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SURFACE TEMPERATURES OF IRRADIATED ORR FUEL ELEMENTS COOLED IN STAGNANT AIR 

J. F. Wett, Jr. 

, 

ABSTRACT 

A problem which ar ises during shipment of irradiated fuel elements i s  that of the maximum 

surface temperature which might be reached when the element i s  air-cooled by natural convection 

only. In an  attempt to answer th is  problem, several irradiated Oak Ridge Research Reactor (ORR) 

fuel elements were raised into a hot cel l ,  and their temperature traverses were measured. 

Correlations between maximum surface temperature and the irradiation history of the element 

were made by using the Way-Wigner formula and the data of Perkins and King. It can be con- 

cluded that a decoy of 19 hr i s  sufficient to keep the maximum surface temperature of an ORR fuel 

element, i n  air, below a dangerous level. 

It  is  fe l t  that theresu l ts  of this investigation, whi le not direct ly  applicable to elements other 

than those from the ORR, can assist  i n  establishing orders of magnitude and w i l l  provide a basis 

for more generalized extensions. 

INTRODUCTION 

During the period July-October 1959 an investi-  
gation was conducted to determine the relation 
between the irradiation hi story and the maximum 
surface temperature o f  an irradiated ORR (Oak 
Ridge Research Reactor) fuel element suspended 
in  stagnant air. The problem o f  excessive fuel 
p late temperature i s  most l i ke ly  to occur during 
shipping; hence i t  i s  somewhat academic for 
ORR elements; since they remain in the storage 
pool for a considerable decay period before ship- 
ment to a reprocessing area. However, there are 
reactors wi th elements similar to those in  the 
ORR where the problem i s  far from academic, 
because decay i n  a pool may not be feasible for 
economic or technical reasons. It i s  fe l t  that 
the results o f  th is  investigation, while not di- 
rect ly applicable to elements other than those 
from the ORR, can assist  in establishing orders 
o f  magnitude and w i l l  provide a basis for more 
generalized extensions. 

PROCEDURE 

A two-fingered probe was used to obtain surface 
temperatures o f  the interior plates. The probe 
consisted of two aluminum tubes into which ther- 
mocouples were placed. After the couples were in 
place, the tubes were flattened i n  order to provide 
a good fr ict ion f i t  i n  a coolant channel. The 
probes were held together by an aluminum spacer 
which also provided a f i t t ing  for the long rod 
used in placing the probe in the element. 

The south hot cel l  at the ORR was used for 
th is  experiment. The construction o f  the cel l  
i s  such that an element being brought from the 
reactor pool must be passed under the west wall o f  
the cel l  before being suspended on the cel l  crane 
hook. Thus, the thermocouple probe had to be 
placed i n  the element whi le the element was s t i l l  
i n  the pool. The thermocouple leads had to run 
from the instruments on the balcony, into the pool, 
and under the hot-cel l  wall. Th is  required leads 
approximately 50 f t  long and requited that they 
be waterproofed. The aluminum tubing was con- 
tinued to the top o f  the end boxes o f  the element, 
at  which point  the leads continued through Tygon 
tubing to the instruments. The Tygon was the 
weak point o f  the system for high-temperature 
elements, necessitat ing new probes and leads fo’r 
each element. Figure 1 i s  a photograph o f  a fuel 
element suspended in the cel l .  

Since decay time i s  such an important parameter, 
severe restr ict ions are placed upon the time after 
a reactor fuel change during which data can be 
obtained. Further, the ORR runs on a three-week 
schedule, and that, combined with confl ict ing 
usage o f  the hot cell, places l imitat ions upon the 
quantity o f  data which can be obtained in a rea- 
sonable time. Consequently, i t  was decided to 
l im i t  the objective to obtaining a semiempirical 
relat ion between element irradiation hi  story and 
maximum fuel p late surface temperature. 

Since the magnitudes o f  the temperatures to be 
expected were unknown, i t  was necessary to start 



Fig. 1. Fuel Element Suspended in Cell. 
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with elements whose decay times were long enough 
to assure reasonable temperatures. After a feel 
for the magnitudes was obtained, the decay times 
were shortened for each subsequent run. 

For the f i rst  series of tests, one thermocouple 
was placed i n  each probe. One probe was placed 
4 in. and the other 16 in. from the top o f  the fuel 
plate. For the second series, s ix  thermocouples 
were used, three in  each probe. They were placed 
nominally 2, 6, 10, 14, 18, and 22 in. from the top 
of  the fuel plate. The posi t ion o f  these couples 
was checked by use of  a torch before they were 
put into use. For the f i rs t  series o f  tests, men- 
tioned above, both the temperatures were read on 
separate recorders. However, as knowledge of  the 
transients was gained, a l l  temperatures were read 
on a multipoint recorder. The ambient temperature 
of  the hot ce l l  was also taken. A l l  elements were 
hung vertically. 

Radiation through the ce l l  a t  no time exceeded 
-30 mr/hr. A more detailed report on the radiation 
aspect w i l l  be issued in  the future. 

RESULTS 

Ten elements were raised into the hot cell. One 
o f  these was raised six times, one three times, 
and one twice, giving a total o f  18 datum points. 
The irradiation history o f  the elements i s  shown 
in  Table 1, and the equilibrium temperatures 
reached by the various elements are shown in  
Table 2. The temperature of the hot ce l l  was 
90° F. 

Element OR-103 was le f t  hanging i n  the hot ce l l  
over a weekend so that temperature decay data 
could be taken. After it had been suspended for 
approximately 30 hr a t  a maximum surface tem- 
perature of  22OoF, two dist inct jumps in  activi ty 
were detected by a continuous a i r  monitor which 
was monitoring the hot-cell air. Unfortunately, 
th is  occurred during the night, and analyses were 
not made. The element was then submerged as a 
safety precaution. Element OR-103 was subse- 
quently reinserted i n  the reactor with no adverse 
effects. Figure 2 shows the temperature of  OR-103 
at  both 4 and 16 in. below the top o f  the fuel 
plate, plotted vs the deCay time, and Fig. 3 shows 
the temperature transients. Not shown on Fig. 3 
i s  the fact that the boi l ing point o f  the surface 
moisture could be clear ly seen. It manifested 
i tse l f  as a sl ight pause in  the transient. This 
was due to steam cooling o f  the thermocouple. 



T a b l e  1. Irradiation History of F u e l  Elements 
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Fig. 2. Temperature of OR-.103 at 4 and 16 in. Below Top of Fuel Plate. 

Figure 4 i s  a .more detai led trace of a transient 
and shows this point clearly. The transients of 
Fig. 3 are quite typical o f  a l l  those recorded. 

The f i rst  two elements monitored with the six- 
thermocouple probe were OR-158 and OR-87. 
Figure 5 shows the equilibrium temperature trav- 
erses o f  these elements. Not ice that the hot spot 
of OR-87 i s  above the midplane of  the length 

(“center line”) rather than below, a result of in- 
verting the element. ORR elements are sym- 
metrical about their midplane, with respect to 
length, and are inverted during their l i fet ime to 
increase fuel burnup. The burnup o f  OR-158 was 
measured by A. L. Colomb’ of the Operations 

’Reactor Operations and Radioactive Waste Quarterly 
Report, July-September 19.59, ORNL CF-59-9-111, p 24. 

3 



Table  2. Equilibruim Temperatures of Irradiated Fue l  Elements Cooled i n  Stagnant Air 
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Division. The normalized fuel burnup i s  shown in  
Fig. 6. The point o f  maximum fuel burnup, that 

is, the point of maximum heat production, occurs 
approximately 1.5 in. below the midplane. The 
maximum temperature occurs approximately 0.75 in. 
below the midplane. 

Figure 7 shows the temperature traverses for 
OR-164 for various decay times. In th is  case, 
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the maximum temperature appears to be approxi- 
mately 1.5 in. below the center line. 

A N A L Y S I S  OF RESULTS 

A s  , stated previously, the maior objective o f  
t h i s  work was to determine a semiempirical rela- 
t ion between maximum fuel-pl ate temperature and 
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Fig. 7. Temperature Traverses for OR-164 for Various Decay Times. 

where 

8 = temperature difference between fuel p late 
B surface and ambient air, O F ,  

h = heat transfer coefficient, 
Btu.ft-2.hr- ’.(OF)-’, 

A = fuel element heat transfer area, ft2, 

q = heat transfer from element, Btu/hr. 

Now, the heat transferred from an element i s  pro- 
portional to the energy released by the decaying 
f ission products; also, the area i s  a constant. 
Thus 

8 = C Q  , 

where 

C = constant, 

Q = energy released by f iss ion products. 

There are at least two very convenient ways o f  
calculat ing Q. One i s  the famil iar Way-Wigner 

3 formu la, 

P - = 6.22 x [ t - O e 2  - ( T  + t ) - O q 2 ]  , 
PO 

where,, 

P o  = the operattng power o f  the element, 

t = decay time, sec, 

T = irradiat ion time, sec. 

AI so, 

& W i P ’  

T C  w c  

P o  = I 

where 
- 
4 .  = average f lux i n  the ith element, 

q5c = average f lux in the core, 
- 

3H. Etherington, Nuclear Engineering Handbook, 
p 7-15, McGraw-Hill, New York, 1958. 

. 
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W i  = weight o f  U235 in the i th  element, two. Figure 8 shows OC/Om vs Or.  One sees that 
a systematic error i s  present and that th is  error i s  
apparently a function o f  8. W c  = weight o f  U235 i n  the core, 

P ‘ =  reactor power. Upon re-examining the assumptions previously 
stated, one finds several sources of error. A l l  
the heat i s  not lost  by convection. The hottest 
elements, that is, those with surface temperatures 
over 45OoF, wi l l  begin to lose noticeable amounts 
by radiation. An undetermined amount o f  ‘energy 
w i l l  be released in  the side plates due to gamma 
ray absorption. I t  i s  known that for vertical plates 

Then since P -, g one obtains 

& W i P /  e = 6.22 1 0 - ~ [ t - O . ~  - ( T  + t ) - 0 - 2 ]  - C, . 
G C  w c  

A second method i s  the use o f  the beta and 
gamma decay curves presented by Perkins and 
King.4 The sum o f  these curves w i l l  be referred 
to as Y .  It has the dimensions Mev/wsec. It 
must be mult ipl ied by the element operating power, 

& W i P ’  

4, W C  

Thus, one finds that 

& W i P ’  

S C  wc 

e =  C, Y .  

suspended in  air (e.g., the side plates and exte- 
r ior fuel plates), the heat transfer coeff icient i s  a 
function o f  the temperature difference between the 
ambient air and the plate ~ u r f a c e . ~  One might 
then expect t h D t  h aBn + b. Applying such a cor- 
rection to the data o f  Fig. 8, one obtains 
a = 0.0064, n = 0.72, b = 0.5. This  leads to the 

-formulations: 

e(0.006480.7~ + 0.5) 

and 
The problem now evolves to that o f  determining 

f ive represent elements which had only one cyc le  
in the reactor. The 0’s for those f ive were used 

T h e  
values found were 

C ,  and C,. Of a l l  the data points available, G i W i P ’  

to calculate mean values for C, and C,. S C  W C  

e(o.oo64eOJ2 + 0.5) = 4.5 i o - *  - y ,  

where Y i s  as previously defined. I f  one now 
plots O c / O m  as in  Fig.  9, one sees that the s y s -  
tematic error i s  gone. 

C, = 2 . 2  i o 5  , 
By use o f  standard procedures6 one finds that 

L c2 = 4.5 x 10-8 . 
The assumption i s  made that the 8’s  for a l l  cycles 
are additive, that is, each cycle i s  computed as 

for the Way-Wigner form 
L 

ec/em = 1.091 f 0.088 , 

ec/em = 1 . o s  0.061 . 

though it were the element’s only cycle, and the 
resultant 8’s are added to give the actual 8 o f  
the element. No proof wi I I be offered except prag- 
matic. It i s  obvious that the effect o f  past cycles 
becomes more pronounced as the decay time in- 
creases. However, even with short decays they 
often contribute 10% to 8. 

\ and for the Perkins and King data 

No attempt was made to remove the posi t ive bias 
since it was fel t  that an overestimation o f  tem- 
perature was the preferable error. 

- .  I f  one divides the calculated by the measured 
Om one obtains a measure o f  the error between the 

*J. F. Perkins and R. W. King, Nuclear Sci. and Eng.  

’W. H. McAdams, Heat Transmisszon, 3d ed., p 173, 

6W. H. Reddick and F. H. Miller, Advanced Mafhe- 

McGraw-Hill, New York, 1954. 

mafics  /or  Engineers, chap. 9, Wiley, New York, 1955. 3, 726-46 (1958). 
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A N A L Y S I S  O F  E R R O R S  Experimental Error 

There are two major sources of error inherent The location of  the thermocouples within the 
i n  th is experiment. The f i rst  i s  the obvious one of probes presented some problem. The probes con- 
experimental error. The second i s less obvious. taining three thermocouples presented more trouble 
A s  stated, the obiect ive was to correlate tempera- than those containing only one. It i s  thought that 
tures wi th reactor history. Thus, the second type the couples were located within fl/4 in. 

of error i s  that associated with computing and The location o f  the probes in the elements 
reporting the element’s history. presents a possible source of  error. Out o f  neces- 

-1 0 
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si ty these probes had to be positioned through 
12 ft o f  water. It i s  obvious that one could not 
always measure the same channel. Examination 
in  the hot ce l l  did show that the probes were 
inserted to the proper datum level. 

The fr ict ion f i t  o f  the probes could lead to false 
readings. Probes which did not f i t t ight ly were 
discarded. I t  i s  believed that the measured equi- 
l ibrium temperatures closely approximated those 
o f  the adjacent plates. 

The presence o f  the probes undoubtedly per- 
turbed the air f low and hence the temperatures. 
The magnitude o f  th is  error i s  unknown. 

Normal errors associated with recorders and the 
taking of data were undoubtedly present. 

Historical Errors 

Measurement o f  f lux may easi ly have been i n  
error by 15%. ' 

The power of the reactor f luctuates and may for 
considerable periods be 1 or 2% different from the 
nominal. 

Weights o f  fuel elements (except for new ones) 
and o f  cores are calculated by use o f  measured 
fluxes. Hence, one might easily obtain a com- 
pounding of  the f lux uncertainty. 

7R. J. Nertney, The First Report of the Heat Transfer 
Subcommittee of the Phillips Reactor Safeguard Commit- 
t ee ,  IDO-16343 (June 1, 1957). 
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E F F E C T S  O F  P A R T I A L  SUBMERGENCE 
IN  WATER 

The MSA Research Corporation has done re- 
search on cooling (I( stainless steel subassembly 
similar in construction to an ORR element.* The 
subassembly was heated by induction at  rates 
o f  260 and 600 Btu.hr-’-in.-3. MSA found that 
temperatures rose uncontrollably when the s u b  
assembly was less  than 30% submerged in water. 
When the subassembly was more than 30% sub- 
merged, water “percolated” up the channels, 
cool ing the plates. 

Partial-submergence checks were run on OR-158 
and OR-164. Element OR-158 was generating 
heat a t  - 6  Btu.hr-’.in.-3, and no r ise in tempera- 
ture was observed a t  any point during the sub- 
merging process. Data for OR-158 are shown i n  
Fig. 10. 

‘M. J. McGoff, Subassembly Cooling at Decay Heat 
Power Leve l s ,  MSAR-59-78 (July 17, 1959). 

Element OR-164 was generating heat at  a rate o f  
11 1 Bt~.hr”- in. ‘~.  When the element was 
lowered so that the fuel plates just touched the 
water, a sudden r ise in temperature was noticed. 
However, the r i se  did not get out o f  control, but 
the temperature osci l lated a t  a point lower than 
the original.  The couples farthest from the water 
showed the most osci l lat ion. As the element was 
lowered farther, the osci l lat ions damped out un- 
til the temperatures behaved similarly to those 
o f  OR-158. No transport o f  water up the channels 
was observed. Data for OR-164 are shown in 
Fig. 11. 

SUMMARY AND DISCUSSION 

It can evidently be concluded that an ORR 
element can be safely cooled i n  stagnant air after 
a decay of  19 hr. It seems reasonable to  suspect 
that the decay period could be safely extrapolated 
to 12 hr. 
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Fig. 10. Effect of Par t ia l ly  Submerging OR-158 in  Water. 
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Fig. 11. Effect of Par t ia l ly  Submerging OR-164 in Water. 

Two correlations between surface temperature and irradiation hi story have been developed. One 

uses the Way-Wigner equation to determine the heat source, the other uses the data o f  Perkins and King. 

They are 

&WiP’ 

&wc 
e ( o . o 0 6 4 e ~ . ~ ~  + 0.5) = 1.37 i o 3  [ t - O m 2  - ( T  + t ) -0-21  - 

and 

&W,P/ 

&wc 
6(o.oo64eOJ2 + 0.5) = 4.5 103 - y ,  

where the terms are defined i n  the text. 

Tem p er a t ur e s m ea s ur.ed-dur.i ng--th e--p a r.t.i a I-.s u bm erg en c e. o f  &eI-elemen t s strong I yld. i . .ca t-e-th-at, the re 

probably i s  a power density above which part ial  submergence causes higher temperature than no sub- 

mergence at  a l l .  It i s  noted that the surface temperatures i n  OR-164 were above the boi l ing point a t  

some distance. (% ’/2 in.) below the water surface. It i s  suspected that boi l ing occurred i n  the channels. 

It i s  believed that the boiling, a rapid vaporization o f  water, and the heat-sink characteristics o f  the 

pool kept the temperatures from r is ing uncontrollably. 

-- ___ _ ~ _ _ .  .-- - 

--.. -_ .--..I--.- -_I_--- - -.--...-__I 
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