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ABSTRACT

Shields that consist of randomly distributed absorbing chunks in a

relatively transparent matrix must contain a greater mass of absorber than

homogeneous shields which provide the same attenuation. This is the result

of radiation "channeling" between the absorbing chunks. Channeling is

particularly important for heterogeneous materials when the mean free path

for absorption is comparable to the chunk size. A newly developed method

for calculating the transmission of radiation through such heterogeneous

shields is described. The numerical results of a calculation of the

transmission of thermal neutrons by boral (a B. C-Al mixture) are given,

including the effects of energy and angular distributions on the

predicted attenuation. The calculated results are in reasonable agree

ment with available experimental results.
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INTRODUCTION

1-3
One material commonly used as a thermal-neutron shield is boral, a

heterogeneous mixture of commercial-grade boron carbide and aluminum sand

wiched between aluminum plates. The total sandwich is usually rolled to

a thickness of 1/8 or l/k in. Since the mixture is not uniform, aluminum-

filled regions exist between the chunks of B.C in the B.C-A1 melt. This

is apparent in the Dark Field Illuminated Photomicrograph of a sample of

the melt in Fig. 1. The dark chunks are B.C and the light background is

aluminum. The B, C is, of course, the attenuating material, and, in order

to use boral to an optimum advantage, it is necessary to have a qualitative

understanding of the effects of the B, C size and distribution on the thermal-

neutron transmission. The same is true of any other heterogeneous shield

material which consists of "randomly distributed" chunks.

A first approximation of the transmission of a heterogeneous material

may be obtained by assuming that the absorbing material is uniformly dis

tributed instead of heterogeneously distributed and using the conventional

theory for homogeneous materials, providing the density of the material

used in the calculation is reduced to account for the voids. This "reduced

density" is simply

(reduced density) = (true absorbing material density) XV (l)

where V is the volume fraction occupied by the absorbing material. This ap

proximation will lead to a lower limit for the actual transmission since

nonuniformity,. in the material will tend to augment the transmission. The

importance of this effect has been demonstrated by experiments which have

1. V. L. McKinney and T. Rockwell, III, Boral: A New Thermal Neutron
Shield, 0RNL-2te (19^9).

2. A. S. Kitzes and W. 0. Hullings, Boral: A New Thermal Neutron Shield,
Supplement 1, ORNL-98I (1951).

3. J. R. Smolen, ORNL-CF-56-6-I63-(1956) (Classified).
1+. R. 0. Maak, B. E.Prince, and P. C. Rekemeyer, Boral Radiation Attenuation

Characteristics, MIT Engineering Practice School, KT-251 11956JI





shown that the transmission of thermal neutrons through 1/8-in.-thick boral

is much greater (as much as a factor of kO) than the transmission indicated

by a homogeneous calculation. Therefore, some other method must be used

for computing the transmission through materials such as boral.*

In principle, the transmission of radiation through nonuniform

heterogeneous materials may be calculated if the location of the absorbing

parts of the material is known. If scattering is neglected, the trans

mission through a slab of material consisting of a distribution of chunk

sizes is given by:
t

(2)

where

P(x,t)dx = fraction of rays which encounter a thickness of absorbing

material between x and x + dx in traversing a total thick

ness t of material,

t(x) = fraction of radiation transmitted through a chunk of

material of thickness x.

P(x,t) has been calculated for simple geometric shapes with various

orientations (including random) by F. H. Murray, J. A. McLennan, and

P. A. M. Dirac. Dirac also developed a general theory for nonuniform media

consisting of arbitrarily shaped chunks. t(x) may be calculated from the

existing theory for the transmission of radiation through homogeneous materials.

*The absorption of dilute mixtures of strongly absorbing chunks was treated by
H. Hurwitz and P. F. Zweifel, Nuclear Sci. Eng. 1, h*8 (1956), but their
formulation would not apply for a mixture as concentrated as boral.

5. F. H. Murray, Fast Effects, Self-Absorption, Fluctuation of Ipn Chamber
Reading, and the Statistical Distribution of Chord Lengths in Finite
Bodies, CP-G-2922 (19*5).

6. J. A. McLennan, APEX-197 (1955) (classified).
7. P. A. M. Dirac, Approximate Rate of Neutron Multiplication for a Solid

Arbitrary Shape and Uniform Density, British Report MS-D-5 (nTd.).



N. M. Smith considered the case of randomly distributed chunks from

another viewpoint. He assumed a hypothetical chunk which is physically

similar to actual chunks but mathematically simpler to deal with. The

statistical distribution of the thickness of his hypothetical chunk material

is shown in Fig. 2 for a 20-cm-thick slab having two-thirds of its volume

occupied by chunks which have an average diameter of about 3 cm. t(x) is

also shown in Fig. 2 for exponential attenuation with an attenuation length

of 2 cm. It is obvious that the over-all transmission is much greater than

it would be in the homogeneous case, in which all the rays pass through

(2/3) x 20 cm of material. In other words, the rays which statistically

penetrate less than the average material thickness control the over-all

transmission when the transmission t(x) of a chunk is much less than unity.

This geometrical channeling of rays between chunks is known as the "channeling

effect."
9

R. R. Coveyou has suggested a model to calculate the approximate trans

mission of radiation through materials in which the channeling effect is

important. The material is considered to be divided into layers that have

a thickness characteristic of the size of the chunks. Each layer is analogous

to a sieve made from attenuating material. Part of the radiation may pass

unattenuated through the holes between the chunk material in a given layer,

and the rest must pass attenuated through the chunk material. The holes in

the layers are assumed to be located statistically independent of holes in

adjacent layers so that the over-all transmission is the product of the trans

mission of each layer. As the chunks are made more attenuating, the radiation

passing through the holes between the chunks becomes more important.

In the discussion that follows a method of calculation based on the

Coveyou model is presented. The model itself is first discussed and then

8. N. M. Smith, Transmission and Scattering of Radiation in Random Aggregates
of Pebbles, CNL-21, RevisedTn.d.).

9. R. R. Coveyou, Oak Ridge National Laboratory, private communication.
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Fig. 2. The Probability P{x) of Penetrating x cm of Chunk Material in Traversing a

20-cm Slab.
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extended to include a distribution of various chunk sizes and materials. For

simplicity, it is first assumed that the neutron radiation is monoenergetic

and normally incident on the face of a plane slab. Exponential attenuation

in the chunk material is assumed. The results are then extended to remove

these restrictions. An attempt is made at all stages of the development to

provide an insight into the relations between transmission and the physical

parameters of the chunks involved, and approximations that clarify these

relations are emphasized. Scattering is not considered in the calculation.

The applicability of the proposed method is demonstrated in the last two

sections of the report in which the transmission of thermal neutrons through

a 1/8-in. thickness of boral is calculated, and the results are compared with

the transmission indicated by experiments.

I. METHOD OF CALCULATION

Formulas for Materials with Single-Sized Right Cylindrical Chunks

The transmission through a slab consisting of a "random distribution"

of single-sized chunks is computed first because of its simplicity. It is

assumed that the chunks are right cylinders (cubes, circular cylinders, etc.)

with their generators normal to the surface of the slab. Right cylindrical

chunks are chosen because it makes the division into layers easy and because

a ray that passes through a normally oriented right cylinder always passes

through a chunk thickness equal to the cylinder height.

The concept of "random distribution" may be clarified by describing an

artificial procedure which yields such a distribution. Randomly selected

coordinates (in the desired region) are picked for each chunk in the distribu

tion. If this selection causes two or more chunks to overlap, the selection

is rejected and another random assignment is made. Eventually, a selection

will be found which is physically realizable. In the simple case of identical

cubic chunks, any volume fraction up to unity may be obtained in this manner,

although it will require a large number of trials to achieve a realizable

distribution as the volume fraction approaches unity.
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Chunks which are dumped into a container with no preference as to order

or arrangement can be thought of as "randomly packed" chunks as opposed to

"randomly distributed" chunks. Randomly packed chunks are usually in intimate

contact with at -least two neighboring chunks, whereas randomly distributed

chunks are not likely to be in contact. If spheres are distributed within

a container in the most compact manner, it is possible to obtain volume

fractions of 0.7*. If the spheres are dumped into the container so that

they are "randomly packed," experimental volume fractions of about 0.5 to

0.6 are obtained, depending on the speed and uniformity of pouring, the

conditions of the surface of the spheres, etc.

As the actual volume fraction of a distribution of chunks* increases,

the packing tends to make the material thickness distribution (Fig. 2) less
skewed, i.e., with smaller variation in material thickness penetrations.

Packing thus causes the over-all transmission to be smaller than that calculated

by assuming a random distribution. However, the true transmission will always
be bracketed between the random distribution value and the reduced density

value. Materials which consist of discrete chunks which are separated by a

vehicular medium so that the chunks are not in intimate contact with neighbor

ing chunks are well represented by a "random distribution." Packing becomes

a consideration when the volume fraction begins to approach the maximum

experimental volume fraction which is about 0.5 for single-sized chunks that
are not too different from spheres or cubes. Even when the chunks are

closely packed, the randomly distributed transmission is expected to be

closer to the true over-all average transmission than the reduced density

transmission.

With a randomly distributed mixture of chunks, the transmission may

vary statistically over the surface of a material, being unity over a small
area (where there is an alignment of voids) and being much smaller than

average (where there is an alignment of chunks). The variations are usually
on a scale comparable with the attenuation of a single chunk, so that this

effect is seldom noticed in practical experiments. If a slab were very thick,

however, this effect would become more noticeable.
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The slab is considered to be divided into an integral number (N) of

layers of thickness (A) equal to the height of a cylinder of absorbing

material. This division is made by translating the cylinders vertically

(see Fig. 3) so that the center of a cylinder is moved to the center of the

layer in which it falls. Allowing chunks to protrude beyond the surface is

a fairly good approximation to chunks mixed in a binder if no effort is made

to level off the surfaces after curing. If the chunks are mixed in a die

under pressure, then no chunks will penetrate the surface. This distinction

can be taken into account by noting that those chunks which protrude from

the surface have their centers located within A/2 of the surface. Thus,

the apparent boundary of the slab is located a distance A/2 inside the real

boundary. The method is developed for chunks which may protrude but is

applicable for chunks which do not protrude if the "reduced thickness" is

used, thus accounting for the apparent boundary at such a surface being

A/2 inside the slab.

The transmission through a slab divided in this manner is the same as

the transmission through the undivided slab since every normally incident

ray sees the same thickness of chunk material in either case (as may be seen

in Fig. 3)» The probability that a given ray will encounter exactly n chunks

is given by Bernoulli's binomial distribution:

P -v*(i -v)*n cj i c* = ^ (3)
n (N-n).'nJ

where

V = probability that a ray will encounter a chunk in passing through

a layer (the volume fraction of chunks),

V = probability that n chunks will be encountered in n specified layers,
TVT n

(l - V) = probability that the rest of the layers are not occupied by other

chunks,

<* -n^e, or «***U- * ,«^ ta^en ..Utemi, ^
to the number of ways in which the n specified layers could be

selected from N layers.
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If exponential attenuation in the chunk material is assumed, then the

probability that a given ray penetrates the slab is:

-ZnA
T(n) = e (4)

where

H = linear attenuation coefficient for the chunk material,
n = number of chunks encountered,

A = height of a chunk,

nA = total chunk material thickness along this ray.

The over-all average transmission for the slab is:

N

n=o

N r» A

n=o

By the binomial theorem, this may be written as:

N

T=L °n(Ve ^ (1 "V)W"n (6)

= Ve + 1 - V

Equation 6 has a simple physical interpretation which could have given

Eq. 6 at once. Since V is the probability that a ray will encounter a chunk

at a given layer, (l - V) is the probability that a ray will miss the chunks

in a layer. Ve" is the probability that those rays that hit a chunk will

penetrate the layer. Thus the quantity in brackets is just the average

transmission through one layer. Since the chunks are randomly distributed,
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each layer acts independently and the over-all average transmission T is the

product of the transmission of all N sublayers. Equation 6 was derived with

the assumption that there was an integral number of layers in the slab. When

there is a fractional number of layers, Eq. 6 is still approximately correct

since the transmission of such a slab will uniformly decrease as its thick

ness increases (if the volume fraction of chunks is kept constant), in

agreement with the behavior of the equation.

Equation 6 may be written as:

t- In
t r -Ha

T=e*~L~ ^ (7)

r "AA
[Ve + 1

This suggests the concept of an effective linear attenuation coefficient

defined by:

-v£ „-t
T = e eff (8)

Comparing Eq. 7 with Eq. 8 shows that:

r ~LA i-In [Ve + 1 - Vj

eff = VA "

-In [l - V(l - e )J
VA

Equation 9 may be expanded in a series:

•Za 2 -£a
_ V(l - e " " "

'eff ~

"AA 2, "^A22 ^ . V(l - e ^ +1 V2(l - e t +...
va 2 va

For small values of V(l - e ), Eq. 10 reduces to

(9)

do)
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-La

~ A if Za » i (ii)

Equation 11 provides a valuable insight into the variation of the efficiency

of a chunk with its size. The transmission approaches the reduced density

value as the chunks become small or less opaque. The transmission of opaque

chunks depends only on A since the radiation that penetrates the slab

channels around the chunks instead of penetrating them.

The case of opaque chunks is of special interest since it represents

the extreme case where all the transmitted radiation channels through the

slab. An opportunity to penetrate the slab exists only when the void spaces

between chunks are lined up so that there is a direct path through the

slab. In this case Eq. 6 becomes:

T=(1 -V)*/* (12)

If V is small, this can be approximated by:

I* e^ (13)

It is interesting to note that the Poisson distribution function for the

probability of straight paths through the slab encountering no chunks,

which is only strictly valid when V <£. 1 and N >y n >? 1, gives the

same answer for this approximation.

Formulas for Materials with Right Cylindrical Chunks of Multiple Sizes

The above treatment of a single chunk size is now extended to include

more than one chunk size or material. For two different sized chunks, a

division is made into layers and sublayers characteristic of the larger

chunks and smaller chunks, respectively. The transmission of a layer is
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then found as before except that Eq. 6 is used to determine the transmission

of the area between the large chunks. It is shown that the large chunks

crowd the smaller ones together and hence the effectiveness of small chunks

depends on the volume occupied by larger ones. The effective attenuation

cannot be expressed simply as was the case for single-sized chunks, but it

is possible to approximate the effective volume fraction in certain limiting

cases.

It is assumed first that the chunk distribution is made up of two dif

ferent sized cylinders (see Fig. k) with heights A1 and Ag with
A = A . In deriving the approximate result it is assumed that A, is a
12

multiple of A?. The volume fraction of the A.± chunk is V^ and the volume
fraction of the A chunk is V . The corresponding attenuation coefficients

are 2 and H . The division of the chunks into sublayers is carried out

by further dividing the layers into sublayers as shown in Fig. h.
Each large (A,) chunk is translated vertically so that it lies in

the layer in which its center was formerly located, just as in the division of

the single chunk size illustrated in Fig. 3^ The small chunks are then

translated so that each one lies in the sublayer in which its center was

formerly located. Occasionally a small chunk should go into a sublayer

which is occupied by a large chunk (see the cross-hatched small chunks in

Fig. k). In this case, the small chunk is translated vertically and inserted

at random in some vacant spot. Thus, the original random distribution is

divided into layers which are statistically independent of one another and

the over-all slab transmission T can be found if the average transmission of

one layer is known.

The transmission T of a single layer is given by van extension of
s

Eq. k.

•V*2 v ]A1/A2
(HO

-l.A.
T = V e -1 X + (1 - V.)
si 1

V e * * V

i-v, i-VlJ
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The first term is the transmission through the larger chunks. The second

term is the transmission through the rest of the layer. This second term

is identical in Eq. 6 except that the volume fraction of smaller chunks is

adjusted to account for the space occupied by the larger chunks. For a given

volume fraction of small chunks, the density is larger if there are large

chunks present, since the total volume available for the small chunks is

less. The volume available to the smaller chunks is 1 - V so that Vg must
be multiplied by 1/(1 - V ) to account for the effect of the larger chunks.

The over-all transmission of the slab is then:

V4,1 VA,

T = 4 V e
-!>!

+ (i - V )
V

-*A
V,

+ 1
1 - V.

1J J (15)

This formula is applicable to chunks of different materials.

For more than two chunk sizes or materials, the above argument is ex

tended to consider that sub-sublayers contain the next smaller A, chunks,

etc. For three chunk sizes (with A _ = A = A ,.):

-Ho A
V

T = V
1 -

1 - V.
1J

-2Ua.
V e -> °

1 - V - V

A^AA VA2] t/Al
+ 1 -

V.

1 - V - V
1 2,

(16)

The extension to an arbitrary number of chunk sizes is evident. The general

formula (with A, = A2 ••• =A )is:
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T =.
• -£lAl

V + (i - v1)

i "A^Av
n-1' n

X VnV e G n + i - v.
n

(1 - V .)
v n-1

A2/A3 w/A2 t/Ax

(17)

V is the volume fraction adjusted for the displacement of all larger chunks.

The volume occupied by the chunks larger than the ith chunk is

d-vx V - .... - V ) hence:

Vi=" Vl-V2" -
(18)

i-1

V is the same as V- since there are no chunks with A -> A . Equation 17

may be used to approximate a continuous distribution by choosing a sufficient

number of discrete sizes in accord with the distribution. The smallest chunk

size may be allowed to go to zero, so that in the limit, the equation is

applicable to chunks distributed in a uniformly absorbing medium. In this

case, the last bracket in Eq. 11 becomes:

lim

n

•"£nAn
Ve n + 1 - V
n n

A ,/A
n-1' n

n n n-JL
= e (19)

It is desirable to find an effective value of the attenuation coefficient

which indicates the effect of the chunk size distribution on the effectiveness

of a particle of a given size. In general, the effectiveness of a chunk of

a given size depends on the parameters of all the other chunk sizes, but

for certain limiting cases, the effective attenuation can be simply obtained

as follows:

I. For all chunks opaque A H >> 1 for all i
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T = e

U_ in(i _y^) +k- in(i .v^) +...J
(20a)

II. For all chunks almost transparent ( A

-(yj^i +v2I2 +... )t

0A . ^ 1 for all i
i i

T = e

III. For first m chunks opaque and all others almost transparent,

\— ln(l -V*) + ... +7- ln(l -V*) -V* £
A-, 1 A m m+1 m+1
L 1 m

T = e

where

V =V./ I1 - (volume fraction of all opaque chunks with A ?A.)

IV. For total volume fraction of all chunk sizes *="*• 1,

1 - e
-*!*!

LVi A-
+ V,

1 - e
•Z24>

A.
• • « I "C

T = e

All the above limiting cases can be collectively expressed by:

where

Vl£1 +v2L2 +...Jt

K
r*"^lAi *]

In V.e 1 x + 1 - V.J
Li iJ

AiVi

and V* =V /|l - (volume fraction of all opaque chunks with A > A.)
i i u x

(20b)

(20c)

(20d)

(21)
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Note that H . is the same as <L __ for the single chunk size distribution
1 ex i

as given by Eq. 9- The physical significance of this result is that the

transmission may be approximated in the limiting cases above by the product

of the transmissions of separate layers containing a single chunk size if

the volume fraction of the chunk in the layer is corrected for the volume

occupied by larger opaque chunks in the slab. Each term of the exponent

in Eq. 21 gives the transmission of one layer. When none of the approxima

tions are valid, Eq. 21 gives a transmission which is too small since it

ignores the voids which should be present in a layer when the larger chunks

are separated out. In these cases, Eq. 17 must be used but the approximate

Eq. 21 still is useful in qualitatively interpreting the effect of changing

the chunk size distribution.

Formulas for Materials with Arbitrary Chunk Shapes

The discussion has thus far been restricted to aligned cylinders

because of the simple formulas that resulted. The results can be extended

in an approximate way to arbitrarily shaped chunks with random orientation

by replacing (l - e" ) in the simple formula by F, which represents the

absorption of a single chunk averaged over all orientations, and replacing

the layer thickness A by A } the average chunk thickness. A theorem due to

Gauss shows that for chunks with no concavities,

A -£ (22)

where v is the volume of chunk and S is the total surface area of chunk. F

is related to the collision probability P which is tabulated in Ref. 10 for

many shapes of chunks, i.e.,

F=aH(1 -Pc) (23)

10. K. M. Case, F. de Hoffmann, and G. Placzek, Introduction to the Theory
of Neutron Diffusion, Vol. I, Section 10, Los Alamos Scientific Laboratory
leport, Superintendent of Documents (1953)•
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For large chunks (HA >> l) with smooth edges (Ref. 10),

2„

F = 1 - 0

where 0

&z
means terms of the order of magnitude of

For Large chunks with irregular edges,

F = 1 - 0

£a

For small chunks (2A -^ *• l),

F=ZA (1 -v^al)

Laz

where a is a parameters 0.5 for spheres. For spheres (Ref. 10)

F =

(2rZ )'
J"|(2ri:)2-l+(l +2ril)e"2ri:j

(2U)

(25)

(26)

(27)

In terms of F, Eq. 6 for single-sized aligned chunks becomes:

r i */A
T = 1 - VF (28)

The extension to several different types of chunks is straightforward and



T =

20

V^(l - F±) +(1 -\)lv'2(l - F2) +[l -V2

... (1 - V* .) Jv'(l - F ) +1 - v' f
v n-1 "i nv n • n

n-1' n VMV*?] *^
(29)

in analogy with Eq. 17 for aligned cylinders. The generalized form of Eq. 21

remains:

-[v\£*+v*II* +...]t
T = e (30)

where now V =V./ 1 - (volume fraction of all opaque chunks with A >A )I,

* L1 -yj
K-

*

Vi

(3D

Formulas Including Energy and Angular Distributions

All the above discussion assumes a constant linear attenuation coef

ficient. This assumption is not valid in those cases for which the angular

distribution is not collimated and spectrum hardening effects occur. If

the chunks are randomly oriented, there will be no preferred direction of

transmission in the slab. The transmission for incidence at the angle 9 may

therefore be calculated by replacing the thickness t by the slant penetration

t/cos0 in the previous formulas. Then the above formulas may be used to

compute the transmission for a single entrance angle and energy and the result

integrated in accordance with the prescribed neutron distributions. In

general, the transmission including the effects of energy spectra and angular

distribution is given by:



co it/2

T(t) =/ / T(t/cos0,E)0(E)^(0)d9dE (32)
o o

where

T(t/cos0,E) = transmission for a given angle and energy,

0(E) = effective neutron spectral function,

Y(0) = angular distribution function.

For normal incidence, Eq. 32 simplifies to:

oo

T(t) = / T(t,E)0(E)dE (33)

For isotropic incidence, Eq. 32 becomes

co

T(t) =/ E f-lnT(t,E)J 0(E)dE (flux detector) (3^)
o

00

=2/ E(-In T(t,E) )0(E)dE (current detector) (3Vb)

where the neutron spectral function is (for a Maxwell-Bcltzmann distribution):

oj(E) = fit -J—" e"E/KT (for 1/v detector) (35a)
V * (KT) '

0(E) = E0 e"E/KT (for constant efficiency detector) (35b)
(KT)2



22

The functions E and E are the standard exponential integrals.11

II. CALCULATION OF NEUTRON TRANSMISSION THROUGH BORAL

The foregoing method has been used to compute the transmission of neutrons

through boral. For the calculation it was assumed that the boral sandwich was

rolled to a thickness of 1/8 in. and that the thickness of the B.C-A1 mixture

was O.085 in. with kO vol# boron carbide. This resulted in an over-all

volume fraction of approximately 25$ for the absorbing chunks, which were

assumed to be spherical in shape. The chunks were first considered to be

of 11 different sizes between 20 and 100 mesh (this size distribution was

taken from Ref. 12); however, it was found that assuming only four sizes

gave approximately the same results, and only four groups were used there

after. The four groups were as follows:

Size

Mesh

Avg. Particle

Diameter (in.)
A = (V3)r

(in.)

0.0253

Vol#

20-30 0.038 17.0

36-46 0.024 0.0160 11.0

60-70 0.016 0.0107 6.0

80-120 0.009 0.0060 6.0

40.0

The transmission calculated by this method for normally incident

220Q-m/sec (0.0253-ev) neutrons through 1/8-in.-thick boral was O.076.
This is to be compared with a transmission of 0.0015 calculated for normally
incident 2200-m/sec neutrons by the homogeneous approximation.

The transmission of normally incident neutrons through a 1/8-in.-thick
boral shield as a function of energy is shown in Fig. 5, along with the

11. Case, de Hoffman, and Placzek, op_. cit., Appendix A.
12. A Handbook on Boron Carbide, Elemental Boron, and Other Stable. Boron-

Rich Materials, Norton Company IU17-3PCMX-IO-56CP (1955TT
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limit as the chunks become opaque (low energies). The average transmission

over the neutron distribution shown (Maxwell-Boltzmann distribution at room

temperature) is O.O96 for a constant efficiency detector and 0.084 for a

1/v detector.

The transmission of isotropically incident neutrons through 1/8-in.-

thick boral as a function of energy is shown in Fig. 6. For this case the

average transmissions are 0.024 for a constant efficiency flux detector,

0.021 for a 1/v flux detector, 0.041 for a constant efficiency current

detector, and 0.034 for a 1/v current detector.

III. COMPARISON OF CALCULATED AND EXPERIMENTAL RESULTS

The calculated results reported above can be compared with the results

of two experiments which have been performed at ORNL to determine the trans

mission through 1/8-in. thicknesses of boral as measured by 1/v detectors.
4

In the first experiment the radiation consisted of thermal neutrons

escaping from a thermal column on top of the ORNL Graphite Reactor with an

angular distribution of the (l + /^3 cos©) type, which is more forwardly
peaked than an isotropic flux. Consequently, the experimental values should

be between the computed values for normal incidence and those for isotropic

incidence. The transmission obtained for a Brooks and Perkins boral sample

was 0.070, while the transmission for an ORNL sample was 0.094.
14

In the second experiment the radiation was a collimated beam of

normally incident neutrons from a beam hole at the ORNL Graphite Reactor.

The transmissions obtained for two different Alcoa samples were O.065 and

0.070, respectively.

13. R. F. Christy et al., Lecture Series in Nuclear Physics, MDDC-1175
(1943; decl. 194"5lT

14. G. deSaussure, Oak Ridge National Laboratory, private communication.
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IV. CONCLUSION

The method proposed in this paper is less elegant than other methods
Q

proposed previously, for example, Smith's method, but it is more easily

visualized. Furthermore, the degree of agreement between experimental and

calculated results seems reasonably good since experimental details of

particle size, energy, and angular distribution are incompletely known

in each case. It may be concluded that the methods described in this paper

can be used to provide useful estimates of the attenuation of radiation in

heterogeneous media for which channeling between absorbing chunks is an

important process.
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