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FISSION PRODUCT DISTRIBUTION IN ORR FUEL ELEMENTS

A. L. Colomb

ABSTRACT

The gamma rays emitted by ORR fuel elements and by the fuel section of shim rods are meas
ured as a function of position along the elements with a very small graphite ionization chamber.

Comparison of the fuel burnup calculated from the gamma measurements and by the flux-time
method shows good agreement. This means that the gamma-ray distribution measurements could
be a good method of determining the U consumption in fuel elements.

Distributions of the macroscopic absorption cross section and the infinite multiplication
factor along fuel elements are computed from the gamma dose rate distribution.

The limited usefulness of the shim rod fuel section is discussed in the last section.

EXPERIMENTAL SETUP

To measure the fission product activity along a
fuel element without distortion and with a good
resolution, two small graphite ionization chambers
were built. These chambers were calibrated against
a Victoreen model 131 integrating ionization
chamber. Their geometrical characteristics and
sensitivities are given in Table 1.

Table 1. Size and Sensitivity of the Graphite
Ionization Chambers

Chamber

Designation

Size of Sensitive

Volume

Diameter Length

Sensitivity*

(namp '.hr"1)

13
x 10

GICS 0.2 in. 0.2 in. 8.26 ±0.4

GICL 0.2 in. 0.4 in. 4.49 ±0.2

♦Corrected to 22°C and 760 mm Hg.

Figure 1 shows that, with these small chambers,
distortion of the dose rate distribution is negligible.
Curve 1 was measured with an ionization chamber
1 in. in diameter and 2.5 in. long. Curves 2 and
3 were measured with GICL and GICS respectively.
The fuel element used was OR-121, whose irradi
ation history is given in Table 2. These curves
show that, in order to measure the fission product
distribution in a fuel element, it is absolutely
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Fig. 1. Distortion in the Dose Rate Distribution Due
to Chamber Size.

necessary to work with a chamber as small as
possible and to keep the chamber in contact with
the fuel element.

MEASUREMENTS OF THE FISSION PRODUCT

DISTRIBUTION ALONG FUEL ELEMENTS

The fission product activity was measured for
the following elements: OR-158, OR-159, OR-150,
and OR-121. Table 2 summarizes the irradiation
history of these elements. The cooling time given



Table 2. Irradiation History of the Measured Fuel Elements

Element Irradiation Time Power Position Cool ing Time U23S Consumption

No. (days) (Mw) in Reactor (days) (g)

OR-158 20 16 C-7 23 16

OR-159 20 16 E-7 23 18

OR-150 10 16 E-7 45 9

20 16 D-7 23 18

OR-121 14 20 D-l 137 4

21 20 D-3 113 25

11 20 B-5 84 10

14 16 C-6 63 11

4 16 D-2 53 2

10 16 D-5 25 7

in Table 2 is the elapsed time between the end of
a given irradiation and the measurement. The
U235 consumption is obtained from the reactor
power, the irradiation time, and the reactor position
factor. The normalized fission product distri
butions for these four elements are shown in Figs.
2-5. These distribution curves are normalized
by dividing all the measured values along the
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Fig. 2. Fission Product Distribution in Fuel Element

OR-158.
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Fig. 3. Fission Product Distribution in Fuel Element

OR-159.

curve by the value of the maximum. This operation
facilitates comparisons of curves. It is possible
to see from these figures that the fission product
distribution is not symmetrical about the horizontal
center plane of the element. This is not surprising,
because the reactor flux is not symmetrical about
its central plane and some of the elements that
have received more than one irradiation were not
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Fig. 5. Fission Product Distribution in Fuel Element

OR-121.

inverted. ORR fuel elements are built with iden

tical end boxes at the top and bottom. Thus, it
is possible to insert them in the core with either
end as the top. Fuel elements should, if possible,
be inverted from one irradiation to the other. This

not only prolongs their life (this effect is not
very important, however, being smaller than 5%)
but also helps keep the maximum flux as close as
possible to the reactor horizontal center plane
(which is important in getting as great a flux as
possible in the experimental facilities).

Fission product distribution measurements can
be used to check the correctness of the calculated

values for U235 consumption. The value of the
integral over the distribution curve is proportional
to the total amount of fission products accumulated
in the fuel element. This is, in turn, proportional
to the total amount of U23s consumed.

Table 3 shows the value of these integrals over
the normalized distributions; the third column
contains the value in the second column multiplied
by the inverse normalization factor.

Table 3. Integrals over Fission Product Distributions

Integral of Integral of
Element

Normalized Distribution
No.

Distribut ion (in.-nhr-1)

X 107

OR-158 17.6 2.84

OR-159 17.7 2.78

OR-150 17.6 3.69

OR-121 17.6 2.69

It is interesting to notice that the values of the
integrals over the normalized distributions are, for
the elements measured up to now and within the
experimental errors, independent of the number
of irradiations given to the element and of the
core location where these irradiations took place.
This means that the shape of the U235 consumption
distribution along a given element is independent
of the initial U235 concentration or, in other
words, that the thermal flux distribution is always
inversely proportional to the U235 concentration.
This interesting effect should be examined with
care, because it is suspected that it will not
hold if the irradiation is made in the vicinity of
a moving absorber, that is, a control rod. Further
investigations should clear this point.

It is now possible to check whether the U235
consumption calculated in the conventional manner



is right. A relation between the amount of U235
burned and the value of the integral over the
fission product activity distribution can be obtained
from the fuel elements (OR-158 and OR-159) that
had had only one irradiation. For 23 days of
cooling time between the end of the irradiation
and the time of the activity measurement, 1 g of
U235 consumption corresponds to 1.65 x 10°
in.-r-hr-1. Table 4 represents the contribution of
each irradiation to the total integral. Cooling
times were corrected to 23 days in order to be
able to use the relation gained from elements
OR-158 and OR-159. Fission product decay data
were taken from Perkins and King.1

These results show that the fission product ac
tivity measurement represents a good method to de
termine experimentally the U consumption in
fuel elements. This method gives results that cor
respond within 12% with those in Table 2, and
could certainly be made quite accurate. Calibra
tion could be done by measuring the neutron flux in
a given new element at the beginning and at the
end of an irradiation in order to compute accurately
the amount of U burned. Then gamma activity
measurements at different times after the end of

irradiation will give the relation between grams
of U burned and gamma activity as a function
of cooling time.

'J. F. Perkins and R,
3, 726-46 (1958).

W. King, Nuclear Sci. and Eng.

The main advantage of this method is that,
knowing the distribution of U235 and fission
products in the fuel element, it is possible to
compute the variation of the infinite multipli
cation factor and the macroscopic absorption cross
section along the element. The knowledge of
these quantities can be very helpful if some flux
deformation (flattening or pushing the flux toward
an experiment) is to be done. Figure 6 shows
the variation of the infinite multiplication factor
and the macroscopic absorption cross section
along fuel element OR-121.
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Table 4. Contribution from Each Irradiation to the Total Amount of Fission Products

Element U Consumption

No. (g)

OR-150

OR-121

9

18

4

25

10

11

2

7

Activity at Total Cooling Time

Activity at 23 Days

0.50

1

0.134

0.192

0.225

0.337

0.340

0.912

Contribution to Integral

(in.

7.45 x 106
2.97 x 107

Total 3.72 x 107

0.88 x 10°

7.92 x 106
3.72 x 106
6.13 x 106
1.12 x 107
1.05 x 107

Total 3.03 x 107



These curves were obtained by the following
calculation. The key for the symbols used here
is given in the "Nomenclature."

The fission product distribution is described by
the following equation:2

NFp(«)=-
2/V°5

'FP 1 + a
25

1 - e " (1)

By using Eq. (1) and the measured fission product
activity, and taking advantage of .the fact that the
integral of the normalized fission product activity
distribution is a constant regardless of initial
and irradiation conditions, the value of 4>{z)t can
be calculated as a function of the position along
a fuel element. Knowing <fi(z)t it is possible to
compute Sfl(z) and k^iz) from the following rela
tions:

»
^H,0+Al n

V +"25-25*
<t>(z)t'25

+ NFpaFp +NSmaSn (2)

*»(*)«

vN°5ofe '25 <t>(z)t

2»
(3)

with NSm, the atomic density of samarium at
saturation, given by3

Nc =3.21 10-<tf«5(l-e-<r"*Wl) • (4)

It should be noted that the values obtained for

2a(z) and k^z) are right only if xenon is allowed
to decay. They do not represent the condition of
a core during operation but can be used when
loading the reactor with elements that have cooled
at least three days.

The following cross-section values (Maxwell-
Boltzmann distribution at 20°C) were used:

a.. = 593 barns

a, = 502 barns

aA( =0.204 barn

ffu 0 = 0.586 barn

a_p = 38 barns

CTC = 5.3X104 barns
om

M. Benedict and T. H. Pigford, Nuclear Chemical
Engineering, p 94, McGraw-Hill, New York, 1957.

S. Glasstone and M. C. Edlund, The Elements of
Nuclear Reactor Theory, p 338-39, Van Nostrand,
Princeton, N. J., 1952.

MEASUREMENT OF THE FISSION PRODUCT

DISTRIBUTION ALONG SHIM RODS

The fission product activity was measured along
two shim rods, 0R-2-S and 0R-6-S, by the same
method that was described in the preceding sec
tion. The results were found to be almost the

same for the two shim rods, so only rod 0R-2-S
will be discussed here.

Shim rod 0R-2-S was in the reactor in position
D-6 from November 4, 1958, to February 23, 1959,
and in B-6 from February 28, 1959, to June 16,
1959. The total amount of U235 burned, as com
puted in the conventional way, was 85 g. The
fission product distribution measured is plotted
in Fig. 7. Most of the fission products are accu
mulated in the upper half of the rod. This is due
to the fact that this section is always in the re
actor, whereas the lower section is out of the

reactor at the beginning of an irradiation cycle
and slowly moves inward during the cycle.

Using the same methods as described earlier
(see preceding section), it is now possible to
obtain the variation of the macroscopic absorption
and the infinite multiplication along the shim rod.
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Fig. 7. Fission Product Distribution Along the Fuel
Section of Shim Rod 0R-2-S.



These results are shown in Fig. 8. It is striking
to see that, at the minimum, k is only equal to
0.4; and that even the averaqe of k over the

length of the element is smaller than 1. The con
sequence of this is that the fuel section of this
shim rod does not add appreciably to its control
capacity.

UNCLASSIFIED

1.6
ORNL-LR-DWG 43756A

II

— 1 -•>(„, IN NEW ELEMENT WITH 131 g U?35 —

1.4
^2a , IN NEW ELEMENT WITH 131 g U2 55

1.2

-

1.0

0.8

- \ v»

-

v -

~ --J^ _ 1
0.6

/ i

04
^/

0 4 8 12 16 20 24

POSITION ALONG FUEL SECTION OF SHIM ROD (in.)

Fig. 8. Variation of Infinite Multiplication Factor and

Macroscopic Absorption Cross Section Along the Fuel

Section of Shim Rod OR-2-S.

In order to obtain an idea of what maximum total

burnup should be allowed in the fuel section of
ORR shim rods, the U235 concentration, the macro
scopic absorption cross section, and the infinite
multiplication were calculated as functions of
total burnup. These quantities are plotted against
position along the fuel section in Figs. 9—11.
It can be seen from these results that the shim

rods are kept in operation beyond such a high
burnup that their fuel sections are almost com
pletely depleted, thus adding nothing to the con
trol capacity. At the same time the absorption
cross section will decrease, as can be seen in
Fig. 10, thus allowing the thermal flux to increase
in the fuel section of the shim rod. This may

wwpromwy>w«m» mmmmmmmm
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produce hot spots in the adjacent elements. Oper
ating experience shows that the reactor is still
behaving well under these conditions. This means
that if the shim rods are not to be changed every
two or three cycles they could stay in the reactor
for a very long period of time. The fuel section
of the control rods could be used as a long-time
irradiation facility to study the behavior of dif
ferent kinds of fuel.

The most convenient solution consists, certainly,
in replacing the fuel section with an aluminum
section. Aluminum, having a lower absorption
cross section and a lower slowing-down power
than water, will add to the control capacity and
at the same time help to reduce flux peaking.
The other advantage of the aluminum follower is
that the control worth of the shim rods will stay
constant.
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NOMENCLATURE

Infinite multiplication factor

Ionization chamber sensitivity

Irradiation time

Position along a fuel element

Atomic density

Atomic density at the beginning of an irradia-
tion

a Capture-to-fission ratio

v Average number of neutrons emitted by one
fission

ex Microscopic absorption cross section

c. Microscopic fission cross section

2 Macroscopic absorption cross section

r/> Thermal neutron flux

The subscripts are used in accordance with ref 2.
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