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MAXIMUM VOLUME-TO-STRESS RATIO FOR A TWO-RADII-CONTOUR DIAPHRAGM PUMP
R. D. Cheverton

ABSTRACT

Recent experimental work with diaphragm pumps employing the two-radii
type of contoured heads indicates that an optimum ratio of the two radii exists
which provides a maximum ratio of displacement volume to stress. The purpose
of ' this study was to determine by analytical methods whether an optimum
design does exist and, if so, what it is. In order to do this, it was necessary
to establish a reasonable criterion for failure. The proposed criterion con-
siders the effect of biaxial stresses on fatigue failure through the use of the
Mises-Hencky criterion for fatigue failure. By use of the proposed criterion,
it was determined that an optimum ratio of the two radii does exist, its value
being dependent on the ratio of diaphragm thickness to diaphragm deflection.
Values for the optimum ratio of the two radii (where the ratio of radii is defined
as the radius of the central portion of the diaphragm contour divided by the
radius of the outer portion of the diaphragm) runée from 1.94 to 7.33 as the
ratio of diaphragm thickness to diaphragm deflection varies from 0.5 to 0.05,

respectively.

INTRODUCTION

To optimize the design of diaphragm pumps from the standpoint of size, weight,
displacement, and operating lifetime, it is necessary to maximize the ratio of displace-
ment volume to diaphragm stress. Recent experimental work with diaphragm pumps
employing the two-radii type of contoured heads indicates that an optimum ratio of the
two radii exists which provide.s a maximum ratio of displacerﬁent volume to stress.
Prior to this study there apparently has been no effort to establish by analytical means
the existence of the optimum ratio of the two radii.

The treatment in this report is limited to the two-radii-contour type of diaphragm
pump. In making the analysis an effective combined stress, based on the Mises-Hencky
criterion of fatigue failure for combined stress, was used in calculating the volume-to-

stress ratio.



METHOD OF ANALYSIS

Diaphragm Stresses

Figure 1 illustrates the geometrical features considered for the diaphragm-pump

contoured head. For pﬁrposes of calculating the stresses, the diaphragm is divided

into two regions. Region A is for
0 <7 £ za, and region B is for
za <r<a, where z =R1/(R] +R,).

In the following analysis it is
assumed that the diaphragm de-
flection curve matches the two-
radii head contour perfectly. This
assumption is valid since the
maximum stress occurs when the
diaphragm is fully deflected against
the head contour. Therefore the
deflection equations for both re-

gions A and B are derived from
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Fig. 1. Geometrical Features of Two-Radii-Type
Diaphragm-Pump Contoured Head.

the equation of a circle. They are presented here as Eqgs. (1) and (2) (see ‘“Nomen-

clature’’ at the end of this report for a definition of symbols):

3
21172 1/r 1/r '
wA=8—R1+(R%—r) =5—73R— +§R— +..e] (n

wB=R2—[R§—(r—a)

2'11/2

- )] a—r 1 /a — r\3 2
=(a —r E<R2 >+—8—<R2>+... . (2

Provided that 7/R, << 1 and (a - r)/R, << 1, Eqgs. (1) and (2) are adequately approxi-

mated as follows:

A r?
2RI
(@ —r)?
B | (4)
2R,

Equations (3) and (4) were used in the derivation of the stress equations and in calcu-

lating the volumetric displacements of the pumps.

Since the deflection of the diaphragms considered is several times the thickness

of the diaphragms (although small in comparison with other dimensions) the strain in

the middle plane of the diaphragm could not be neglected. Thus the membrane stresses,

e
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as well as the bending stresses, were considered. The equations (see the Appendix

for derivations) for the membrane stresses are as follows:

2 A . . . .
q-r?la_ 1 \2 1 22(] +v) 23 (T+v) 11-13v
m—— - = lnz-2z+ - + . . (5)
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p—— (221 - ———| , (D
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The bending moments in a circular plate are represented approximately by the fol-
l .

APw v dw
M =-D +——] , (9

B o '

UtMa2 1 a 8 <r>
In—+—{(— ] -

E8?2 (1-z2| 7 3\4

lowing equations:

dr2 r dr
1 dw d2w )
M, =-D(——+v : (10)
r dr dr2
Using Egs. (3) and (4) and the relationship & = azz/ZRl, the bending stresses are
given by
A 2 A 2
O’rB‘z o-tBa b
= = ' an
ES?2 gs2  8z(1-v)
oB 42 :
B h v
il {(1 +V)_,'-’3} , (12)
ES?  8(1 - 2)(1 - +?) r
B 2
Y% b a
= (T+v) =—| . (13)
E8?2 (1 - 2)(1 - 1?) T N o

Is. Timosheﬁko, ’Tbeory of Plates and Shells, st ed., McGraw-Hill, New York, 1940.



Failure Criterion

During operation of the pump, the diaphragm is deflected from —& to +8 in a con-
tinuous cycle. With the diaphragm on either side of the neutral position the sign of the
membrane stresses is the same, but the bending stresses change sign as the diaphragm
is deflected from one side to the other of the neutral position. - Therefore the stress-

vs-displacement curve is similar to that shown in Fig. 2. The problem now is one of

selecting a suitable criterion for
UNCLASSIFIED

failure, where failure in this case . ORNL-LR-DWG 43236
may be defined as a fatigue crack.

_ A _ —RESULTANT
Since the fatigue strength of ma- // \\
terials is greatly influenced by / \ MEMBRANE

-3

many variables such as surface // \\
- . . /
finish and environment, and since / \
there is not a great deal known / e

\
|/
. . 0 3 0] -8 O DISPLACEMENT
about fatigue properties for com- . '
bined stress conditions, the selec- BENDIN

tion of a suitable failure criterion
' Fig. 2. Stress-Displacement Curves for a Diaphragm

is difficult and is not likely to
Deflected from +35 to 5.

produce a criterion that is neces-
sarily accurate for all cases. Therefore, in a somewhat arbitrary fashion, the Mises-
Hencky? criterion for complete reversal of combined stresses was selected and is

represented here by Eq. (14):

2,02 _o5. 0

1 2 192 - ' (14)

O >a0O
e =

Here o, and o, are the principal stresses, and o, is the endurance stress for the
material, assuming complete reversal of stresses. Thus, the effect of combined stresses
on fatigue is considered. The equation implies that, if more than about 107 cycles of
reversed stresses are desired without a fatigue failure, o, and o, must be such as to
produce a value on the right-hand side of Eq. (14) not greater than the endurance limit
of the material. Therefore, Egq. (]4) provides an effective combined stress, o, that

might be useful in comparing diaphragm designs, where

Uczxfafwucrg_crlvz . (15)

As mentioned above, Eq. (14) is strictly applicable only for complete reversal of

stresses, and as indicated in Fig. 2, such reversal does not exist for the diaphragm

2M. Hetényi, Handbook. of Experimental Stress Analysis, p 450, Wiley; New York, 1950.
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pumps. In order to treat the actual case, or a slight modification thereof, use is made
of Gerber’s parabola or, more precisely, the modified Goodman diagram. The diagram
used is illustrated in Fig. 3. v

The equation for the diagonal
UNCLASSIFIED
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line in Fig. 3 is

]
1 o o raEn
r ave -
—_—— (16)
K o, oy, ! /T
. LN
where Tmax
%min
Omax ~ Zmin ’
O, =———F—. Tave | TIME
2 cut -
x
o—max + o—min
_ Fig. 3. Application of Modified Goodman Diagram to
- [
ave 2 Diaphragm Analysis.

o, = endurance limit of material,
o,y = ultimate strength of material,

K = safety factor or experimental correlation factor.
The hypothesis is that a point anywhere on or below the diagonal line indicates that
an essentially infinite number (>107) of cycles is permitted without fatigue failure.
Referring .now to Fig. 2, it is observed that the diaphragm cycle consists of two stress
peaks having different amplitudes. The smaller peak may be neglected, provided that
the maximum peak gives a point on or below the diagonal line in Fig. 3. Under these

conditions o/

=0, and Eq. (16) can be rearranged to yield

2Ue ult

O = e . (17)

‘ K(,Ue + o—ult)-

In Eq. (17) o,__ is considered to be an effective endurance limit for the diaphragm.

Therefore, substituting o, for o in Eq. (14), the proposed failure criterion is given

by the relation

2Ue Suls

Z\/U:%TLOJ—O'O' . (18)

(Ué)effective = 2 172

K(o, + o))

tf o, and o, are known for a particular material that is subjected to a set of specified
conditions, then values for o, and o, which satisfy Eq. (18), can be obtained by the -
appropriate selection of values for the parameters in Eqs. (5) through (13). The value
of K should reflect the accuracy with which o, and o, are known, as well as the
validity of the failure criterion, and should be as close to unity as possible to obtain

the maximum volumetric displacement for a given pump.



Optimization of Yolume-to-Stress Ratio

To minimize the size of a pump, the displacement-volume-to-stress ratio should be
as large as possible. The existence of a value of z that would produce a maximum
volume-to-stress ratio was postulated by Hise? on the basis of considerable experi-

mental work. Examination of Eq. (19),

1% z2 33 1 1 24 228 22 oy
P SO S LU SO AU | I 19)
2842 2 4 1-z1\12 4 3 2

which represents the pump displacement volume from —& to +5, and Egs. (5) through
(13), which represent the diaphragm stresses, indicates that an optimum value of z
would depend only on the dimensionless ratio »/3.

When calculating the volume-to-stress ratio for a particular pump having fixed
values for z and 4/8, the maximum stress with respect to r/a must be used, yielding

the minimum volume-to-stress ratio for the particular pump design. Using Egs. (15)

“and (19), the latter volume-to-stress . N
ratios were calculated and plotted 3 oriNCLASSIFED
against z in Fig. 4 for several ' :
values of /8. It is observed that /\g,/(f;
optimum values of z do exist for 1.2 //
the model being considered in this / { _
study. 0 //4'\

If a pump is designed with an 7 / \O.'
optimum z, there will be two points os / /{/\
at  which the maximum stress % /// /
occurs: one at the center of the e / / \
diaphragm and one somewhere in il d // No.2
region B, the exact location de- //\ ‘
pending on the value of z and A/6. 0.4 // \ 0.3
If the pump has a z less than the \
optimum, the maximum stress will o2 05
be at the center of the diaphragm,
and if z is greater than optimum,
the maximum stress will be some- %5 06 07 08 09 0

where in region B.

3E. C. Hise, ORNL, private com- Fig. 4. Volume-Stress Ratio vs z for Yarious Values

munication, November 1958. of b/8, Using Combined Stress, 0,

L}
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cate the accuracy of either. How-

Evaluation of Method for Determining Optimum =

How .cccurafely does the above analysis determine the optimum value of z? Avoiding
a comparison with fatigue-failure-type experimental data at this time, the question
might best be answered in terms of the accuracy of the individual stresses and of the
criterion used for predicting failure. A very limited amount of experimental data acquired
by Zerby and Stevens? indicates that actual radial stresses in region A are about 25%
less than calculated and those in region B about 10% greater. This results in about a
15% increase in the optimum value of z, assuming that Eq. (18) is an adequate criterion
for predicting failure. Whether or not the same results apply for.all values of /8 is not
known since an insufficient amount of data is available. The adequacy of Eq. (18) is
questionable and will remain so until experimental data from diaphragm tests prove its
validity. For this reason, Eq. (18) was compared with a simple maximum-stress criterion
of failure, for which the maximum principal stress, O replaces the radical term in
Eq. (18) to give Eq. (20):

UNCLASSIFIED
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2Ue Oult

Umux=m=%- (20)

: paNkis
1.0 7 [oX] -
7

?/
//\

The results, illustrated in Fig. 5,

show that the optimum value of z, /

using the maximum-combined-stress 0.8
criterion defined by Eq. (15), gives
optimum z values 1.5% (b/8 = 0.5)
to 6.6% (/8 = 0.1) greater than

those obtained using the maximum-

0.2

V. ES
% 209

0.3

principal-stress criterion. The
0.4

~C
N
e ™~

close agreement between the two

methods does not necessarily indi-

. . s - . 0.2
ever, it does indicate that either
method is probably equally good
for computing optimum z values.
’ [¢]
0.5 0.6 0.7 0.8 0.9
z
4 .
P. N. S‘teve'r:s_, **Pulsafeeder Dia- Fig. 5. Volume-Stress Ratio vs z for Various Values
phragm Studies,’’ inter-company corre-
spondence, ORNL, September 1953. of b/8, Using Maximum Principal Stress, O pe



Appendix
DERIVATION OF EQUATIONS FOR MEMBRANE STRESSES IN A DIAPHRAGM : .

The following analysis® is applicable to a diaphragm that is deflected a distance
equal to several times the diaphragm thickness, in which case the strain in the mid- ©
plane must not be neglected; the deflection, however, is considered small in comparison
with other deminsions. A system such as this is typical of many types of diaphragm
pumps.
The equilibrium and continuity equations for a diaphragm of the type described
above (considering membrane stresses only) are derived from a force balance on an
“element of the diaphragm and from Hooke's law, respectively.® Consider the element
in Fig.. 6, subjected to the membrane forces N, and N,. A summation of the forces in the
radial direction gives

d dNr
Nrrd0+2der7= Nr+_;1—;dr (r +dr)dé ,

or
dNr
Nr_Nt+r7=0 . (14) .
From Hook’s law,
Eb .
Nr=]-V2(er+vet),. (24)
Eb
N,= (e, +ve,) . » (34)
' 1 -v

Referring to Fig. 7, the radial unit elongation of the element due to the radial dis-

placement u« is du/dr. The unit elongation due to the normal displacement w is

5This method of analysis is similar to that used by C. D. Zerby (unpublished analysis,
January 1953) and P. N. Stevens (‘‘Pulsafeeder Diaphragm Studies,'’ inter-company correspond-
ence, ORNL, September 1953).

-65. Timosheriko, Theory of Plates and Shells, 1st ed., McGraw-Hill, New York, 1940.

UNCLASSIFIED
ORNL-LR-DWG 43240

/v ' UNCLASSIFIED
¥ ORNL-LR-DWG 4324

N (e b

¢ 7

Fig. 6. Forces on Element of Diaphragm. Fig. 7. Displacements of Element of Diaphragm.
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1/2{dw/dr)2, In the circumferential direction the unit elongation is just u/r. There-

fore, the tangential and radial strain components are given by

Adding Eqs. (ZA) and (34) and making use of Eqs. (4A4) and (54) give.s ‘

1 du 1 [dw\?.
‘ —‘(N —VNt)=er=~d—+'-— _— ’

Differentiating Eq. (7A) gives

du dNt dNr
Ebh— =N +r —v Nr+r

dr t r

From Eq. (14),
dn,

Nt=Nr+'

,
Differentiating Eq. (1A2) and multiplying by 7,

aN, AN, g2y

r—=2r— 4 5% ———,

idr dr dr?

Substituting Eqs. (144) and (94) into (84),

2

du . . dNr 2d Nr
Eh—=N{1-v)+r— 3 =) +r

dr r dr dr2

Substituting Eqs. (14a) and (104) into (64),

2
d Nr 3 dNr Eb <dw>2 0

t——t— (—

dr

dr2 r dr 2’.2

(44)

(SA)

(64)

(74)

(84)

(1Aq)

(94)

(104)

(114)

The deflection curve w(r) for the fully deflected diaphragm is represented by the

arcs of two different diometer circles, thus dividing the diaphragm into the two regions

A and B. The solution of Eq. (114) in the two regions follows.



Region A

For region A,

Substituting Eq. (134) into (114),

2
d Nr 3 dNr Eb

drz T dr 2R2

For convenience, let

Eb
N,=yl r=x, - =
2rR2
Then
d%y 3d
dx2 x dx

d’y 34d
de x dx
In Eq. (154) let
dy dv d?y
v_;;, z_dxz
Then
dv  3v
__+__:01
dx x
which gives
v=Cx"3
or
d:
—):—Cx_:i .
dx

which gives

10

(124)

(134)

{144)

(14Aa)

(154)

(164)



A

ra

The particular solution of Eq. (1444) is obtained by letting

- d d?
A Cx , Y _ C .
dx dx2
The result is
K‘x2
Yp == n +Cq . (174)
The general solution for Eq. (1444) is
O KyR?
y=Cx~2_ s +C, . (184)
Region B
For region B,
(qa — 2
2R,
dw\?  (a -r)?
—_ = . (204)
dr Rg _

Substituting Eq. (204) into (114),

2 . .
d°N, 3 dNr Eb(a - 7)2
+—= 4 —=0 . (214)
dr? r dr 2R§r2

For convenience, let

Eb
Nr=y, r=x , ——-2=K2.
2R2
Then
d? d
x2 y+3x—):= -K,(a - x)2 . (2144)
dx? dx =

The complementary solution of Eq. (2144) is obtained from

which is the same as Eq. (154). Therefore,
yC=C37c“2+C4 ) (224)

To obtain the particular solution of Eq. (2144), let

. dx_t
x=e —=ef=x

! dt

11



and let
dy dy dat dy 1

dc dt dx dt x

dx? x2 412 x2 dt
Substituting Eqs. (234) and (24A) into (214a4),

d? d
——y+2——y=—K2(a—e
dr? dt

The solution has the form

y=At+Bet+Cezt .

or

or

The general solution for Eq. (2144) is

al

Substituting y = N_and x = r into Egs. (184) and (274),

C K.r2

LB Ca. a? 2ar

Differenfidfing. Eqs.. (:|8Aa) and (27Aa) and substituting into (14a) gives

12

t)2 .

2ax
)’=C3x"'2+C4—-K2<—2 Inx -~ — +

3

)

(234)

(244)

(254)

(264)

(274)

(18A4a)

(2744).

(284)

(294)
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Boundary Conditions

The boundary conditions are:
1. Forces must be finite for all values of r.
2. Atr=za, N;":N:3 and Nf:N?.
3. Atr=a, e, = 0; thus from Eq. (74), N? = VN’B-

From boundary condition 1, C, = 0. From boundary condition 2,

2244 1 2z 22 K1
C,=~- Kyl ==+ 1 —— ,
3 2 2 3 4 K,
2
Kz“ 1 z? K,
C2=C4— In za +— = 2z + — -
2 2 2 K,

From boundary condition 3,

Call+1) Kya 1 - 13
C, = + na - ————
a2(~| _ V) ]2(] - V)

4
Substituting Eq. (304) into (324),

Kpa? [ 22(140) 2:3(1+4) 241 +) Ky
C, = 2 - 20 + - 1- — 1)+
-v) (1 =) 41 - )

Substituting Eq. (334) into (314),

K2a2 22 K,y 1+ V- 223 (1 +v)
C2= ~In z4+ 2z - — - ¥ + _
2 : 2 K2 1-v 31 = v)

A0en) () 17w
TS\ Tk, n0-w|

The following substitutions are made:

Eb o B Ry
= — = —— z =
I 2 1 1
2R? _ 2R2 Ry+ Ry
2 4.2 2 4
a‘z a'z (1-2)a
- 2 _ 2 _
8_2R ] R]" 2 1 RS = ) 1
1 45 45
N
o =—.

(304)

(314)

(324)

(334)

(344)



The stress equations are now given by

ofa r\2 V z? V) 231+ -13v
‘ =__‘_<_>_ ‘ [nnz_“ (r9) =0+9 T ]3} . (354)
a 401 =) 6(1-v) 1201 =)

O'tAa2 O'rAa2 ~| r 2
= __<—> ’ (36A)
82E  82E 222 \4
B
0, a? 1 a 4 /r 1/7\% 22 /2 a\2
= Ih—+—{= Vo= —=) +— (=2 -1} [—] +
52E (]_2)2 r 3<a> 4 a> 4 \ 3 ><r>
22(1+v) /2 11 -13v
+ —| - —] _ ’ 37A
4u—u)<3z > 120 - ») (374)

o a 1 a 8 /r 3/r\2 22 /2 a\?
= In—+=({—) ===} =—(=2-1}) (=] +
825 (] _ 2)2 r '3 <a> 4 a> 4 3 > <r>

2 - 14
+z“+ﬂGzJ>_B %}' a84)
-0 \3° ) T120-0)
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NOMENCLATURE

Outside radius of diaphragm

Arbitrary constant; if superscript, denotes region A
Arbitrary constant; if superscript, denotes region B

Arbitrary constant, with or without subscripts or superscripts
Flexural rigidity of plate = EA3/[12(1 - v2)]

Radial strain of middle plane

Tangential strain of middie plane

Young’s modulus

Thickness of diaphragm

Radial bending moment per unit length of circumference
Tangential bending moment per unit length of circumference
Radial membrane force per unit length

Tangential membrane force per unit length

Radial distance

Contour radius, region A

Contour radius, region B

Radial component of displacement at a point in the middle plane
Normal component of displacement at a point in the middle plane
Volumetric displacement of pump

Dimensionless parameter = R ]/(R'l+ R))

Maximum deflection at center of diaphragm

Poisson’s ratio

Stress

Radial membrane and bending stresses, respectively

Tangential membrane and bending stresses, respectively

15
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