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MAXIMUM VOLUME-TO-STRESS RATIO FOR A TWO.RADII-CONTOUR DIAPHRAGM PUMP 

R. D. Cheverton 

ABSTRACT 

Recent experimental work w i th  diaphragm pumps employing the two-radi i  

type o f  contoured heads indicates that an optimum ra t i o  of the two  rad i i  ex is ts  

which provides a maximum ra t i o  of displacement volume t o  stress. The purpose 

o f ’  t h i s  study was t o  determine by analyt ical  methods whether an optimum 

design does ex i s t  and, i f  so, what it is. I n  order t o  do this, it was necessary 

t o  es tab l i sh  a reasonable cr i ter ion for failure. The proposed cr i ter ion con- 

siders the ef fect  of b iax ia l  stresses on fat igue fai lure through the use of the 

Mises-Hencky cr i ter ion for fat igue failure. By use of the proposed criterion, 

it was determined that an optimum ra t i o  of the two rad i i  does exist, i t s  value 

being dependent on the ra t io  of diaphragm thickness t o  diaphragm deflection. 

Values for the optimum ra t i o  of the two  rad i i  (where the ra t i o  of rad i i  i s  def ined 

as the radius of the central portion of the diaphragm contour div ided by the 

radius of the outer portion of the diaphragm) range from 1.94 t o  7.33 as the 

ra t io  of diaphragm thickness t o  diaphragm def lect ion varies from 0.5 t o  0.05, 
respective1 y. 

INTRODUCTION 

To optimize the design of diaphragm pumps from the standpoint of size, weight, 

displacement, and operating lifetime, i t  i s  necessary to  maximize the rat io  of displace- 

ment volume to diaphragm stress. Recent experimental work with diaphragm pumps 

employing the two-radii type of contoured heads indicates that an optimum rat io  of the 

two radi i  ex is ts  which provides a maximum rat io  of displacement volume to  stress. 

Prior to  th is  study there apparently has been no effort t o  establ ish by analyt ical means 

the existence o f  the optimum rat io  of the two radii. 

The treatment i n  th is  report i s  l imited to  the two-radii-contour type o f  diaphragm 

pump. In making the analysis an ef fect ive combined stress, based on the Mises-Hencky 

cri terion o f  fatigue fai lure for combined stress, was used in calculat ing the volume-to- 

stress ratio. 
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M E T H O D  O F  A N A L Y S I S  

Diaphragm Stresses 

Figure i l lustrates the geometrical features consi,ared for the diaphragm-pump 

contoured head. For purposes of calculat ing the stresses, the diaphragm i s  div ided 

into two regions. Region A i s  for 

0 6 t 6 za, and region B i s  for 
UNCLASSIFIED 
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za S r S a ,  wherez=R1/ (R1  +R2). 

In the fol lowing analysis it i s  

assumed that the diaphragm de- 

f lect ion curve matches the two- 

radi i  head contour perfectly. Th i s  

assumption i s  va l i d  since the 

maximum stress occurs when the 

diaphragm i s  fu l l y  deflected against 

the head contour. Therefore the 

deflect ion equations for both re- 

gions A and B are derived from 

the equation of a circle. 

clature” at the end of th is  report for a def in i t ion of symbols): 

Fig. 1. Geometrical Features of Two-Radi i -Type 
Diaphragm-pump Contoured Head. 

They are presented here as Eqs. (1) and (2) (see “Nomen- 

1/2 
wB = R ,  - [ R :  - ( I  - a ) 2 ]  = ( a  - T) 

Provided that r / R l  << 1 and (u  - r ) / R 2  << 1, Eqs. (1) and (2) are adequately approxi- 

mated as fol lows: 

Equations (3) and (4) were used i n  the derivation of the stress equations and i n  calcu- 

lat ing the volumetric displacements of the pumps. 

Since the deflect ion of the diaphragms considered i s  several times the thickness 

of the diaphragms (although small i n  comparison with other dimensions) the strain i n  

the middle plane of the diaphragm could not be neglected. Thus the membrane stresses, 
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as well as the bending stresses, were considered. 

for derivations) for the membrane stresses are as  follows: 

The equations (see the Appendix 

] I (5 )  
z2(i z3(1 + v) 1 1  - - + -=--(LJ-- 52 a2 1 1 

E a 2  4z2 a 4(1 - v )  6(1 -v) 12(1 - Y) 

22(1 + v) 
4(1 -u) 

1 1  - 131~ + 

+ . (8) 4(1 - V) 12(1 - 
The bending moments in a circular plate are represented approximately by the fol- 

I owing equations: 1 

Using Eqs. (3) and (4) and the relationship 6 = a 2 z / 2 R 1 ,  the bending stresses are 

given by 

.;“B a2 h 
- =  

E a 2  6(1 - z )  (1 - v2) 

IS. Tirnoshenko, Theory o/ Pla te s  and Shells, 1st ed., McGraw-Hill ,  New York, 1940. 
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Failure Criterion 

During operation of the pump, the diaphragm i s  deflected from -6 to  +6 i n  a con- 

tinuous cycle. With the diaphragm on either side of the neutral posi t ion the sign of the 

membrane stresses i s  the same, but the bending stresses change sign as the diaphragm 

i s  deflected from one side to  the other of the neutral position. Therefore the stress- 

vs-displacement curve i s  similar to  that shown i n  Fig. 2. The problem now i s  one of 

select ing a suitable cri terion for 

failure, where fa i lure i n  th is  case 

may be defined as a fat igue crack. 

Since the fatigue strength of ma- 

ter ia ls i s  greatly influenced by 

many variables such as surface 

f in ish and environment, and since 

there i s  not a great deal known 

about fatigue properties for com- 

bined stress conditions, the selec- 

t ion of a suitable fai lure cri terion 

i s  d i f f i cu l t  and i s  not l i ke l y  to  

produce a cri terion that i s  neces- 

UNCLASSIFIED 
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&ENDING- 

Fig. 2. Stress-Displacement Curves for a Diaphragm 

Def lected from +S to -6. 

sar i ly  accurate for a l l  cqses. Therefore, i n  a somewhat arbitrary fashion, the Mises- 

Hencky2 cri terion for complete reversal of combined stresses was selected and i s  

represented here by Eq. (14): 

Here a1 and u2 are the principal stresses, and ue i s  the endurance stress for the 

material, assuming complete reversal of stresses. Thus, the effect of combined stresses 

on fatigue i s  considered. The equation implies that, i f  more than about lo7 cycles of 

reversed stresses are desired without a fatigue failure, u l  and g2 must be such as to 

produce a value on the right-hand side of Eq. (14) not greater than the endurance l im i t  

of the material. Therefore, Eq. (14) provides an effect ive combined stress, 9, that 

might be useful i n  comparing diaphragm designs, where 

A s  mentioned above, Eq. (14) i s  s t r i c t l y  appl icable only for complete reversal o f  

stresses, and as indicated i n  Fig. 2, such reversal does not exist  for the diaphragm 

'M. HetLnyi, Handbook of Experimental Stress  Analysis ,  p 450, Wiley, New York, 1950. 
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pumps. 

of Gerber's parabola or, more precisely, the modified Goodman diagram. 

used i s  i l lustrated in  Fig. 3. 

In order to  treat the actual case, or a s l ight  modification thereof, use i s  made 

The diagram 

The equation for the diagonal 

l ine  in  Fig. 3 i s  
me 
K 
__ 

(16) 
1 9 Obve 

ue cult 

wmox - urnin 

2 

+- , - =  - 

where 

D =  I 

UNCLASSIFIED 
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urnin u TIME 

Fig. 3. Application o f  Modified Goodman Diagram to 
urnax + 'Tmin 

I 
o b v e  = 2 Diaphragm Analysis. 

T~ = endurance l im i t  o f  material, 

mUlt = ul t imate strength o f  material, 

K = safety factor or experimental correlat ion factor. 

The hypothesis i s  that a point anywhere on or below the diagonal l ine  indicates that 

an essent ia l ly  in f in i te  number (> lo7) of  cycles i s  permitted without fatigue failure. 

Referring now to  Fig. 2, it i s  observed that the diaphragm cyc le consists o f  two stress 

peaks having dif ferent amplitudes. The smaller peak may be neglected, provided that 

the maximum peak gives a point on or below the diagonal line' i n  Fig. 3. Under these 

conditions mmin = 0, and Eq. (16) can be rearranged to  y ie ld  

In Eq. (17) urnax i s  considered t o  be an ef fect ive endurance l im i t  for the diaphragm. 

Therefore, substi tut ing c,,, for ue in Eq. (14), the proposed fai lure cr i ter ion i s  given 

by the relat ion 

' D e  u u  I t 

we + Qt)  - 
( O J e  f f e c t i v e - - 2 Ju: +o-; - c ,u2  . (18) 

If ue and 0;1+ are known for a part icular material that i s  subjected t o  a set o f  specified 

conditions, then values for V ,  and 02, which sat isfy Eq. (18), can be obtained by the 

appropriate selection o f  values for the parameters i n  Eqs.  (5) through (13). The value 

of K should ref lect  the accuracy w i th  which ue and vult are known, as wel l  as the 

va l id i ty  of the fai lure criterion, and should be as c lose t o  uni ty as possible t o  obtain 

the maximum volumetric displacement for a given pump. 
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Optimization of Vol ume-to-Stress Rat io 

To  minimize the s ize  o f  a pump, the displacement-volume-to-stress rat io should be 

as large as possible. The existence o f  a value of z that would produce a maximum 

volume-to-stress rat io was postulated by Hise3 on the basis of considerable experi- 

mental work. Examination of Eq. (19), 

(19) 
V 

26a2 

which represents the pump displacement volume from -6 to  +a, and Eqs. (5) through 

(13), which represent the diaphragm stresses, indicates that an optimum value of z 

would depend only on the dimensionless rat io h/6. 
When calculat ing the volume-to-stress rat io for a particular pump having f ixed 

values for z and h/6,  the maximum stress wi th respect to  r/a must be used, y ie ld ing 

the minimum volume-to-stress rat io for the part icular pump design. Using Eqs. (15) 

and (19), the latter volume-to-stress 

rat ios were calculated and plotted 

against z i n  Fig. 4 for several 

values of h/6.  It i s  observed that 

optimum values of z do exist  for 

the model being considered i n  th is  

study. 

If a pump i s  designed with an 

optimum z, there w i l l  be two points 

at which the maximum stress 

occurs: one at the center of the 

diaphragm and one somewhere i n  

region B, the exact location de- 

pending on the value of z and b / &  

If the pump has a z less than the 

optimum, the maximum stress w i l l  

be at the center of the diaphragm, 

and i f  z i s  greater than optimum, 

the maximum stress w i l l  be some- 

where in region B. 

3E. C. Hise, ORNL, private com- 
munication, November 1958. 
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Fig.  4. Volume-Stress Rat io vs z for Various Values 

of h / S ,  Using Combined Stress, ut 

e 

0 

6 



c 

8 

Evaluation of Method for Determining Optimum z 

How accurately does the above analysis determine the optimum value of z? Avoiding 

a comparison with fatigue-failure-type experimental data a t  th is  time, the question 

might best be answered i n  terms of the accuracy of the individual stresses and of the 

criterion used for predicting failure. A very l imited amount of experimental data acquired 

by Zerby and Stevens4 indicates that actual radial stresses i n  region A are about 25% 
less than calculated and those i n  region B about 10% greater. Th is  results i n  about a 

15% increase in  the optimum value o f  z, assuming that Eq. (18) i s  an adequate cri terion 

for predicting failure. Whether or not the same results apply for a l l  values of h/6 i s  not 

known since an insuff icient amount of data i s  available. The adequacy of Eq. (18) i s  

questionable and w i l l  remain so unt i l  experimental data from diaphragm tests prove i t s  

validity. For th is  reason, Eq. (18) was compared with a simple maximum-stress cri terion 

of failure, for which the maximum principal stress, u replaces the radical term in  

Eq. (18) to g ive Eq. (20): 
P' 

*, 

3 

,, 

2% U U  I t 

The results, i l lustrated i n  Fig. 5, 
show that the optimum value of z, 

using the maximum-combined-stress 

cri terion defined by Eq. (15), gives 

optimum z values 1.5% ( h / 6  = 0.5) 
to 6.6% (h /6  = 0.1) greater than 

those obtained using the maximum- 

princi pal-stress criterion. The 

close agreement between the two 

methods does not necessarily indi- 

cate the accuracy of either. How- 

ever, i t  does indicate tha t  either 

method i s  probably equally good 

for computing optimum z values. 

1.2 

f.0 

0.0 

"l.0 0.6 
b9 

0.4 

0.2 

n 

4P. N. Stevens, "Pulsafeeder Dio- 
phragm Studies, I'  i nter-company corre- 
spondence, ORNL, September 1953. 

0.5 0.6 0.7 0.8 0.9 
z 

Fig. 5. Volume-Stress Rat io v s - z  for Vorious Volues 

of h / S ,  Using Maximum Principol Stress, (T P' 
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Appendix 

D E R I V A T I O N  OF EQUATIONS FOR MEMBRANE STRESSES IN A D I A P H R A G M  

The fol lowing analys isS is  applicable to  a diaphragm that is deflected a distance 

equal to several times the diaphragm thickness, in  which case the strain in the mid- 

plane must not be neglected; the deflection, however, i s  considered small in comparison 

wi th  other deminsions. A system such as this i s  typ ica l  of  many types o f  diaphragm 

pumps. 

The equil ibrium and continuity equations for a diaphragm of the type described 

above (considering membrane stresses only) are derived from a force balance on an 

element of  the diaphragm and from Hooke's law, respectively.6 Consider the element 

i n  Fig. 6, subjected to the membrane forces Nr  and N , .  A summation of the forces in  the 

radial  direction gives 

or 

dNr 
N r  - N ,  + t - = o  . 

dt 

From Hook's law, 

E h  
N r  =- (er  + "J I 

1-3 

Eh 

1 - v  
N ,  =- ( e t  + vel) 9 

2 
(344) 

Referring to Fig. 7, the radial un i t  elongation of  the element due to the radial  d is-  

The uni t  elongation due to  the normal displacement w i s  placement u i s  du/dr. 

5 T h i s  method of analysis i s  similar to that used by C. D. Zerby (unpublished analysis, 
January 1953) and P. N. Stevens ("Pulsafeeder Diaphragm Studies," inter-company correspond- 
ence, ORNL, September 1953). 

6S. Timoshenko, Theory o/ Pla te s  and Shells, 1st ed., McGraw-Hi l l ,  New York, 1940. 
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dr 
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Fig.  6. Farces on Element of Diaphragm. 
Fig. 7. Displacements of Element of Diaphragm. 
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1 / 2 ( d ~ / d r ) ~ .  

fore, the tangential and radial strain components are given by 

In the circumferential direct ion the uni t  elongation i s  just u / r .  There- 

U 
e t = -  I 

I 

e =-+-(-) du 1 dw . 
dr 2 dr 

Adding Eqs. (2A) and ( 3 A )  and making use o f  Eqs. (4A) and (SA)  gives 

1 U - ( N ,  - vN,) = e ,  =- . 
E h  T 

I I  
Dif ferentiat ing Eq. ( 7 A )  gives 

du 

dr dr 

From Eq. ( l A ) ,  

dNT 
N ,  = N , + r -  . 

dr 

Differentiat ing Eq. (1Aa)  and mult iplying by T, 

Substituting Eqs. (1Aa)  and ( 9 A )  in to  @A), 

Substituting Eqs. (1Au)  and (10A)  in to  (6A),  

d 2 N T  3 dNI 

The deflection curve W ( T )  for the fu l l y  deflected diaphragm i s  represented by the 

urcs of two different diameter circles, thus dividing the diaphragm in to the two regions 

A and B. The solution of Eq. (11A)  i n  the two regions follows. 

9 



Region A 

Substituting Eq. (13A) into ( l l A ) ,  

d 2 N ~  3 dNr  E h  
+ -  - +- = 0 .  

dr2 dr 2 R :  

For convenience, let  

Then 

d 2 y  3 dy - + - - + K  1 = o  . (14An) 
dx2 X dx 

The complementary solution of Eq. (14Aa) i s  obtained from the homogeneous equation 

d 2 y  3 dy - + - - = o  . 
dx2 X dx 

In Eq. (15A) let 

dv d 2 y  

dx dx dx2 
- - _ -  dY v =- 

Then 

dv 3v - + - = o  
dx x 

which gives 

v = cx- 3 I 

or 

dY - = c x - 3  I 

dx 

which gives 

y, = c ,  x - 2  + c;  . 

10 



The particular solution of Eq. (14Aa) i s  obtained by letting 

-cx , dY _ -  
dx 

d 2  Y - = c .  
dx 

The result i s  

K 1 x 2  
Y p = - 8  + c 3  . 

The general solution for Eq. (14Aa) i s  

K ,  x 2  

8 
y = c , x - 2  -- + c 2  . 

Region B 

For region B, 

(a  - r)2 

2R2 
w =  

Substituting Eq. (20A) into ( 1  lA) ,  

d 2 N 7  3 d N 7  Eh(a  - T ) ~  + = o .  - +- - 
dr2 dr 2REr2 

For convenience, !et 

Then 

d 2 v  d y  
.2- + 3 x -  = - K 2 ( a  - x ) 2  . 

dx dx 

The complementary solution of Eq. (21Aa) i s  obtained from 

d 2 y  3 d y  - + - - = o  
dx2  X dx 

which i s  the same as Eq. (15A). Therefore, 

y ,  = c, x - 2  + c, , 

dx t 

T o  obtain the particular solution of Eq. (21Aa), le i  

-= e = x  , t x = e  , 
dt  

(21Aa) 

1 1  



and le t  

dy dy dt dy 1 
dx dt dx dt x I 

- = - - = -  - 

d 2 y  1 d 2 y  1 dy 

dx2 x 2  d t 2  x 2  dt 
- = - - - - -  

Substituting Eqs. (23A) and (24A) into (21Aa), 

The solution has the form 

or 

or 

d2Y dY - + 2- = -K (a - e t l 2  2 
dt2 dt 

y = At + Be' + Ce2' I 

I 

The general solution for Eq. (21Aa) i s  

Substituting y = NI and x = r into Eqs. (18A) and (27A),  

( 1  8Aa) 

(27Aa) 

Differentiating Eqs. (18Aa) and (27Aa) and substituting into (1Aa)  gives 

a2 4ar 3 + c, - K 2  (: In r + - - - +- r$  . N B  c3 ' = - -  
r 2  2 3 8  

4 

'd 
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Boundary Conditions 

The boundary conditions are: 

Forces must be f in i te for a l l  values of T. 1. 
2. At T = za, N: = N," and Nf = N:. 

3. At T = a, e t  = 0; thus from Eq. (7A) ,  N: = YN;. 

From boundary condition 1, C, = 0. From boundary condition 2, 

From boundary condition 3, 

C3(1  + v )  K 2 a 2  
c, = 

2 2 ( 1  - v) 
Substituting Eq. (30A) in to  (32A), 

- z 2 ( i  + v) 2z3(1 + 
c, = - + 

2 2(1 - Y) 3(1 - V) 4(1 - V) 
K 2 a 2  I- 

. (33A) 1 11 - 1 3 ~  
+ I n a -  

12(1 - v) 

Substituting Eq. (33A) into (31A), 

I + ~  2z3 (1+v )  - 
2 3(1 - u) 

c, =- 
2 

17 - 1 9 ~  - z4(1 + v )  (1 - :- - 12(1 - v)} . (34A) 
4(1 -v )  

The fol lowing substitutions are made: 

E h  R 1  
h ' = -  z =  

E h  

R 1  + R 2  I 

2 
K 1  =2R:1 2 R i  

(1 - z)2 u4 u4 z 2  2 

4a2 
R =  2 

2 2  
I .'. R 2  = - , 

4a2 
1 

a = -  
2 5  ' 

13 



The stress equations are now given by 

w; a2 5; a2 
-=--- ($ I 

Z 2 E  a 2 E  2z2 

2 2 ( 1  + v) , 2  1 1  - 1 3 ~  
(3 - 1) - 12(1 - 

+ 
4(1 - v )  

+ z2(1 + v) 
4(1 - V) 

c 

14 



a 

A 

B 

C 

D 

W 

V 

V 

u 

NOMENCLATURE 

Outside radius of diaphragm 

Arbitrary constant; i f  superscript, denotes region A 

Arbitrary constant; i f  superscript, denotes region B 

Arbitrary constant, wi th  or without subscripts or superscripts 

Flexural r ig id i ty  of plate = Eh3/[12(l - v2)] 

Radial strain o f  middle plane 

Tangential strain o f  middle plane 

Young's modulus 

Thickness o f  diaphragm 

Radial bending moment per un i t  length o f  circumference 

Tangential bending moment per unit length of 'circumference 

Radial membrane force per un i t  length 

Tangential membrane force per un i t  length 

Radial distance 

Contour radius, region A 

Contour radius, region B 

Radial component of displacement a t  a point in  the middle plane 

Normal component of displacement a t  a point i n  the middle plane 

Volumetric displacement o f  pump 

Dimensionless parameter = R /(R ,+ R 2) 

Maximum deflect ion at  center of diaphragm 

Poisson's ra t io  

Stress 

Radia l  membrane and bending stresses, respectively 

Tangentia I mem brane and bending stresses , respec ti ve Iy 

1 

15 
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