

An extensive program has been in progress at the Oak Ridge National

Laboratory since 195*4- to study the feasibility of large (meson-producing)

fixed-frequency cyclotrons of the Thomas type, probably with spiral intro-

duced for economic reasons.w/ To gain some understanding of the problems

involved in going to kinetic energies approaching the rest energy, a four-

sector electron model (no spiral) has been constructed and successfully

operated/ ' A more sophisticated model, with spiral, is presently under

design.

In addition to these electron models, one actual machine of the Thomas

(7}
type is in operation at Delft,v'' another is essentially complete at the

University of Illinois, while others are under design at Oak Ridge National

Laboratory, Lawrence Radiation Laboratory, and an imposing list of other

institutions.
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In view of the present and probable future interest in machines of

this type, a systematic presentation of the computational philosophy

evolved at ORNL seems to be of value, and will here be attempted.

In general, cyclotrons of the AVF type (azimuthally varying field,

to cover both the Thomas and spiral possibilities) present severe computa

tional problems. Because of the complicated magnetic field, and the diffi

culty of adjusting it, considerable premium is placed on accuracy and

flexibility. The complete analytical treatment of orbits in such machines

is excessively difficult, but a sequence of approximations can be made

which increase simultaneously in accuracy and difficulty/ >5>o) unfortu

nately, the accuracy of a given method is hard to determine except by com

parison with a more accurate method and the Oak Ridge philosophy has there

fore been to set up numerical procedures which are probably of higher

accuracy than really required. The more approximate analytical procedures

are then used to guide as closely as possible the choice of cases for "exact"

computation. At the same time, one of the essential complications in machine

design is the fact that the actual magnetic field is neither analytically

simple nor exactly determinable. This difficulty leads to the stringent

requirement that a satisfactory numerical procedure must allow economical

and accurate orbit tracing in a real field, which is imperfectly known.

Thus, the possible choice for methods of field representation is much narrow

er than is the case if only general conceptual problems are to be subjected

to accurate computation.

The area of utility for analytical calculations is continually re-

negotiable as accuracy requirements, computer availability, quality of
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available programs, and quality and simplicity of available analytical

procedures change relative to one another. No balanced presentation can

therefore be given at this time, and this report claims only to give a

reasonably detailed account of the structure and rationale of the best

numerical procedures which we have so far developed.

In Chapter II we discuss the specification of the magnetic field. Be

cause of the fixed-frequency condition we must deal with "non-scaling"

fields and our procedures are specifically designed for handling such fields.

In Chapter III we discuss procedures for computing general orbit properties

in a specified magnetic field with or without acceleration. We have used

these programs to investigate such problems as acceleration through reson-

(5)ances and beam deflection. ' In Chapter IV we discuss the "equilibrium

orbit" code which plays a key role in magnet design work. It is this code

which calculates all the desired properties of the equilibrium orbits and

linear oscillations for a given field. In Chapter V we discuss procedures

for fulfilling the fixed-frequency condition in a systematic way.

The present report does not contain detailed coding instructions but

only the general analysis required for writing codes suitable to specific

computers. The procedures described represent our best ideas on these mat

ters as they have developed out of our past experience.

The complete system of cyclotron codes now in use here was specifically

designed for the Oracle, a good general purpose computer, but unfortunately
t

unique so that codes are not directly useful to other people. An IBM-701*-

has now been installed here, however, and we are presently rewriting all our

codes for this machine. As these codes are finished and tested, they will

be made available through special reports.
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A. Units

Throughout our work we use the so-called "cyclotron units". These

are a set of dimensionless, relativistic units which are well suited to cyclo

tron work. The rest mass, m , of the particle is taken as the unit of mass,

and the velocity of light, c, is taken as the unit of velocity as is usually

the case for relativistic units. Since we are dealing here with a machine

having a fixed-frequency rf accelerating system, it is quite natural to de

fine a time unit in terms of this frequency. For this purpose we define the

unit of angular velocity as u) , the ideal average angular velocity of the

particle. The unit of time then is co" = X /2n where f is the ideal
o o' o

rotation period of the particle. Since the machine will not be perfectly

isochronous, and since the best mean frequency can only be determined by de

tailed computation, CJ must be chosen more or less arbitrarily.

If e is the charge of the particle, then the unit of magnetic field is

given by b =mQc CJQ/e. The unit of length is clearly a = c/ cd , so that if

Bq is the central field in units of b, and r is the orbit radius in units of

a, then for low energy ions BQr = p. If a field is reasonably isochronous

over a range of ion energies (including zero), it is then convenient to let

b equal the central field. We then have r = p as a reasonable estimate of

the equilibrium orbit radius for specified energy. This definition is actually

very convenient in practice. For proton machines, one then finds for the

"resonant frequency":

1/Tq = (l5-2l4-6b) Mc/sec,«

and for the "cyclotron length unit":
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a = c/cjQ = (123.21b) inches = (313.Ob) cm;

where b is given in units of 10 gauss.

For ions with charge Ze and mass A (not exactly integral) times the

proton mass, these relations generalize to:

1/T »£ (I5.2l»6b) me/sec;

a = A (123.21b) inches =£ (313.0b) cm.
Z Z



CHAPTER II. MAGNETIC FIELD

The magnetic field in an AVF cyclotron must fulfill two basic require

ments. The particle orbits in this field must have adequate vertical focus

ing and in addition, the rotation period must be sufficiently independent of

energy to allow acceleration with the available voltage. At the same time,

it is most desirable that the detailed form of the field be as little re

stricted as possible, so as to avoid unnecessary restrictions on the arrange

ment of iron and copper.

There are two methods of specifying the magnetic field which we have

found useful. The first method is to give the field over a restricted por

tion of the machine in terms of simple functions. This procedure is most

suitable for general theoretical investigations and for preliminary design

studies. The second method is to give the field at individual points on a

polar mesh covering the entire machine. The field values here are obtained

either from coil calculations or directly from measurements on model magnets,

combined with a suitable smoothing procedure. This latter method is particu

larly well suited to detailed design work. In either method certain approxi

mations are made which we shall discuss below.

A. Field Specification

We use polar coordinates (r, ©, z) in all our orbit calculations and

refer to the z-direction as "axial". The median plane (z = 0) is the plane

of symmetry of the magnetic field such that B (r, 0, z) is an even function

of z, while Br(r, 9, z) and Bft(r, ©, z) are both odd functions of z. In other

words, the magnetic field is everywhere normal to the median plane. Polar
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coordinates are particularly appropriate for two reasons. First, the field

of a cyclotron is usually designed to be invariant under rotation through

an angle 2jI about the axis of the machine, and this symmetry is inconven

iently represented in rectangular coordinates unless N = 2 or 4. Second, a

most convenient and economical method of orbit integration is to eliminate

time and use a cyclic coordinate, such as ©, for the independent variable.

Since this variable will advance by a constant increment for the numerical

integration, interpolation in © is made unnecessary if the field is determined

from stored values.

The magnetic field in the median plane plays an important role so that

we shall give it a special designation as follows:

B(r, ©) = Bz(r, ©, 0). (2.1)

All the essential properties of the machine depend rather directly on this

function.

The magnetic field in the space occupied by the beam can be expressed in

terms of the scalar potential TJT defined as follows:

.2
B = V y ; V W =0. (2.2)

As a result of the symmetry of the field about the median plane, "U/"(r, ©, z)

is an odd function of z. Because of the importance of the median plane field,

B(r, ©), it proves advantageous to express UT entirely in terms of this func

tion. This is done as follows:

11/ - Z (-1)* (Ln B) z2n +X
7 n (2n + 1):

(2.3)
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where the sum extends from n = 0 to infinity and L represents the two-

dimensional (r, ©) Laplacian operator. Thus, a complete specification of

B(r, ©) is in principle sufficient to specify the entire magnetic field at

all points off the median plane within the beam gap.

It is essential for our purposes that the function B(r, 9) be left as

general as possible. As a result we cannot sum the above series to obtain

a simple formula for Uf which will accurately represent the field for large

z values. Fortunately, however, the conditions which obtain in an AVF cyclo

tron are such that only relatively small z values are significant. The

reason for this is that since adequate axial focusing is provided for in

this type of machine, it is then possible, as well as desirable, to have a

relatively small beam gap. In addition, since the value of ^ is relatively

small (0 < 3^z <i 0.5), the derivatives of B(r, ©) are not too large. Under

these conditions we can often justify approximating the above series by

using only the first term; that is:

Y = y= zB(r' e)* (2-^

Such an approximation is very convenient and we make extensive use of it. It

is important, however, to check its validity in all cases where this approxi

mation might significantly affect the results of orbit calculations. For the

type of machines so far considered, we have convinced ourselves that (2.1+) is

a valid approximation. The ratio of succeeding terms in the series is roughly
o

(Nz) , where N is the number of sectors in the machine, so that one can

estimate the error of the above approximation. It is in fact true that for

the machine types which we have considered, the change of i) with axial
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amplitude has always been inappreciable for the largest amplitude of interest.

Orbit codes now being designed for the IBM-704 here will contain provisions

for including the next higher order term in the series for W so that it

will then be possible to make a direct check on the accuracy of (2.4) when

ever this seems important.

The resonances which occur in an AVF cyclotron will be discussed in later

reports, but it seems appropriate at this point to bring up certain questions

relevant to the approximation (2.4). First of all let us note that, so far

as motion confined to the median plane is concerned, the equations based on

(2.4) are exact so that radial resonances can be treated precisely. As for

the vertical motion, use of (2.4) restricts us to equations which are practic

ally linear in z. As a result, only the coupling resonances of lowest order

(e.g., y = 2 j/' , (N - 1) + 2 i) - N, etc.) can be investigated. Fortu-
J/ Z X* z

nately, however, these resonances are by far the most significant for the

axial motion. Furthermore, our experience with comparable radial resonances

leads us to believe that the higher-Order coupling resonances are not signifi

cant considering the small gap available in this type of machine.

There is another, more subtle, defect arising from the use of the approx

imation (2.4) for "U/ ', namely, that the equations of motion cannot then be

derived from a Lagrangian. This defect is generally not serious except possibly

where coupling resonances are involved. The theory of these resonances shows

that only "sum" resonances (such as (N - l) V +2^ = N) can lead to real
x Z

axial instability, whereas the "difference" resonances (such as ^-2^=0)
X* z

lead to successive interchanging of energy between radial and vertical oscilla

tions ("beam turn-over"). If the equations of motion cannot be derived from a
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Lagrangian, then one may find the effects of a difference resonance giving

rise to an apparent axial instability which is in fact only a "turn-over".

This defect is corrected by a modification in the orbit codes in which Bj r

and Bfl are still calculated from (2.4), but B is calculated using the first

two terms of the series (2.3). In this way the system has a Lagrangian which

2
is correct to order z . Again because of the small beam gap involved, this

modification is generally unnecessary, since the initial axial growth will

be correctly given, and turn-over will occur outside the available gap, for

interesting radial amplitudes*

In summary, we feel that sufficient flexibility and accuracy can be

achieved for orbit studies in an AVF cyclotron by having available three

methods for computing the magnetic fields. For the great majority of calcu

lations, the approximation (2.4) is used. When desirable or necessary, the

second term of the series (2.3) is also included, either to calculate B
z

alone or to calculate all three field components.

B. Median Plane Field

As noted before, the median plane field B(r, ©) can be specified at

discrete points on a polar mesh as far as calculations with a digital computer

are concerned. For analytical calculations, however, a specific formula is

required. The equations which result from these analytical calculations fur

nish valuable guides for the corresponding computer calculations. It is

therefore quite desirable to have computer codes with facilities for using

B(r, ©) in an analytical form. We shall discuss here the analytical form of

B(r, ©) in order to establish a conventional notation for future reference.

4
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The function B(r, ©) can be represented by a Fourier series as follows:

B(r, ©) =2- BQ(r) cos nN(© - ^(r)) (2.5)

where the sum extends from zero to infinity and N is the number of sectors,

or periodic elements, in the magnetic field. It is possible for "N" to

change as, for example, in one machine now being designed here which has

four sectors at the center and eight sectors at the outside. In such a case,

we consider N = 4 and that all B (r) with odd n values go rapidly to zero as

r is increased past the transition radius.

The function B (r) is referred to as the "average field", that is,

BQ(r) = < B(r, ©) } (2.6)

where angular brackets are used to denote an average over © with r held

constant. It is predominantly this function which determines the rotation

period of the particle as a function of energy. In Chapter V we shall dis

cuss how B (r) can be determined so that a condition of "isochronism" re-
o

suits. The "field index" k is defined as follows:

k = (r/BQ) (dBQ/dr). (2.7)

According to the "smooth approximation", the frequency of the radial oscilla

tions i> is given by:

I)2- =1 +k. (2.8)

This simple formula is often rather inaccurate, but it is useful for obtaining

estimates.
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The quantity, B(r, ©) - B (r), is referred to as the "flutter field".

It is this part of the field which must provide sufficient vertical focus

ing to overcome the "relativistic defocusing" created by the isochronism con-
2

dition (k = p ). For many purposes it is convenient to introduce the "flutter

functions" f defined as follows:
n

fn(r) = Bn(r)/BQ(r). (2.9)

The quantities Cf (r) are referred to as the "spiral functions" since © = if (r)
n n

is the equation of the spiral traced out by the maximum of the n'th Fourier

component of the field. The spiral pitch angle, defined by the equation

tan an =r(d ^/dr) (2.10)

is then the angle between the tangent to this spiral line and the radial line

at a given point. According to the "smooth approximation", the vertical focus

ing frequency 1) is given by the following equation:

--*+ Z (§) fj; (1 +2tan2an). (2.11)
Since this formula is only approximate, it can, in practice, often be simpli

fied by setting all aQ =a where a is determined simply by the geometry of the

field. Thus equation (2.11) is replaced by

^z=-k +F2(l +2tan2a) (2.12)

where T~ can most easily be determined from the equation

F2B2 = <(B -BQ)2 } , (2.13)



This is equivalent to

oo

F2 -i* 2
n=l

n
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(2.14)

which obviates the necessity of making a Fourier analysis of B(r, ©).

Equation (2.12) has been used extensively at this laboratory for preliminary

design work.

Let us now consider the behavior of the flutter field near the center of

the machine (r —P- 0). Suppose we write:

B(r,0) = /L An(r) einN9,
n= - oo

where comparison with (2.5) yields;

A = B
o o

A + A = B cos nN ~$
n -n n ° n

i(A - A ) = B sin nN "f .
v n -n' n ^n j

\

n > 0

_y

We assume that the current and iron nearest to the median plane is at

a distance c from it. Therefore the two planes z = ± c enclose a region of

analyticity for the potential ll/(r,©,z). It is a reasonable assumption

that T|/(r,©,±c) possesses no worse than step discontinuities, and if

"11/ (r,9,c) then be written as

y(r,Q,c) - Z ya(r) einNe ,

Yn can be written as

(2.15)

(2.16)

(2.17)
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Yn(r) - j dkCQ(k) jykr). (2.18)
o

Because 1|/(r>e>z) must satisfy the Laplace equation for c > z > -c, we

can write

^(r,©,z) = 2
n

o°° c (k)
dk —--— sinh kz J „(kr) einwy. (2.19)

sinh kc nNv
o

The Fourier components of B can then be written

A(r) = f _A^_ C(k) J^(kr). (2.20)
n J sinh kc n ^

o

Because of the assumed degree of regularity of W(r,Q,c)f C (k)

-1/2
must approach zero more rapidly than k ' for large k and it is therefore

apparent that the Bessel transform of A (r) must approach zero exponentially

for large k. It is then permissible to expand J „(kr) in a power series in

r, and obtain the series for A (r) by a term-by-term integration over k.

Thus

V>-^ ^ aU)* (2.21)
p=o

where the series is easily shown to converge for r < c but in general to

diverge for r ;> c. The method of field representation used should clearly

have the flexibility to represent A (r) properly for small r. Fortunately

this requirement is made less stringent by the fact that only the terms n = ±1

will be important for small r, while N will never be other than 3 or 4.

Similar considerations apply to an arbitrary point in the field. In

general, a series expansion of B around any point in the median plane can be
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expected to converge only for distances less than c. This strongly suggests

that a polynomial representation for A (r) cannot be assumed to be valid

over a range larger than Ar = 2c. Although a polynomial can always be found

to pass through the field values over a large range, it must be expected that

serious errors will thereby appear in the higher derivatives of B. Since

these higher derivatives are crucial for the effects at non-linear resonances,

considerable care must be exercised in the choice of method for representing

B. Use of an analytical form of sufficient flexibility to really represent

the field is of limited utility in actual design work because of the large

amount of computer time used in evaluating algebraic expressions of the re

quired complexity. It has been found adequate to represent all functions of

r by giving their values at a series of uniformly spaced radius values (in

cluding one value for negative r, assuming the value at r = 0 to be given).

Required intermediate values and derivatives can then be found by use of Inter

polation polynomials, the 4-point central Lagrange procedure having proved

very generally useful. Considerable optimization on this question is still

possible, although no large gains are expected.
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CHAPTER III. GENERAL MOTION

In this chapter we discuss the basic equations used in our orbit com

putations. We consider first the general equations of motion of a particle

in the magnetic field and then describe how the effects of the rf acceler

ation are included. The computer codes based on these equations are used

for general orbit studies of such problems as non-linear resonances, beam

deflection, and acceleration through resonances. Special procedures have

been developed for computation of equilibrium orbit and linear motion prop

erties. These will be discussed in the next chapter.

A. General Equations of Motion

The motion of the particle is described in terms of cylindrical polar

coordinates (r,©,z). The plane z = 0 is the median plane of the machine

as discussed in the previous chapter. Rather than the time t, we use © as

our independent variable and express r, z, and t as functions of ©. This

choice is particularly suitable here since the particle's position is then

directly correlated with the magnetic field configuration. Furthermore,

as far as motion in the time-independent magnetic field alone is concerned,

the equation of the orbit is then independent of t(©). Use of © as the

independent variable has the great advantage of rendering unnecessary any

interpolation process in the ©-direction, since only a finite set of O-values

ever occur. All the required values can then be stored, with interpolation

required only for r. At the same time, © can be used conveniently as the

independent variable only for orbits which stay sufficiently close to

circles centered at the origin. The complete requirement is that © always



17

increase with t. Orbits which do not encircle the origin cannot be

calculated in this way, and any orbit will be badly falsified for which

the radial component of momentum becomes a large fraction of the total

momentum.

We use primes on quantities to denote their derivatives with respect

to ©. In this section we consider the motion of the particle in the mag

netic field alone.

If s is the arc-length along the orbit of the particle, then

s' =(r2 +r'2 +z'2)1/2 (3.1)

and the time t(©) may be obtained from the equation

f = s'/p (3.2)

where 6 is the velocity of the particle. The radial and vertical momenta

of the particle are given by

Pr =pr'/s'j pz =p z'/s' (3.3)

where p is the momentum. We introduce the quantity q defined as follows:

4-(P2 -P? -p")1/2 -|? • (3A)

To describe the motion of the particle, we use the six canonical vari-

2 l/2
ables r, pr, z, p , t, and E = (p + l) ' . The equations of motion can

z

then be written in a quasi-canonical form as follows:
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p; =q- rBz + (r/q) pz BQ (3.5a)

r* = (r/q) pr (3«5b)

Pz = rBr - (r/q) pr BQ (3.5c)

z' = (r/q) pz (3.5d)

f = E (r/q) (3.5e)

where the magnetic field components are all functions of r, ©, and z as

specified in the previous chapter. It should be noted that we have, for

convenience, made the replacement B —*» -B in order that t increase along

with ©.

The equation for E' is omitted from the above set of equations since

for motion in the magnetic field alone, E and p are constant. In the next

section we shall describe how the effects of the rf acceleration are intro

duced. For many purposes it is desirable to omit these effects entirely

or to include them afterward.

Once the magnetic field is specified the above equations can be inte

grated to obtain the desired orbit information. In order to have meaningful

initial values of the variables, it is usually advisable first to secure

output data from the equilibrium orbit code described in the next chapter.

Representing the equations of motion in the above form is well suited to

the Runge-Kutta integration process generally used for orbit computations

with a digital computer. In addition, the use of canonical pairs of variables

permits one to interpret orbit data directly in terms of the motion of points

in phase space. This is particularly important for accelerator work where
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the overall behavior of the beam can be derived, through Liouville's

theorem, by studying the corresponding motion in phase space of a few,

selected orbits.

A word is necessary concerning the use of the Runge-Kutta process,

which has the property that the truncation error destroys the conservative

character of the motion. In actual fact, however, the interval size must

be pushed to ridiculous extremes for any non-Hamiltonian character to be

displayed. Thus, we are fully satisfied that 16 steps per sector are quite

adequate for all but the most subtle theoretical purposes. The overwhelming

advantage of the Runge-Kutta process lies in the fact that integrations can

be begun at will without special preparation. As will be seen in Chapter IV,

this feature yields a flexibility which allows very large savings of computer

time.

B. Acceleration Effects

Over most of the machine the rf accelerating field acts as a small per

turbation on the motion of the particle. Its effect can be neglected as a

first approximation and then included afterward where it seems advisable.

The rf field acts on the particle only over a narrow © interval where

it crosses a "gap". As a result we can consider the electric force as if

it were a periodic delta-function of © and that its only effect is to change

the energy of the particle. Under these conditions the rf field is in

active and the energy of the particle is constant until it reaches a "gap"

position, at which point its energy changes discontinuously by an amount

5E. If 6 is the maximum possible energy gain per turn and y is the

number of rf gaps crossed in one revolution, then
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6E = (5//) v (t-e) (3.6)

where V(cJt - ©) expresses the dependence of 5E on the rf voltage wave

form evaluated at the phase, 0Jt(Q) ~ ©, appropriate to the time when the

gap is crossed. For example, V = cos ( CO t - ©) for the simple sinusoidal

wave form usually used. Under certain conditions it may be desirable to

"spiral" the rf gaps to conform to the structure of the magnet. In this

case, a discontinuity in p -> in addition to that in E, occurs at each gap

crossing which is given by:

5pr = -(6p) sin a (3.7)

where 8 is the change in momentum corresponding to the change in energy

5E. If © = ^f (r) is the equation of the spiral line of the gaps, then a

is given by tan a = r(d.//dr). Another possibility, which is of consider

able theoretical utility is that of essentially continuous acceleration, by

dividing the specified energy gain per turn among a number of radial gaps

equal to the number of Runge-Kutta steps per revolution.

Near the center of the machine (low energies) the above approximate

treatment will fail. In this region of the machine the rf electric forces

play a significant role and special procedures are required to evaluate

their effects realistically. Such procedures have been developed and

worked into an orbit code specifically designed to study the central por

tion of an AVF cyclotron. This code will be described in a later report.
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CHAPTER IV. EQUILIBRIUM ORBIT AND LINEAR MOTION

There are certain parameters associated with particle motion in a

given field B(r,©) which are of particular importance to the magnet de

signer. These are: »/ and tJ, the radial focusing frequencies; X,
Ju Z

the rotation period of the particlej and R, the mean orbit radius. In

this chapter we shall describe the special procedures we have developed

for efficient calculation of these parameters as a function of the momentum

p. The computer code which carries out these computations is referred to

as the "equilibrium orbit" code. The input for this code consists of the

field B(r, ©) and a set of p values at which the results are desired. In

addition to the above parameters this code will furnish all the detailed

information desired on the equilibrium orbit and the radial and vertical

linear oscillations about this orbit. Such information is particularly

important in obtaining input data for general orbit studies using the

programs described in the previous chapter.

The equilibrium orbit code consists of two parts. In the first part

the equilibrium orbit is determined by a systematic iteration procedure.

After this is done, the code then proceeds to calculate all the required

parameters. These computations could be accomplished within the framework

of the general orbit code (Chapter III). However, since this calculation

is so important in itself, we have designed this special code in order to

optimize both the speed and accuracy of these computations.

A. Equilibrium Orbit Determination

We restrict ourselves here to motion of a particle in the median plane

(z = p =0) with constant momentum p. The equilibrium orbit is sometimes
z
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defined as that orbit which closes smoothly on itself. This definition is,

however, not precise. We shall stipulate here that the particle is in the

equilibrium orbit if and only if the values of (r, p ) at the beginning

and end of one sector are identical. That is, r(©) for the equilibrium

orbit is a periodic function having the same period as the sector structure

of the magnetic field. The first problem that must be solved is the de

termination of this particular solution of the orbit equations.

/ 2 2vl/2q >Q =(p _p^) (4<1)

and the differential equations (3.5a,b) for r and p become:

p; = Q - rB(r,©) (4.2a)

r* = (r/Q)pr. (4.2b)

These differential equations are, of course, correct for any orbit in the

median plane. The total integration interval for these and all the other

differential equations in this code is one sector: A© = 2n/N. The initial

value of © is arbitrary and, for convenience, we shall define this value

as © = 0 so that the integrations proceed from 9 = 0 to 9 = 9 r 2n/N. The

determination of the equilibrium orbit reduces then to the determination of

the initial values r = rQ, pr = prQ which satisfy the following conditions:

ro =r(©) =r(eo) (J+<3a)

Pro =Pr(0) =pr(eo). (4.3b)
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These all-important initial values can quite readily be determined by an

iteration method which we shall describe In the remainder of this section.

As we shall see, this procedure is based on an interpolation wherein it is

assumed that the orbit resulting from a given trial value of (r , p ) dif

fers from £he true equilibrium orbit only in first-order (linear) effects.

We shall refer to such an orbit as a "quasi-equilibrium orbit."

Since it is an important part of the iteration procedure, we consider

first the linear radial motion about a given quasi-equilibrium orbit in

the median plane. If x and p are the radial (first-order) displacement and

corresponding momentum associated with the quasi-equilibrium orbit, then we

can obtain the equations for x and p by making the replacements

r •?> r + x, pr —^ pr +px (4.4)

in Eqs. (4.2a,b) and keeping only first-order terms in x and p . As a result

we find

P^ - -(PrAOPx - —2- rB(r,©) x (4.5a)

x' =(Pr/Q)x +(p2r/Q3)px (4.5b)

where r and p have the same values at each © as those obtained from integrat

ing Eqs. (4.2a,b)j that is, r(©) and p (©) are the coordinates of the quasi-

equilibrium orbit. We shall need two independent solutions of these equations

and shall distinguish them by the subscripts 1 and 2. To generate these

solutions we choose the following initial conditions:
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x1(0) =5xj Pxl(0) =0 ^
(4.6)

x2(0) -0; Px2(0) =6px J

where 5x and 5px are arbitrary although they should be selected so as to

optimize the accuracy of the final results. The integration of Eqs. (4.5a,b)

to obtain (xJ, p^) and (Xg, p^) is not only an essential part of the iter

ation procedure for finding (rQ, p^), but also, as we shall see, it is an

essential part of calculating the properties of the linear oscillations about

the equilibrium orbit once this orbit has been found.

For a given trial value of (rQ, p )we have now six differential equa

tions for the quantities r, pr, x^ p^, j^, and p^ which give the co

ordinates of the quasi-equilibrium orbit and the linearized motion about it.

An inspection of these equations will show directly that the most efficient

procedure is to integrate all six equations simultaneously, since in this

way a given set of fields and derivatives is utilized as many times as pos

sible before going on to the next set. Needless to say, no economy of

storage is claimed for this procedure, the saving being wholly one of time.

From the results of this integration we can define the elements of the matrix

(j) and the £ 's as follows:

x1(eo) =J±1 6x; Pxl(eo) =j21 5x (i4.7a)

x2(eo) =J12 6px; Px2(©Q) =J22 5px (4,7b)

Cl =r<°o> "V £2 =*r^ ~Pro (Mc)

C = |£:1 I + \€2 I (^-7d)
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The significance of the matrix (j) will be discussed later. Since both

£, and £_ would be zero if the correct (r , p ) were used, it follows
12 v o rro' '

that £ is a measure of the error in the determination of the equilibrium

orbit. As a result we use the smallness of £• to test whether a satis

factory value of (r , p ) has been found.

If the value of £ is not small enough, we obtain an improved value

of (r ,p ) by the following procedure. For the given (r ,p ) value, we

assume that the resulting quasi-equilibrium orbit differs from the true

equilibrium orbit only in first-order (linear) effects. As a result, we

write the equation for the quasi-equilibrium orbit as follows:

r = r* + a1x1 + a£x2

p = p* + a,p , + a0 p 0
rr rr l^xl 2 ^x2

where (r*, p*) are the coordinates of the true equilibrium orbit. From Eqs.

(4f6) and (4.7) we then have the following equations for determining the

constants a. and ap:

<J11 " 1] ai5x + J12 a25?x » 1
(M)

J21 ax&x + (J22 - 1) a26px = 2

and, hence, the equations for r* and p*0 are:

(4.8)

r = r - an8x: p* = p - a0 5p (^.10)
o o 1 * ^ro ro 2 ^x v '

where (r0,p*0) is then the improved trial value of (r ,p ). With this new

set of initial conditions the entire procedure can be repeated. These

iterations are continued until a sufficiently small value of £ is obtained.
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The iteration procedure just outlined converges quite rapidly.

Since the procedure is correct to first-order, if the error in a given

trial value of (r , p ) is £, then the error in the improved value

2
will be of order £ . Thus, the errors on successive iterations in

(rQ, prQ) will be of order €, £2, Ck, £8, ... .
The total time required for the iteration procedure to converge de

pends entirely on the quality of the initial choice for (r , p ). If no

information is available for guidance then the following choice should be

made:

rQ = P, PrQ = 0, (4.11)

assuming the central isochronous field to be equal to the field unit b,

previously defined. This choice is a good one wherever the orbits are

nearly circular as is certainly the case near the center of the machine or

when a large number of sectors KT is involved. (See Section A of Chapter V).

When this code is being run at a succession of p values, as is usually the

case, a considerable saving in time can be achieved by using an extrapola

tion procedure to obtain the initial (r , p ) trial value. If r (p) and
O TO O

Pro(p) are the final values found for these quantities as a function of p,

then the corresponding values of

(rQ - 0)/0; PrQ/p (4.12)

are accumulated and used as variables in the extrapolation procedure since

these latter quantities are slowly varying functions of p. The procedure we

have adopted uses (4.11) for the first (smallest) p value, then a one-point

formula with (4.12) for the next p value, then a two-point formula, and so on.
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After the first few p values have been run, the extrapolation procedure

changes to one using a fixed number of points (three or four depending on

the coarseness of the p interval) with the values of (4.12) obtained from

those p values immediately preceding the new one. It is quite normal in

design work to run this code at twenty or more p values and we have found

that using this extrapolation procedure cuts the running time by a factor

of two or three.

B. Linear Motion Properties

Since the convergence rate of the above iteration procedure for determ

ining (rQ, prQ) is known, it is possible to establish the test on £ of

Eq. (4.7d) such that the "correct" (r , p ) is determined without requiring

an additional integration of the equations (4.2a,b). For example, if it is

desired that the equilibrium orbit be determined with an accuracy such that

£ < 10 , then the £ -test should actually be made on the condition

-5 -6£- <• 10 J (or 10 if a margin of safety is desired) since it is known that

the improved value of (r , p ) derived from (4,10) will then be in error

by only the square of this quantity. The code will still make another

integration of Eqs, (4.2a,b) so that the final value of £ can be checked,

but before this last integration is performed certain changes have to be made.

On the final integration through a sector we determine all the properties

of the equilibrium orbit and the linear radial and axial oscillations about

it. The two differential equations (4.2a,b) are integrated with the now

It is at this point that the utility of the very flexible Runge-Kutta
process becomes most obvious.
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"correct" initial values (r , p ) so that the resulting functions r and

p give the coordinates of the equilibrium orbit. Two sets of the differ

ential equations (4.5a,b), one for (x., p 1) and the other for (x?, P„p)>

are also integrated as before with initial conditions given by (4.6). Since

the (r, p ) values are now the correct equilibrium orbit coordinates, then

the resulting (x, p ) values will characterize correctly the linear radial

oscillations about the equilibrium orbit. To these six differential

equations (which are the same as those used in the iteration procedure

above) we now add six more, all of which are to be integrated simultaneously.

The linearized equations for the vertical motion, as derived from Eqs,

(3-5c,d), are as followsr*

(4.13a)p1 = z 3B.
9(§) •<V«> (f

z' = (r/Q)pz. (4.13b)

Here again we need two sets of these equations in order to generate two inde

pendent solutions. If we distinguish these solutions by subscripts 1 and 2,

then the initial conditions are as follows:

z±(0) = 8z; Pzl(0) =0
(4,14)

Z2(°) = °°> Pz2(°) =5P2

where, as before with Sx and 8p , the values of &z and 8p > though
x z

arbitrary, should be selected for optimum accuracy. These four additional

differential equations will yield complete information about the linear

*Note that the simplest representation for the z-dependence of the field
now becomes exact for the properties of present interest.
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axial motion about the equilibrium orbit.

The last two of the twelve differential equations are those for X,

the rotation period of a particle in the equilibrium orbit, and for R, the

mean radius of this orbit. These equations are as follows: (cf. Eq. (3.5e))

V = (n/2k) E (r/Q) (4.15)

R1 = (N/2n) r (4.16)

with initial conditions X(0) = 0, R(0) = 0. The factor (N/2jt) is a normal

izing constant which arises from the fact the equations are integrated

through one sector (A© = 2jr/N).

When the final-integration through a sector of all twelve differential

equations is completed, all information required for the output data is

available. The final value of £ can be obtained from Eq. (4.7d) and the ele

ments of the matrix (j) can be calculated from Eqs. (4.7a,b) as done before.

By analogy we can define the elements of a matrix (K) which are calculated

from the results of the z-motion integrations as follows:

Zl(eo) =Kll bzi Pzl^o) =K21 5z (4.17a)

Z2<?o> =K12 8V*z2(eo>=K226V ^-1Tb)

Since the linear differential equations for x and z are of the general Mathieu-

Hill variety, it follows then from Floquet's theorem that the focusing

frequencies y and V are given "byi

2 cos (yr9Q) =Jn + J22 (4.18a)

2 cos (yz©Q) =K^ + Kgg (4.18b)
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where (v-9.) and (V©„) are usually denoted by & and <T . (Since
j7 o z o r z

cos tf may be greater than unity, it is essential that the arc-cos
z

routine used for obtaining <T be alternatively an arc-cosh routine as well.)
z

The matrices (j) and (K) are transformation matrices which propagate the

solutions through successive sectors. As a result, the matrix for trans

forming the solutions through n sectors is, for example:

<J>n • VJ> - Vi
(4.19)

where A = (sin nff)/sin<T
n '

the same being true for (K). One additional condition on these matrices is

the Wronskian relation:

det (J) = det (K) '- 1. (4.20)

These relations can be used for checking the accuracy and consistency of the

results. These matrices can be used to evaluate the characteristics of the

"invariant ellipses" associated with the linear motion as we shall show in

Chapter VI.

From the results of integrating Eq. (4.15) we obtain-C(9 ) = X> the

rotation period of the particle in units of 1 , the ideal value. This "C

value is discussed at length in the next chapter. From the integration of

Eq. (4.16) we obtain the value of r(©) = R, the mean radius of the equilibrium

orbit. For an isochronous field R is less than, though nearly equal to p,

if the central isochronous field is b.

Thus we have arrived at a system of straightforward procedures for
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evaluating all the desired properties of the equilibrium orbits and assoc

iated linear motions for a given median plane field B(r,©). The final

value obtained for € is a measure of the error not only in the equilibrium

orbit determination, but also in all the other parameters. Since only

motion in the median plane and purely linear axial motion is involved here,

the values of B , B_, and B used are quite correct.
r 9 z

As noted in the introductory remarks, it is possible to carry out the

calculations performed by the equilibrium orbit code within the framework

of the general orbit code (Chapter III). This indeed has been the pro

cedure used so far in all our Oracle codes. The determination of the equil

ibrium orbit is carried out using Eqs. (3.5a,b) with z = p =0. These
z

equations are integrated through one sector three times in succession. The

initial conditions for the first integration are r = r , p = prQ which are,

as above, the trial values for the equilibrium orbit coordinates. From the

results of this integration £. and £ are determined through Eq. (4.7c) as

before. The initial conditions for the second and third integrations are

r, = r +8X,p.=p and r_ = r , p _ = p_ + Sp . From the results
1 o ' ^rl -'ro 2 o' Jrr2 ro *x

of these integrations the elements of the matrix (j) are determined, by

analogy to (4.7a,b) as follows:

rl(0o) = ro + J115X'° Prl^o) =Pro +J12 5pX

r2<9o> ' ro +J215X* Pr2(eo> "Pro +J22 5pX' J (^2l)

With these results one then obtains an improved value of (r ,Pr0) through

Eqs. (4.9, 4.10). This process is repeated as required to determine the
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equilibrium orbit to the desired accuracy. The results of the final iter

ation also give the final values of the matrix (j). When this iteration

process is completed, the three differential equations (3.5c, d, e) for p ,
z

z, and t, together with those for r and p , are then all integrated two

more times through a sector. The initial values for (r, px) each time

are (rQ, prQ) while those for (z, pz) are first (Sx, 0) and then (0, SP ).

From the results of these integrations the matrix (K) can be determined via

Eqs. (4.17a,b) as before, and the value of -f can be determined from the

integration of t' from t(9 ) = (2rt/N) 1 .

Although the foregoing procedure has worked quite well, it has one

basic drawback, namely, that the accuracy of the results is both limited

and hard to evaluate. This comes about from the choice of the parameters Sx,

°PX> Sz, 8pz, which must try to satisfy two contradictory requirements.

These parameters must be small enough so that the non-linear effects they

produce are negligible and, at the same time, they must be large enough to

yield an adequate number of significant figures in the final results. A

compromise must therefore be made in the choice of the parameters. Once

the choice is made, one is then faced with the difficult problem of evaluating

the non-linear effects in each situation in order to estimate errors. This

problem is completely avoided in the new type of code since Eqs. (4.5a,b)

and (4.13a,b) for the radial and axial oscillations are linear by construction.

Another, more apparent, advantage in the new procedures is the gain in speed
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which can be obtained from integrating all the differential equations

simultaneously.

An IBM-704 version of the equilibrium orbit code has recently been

completed which uses all of the new procedures. (This code will be de

scribed in detail in a separate report.) The average time required by

this code to complete all the computations for one p value is about six

seconds, if 16 Runge-Kutta steps per sector are used.
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CHAPTER V. ISOCHRONISM

We define isochronism as that field condition for which *t/c 1

for all p values, where *£ is the rotation period of the particle in units

of "t»0, the ideal value. In the previous chapter we described how X,

along with other quantities, can be calculated as a function of p for a

given median plane field B(r,©). In this chapter we shall describe pro

cedures whereby BQ(r), the average field, can be determined so as to give

isochronism.

If the machine must accelerate different ions or the same ion to dif

ferent final energies, then it is essential that B (r) be re-determined for
o

each operating condition. In practice, the required adjustments might be

achieved through a suitable set of concentric, circular, pole-face windings.

In certain circumstances it may be desirable or necessary to forego

isochronism over part of the machine. For example, if the flutter field

is too feeble at the center of the machine, it may be necessary to adjust

BQ(r) in order to achieve adequate axial focusing. The amount of phase slip

which occurs in one revolution is given by 2«(< - l) so that the knowledge

of ^(p) vs. p enables one to calculate the phase as a function of energy.

The procedures detailed below apply specifically to the achievement of the

condition -J(p) =1, but it will be apparent how these procedures can be

modified so that -£(p) will follow any prescribed curve. As a result, it

is then possible to determine BQ(r) so that phase slippage occurring in one

part of the machine is compensated for in another.

It should be noted that the value of i is calculated for particles

in the equilibrium orbit, although in an actual machine the particles will
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be executing oscillations about the equilibrium orbit. Fortunately, the

first-|prder effect of the oscillations on the orbit period will average

out to zero over a sufficient number of revolutions. At the center of

the machine where }/ is close to unity these effects will nearly aver

age to zero during each revolution.

A. Approximations for BQ(r)

In this section we shall present approximate analytical formulas for

BQ(r). Such formulas are important when orbit calculations are to be carried

out using analytically specified fields. In addition, these formulas are

quite useful for preliminary design studies. In the next section we shall

describe numerical methods for determining BQ(r) where high precision is

required.

Approximate expressions for BQ(r) are obtained from the following two

basic equations^

p=^s'(r,9) B(r,©)^ (5-l)
FC=4s'(r,0)> (5-2)

where s' = (r2 + r'2)1/2 and the averaging is carried out along the equilibrium

orbit. The first equation follows from the simple periodicity of the

equilibrium orbit, while the second is an expression of the length of this

orbit.

The simplest approximation is to ignore the effect of the flutter field.

In this case, the equilibrium orbits are circles and the above equations yield



- 36

the following result:

p = rB0(r); p = r. (5-3)

For isochronism ("J* - l), one then has

B= r; BQ(r) = E(r) = (l - r2)"1/2 (5.^)

where E(B) is the total energy of the particle. This approximation will

be good whenever the flutter is small and the number of sectors large.

A considerable improvement on the above approximation can be obtained

by considering to first-order the effect of the flutter field. For S(r,9)

given by (2.5), the first-order approximation to the equilibrium orbit is

r(0) = R(l +/*)

^ =^1 =£<fn/n%2) cos n^Q -fn) (5-5)
where fn and Jn are evaluated at r = R, the mean radius of the orbit.

Using this expression for r(9) to evaluate Eqs. (5-l) and (5.2) one even

tually obtains the following approximation for B0(r):

BQ(r) =E(3) [l +2gx +2gJ _1
B(r) = r(l + gl)

8l(r) =5 (fn/^N)2 (5.6)

g2(r) =5 (fn/^N)2^

fen(r) = r/Bn dB^/dr

By considering higher order terms in r(0) it can be shown that this expression

is correct to order N"2 except for terms involving products of three f's
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2

(such as f]_ f2, f-j^f*, etc.). Experience has shown that (5-6) will give

isochronism to within a few parts in 10^ for N = 6 or 8, and to within a

few parts in 103 for N = 3 or 4. (it is worth noting in passing that for

a three-sector, weak-spiral machine, B will actually decrease with in

crease in r near the center.) The accuracy provided by (5.6) will be suf

ficient for most purposes. Where greater accuracy is required, the method

described in the next section can be used.

B. Iteration Methods

In this section we shall describe an iteration method for determining

BQ(r) which is capable of making the field B(r,9) isochronous to any degree

of accuracy desired. This method is numerical rather than analytical in

nature and so will apply best to cases where B(r,9), or at least B0(r) is

supplied as a table of numerical values. For simplicity we shall assume here

that the flutter field remains unchanged and that only the average field

BQ(r) is altered during successive iterations. That is, the question to be

answered is as follows: for a given flutter field what is the correct B0(r)

which must be added in order to achieve isochronism? The computer code which

calculates BQ(r) by the interation method should be an appendage to the

equilibrium orbit code (Chapter IV) since information must pass back and

forth between the two.

For a given median plane field having B0(r) as its average, the equil

ibrium orbit code will provide values of R and %as a function of p. We

shall assume that the p values used are such that the resultant R values

cover the machine in sufficient detail. Let us consider now that R rather

than p is the independent variable; that is,'£= tT(M), p = p(R). We can
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then compute for each R value given the quantities S± and Jo defined

as follows:

Pfr/R =1 +<f!/p2 (5-7)

RB0(R)/p =1 -i2/p2 (5.8)

The first equation is a relation between B (and hence p) and R for a given

t , while the second is a relation between the functions Bq(r) and p(R).

Insofar as ^ and <£> depend on the properties of the flutter field, they

can be considered as functions of R alone. Since, however, they also depend

on BQ and its derivatives, we must write, in general, f^_ = <fj_(R, p(R))

(i = 1 or 2). The analysis of the previous section can be used to show that

the correction terms to the equations (B /R = l) and (RB /p = l) depend,

to first-order only on g]_(R), g2(R) and their radial derivatives given in

(5.6). Since these quantities are quadratic in the f and since f" p"1,

it follows that the correction terms vary as p-2 to first-order. Thus,

S± and f2 in E(ls- (5-7) and (5.8) are approximately independent of p

or BQ.

These considerations suggest the following procedure for obtaining

an improved value of Bq(r). We first set X= 1 in Eq. (5.7) and solve

the resulting equation for P-j_(r) = p (R,l):

PL/R =l+fjvf (5-9)

where ^]_ has the same value as that obtained from Eq. (5.7) for the given R.

Since pj =P]_//l - B-]_, Eq. (5.9) is a cubic equation for ^ and can readily
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be solved. The resulting function Pj_(R) is approximately the correct p(R)

required for isochronism. We then insert these values into Eq. (5.8) to

obtain the improved value of B0(r) which we denote as B$(R); that is

B*(R) =(P^R) [l -<r2/p2J (5.10)
where &r> is the same as that derived from Eq. (5.8). In this way we

obtain a table of Bq(r) for the given set of R values. This table can

then be used for interpolation to obtain the improved BQ values at what

ever r values are desired.

Since the error in the $'& and hence in the improved BQ(r) is of

"sacqnd-order", the procedure described above can be iterated repeatedly

to obtain successively better approximations to the ideal condition of

isochronism. At each step in the iteration process, it is, of course, nec

essary to rerun the field, with the new B0(r), through the equilibrium

orbit code in order to obtain a new set of R and "f values. It is import

ant to note that for any reasonable starting value of B (r) (for example

E(r), or even a constant), the very first improved value will be at least

as good as that obtained by using Eq. (5.6). Thus, the choice of starting

value for B (r) is not at all critical. This iteration method is being

incorporated in the equilibrium orbit code for the 704 but has not yet

been tested. We feel confident that it will converge rapidly.

The convergence rate of the iteration method could be improved by a

modification which takes into account the dependence of the /*s on p(R).

To do this, however, we cannot use the R values obtained from the equilibrium
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orbit output, but must instead interpolate the values of p(R) and \ (r)

each time so as to obtain these functions at a set of pre-assigned and

fixed r values. (This is made necessary by the fact that the values of R

will change each time BQ(r) changes.) For convenience we can choose this

set of r values to be the same as those at which the function B0(r) is tab

ulated. If on successive iterations the values of p(R) obtained at a

given r value are: pr(r), p''(r), ..., then the corresponding /*s ob

tained from (5.7) and (5.8) will be <fi(r,p'), /i(r,p")> ... (i = 1 or 2).

In solving (5.9) then for p^_, an iteration scheme should be used in which

the appropriate value of <*^(r,p-,) to be employed at each step is obtained

through an interpolation into the accumulated set of values of o^(r,p).

Having thereby obtained p^_, and hence p]_, the value of «2(rjPl) ^° 1°e usec^

in solving (5.10) for B can likewise be determined by interpolation. Al

though this modification in the above iteration method is considerably

more complicated, it should increase the rate of convergence. Whether such

complication is necessary will be determined from tests (yet to be performed)

of these iteration methods.

In the process of changing B0 to achieve isochronism the values of *z

will also change as can be seen from Eq. (2.1l). The values of 1/ are

usually not rigidly specified so that these changes may not be significant.

In addition, if the value of BQ at the start of the iterations is clqse

enough to the final value, then the changes in >£. will be very small.

If, however, the values of V obtained from the corrected B^ are not
' ' z o

satisfactory, then the flutter field should be changed to readjust the ~>/z values.
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Following this adjustment a new B0(r) should be calculated again from

the iteration scheme. By working back and forth between adjusting >£

and readjusting B , satisfactory values of both y"z and *Tcan finally

be obtained. Such a procedure has been used at ORNL as an essential

part of the design procedure for the radial sector election cyclotron and

has been found to work quite satisfactorily.^ '

I
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CHAPTER VI. DETAILS OF THE SMALL OSCILLATIONS

The equilibrium orbit code whose structure was sketched in

Chapter IV provides complete information on the small amplitude radial

and axial excursions from the equilibrium orbit. In this chapter will

be given for completeness the relations between the raw data produced

at each Runge-Kutta step for xx, x2, z-,_, z2, pxl, Px2, pzl, pz2, and

the quantities required to start a betatron oscillation at given 0 with

given radial and axial amplitudes and phases. This processed output

from the equilibrium orbit code is essential if non-linear orbit prop

erties are to be determined conveniently by orbit tracing with a general

orbit code.

Let (M) refer to either of the matrices J or K defined in Chapter IV.

Let X(©) and Y(©) refer either to x(©) and px(©) or z(9) and pz(0).

We write:

X(9) = M1L(9) X(0) + M,2(9) Y(0)
(6.1)

Y(0) = M^O) X(0) + M22(0) Y(0)

where 0 has been taken as zero at the azimuth where the Runge-Kutta proc

ess is begun in going through a sector. In the notation of Chapter IV,

M E M(Qo); aild the relations (4.7) and 4.17) are generalized to become:

Xx(9) = ML1(0) <fX

yx(o) = M21(e) sx
(6.2)

X2(0) = M12(0) SI

Y2(0) = M22(0) pi
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Ah elementary solution of (6.1) satisfies:

X+(9 + 9Q) = 9±io- X±(9)

Y±(8 + ©0) = e±irf Y+(9).

From (6.1) it follows that:

X+(0) =/\± ML2

Y±(0) =/\± (-Mi;l + e±^)

with:

cosrf" = 1/2 (M1;L + M22)-

These elementary solutions can be found at aribtrary values of 9 by

use of (6.l), which yields:

x±(0) = Mll(e) x±(°) + Ml2(e) Y±(°)

Y±(9) = M2i(9) X+(0) + M22(9) Y±(0).

A general solution, with arbitrary phase ~>Y can be constructed by

combining the two solutions as follows:

X(9) =X+ e±r +X_ e-^

Y(9) =Y+ e1^ +Y_ e-1^

The multiplicative constants A+ are taken to be:

/\+ = /\ = l/2
M-[-j_2 sintf"

(6.3)

(6.4a)

(6.4b)

(6.5)

(6.6)

{6.1)

(6.8)
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The constant^ is proportional to the square of the amplitude of

oscillation and is just the area of the phase figure produced by the

motion. Thus:

(%= fdx jdY (6.9)
where the double integral is to be extended over that region of the

phase space bounded by the (X,Y) values which the motion can achieve

for a given 9.

If (6.4), (6.6), (6.7), and (6.8) are combined, we obtain:

X(0) = pL 11(0) cos y+ B(0) sinyl

Y(0) = jJLfc(Q) cos y+ D(0) sin^]
The coefficients A, B, C, D, and E are given by:

A(0) = M12 14^(0) - 1/2(ML1 - M22) M12(0) (6.11a)

B(0) = -Sin(f^(e) (6.llb)

C(0) = M12 M21(0) - 1/2 (ML1 - M^) ^(0) (6.11c)

D(©) = -sind" M22(Q) (6.lid)

E = KL2 sin<f. (6.lie)

The form (6.10) allows initial conditions to be specified at any

value of 0 corresponding to any required phase and amplitude for the

oscillation, in the linearized approximation. The required coefficients,

defined in (6.1l), are easily calculated from the result of the equilibrium

orbit code.

(6.10)
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Another use of these formulae is the choice of suitable axes for

the phase plots. Clearly the choice of 10. cos "Y andl & sin ~\]f

as equally scaled rectangular axes will result in phase plots ofsupe

rior appearance. From (6.10), we obtain:

nr cos y= x |-D(e) x(0) +b(©) y(0)J

rH sin y= 1 fc(0) X(0) -A(0) Y(©Jj.
(6.12)

If A, B, C, and D are obtained at the 0-value desired for phase-

plotting, the use of the linear canbinations given in (6.12) for the

rectangular axes will yield circles for small amplitudes and will cause

the polar angle in the plot to be identical with the phase ~>V.
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