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ABSTRACT 

An investigation i s  made of the focusing properties of axial ly symmetric inhomog- 

eneous magnetic sector f ie lds wi th arbitrary circular boundaries. In  first-order approxi- 

mation the f ie ld i s  assumed to vary as T-" (0 n < 1). The equations o f  motion for the 

ion trajectories are developed from a least-action principle and solved through second- 

order approximation. Suitable expressions are derived for the horizontal and vertical 

focus positions, which are located outside the f ie ld  boundaries. The mass dispersion 

and resolving power are found to vary as ( 1  - n)-' and so are considerably increased 

over the corresponding values for the homogeneous f ie ld (n = 0). Expressions for the 

second-order radial and vertical aberrations are derived. It i s  shown that the second- 

order radial aberration may be eliminated by proper shaping of the magnetic f ie ld and/or 

f ie ld boundaries. An equation i s  developed for the profi le of the pole faces required to 

produce the desired field. The results are f inal ly modified to  account for the defocusing 

action of the magnetic fringing field. A numerical example i s  presented for a symmetrical 

spectrometer having a 90" sector f ie ld with n = '/. For th is case simultaneous double 

directional and second-order radial focusing are possible. 

... 
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FOCUSING PROPERTIES OF INHOMOGENEOUS MAGNETIC SECTOR FIELDS 

i 

M. M. Bretscher' 

1. INTRODUCTION 

Ax ia l l y  symmetric nonuniform magnetic analyzers in which the f ie ld varies as r-"2 have 

been used to  achieve double direct ional focusing and improved resolution in beta-ray spec- 

t r o m e t e r ~ ~ - ~  and in nuclear  spectrometer^.^-^^ Theoretical calculat ions o f  the ion-optical 

properties of these magnetic lens systems in which both the source and col lector are located 

within the f ie ld boundaries have been treated by several  author^.'^-^' 
First-order focus conditions for inhomogeneous magnetic sector fields, wherein the source 

and image l i e  entirely outside the f ie ld  region, have been calculated by Svartholm,22 J ~ d d , ~ ~  
R ~ s e n b l u r n , ~ ~  and S t e r n h e i ~ n e r . ~ ~  Alekseevski et recognized that a magnetic f ie ld varying 

in the midplane as r m n  (0 6 n < 1) could be used to increase the resolving power and mass dis- 

persion by a factor of (1 - n)-'. Several mass spectrometers using th is  pr inciple have been 

reported in the Russian l i t e r a t ~ r e . ~ ~  Svartholm28 and F i ~ c h e r ~ ~  have proposed mass spec- 

trometers employing crossed nonuniform electr ic and magnetic f ields as a means o f  obtaining 

simultaneous velocity and two-directional focusing of  charged Darticles. 

'Summer Research Participant from Valparaiso University, Valparaiso, Ind. 
2K. Siegbahn and N. Svartholm, Nature 157, 872 (1946). 
3F. M. Beiduk and E. J. Konopinski, Rev .  Sci. Instr. 19, 594 (1948). 

4F. N. D. Kurie, J. S. Osoba, and L. Slack, Rev .  Sci.  Instr. 19, 771 (1948). 
'A. Hedgran, K.  Siegbahn, and N. Svartholm, P m c .  P h y s .  SOC. (London) A63, 960 (1950). 
6N. F .  Verster, P h y s i c a  16, 815 (1950). 
7E. Arbman and N. Svartholm, Arkiv F y s i k  10, 1 (1956). 
'C. W. Snyder e t  al.. P h y s .  Rev .  74, 1564 (1948). 
9C. W. Snyder e t  al., R e v .  Sc i .  Instr. 21, 852 (1950). 
'OC. Mileikowsky, Arkiv F y s i k  4, 337 (1952); 7, 33, 57 (1954). 
" 5 .  Rubin and D. C. Sachs, Rev .  Sci. Instr. 26, 1029 (1955). 
12R. Pauli ,  Arkiv F y s i k  10, 175 (1956). 
13E. E. Chambers and R. Hofstadter, Phys .  Rev .  103, 1454 (1956). 
14L. Blanchi, E. Cotton, and C. Mileikawsky, Nuclear  Instr. 3, 69 (1958). 
"N. Svartholm and K. Siegbahn, Arkiv Mat. Astron. F y s i k  33A, No. 21 (1946). 
16N. Svartholm, Arkiv Mat. Astron. F y s i k  33A, No. 24 (1946). 
17F.  B. Shull and D. M. Dennison, Phys .  Rev .  71, 681 (1947); 72, 256 (1947). 
1 8 H .  W. Franke, Osterr.  1ng.-Arch. 5, 371 (1951); 6, 105 (1952). 
19H. Grumm, Acta Phys .  Austriaca 8, 119 (1953). 
2oP. H. Stoker e t  al.. P h y s i c a  20, 337 (1954). 
21G. E. Lee-Whiting and E. A. Taylor, Can. 1. P h y s .  35, 1 (1957). 
22N. Svartholm, Arkiv F y s i k  2, 115 (1950). 
23D. L. Judd, Rev.  Sci. Instr. 21, 213 (1950). 
24E. S. Rosenblum, Rev .  Sci. Instr. 21, 586 (1950). 
25R. M. Sternheimer, Rev .  Sci. Instr. 23, 629 (1952). 

26N. E. Alekseevsky e t  al . ,  Doklady  Akad Nauk S.S.S.R. 100, 229 

27A. V. Dubrovin and G. V. Balabina, Doklady  Akad NU& S.S.S.R. 

28N. Svartholm, Arkiv F y s i k  2, 195 (1950). 

29D. Fischer, Z .  P h y s i k  133, 471 (1952). 

1955). 

102, 719 (1955). 
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Recently, lkegami 30 and Tasman and Boerboom3’ have examined second-order aberrations 

arising in the focusing of charged part icles by inhomogeneous magnetic sector fields. The effect 

on the second-order aberration terms due to the fringing f ie ld has been estimated by Judd and 

Bludman3’ for the case of a 180° double-focusing alpha-particle spectrometer. 

A mass spectrometer using an inhomogeneous magnetic f ie ld with index n = 0.80 has recently 

been bu i l t  at th is Laboratory, whi le a second instrument, taking advantage o f  the double 

direct ional focusing property characteristic o f  n = ’/2 fields, i s  currently under construction. 

It seemed desirable, therefore, to careful ly re-examine the ion-optical properties characterist ic 

o f  nonuniform magnetic fields. In this report, the equations o f  motion for the ion trajectories 

are developed from a least-action principle analogous to the Fermat pr inciple in geometric 

optics. These equations are solved through second-order approximation, Suitable expressions 

for the mass dispersion, the resolving power, and the horizontal and vert ical focusing posit ions 

are derived. It i s  shown that second-order aberration terms may be eliminated by proper shaping 

o f  the magnetic field, and an equation i s  developed for the prof i le of the pole faces required to 

produce this desired field. Final ly, i t i s  shown how the results must be modified to account 

for the defocusing action of the fr inging field. 

2. THE M A G N E T I C  F IELD 

We shall  express the equations o f  motion for the ion trajectories within the magnetic induction 

f ie ld B in terms o f  the cyl indrical coordinate system r, 4, z. On the midplane (z = 0) the f ie ld i s  

directed along the z axis so that a posi t ively charged part ic le w i l l  move in the direct ion of in- 

creasing +. 
The magnetic f ie ld i s  assumed to  have cyl indrical symmetry with respect to the z ax is  and 

mirror symmetry with respect to the median plane z =  0. On th is  plane the f ie ld may be expressed 

by a series expansion in the vic in i ty of the circular equilibrium orbi t  of radius ro. Thus 

B,(p,O) = Bo (1 - np + bp2 - cp3 + dp4 - . . .) , 
where we define the dimensionless coordinates p and c a s  

and Bo i s  the induction f ie ld a t  p = G-= 0. If the f ie ld i n  the median plane i s  assumed to vary as 

r -n ,  the identi f icat ion b = n(n + 1)/2 can be made. However, we shall assume that Bo, b, c, and 

d a r e  experimentally adiustable parameters. 

30H.  Ikegami, Rev. Sci. Instr. 29, 943 (1958). 
31H. A. Tasman and A. J. H. Boerboom, Z .  Naturforsch. 14a, 121 (1959). 

32D. L. Judd and S. A.  Bludman, Nuclear Inst t .  1, 46 (1957). 
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Within the gap V x B = 0 and 0 .  B = 0, from which it fol lows that 
1 

6 
- no+2bpa- 3 ~ p ~ o + 4 d p ~ a - - ( n + 2 b - 6 ~ ) ~ ~ +  

I 1 
3 

+-(n + 2 b  + 3c - 1 2 4  p d  - . . . (2) 

and 

1 1 
2 24 

+-(n+ 2b+ 3c - 124 p Z a 2  - -(n + 2 b +  12c - 244  o4 + ... 

We next evaluate, to third-order approximation, the magnetic vector potential A which w i l l  

generate th is field. Since the magnetic f ie ld B = V x A i s  independent o f  4 ,  

and we may choose the vector potential so that the components AT and AZ vanish. It i s  apparent 

from ( 2 )  and (3) that the nonvanishing component o f  the vector potential may be expanded in a 

power series of the form 

W 

A d  = L A . . p i o i  . 
‘ I  

i ,  j = O  
(4) 

Now the coeff icient AO0 corresponds to the vector potential o f  a homogeneous f ie ld with B ,  = Bo. 
Hence 

From the defining equation B = D x A ,  

and 

The remaining coeff icients A . .  are evaluated by comparing Eqs. (2) and (3) with (5) and (6). 
‘ I  
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The results are: 

A,,  = A , ,  = A,, = A,, = A,, = A , ,  = 0 , 

1 
2 

A,, =-BOT, I 

1 
6 

A,, = -  B0r , (n+2b)  , 

1 
A , ,  =pore I 

A , ,  = - bBoro , 

. 
(7) 

1 1 
2 0 0 '  A,, = - - n B  r A,, = - -Bo r, (272 + b - 3c) . 

12 

Since V x B = 0 within the pole gap, a magnetic scalar potential function + m  exists such that 

8- -V+m . (8) 

We may express +m in terms o f  a power series in p and e. 

respect to the z = 0 plane, only odd powers o f  cappear in the expansion o f  cPm. Thus 

Since B has mirror symmetry with 

W 

and from (8), . 

which permits one to evaluate the a . .  coefficients. Including terms through f i f th order, the scalar 

potential becomes 
21 

1 1 
6 6 

- e + npc  - bp2 c - - (n - 2 6) c3 + cp3 e + - (n + 2 6 - 6c)  p a 3  - 

1 1 1 
6 120 

- d p  4 e - - ( n + 2 6 + 3 ~ - 1 2 d ) p ~ ~ ~ +  - ( n +  2 b + 1 2 c - 2 4 d ) c 5 +  ... . ( 1 1 )  

Equation ( 1 1 )  i s  used to  calculate the magnetic equipotential surfaces. I f  the pole shoe i s  made 

of a material of large permeability a t  the f ie ld strength used, the pole surface i s  one of 

constant magnetic scalar potential. For th is surface we put 

cPm ( p p )  = const = - Bo r, 4 , 

where the constant [ i s  given by ( 1 1 )  with p = 0 and = g0/(2r0); go i s  the gap width a t  the 

4 



equilibrium radius '0 Thus 

. 
Computing o- as a function of p from (1 1) by successive approximations we obtain 

- 2 i ) t 2 ]  + [n+--( - 4 n 2 + 4 n b + n + 2 b - 6 c ) t 2  t p  + I 1 

+ ( n 2  - b) [p2 + (n3 - 2nb  + c)  4p3 + . , , . ( 1 4 )  

Since 5 and p are considerably less than unity in most cases o f  practical interest, (14) rapidly 

converges and gives the equation for the prof i le o f  the pole shoes required to produce the de- 

sired f ie ld shape (2) and (3). As w i l l  be shown later, the parameter b i s  so chosen as to 

minimize the second-order radial aberration terms. On the other hand, c and d are arbitrary 

and may be set equal to zero. 

Pole pieces with conical surfaces may be used to  satisfy first-order focusing requirements, 

The prof i le o f  the pole face i s  then a straight line, and hence the slope &/dp, evaluated from 

(14), must be constant. Thus the coeff icients o f  the p 2  and p3 terms must vanish, and we have 

do 1 

df 6 
-- - const = nE+-nt3(1 - 2n - 2 2 )  . 

As i s  seen from (13), t 2 $go / ro  << 1, and so 

2'0 y 

g0 2 
n 2- tan-,  

where y i s  the angle between the extensions o f  the conical pole pieces, as i l lustrated in Fig. 1. 

UNCLASSIFIED 
ORNL- LR- DWG 45140 

I 
Fig. 1. P o l e  Shoes with Conical Faces. 
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3. T H E  E U L E R - L A G R A N G E  E Q U A T I O N S  O F  M O T I O N  

In nonrelat ivist ic mechanics the pr inciple of least for conservative forces, may 

be written as 

A J 2 T d t  = A f p * d s = O  , 
where T i s  the k inet ic energy o f  the particle, p the momentum, and d s  an element o f  displace- 

ment along the path. For the velocity-dependent magnetic force, one must replace the momentum in 

the above equation by p - qA, where q i s  the charge o f  the ion and A the magnetic vector po- 

tential. Thus 

A J ( p -  q A ) * d s = O  . (17) 

Th is  i s  the S c h w a r ~ s c h i l d ~ ~  variation principle and applies to the motion o f  charged part icles 

in a magnetic field. It i s  analogous to  the Fermat principle in geometric optics. 

Since the magnetic force always acts a t  r ight angles to the ion velocity v, the component o f  

momentum along the path i s  constant. Equation (17) then becomes 

where m i s  the mass o f  the ion and v the potential difference through which it has been acceler- 

ated. With 

d s =  [ ( d r ) 2  + r2(dq5)2 + ( d ~ ) ~ ] ’ / ~  = ( r ’2  + r2 + z ’ ~ ) ’ / ~  d 4 1  

where the primes represent differentiation with respect to  4,  the Schwarzschild variational 

pr inciple becomes 

or, i n  terms o f  the dimensionless coordinates p and m, 

J p ’ 2  + (1  + p ) 2  + 0’2 -s(1 + p ) A + )  d 4  = 0 - 
The Euler-Lagrange equations for the orbit  are therefore 

d d F  

dq5 -(+- a0 = 0 , 

33See, for example, H. Goldstein, C l a s s i c a l  Mechanics,  chap. 7 ,  Addison-Wesley, Cambridge, Moss., 

34K. Schwarzschild, Nachr. kgl. G e s .  Wiss. Gst t ingen ,  Math.-physik.  KI. 1903, 126. 
1950. 

t 
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. I  . . , ... . _. .. ... ' 

where F i s  the integrand o f  

we now expand F through 

Thus 

Eq. (18). Gefining 

.I-GI mV 

third order ( in p and a), making use of (4) for the vector potential. 

= - ( p  .2 +a'2)(1 - p ) + F o o + F 1 0 p + F 2 0 p 2 + F o 2 ~ 2 +  F 3 0 p 3 + F 1 2 p ~ 2 + . . .  , (21) 
2 

where, wi th the aid o f  (7), 

These results are in agreement with those given by G l a ~ e r . ~ ~  

4. ION TRAJECTORIES WITHIN T H E  SECTOR FIELD 

Successive approximations for the ion trajectories are found by substi tut ing F into the Euler- 

Lagrange equations and retaining terms in F up to  one order higher than that o f  the approximation 

wanted. One defines the order o f  approximation by the highest degree in pol a,, p,', and ,[(the 

values o f  p, a, p :  and a ' a t  I$ = 0) appearing in the expression for the ion paths. 

35W.  Gloser, Hnndbuch der Phys ik  (ed. by S. Flugge), v o l  33, p 308 ff., Springer-Verlag, Berlin, 1956. 
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Zero-Order Approximation 

Keeping terms through f i rst  order in F, we obtain from Eqs. (19), (21), and (22) F,, = 0, 

and so 

1 
T O = - .  

'lo Bo 

This  gives the radius of the central path for ions o f  mass mo, velocity uo, and charge qo. 

First-Order Approximation 

Retaining terms through second order in F ,  the Euler-Lagrange equations become 

P "  - 2fF,, = F * 0  I 

0"' - 20F0, = 0 I 

where p" = d2p/dq5,  and D'"' P d20/d+,. The solutions to  these equations are 

0 = K, sin k2q5 + K, cos k2q5 , 

where k: = -2F,, and ki = -2F02. The constants C,, C,, K , ,  and K 2  are determined from the 

in i t ia l  conditions. Thus 

u = ~ 2 - l ' ~ ~ ;  sin k 2 +  + u,, cos k2q5 . 
In the radial plane the orbi t  (through first-order approximation) i s  seen to osc i l la te  about the 

central path o f  radius rO with a frequency (1 - ; ) ' I2 d+/dt, whi le a second osci l lat ion occurs 

about the median plane, z = 0, with a frequency n 1 1 2  d+/dt. These 0bserva;ions are in agreement 

with those o f  K e r ~ t . ~ ~  

Second-Order Approximation 

Now keeping terms through third order in F, the Euler-Lagrange orbi t  equations reduce to 

1 

2 
p" + k t p  = pp" + -  ( p ' ,  - u'2) + F , ,  + 3F3,p2, + FI2u2 , 

* 

36D. W. Kerst and R. Serber, Phys. Rev. 60, 53 (1941). 
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Note that a l l  the terms in  p and c o n  the right-hand side o f  these equations are o f  second degree, 

whereas those on the left-hand side are a l l  of f i rst  degree. We may therefore approximate the 

right-hand terms making use o f  the first-order solutions given by (25). Thus (26) and (27) may be 

written as 

p" + " P  = /, (4) I 

D" + k:c= f2 (q5)  , 

(28) 

(29) 

where /, and f 2  are known functions o f  q5. 
of  variation of parameters. Thus 

Equations (28) and (29) may be solved by the method 

p = A ,  ($1 sin k, 4 + B, ($1 cos k, q5 ( 30) 

An analogous solution may be written for 

Solution to Radial Equation. - Lengthy though straightforward integration of (31) gives 

the second-order approximation for p, which may be written in the form 

where 

+ (I + 2F1:!F30) cos k, q5 - 2F10 F 3 0  I 

k! 
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where, from (23), vo zo Bo = 1. I t  then follows from (22) that 

\ 

I J (n /2)  - b - n - x(l - n) - F , ,  = - 1+P 2(1 + p) 
where 

2(n - b) 

1 - n  
x z  

With the aid of these equations the second-order approximation for the radial coordinate of the 

ion trajectories (32) now becomes 

P(+) = POD, + P i D ,  + PD3 + P i  D ,  1 + POPO’D, 2 + Po P O ,  3 + P i 2  D,, + 

1 
6 
1 
3 

D , ,  = - [ ( ~ - 3 ) s i n ~ k , + + ~ ( 1  - c o s ~ , + ) I  , 

D ,  = - (1 - n1-112 (3 - X )  (sin k, + cos k, + - sin k, $1 , 

1 
[ 2 ( 3  - X )  s i n 2 $  #I + 3(X  - 1)(1 - n)ll’ + sin k, #I - 

’ 1 3  = 6(1 - n) 
- 2x(1 - cos k, 4 1  I 

- 1 [ ( x  - 3) cos2k1  d, - 2 ( x  - 3) cos k, + +  X I  I 

D 2 2  - 6(1 - n) 

+ (6 - 3n+ X )  sin k, 41 , 

+ 4X(1 -, cos k, +)] , 

11 



If we omit the D,,, D 4 5 1  and D,, terms in  Eq. (37), the solution reduces to  the orbi t  in the 

median plane and then corresponds to Tasman’s result.37 The D13,  DZ3, and D 3 3  terms dif fer 

s l ight ly from the corresponding terms in  Tasman’s equation, and it appears that the latter results 

are in error. 

Solution to Axial  Equation. - Fol lowing the same procedure as that presented above, the 

solution to the axial equation o f  motion (29 ) ,  for ions of momentum p o l  i s  

0 = 00 E4 + uo’E5 + P o  00 E ,  4 + P i 0 0  E24 + P O  ~o’E15 + Po ’0 0 ’ E  2 5  ( 39) 

where 

k ,  = (1 - n)’” , k ,  = n l ”  , 

1 
E = - s i n  k 2 +  , 

k ,  
5 E ,  = cos k 2 +  , 

n n + 2 b  1 
5n - 1 572 - 1 2 

E , ,  = -- sin k 2 +  - - COS k ,  + + - C O S  k ,  q5 COS k ,  $I + 

1 k ,  n - 26 
+- -s in  k ,  q5 cos k 2 +  -- sin k ,  q5 sin k 2 +  + 

k l  2% k ,  

12 



5n 2[n(n - 3b)  + b] n - 2 b  

2k: k ,  

=? (-) cos k2q5 - sin k ,  q5 + - cos k ,  q5 sin k2q5 - 
k,(1  - n)(5n - 1) 2 5n - 1 

COS ( k ,  - k , )  q5 + k2 1 k2 -- cos k ,  q5 cos k2q5 + - sin k ,  q5 cos k2q5 - 
2 2% 4 k ,  ( 2 k ,  - k l )  

6 ( n  - b) - 1 

k 2 ( 5 n  - 1) 2% 

1 
cos k2q5 - sin k ,  q5 - - sin k ,  q5 sin k ,  q5 + 

k 2  
E , ,  =- 

5n - 1 

1 n - 2 b  1 
+ - cos k ,  q5 sin k2q5 + ~ s in k ,  q5 cos k ,  q5 - cos ( k ,  - k l )  q5 - 

2 k 2  2 k ,  k i  4 ( 2 k ,  - k l )  

1 k ,  k ,  - (n - 2b)  
I L  

cos ( k ,  + k , )  4 + sin ( k ,  - k , )  q5 - - 
4 ( 2 k ,  + k l )  4k : (2k2  - k , )  

k ,  k ,  + (n  - 2b)  

4k :  ( 2 k ,  + k , )  
- sin ( A 2  + k l )  $ I 

3n - 1 1 - 3 n + 4 b  1 
E , ,  = - sin k2q5 - cos k2q5 +- sin k ,  q5 sin k2q5 + 

(1 - n)(5n - 1) (1 - n) (5n  - 1) 2% k2 

1 n - 2 b  

2k: 2 k t  k ;  
+- cos k ,  q5 sin k ,  q5 - - cos k ,  q5 cos k2q5 + 

1 

4 k ,  (2k2  + k l )  
sin ( k ,  - k , )  q5 - sin ( k 2 +  k , )  q5 + 

k, k ,  - (n - 26)  

4 k 1  k ; ( 2 k 2  - k , )  

k ,  k ,  + ( n  - 2 b )  

4 k ,  k i  ( 2 k ,  + k , )  
+ cos ( k ,  - k , )  q5 + cos ( k ,  + k , )  q5 . 

5. ION T R A J E C T O R I E S  IN F I E L D - F R E E  IMAGE SPACE 

Neglecting fringing effects for the moment, we assume the f ie ld to exist  only in  the sector- 

shaped region between the circular boundaries whose radi i  of curvature are R ,  and R,. When 

the f ie ld  boundary i s  concave inward, R ,  and R ,  are defined as positive. The sector f ie ld i s  

13 



enclosed by an angle between the tangents to the circular boundaries. We shall  assume that 

the central ion path, which may be regarded as the "optic axis" of the system, enters and leaves 

the f ie ld perpendicular to the pole boundary, as shown in Fig. 2. 

One must now match the ion paths at  the boundaries o f  the nonuniform magnetic f ie ld to the 

recti l inear trajectories in the field-free source and col lector regions. Restr ict ing our attention 

to paraxial rays, for which the semidivergent angles a,, and az are small, it fo l lows from Fig. 2 

NO FIELD 

NO 

FIELD NO FIELD 
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that 

1 1 

7~ '0 
po = - (lo at + 6y) and 0 0 = - (loaz + SZ) . 

Through second-order approximation, the curved f ie ld boundary affects only the slope of the ion 

trajectories in  the radial plane as they enter and leave the field. Then from Fig. 2, 

where 8, = h ,  /rO 2 (p~,)~/2r . Hence, 

Also, 

aZ 2 tan aZ = -- = 0; . 
T dd 

In the field-free image space we may express the rectilinear ion path in terms of the 

Cartesian coordinates x, y, z defined in  Fig. 2. Thus i n  the midplane, 

x = o  

Then with the aid o f  Eqs. (37), (38), (40), (41), and (42) we may write this last  equation in the 

form 

15 



where 

M ,  = - D l + D 2  I M 2 = D 3  M 3 = -  I 

'0 '0 
- 

and 

,. - - 7 . r . -  I - 1 . - 7 1  - 7  I - 1  ' - 7 1  ' -  - \ . T o  -,/ L r o K 1  L K ,  \ ro ' - /  

210 1 .  210 
N~~ = -  D ; ,  + - D  -- D I 

IO '0 0 '0 l 2  I 

1 '0 1 1 
N 2 ,  = D i 3  - D D' - - D 2  + - D: I N~~ = - -pl D;+ D ; D ~ )  + - D ,  D~ I 

3 3  2 2 R 2  '0 R2 

1 .  N 3 3  = - ( D l l  - D 1 1  D')  
r2 0 
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1 %4 

N55 =-T * 
N,,  = - ( 2 l O D ; ,  + D;,) I 

'0 '0  

In these equations for the M ' s  and N's, the D's and their derivatives are to be evaluated at 

q5 = a. T h e  D functions are given by (38). 

Following a similar procedure one may show that in the image space the trajectories in the 

vertical plane, for ions of momentum p o  , are 

z = ro (I4 aZ + I ,  62 + I,, a,az + I,, a,  Sz + Sy aZ + I, ,  Sy Sz) + 

+ x(14  a~ + 1 5  Sz + 11 4 a r  a~ + 1 1 5 Sz + 1 3 4  ' Y  + 1 3 5  ' Y  Sz) I 

where (all functions to be evaluated at  q5 = a)  

10 E4 
14 = - E 4 + E 5  I I = - ,  

0 '0 5 r  

1 

'0 
'35 = Y E 1 4  ' 

and 

10 

'0 0 

l4 = - E ; + E ;  1 5 = - E  ' 4 ,  

1: 10 10 

'02 '0 '0 

I l 4  = - (E;4 - D ,  E ; )  + - ( E i 4  - D ,  E ; )  + - ( E ; 5  - D ,  E ; )  + ( E ; ,  - D 2  E ; )  I 

I 17 



The D and E functions are given by (38) and (39), respectively. 

6. IMAGE P R O P E R T I E S  

Focal Distances 

First-order radial focusing occurs a t  the posit ion where the term proportional to  ar in 

Thus, ions o f  momentum po ( p  = 0) focus in the radial plane a t  the image Eq. (44) vanishes. 

distance 

M l  
I = -  

T T O N .  
1 

Evaluating the functions M ,  and N1 from (45) and (38), th is last  equation becomes 

l0 
tan (1 - n ) ’ I 2  Q + tan-’ - (1 - n) I ‘0 

I = -  

( 1  - n) ’ /2  

Similar considerations lead to the first-order vert ical focusing condition, namely, 

(47) 

10 
I = - -  tan ( n 1 / 2  Q + tan-’ - n1/2 ) . (48) 

TO 
z ,1/2 

These conditions for radial and vert ical focusing have a very useful geometric interpretation. 

L e t  

a r +  b r +  c T = n  . 
Then 

tan(aT+ b r )  = tan(n - c,) = - tan  cr , (49) 

and comparing (49) with (47) one can make the identi f icat ions. 

1 / 2  . c = tan- ’ -  (1  - n) 
TO 

20 I T  

UT = (1  - n)’ /2  Q , bT = tan-’ - ( 1  - n ~ ’ ’ ~  , 

The radial focus condition can then be written as 

18 
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and similarly for the vert ical motion 

A geometric interpretation o f  these last two equations i s  i l lustrated in Fig. 3. 

Magnification 

The lateral magnification M, i s  defined as the rat io o f  the image width at  the radial focus 

posit ion to the object width and i s  assumed to be posi t ive i f  the image i s  inverted. It fol lows 

UNCLASSIFIED 
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Fig. 3. Geometric Interpretation of Focus Conditions. (a) Radial focusing; ( b )  vertical focusing. 
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directly from Eq. (44) that, for ions of the same momentum ( p  = 0), 

MI = - ( r o M 3  + 1 7 N 3 )  , 

which from (45) and (47) becomes 

1’ 
M = ( 1  - n)’”-- sin ( 1  - n)’” Q - cos (1  - n)’” Q 

‘0 

The vert ical magnification /Mz i s  defined as the rat io of the image height to the object height 

measured normal to the z = 0 plane. L i k e  M r ,  M, i s  taken to be posi t ive i f  the image i s  inverted 

with respect to the obiect. Using the same method as above, but applied to the vert ical motion 

of the ions, one may show that 

Mass Dispersion 

Suppose a l l  ions are o f  the same energy qv but a small mass difference 6rn i s  allowed. Then 

- 1  q E [ p q 2  = { 4 = qo ( l + T y + . . .  1 6m , 
2772, V [  1 + (Sm/mo)  I 

and from (34) we see that in first-order approximation 

For a monoenergetic ion beam of mass mo + Sm the lateral displacement D in the y direction at  

the image posit ion IT i s  given by the sum of terms proportional to p in (44). Hence, 

D = P(ro  M2 + I r N 2 )  , 

which from (45) and (54) becomes 

where M r  i s  the lateral magnification. Th is  i s  a measure o f  the mass dispersion D m  defined as 

t 
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, 

In general, the focusing plane of the mass spectrum i s  not perpendicular to  the central ion path, 

since the image distance depends on p and hence on m = mo + Sm. From Eqs. (44) and (54) we 

see that ions o f  mass mo + Sm produce an image a t  

(57) 

Chromatic Aberration 

We now suppose a l l  ions are o f  the same mass m o ,  but we al low a small energy spread q Sv. 

This  energy spread arises from the fact that the ion possesses a small amount o f  energy before 

being accelerated by the potential difference V. Hence, 

}”,= (1 +--+... 
2 v  

4 

and again from (34) it fol lows that 

1 sv 
2 v  

p = - - .  

The lateral displacement D E  a t  the focus posit ion 1, due to ions of energy q(v + SV) must be the 

same as that given in the previous paragraph with Sm/mo replaced by Sv/V. The chromatic 

aberration may then be written as 

Th is  term may be minimized in the usual manner - through the use o f  large accelerating potentials 

V or by an electrostatic energy filter. 

Solid Angle 

According to JuddI3’ the sol id angle (in steradians) for such an inhomogeneous magnetic 

analyzer i s  given by 

A n(1 - n) I-”, 
where AT: i s  the maximum available cross-sectional area for the ion path. Th is  formula assumes 

that AT: i s  independent o f  and that I ,  and l Z  2 w ,  corresponding to converging or paral lel 

outgoing beams. 

38D. L. Judd, Rev. Sci. Insfr. 21, 213 (1950). 
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Second-Order Radial Aberration 

I f  a l l  ions are o f  the same mass m o l  the total image width a t  the radial focus posit ion i s  

The image width i s  given by Eq. (44) evaluated l imited by second-order radial aberration terms. 

at  x =  I T .  Thus with p given by (%), 

Second-order terms containing the object width S y  may be neglected, since the presence o f  the 

first-order term in (61) requires 6y to be extremely small. Similarly, the second-order energy 

aberration term, proportional to p2,  and the mixed term proportional to a r p  must be negl ig ib ly 

small. It i s  convenient to rewrite th is last  equation as follows: 

‘0 6v 
1 - n  2 v  

y ( l T )  = - M T  6y + - (1 + M T )  - + A ,  a: + . . . + A,, a i  + A,, a2 6z + A,,  (82)’ , (62) 

where the A’s have the obvious meaning from (61). 
The exp l i c i t  form o f  the angular aberration term A l  may be found from (45) and (38). Thus 

where [by defining Q r  (1 - n)1/2@1 

[ ( x  - 3) C 0 S 2 ( D T  - (2x  - 3) cos Q T +  X I  + 
1 

- - 
M1l 6(1 - n) 

Io + C X  sin QT - ( X  - 3) sin Q? cos + 
3 T 0  (1  - n)1/2 
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I 
N l l  = [ -  2~ sin Q,? cos + ( 2 ~  - 3) sin + 

6(1 - n ) ’ I 2  

Z ~ ( I  - n)1’2 x 

6 ‘02 + (2 sin Q,? cos Q,‘ + sin ar) + 

+ - - cos (1 - n ) - ’ I 2  sin 
2R ‘02 

This  resul t  agrees with the second-order angular aberration term given by Tasman” for the case 

R ,  = R 2  = Q). We may el iminate the angle Q, from (63) by making use o f  the focus condition (50). 

Le t t ing  

we see from Fig. 3 that 

1 
sin Q , ~  = s in  (tan-’ I,’ + tan - l  2;) = 

1 

t l  
cos Q,? = - C O S  (tan-’  2,’ + tan - ’  z?’) = - (20’1;- 1) . 

Us ing  (65) to eliminate Qr from (63) we obtain 

From Eqs. (38), (45), and (62) it fol lows that 

l r  ‘0 
A 4 4  =‘O (M..+;N4.) = - -  n 

39H. A. Tasrnan and A. J. H. Boerboom, 2. Nafur/orsch. 14a, 121 (1959). 
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. 1 / 2  

A,, = rO ( M , 5 + - N , , )  10 =--{$ [ + ( l + M r )  - 2 K ]  + L ]  , (68) 
T O  . 1 / 2  

where 

These equations are in agreement with the recently published results o f  l kega~n i .~ '  

Resolution 
I 

The mass resolving power R i s  defined as the reciprocal of the relat ive mass difference 

Sm/mo required to move an image out o f  the collector s l i t  so as not to be confused with an ad- 

jacent image. Therefore 

where s ,  and s2 are the object and image s l i t  widths, respectively, and C A  i s  the total beam 

broadening due to  a l l  aberrations. Neglecting third- and higher-order aberrations as wel l  as 

pressure broadening effects, the mass resolving power i s  given by 

As  was seen in the las t  section, the A,, a: term can be reduced to third order by shaping the 

pole boundaries and the remaining second-order terms minimized by a proper choice o f  the f ie ld 

constant b. 

,OH. Ikegami, Rev. Scz. Znstr. 29, 943 (1958). 
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Vertical Aberiation 

The total beam height at  the radial focus posit ion i s  given by (46) evaluated at  x = I,. Thus 

for ions o f  momentum p o l  

Second-order vert ical aberration terms become imoortant only at  the axial focus position lz .  

The terms prooortional to a, 6z and 6y 6z are negligible because of the presence of the first-order 

term, - Mz 62. Terms making a signif icant contribution to  the geometric aberration in the vert ical 

plane are therefore 

Note that through second order the total vert ical aberration does not contain R ,  and R ,  and 

therefore i s  not affected by curving the entrance and ex i t  boundaries of the field. 

7. IMAGE P R O P E R T I E S  F O R  A N  I N F L E C T I O N  S P E C T R O M E T E R  

For the sake of completeness we now derive the image properties, in f i rst  order, for an ion 

beam entering and leaving the inhomogeneous magnetic sector f ield at  arbitrary angles with 

respect to the normal to the pole edge. The equations o f  motion developed in Sec 4 are s t i l l  

applicable; however, the boundary conditions used in Sec 5 for the case of normal entry and ex i t  

must now be modified. 

Radial Focusing, Magnification, and Mass Dispersion 

A s  can be seen from Fig. 4, 

y ie ld ing the in i t ia l  conditions 

(73) 

25 
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. Fig. 4. Radial Focusing for Oblique Incidence. 

In the field-free image space, 

Restr ict ing our attention to terms no higher than 

the form 

y = P ,  a, + P ,  p + P ,  6y + 

f i rst  order, th is last  equation may be written i n  

x [ Q 1 a ~ + Q 2 @ + Q 3  ‘Y1 I (75) 

from (37), (38), (73), and (74). The results are, where the P and Q functions are to be evaluated 

with Q r  (1 - ~ 2 ) ” ~  @, 

P 2  = T o ( ]  - 72)-’(1 - COS a,) , 

P ,  = cos ar + ( 1  - sin aT tan E ,  , 
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‘0 ‘0 
Q 1 = - - (1  - n ) ’ 1 2  sin B~ + B~ tan e2 t 

1 
Q, = - [ -  (1  - n ) ’ 1 2  sin ar + (tan E’ + tan e2) cos Q~ + 

+ (1 - n ) - ’ 1 2  sin Q~ tan E’ tan E ~ I  . 

(76) 

Fol lowing the arguments presented in Sec 6, ions of momentum p o  (p  = 0) are focused at  that 

posit ion for which the coeff icient of ay vanishes. From (75) and (76) 

The lateral magnification of the image posit ion i s  found from the negative of the coeff icient 

of 6y in (75). Thus 

M~ = -.(Top3 + 1~9,) =- [cos  (1 - n ) ’ 1 2  + (1 - n ) - ’ I 2  s in  ( 1  - n ) ’ 1 2  a tqn E’I t 

- (1 - n)- ’12  sin ( 1  - n ) ’ 1 2  Q tan E’ tan e2] . (78) 

A s  was shown in Sec 6, the coeff icient of 0 is related to  the mass dispersion Dm. Again 

from (75) and (76) 

2(1 - n) 

Equations (77), (78), and (79) reduce to (47), (52), and (56), respectively, for the case E, = = 0. 
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Vert ical  Focusing 

Were it not for the fringing field, the vert ical focus condit ion for the case of nonnormal entry 

would be the same as that for normal incidence [Eq. (48)l. In the present case, however, the 

fringe f ie ld exerts an axial  force on the ion beam which alters the equation for vert ical  focusing. 

Suppose that wi th in the fringing f ie ld  BZ increases from zero to  i t s  maximum value between 

x = - A x  and x = 0. As  i s  shown in  Fig. 5, the x axis is taken normal to the pole edge; A x  is of 

the order of one gap width.. 
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Fig. 5. Verticol Focusing for Oblique Incidence. 

From the Maxwell equation V x B = 0, 

J B x  JB,  
---=(I 
Jz Jx 

and so i n  the fringing f ie ld  

The z component of the magnetic force on the charged part icle i s  

F z  = q(v x B), = -qv Y X  B = -qv(sin E , )  B~ . 
The time it takes the ion to  cross Ax i s  

Since force i s  the time rate of change of linear momentum, 

Ap,  = F z  At = -qzRZ tan E, . 
Within the sector f ie ld  p = qrO BZ, and so 

APz Pf - P i  z 
- - tan E l  . 

P P TO 

. 
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From Fig.  6 we see that 

. 

Pi z 
-- - tan a, 2 -  

P 10 

Equation (80) then becomes 

ai = uo (: - tan El) . 

An analogous equation applies at  the exit, namely, 

=a,. , 
b=O 

The vert ical focus posit ion I ,  i s  now evaluated direct ly from (25), (81), and (82), wi th the result 

These focus conditions, (77) and (83), were f i rst  derived by Sternheimer.41 
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Fig. 6. Effect of Fringing F i e l d  on Vertical Focus Position. 

8. T H E  S Y M M E T R I C  A R R A N G E M E N T  

If we require the ion trajectories to be symmetric about the plane q5 = @/2 in addi t ionto 

possessing mirror symmetry about the z = 0 plane, the equations expressing the image character- 

i s t i cs  simplify. Under these conditions the object and image distances are equal, el = E~ = E ,  

41R. M. Sternheirner, Rev. Sc i .  Instr. 23, 629 (1952). 
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and R 1  = R 2  = R .  The horizontal and vert ical focusing equations, (77) and (83), now become 

(84) 
( 1  - nj1’2 cot [(I - n11/2 @/21 + t a n  E 

- 
11 

T O  

-- 

( 1  - n) - 2(1 - n ) l / ’ c o t ( I  - n)’” tan E - tan2 E 

and 

In the case of normal incidence, E = 0 and these focus conditions reduce to 

lr = r o ( l  - n ) - l i 2  cot [ ( I  - n)1’2 ~ 1 2 1  

Equations (52), (53), and (78) for the magnification a l l  reduce to  unity, as they must, for the 

symmetric arrangement. Thus 

M r z  = M  = I .  (88) 

The mass dispersion (79) reduces to  

and for E = 0 becomes simply 

D = - .  
1 - n  m 

The pole edge radius R required to  make the second-order angular aberration terms A, , 
[Eq. (66)] vanish for lo = lr and = = 0 i s  

3(1 - n ) 2  1; 

3(1 - n) ro - 2(n - 6 )  [2r i  + 3(1 - n) 1121 
R =  (91) 

2 
. .^, I .  

For straight boundaries, R = 00, and the f ie ld  shape parameter b required to  make A 

given by 

= 0 i s  

n[13 -cos  (1 - n ) ’ I 2  @I - 3[1 -cos(1  - n)1’2 @I 
2[5 + cos (1 - n ) ’ I 2  @I 

b =  

The total path length 1 from source to detector i s  1 = lo + rO @ + lr .  With = c2= 0, we may 

f ind the value of lo which w i l l  minimize th is  path length for f ixed values of n and @. Setting 

al/dlo = 0 and using Eq. (47) for I,, one finds that the minimum path length (and hence maximum 

. 
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transmission) i s  achieved for the symmetric case, lr = lo. For th is  case, as can be seen from 

(86), the total ion path length increases with increasing values of n but decreases as CD becomes 

larger. 

On the other hand, one may decrease the total ion path length for given values of n and CD 

by choosing negative values of E [see Eq. (84)l. However, the mass dispersion (89) also be- 

comes smaller as E becomes more negative. These ideas are i l lustrated in the numerical example 

shown in Table 1. If one considers transmission and dispersion simultaneously, one must con- 

clude that the optimum symmetric arrangement i s  that for which E = 0. For this case one may use 

(91) together with (67) or (69) to achieve second-order radial focusing. 

Table 1. Image Position and Mass Dispersion as  a Function 
of n and E far @ = 7~ and I? = Io 

n E (deg) IT"0 Drn'To 

~ ~ 

0.8 0 2.71 5 

0.9 0 5.84 10 

-5 3.86 6.62 

-10 2.87 4.93 

- 15 2.27 3.91 

-20 1.86 3.24 

9. SIMULTANEOUS D O U B L E  D I R E C T I O N A L  AND SECOND-ORDER R A D I A L  FOCUSING 

To obtain double direct ional focusing the image distances lr and lz  must be equal. By 
equating (77) and (83) K a r m ~ h a p a t r a ~ ~  has worked out numerical values for lo, e l ,  and e2 which 

w i l l  produce horizontal and vert ical focusing simultaneously for CD = 180" and for n = 0.8 and 

0.9. For example, first-order double direct ional focusing i s  achieved for @ = 180°, n = 0.8, 
= 60°, E? = -194 Io = 27,, and I = I = 3.57,. Evaluating the mass dispersion for th is case 

from (79) we f ind Dm. = 3 . 4 4 ~ ~ .  Using these same values for CD and n in the symmetric case for 

E = 0, we find Drn = 5.007, with essential ly the same total path length from source to  collector. 

Th is  numerical example serves to  i l lustrate the fact that double directional focusing i s  possible 

for any value of n within the allowable l imits 0 2 n < 1 for the inflection-type asymmetric spec- 

trometer. However, the accompanying reduction i n  the dispersion does not just i fy the experi- 

r z  

mentally awkward arrangement of source and collector which such a'spectrometer would require. 

= E~ = 0 it i s  apparent from (47) and (48) that simultaneous focusing i s  

Other values o f  n w i l l  a lso satisfy 

For the case 

achieved for any combination of Io and provided R = ?$. 

42S. B. Karmohapatra, Indznn I .  P h y s .  29, 393 (1955); 32, 26 (1958). 
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the double focusing condition IT = Iz for at  most one value of @ < 277 for each Io 2 0. However, 

such a system lacks f lexibi l i ty ,  and focusing characteristics i n  the vert ical and radial direct ions 

would be widely different. 

We conclude that double directional focusing i s  practical only i n  the symmetric case for 
1 n = /’ and E = 0. Then from (86) and (87) 

Note that the source and col lector are located on the edge of the f ie ld  (lo = 0) for Q = 211277, re- 

sult ing i n  maximum transmission. Th is  corresponds to  the double focusing beta spectrometer 

proposed by Siegbahn and S ~ a r t h o l m . ~ ~  

With n = ?$, Eq. (91) gives the radius of the f ie ld  boundary required for second-order focusing 

It fol lows from (67) where b i s  chosen so as to  el iminate the A,, or the A,, aberration terms. 

that for the symmetric arrangement wi th n = ’/2 the angular aberration term A,, vanishes i f  

3 
b =  I 

4(3 - sin’ 2-31’ 

whereas the A,, term i s  zero for 

1 

2  COS 2“’” Q(2 - 3  cos 2”” @) 

b =  

(94)  

For rect i l inear f ie ld boundaries b should be chosen to  el iminate the radial angular aberration 

term A 1, i n  which case, from (92), 

7 + 5 cos 2- l / ’  

4(5 + cos 2- l’’ 0) 
b =  

2 Note that for rect i l inear f ie ld  boundaries one cannot simultaneously el iminate the U? and U: 

aberration terms with a single value of the f ie ld  parameter b. This  same conclusion was reached 

by Shull and D e n n i ~ o n ~ ~  for the special case = 211’7r. 

10. FRINGE F IELD EFFECTS 

Up to  th is  point we have assumed recti l inear trajectories i n  the object and image regions, 

thereby neglecting the influence of the fringing f ie ld  on the optical properties of inhomogeneous 

magnetic sector fields. The analysis of edge effects for homogeneous f ie lds has been worked 

43K.  Siegbahn and N. Svartholrn, Nature 157, 872 (1946). 
44F. B. Shull and D. M. Dennison, Phys .  Rev. 71, 681 (1947); 72, 256 (1947). 
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out by several  author^.^'-'^ HerzogS2ns3 suggests using suitable shields as a means of com- 

pensating for the influence of fr inging f ields. By  analogy, these methods should be applicable 

to  the case of inhomogeneous magnetic sector f ields. However, we shal l  use the "factorization 

approximation" suggested by Judd and B l ~ d m a n , ~ ~  since this method i s  more direct ly applicable 

to  the case of nonuniform f ields. 

The effects of fringing are: 

1. The optic axes outside the magnet are bent through small angles, bringing the object and 

image closer together. 

2. The object and image points are moved along the optic axis in the direct ion of the magnet. 

3. The optimum values of the f ie ld shape parameters b, c, ... which minimize second-order 

aberrations are modified from their values in the absence of fringing. 

MileikowskyS5 has experimentally determined the magnitude o f  effects 1 and 2 for the case 

of h i s  nuclear spectrometer. To treat these effects quanti tat ively we must have a suitable 

approximate formula for the ion trajectories i n  the fr inging regions. 

Consider the motion of ions i n  

directed along the posit ive z axis. 

then 

the median plane (z = 0) where the magnetic induction i s  

The equations of motion for part icles in th is  x ,  y plane are 

mR= qfB, , 

my= -q2BZ , 

n .-. 2 + f 2  = v 2  = const , 

where the dots denote dif ferentiat ion wi th respect to time. 

wi th respect t o  time we have 

Integrating the second equation once 

f = - 4 p z d x  = -vJ< R dx 3 - v f ( x , y )  , 
m 

45N. D. Coggeshall, J .  Appl .  P h y s .  18, 855 (1947). 

46K.  T. Bainbridge, P h y s .  R e v .  75, 216 (1949). 
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where Bo i s  the f ie ld wi th in the gap at  the equilibrium radius r o ,  and x and y are measured in  

units of rO. Now from the veloci ty equation we see that 

Div id ing these 

plane, namely, 

last two results we get the rigorous trajectory equation for ions in the z = 0 

or 

As we have seen earlier, the symmetric arrangement of source and col lector provides the 

most practical setup. The trajec- 

tories from a point source (for p = 0) are then completely symmetrical about the @/2 plane, from 

which we shal l  now measure angles in terms o f  the coordinate 8. Referring exp l i c i t l y  to  the 

image side, we  choose the origin of the Cartesian coordinate system at 

We shall  therefore confine our attention to  such a system. 

@ 
2 and e=- -  4 .  r = r  

The y axis i s  directed radial ly outward, wi th the part icles moving i n  the direct ion of posi t ive 

x; q5 i s  the small angle between the y axis and the magnet edge where fr inging effects just 

begin and is of the order of g o / r o ,  where go i s  the gap width at  T O .  These ideas are i l lustrated 

in Fig. 7. 

I A 
UNCLASSIFIED 

ORNL-LR-DWG 45446 

dY 

Fig. 7. Trajectory with Fringing Field. 
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Within the sector f ie ld the trajectories on the median plane for 0 = 0 may be found from Eq. 

(37). Remembering that the solution must be symmetric about the 8 = 0 plane we have 

1 

6 p = p  D + pflf D = p, cos er + -pflf [(x - 3) sin2 et + X( 1 - COS e,)] , (98) m 1  

where X = 2(n - b)/(  1 - n), Or = (1 - n) 1’2 8, and p, i s  the displacement at  8 = 0. In the fringe 

f ie ld  region the trajectories are given by (97), where the minus sign applies to  the image space. 

We must match these trajectories along the y axis, which separates the domains of appl icabi l i ty. 

Now in  both systems lengths are measured in  units of r o ,  and so we have at  x = 0 

. 

, 1 dr p ’  
y = - - - -  - Y’P  I 

r de  l + p  

where p and p’are to be evaluated a t  8 = ( B / 2 )  - 4. 
Since the f ie ld  on the median plane within the sector region varies as 

R z = R 0 ( 1  - n p +  b p 2 -  ...) , 

we assume that in the fringing region we may write 

( 99) 

The g/go term in the radial shape factor (1 - ny + by2  - . . .) g/go i s  needed to  describe how the 

fringe f ie ld  varies as a function o f  the gap width. Th is  second factor i s  omitted by Judd and 

BludmanS4 in  their treatment of the fringing f ie ld  and accounts for the unreal ist ical ly large 

value they get for the image distance. Since 

Y 
n 2 

go = - tan-  , 

as can be seen from Eq. (16), 

g r  -- - - = l + y  , 
go ‘0 

making the radial shape factor 

g 
(1 - “y  + by2)  - 2  1 + (1  - n)  y - (n - b )  y2 . 

g 0  

The shape factor is of the order of unity, and so we may use the recti l inear approximation 

P ’  

l + P  
y = p + - x  , 

where again p and p ’a re  to  beevaluated at  x = 0. Now both p and p’are small compared w i th  
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unity, and so we write y 2 p + p’x and y 2  2 p2. The shape factor now becomes 

(1 - ny + by  2 g  ) - 2 1 + (1 - 72) p - (n - b)  p2 + (1 - 7 2 )  p’x . ’ (101) 
g0 

This  factorization approximation [Eq. (loo)] contains the assumption that the variat ion in the 

orientation of the axes w i th in  the small angle r$ leads t o  effects of higher than second order. 

Substituting (101) and (100) into (97) and integrating once, we obtain 

- 11 + (1 - n) p - (72 - b )  p21 f ( x )  - (1 - 72) p ’ g ( x )  , - P‘ - Y ’  

(1 + y’2)1/2 [(l + p)2  + p’211/2 

where 

Solving for y ’  and keeping terms through second-order approximation i n  p, th is  equation reduces 

to  

Integrating once more we have 

3 1 
+--p’[l 2 + (1 - 2n) pl  f 2  - 4 3  2 + . . . . (102) 

3 1 
2 

g ( x )  dx  + -p’[1 + (1 - 272) pl Lx f2(x) dx -? Jox f 3 ( x )  dx + . . . . (103) - (1  - n )  p ’  Jox 

Since B Z ( x )  i s  negl igible near the image posit ion x o ,  we may approximate / ( x ) ,  for x several 

times larger than g o / r o ,  as follows: 

dx = c a = const . 1 

Choosing a as the distance over which .the f ie ld  fa l l s  o f f  by one order of magnitude, c 1  i s  a 
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constant of the order of unity. Then 

jox f ( x )  dx = c 1  ax + c2 a 2 , 

. i 2 3 JOx g ( x )  dx = c 3  a + c4 a , 

sox f 2  dx = c i a 2 ,  + c 5 a  . 3 J  
The addit ive constant terms c 2 u 2 ,  c 4 n 3 ,  and c 5 a 3  are correction factors arising from the fact  

that for small x (x 5 - a )  

J o x $ d x < c l a  . 

Integrating the second equation by parts shows that c2 = - c 3 .  Now experimental measurements 

of the fringing f ie lds indicate that a i s  of the order of a few gap widths. Therefore we may 

neglect terms in  (103) which are of higher order than a2,  since the c’s in (104) are near unity. 

The trajectories i n  the image space then become 

( n - b ) p Z + p  c 3 a  2 + 
y = p +  [ l + ( l - n ) p -  ‘21 

3 2 + x { p 7 1  - p )  - [ 1 + ( 1  - n) p - (n - b )  p + 2 p  41 c 1  a + 

+-p’[l 3 + ( 1  - 2n)pl c l a  - (1 - n )  p ’ c 3 0 2 }  . (105) 
2 

The constants c 1  a and c 3  a 2  are determined by a numerical integration of the measured fr inging 

field. 

Ions moving on the equilibrium orbit determine the optic axis of the system. Thus the optic 

axis i n  the fringe f ie ld is given by (105) with p = p ’ =  0, that is, 

(106) 2 yo, = - c l  ax + c 3  a . 

Th is  equation displays the addit ional bending of the optic axis due t o  the fringing field. 

The image posit ion x o  i s  located a t  that point where the paraxial ray crosses the optic axis. 

Thus we have 

y ( x o )  - YO,(%) = 0 = p + [ ( l  - n) p - (n - 5) p 2 + ; p q  c3a2  + x o  {PYl - p )  - 

3 3 
2 2 

- [ ( l  - n) p - (n - b )  p2 +-p’q c 1  a +-p’[l + ( 1  - 2n)  p l  c; a2 - (1 - n) p’c3 a 2 }  . 
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Using (98) for p and classi fy ing terms according to  powers o f  p , ,  neglecting third- and higher- 
order terms, we have 

p ,  ( D l [ ~ + ( l - n ) c 3 a 2 1 + x o  { D ;  [ l - ( l - n ) c 3 a  2 - ( l - n ) D 1 c l a  

3 
+ - [ D ; 1 + ( 1 - 2 n ) D 1 D ; ]  2 c i a 2  - ( 1 - n ) D i 1  c 3 a  ' } )  + . . . =  0 .  (107) 

The D functions and their derivatives are t o  be evaluated along the y axis where 8 = (@/2) -$. 

For first-order focusing the coeff icient of p ,  must vanish. Hence 

2 
D l  1 + ( 1  - 7 2 )  c 3 a  

2 3 
2 

x O  = - -  

D ;  I - ( 1  - n) (D1/D;) c 1  a + - c:a2 - ( 1  - n) c3 a 

A simpler, though less rigorous, derivation of th is  resul t  i s  presented in Appendix B. 
Second-order radial focusing i n  the median plane may be achieved by selecting the f ie ld  

Using (108) t o  el iminate x o  

, i n  (107) and arranging terms according to  powers of a, the condit ion for second-order radial 

parameter h so that the term proportional to  p i  in (107) vanishes. 

focusing becomes 

. 
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Now in  zero-order approximation the sum of terms independent of a must be zero, and so 

and D i l  terms D 

i n  the coeff icients of a and a2.  With th is  approximation the above equation reduces to  

+ d ( D ;  - D 1D i) 2 0. We may use this approximation to  el iminate the D 

D + d(D - D D ;) - D: ( 1 - n) tan2 $ - (n - b) c ad + 1 
I 3 

2 
+ D: [ (1 - n )  -(n- b) +-(1 - n )  tan2 $ c3a2 - 

1 - ( l - n ) D :  [ ( n - b ) + - ( l - n ) t a n 2 $  3 c:a2d2 = o  . 
2 

This  equation determines the f ie ld  parameter b required to  produce second-order radial 

focusing in the median plane. .The result may be written i n  the form 

where 

13n - 3(1 - COS 2$) - TZ C O S  2$ 
b =  0 2(5 + cos 2$) I 

= l a d  I 1 2(n - bo) 3 tan2 $ - 
1 - n  

3(1 - n)2  (1  + cos 2$) 
2(5 + cos 2$) 

b = -  
1 

c:a2d2 - I/ 2(n - bo) 

1 - n  
3(1 - n ) 2  (1 + cos 2$) 

2 ( 5  + cos 2#)  
b 2 = -  

where again 

$ =  (1 - n) (:-$A and d = ( l - n ) - ’ / 2 c o t +  . 

The constants +I cla1 and c 3 a 2  should be determined from a measurement of the fringing f ield. 

Exper i ments ind i cote that 

2 2 go c l a  % -  5 go - 1  c3223f;) . 
$ 2  -- I 

3 ‘0 3 

Note that i n  the absence of fringing, + = u = 0 and Eqs. (108) and (110) reduce to  

a) 

2 
x o  = (1 - n ) - 1 / 2  cot (1  - n ) 1 / 2  - I 

n[13 - cos (1 - n ) ’ l 2  ‘Dl - 3[1 - cos (1 - n ) ’ / *  @I 
215 + cos (1 - n) ’I2 a)] 

b =  I 
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which agree with our previous resdlts (86) and (92), respectively. Having determined the optimum 

value o f  b necessary to eliminate the second-order radial aberration in the z = 0 plane, Eq. (14) 
gives the prof i le o f  the pole shoes required to produce this desired f ie ld shape. 

11.  A N U M E R I C A L  I L L U S T R A T I O N  

We shall  now use the foregoing results to  estimate, theoretically, the focusing characterist ics 

of the inhomogeneous f ie ld  spectrometer currently under construction a t  th is  Laboratory. The 

magnet i s  designed for an equil ibr ium radius r ,  = 12.0 in. a t  a gap width go = 0.760 in. T o  ob- 

ta in  n = \ for double directional- focusing, conical pole shoes are used with the taper angle 

y/2 = 0.906O as determined from Eq. (16). With the pole shoes cut for a sector angle of 90°, 
measurements indicated that the magnetic f ie ld  begins to  fringe at '/2 in. w i th in  the gap, and 

so 

0.50 
12.0 

+=-  = 0.0417 radian . 

A numerical integration of the B z  component of the measured fr inging f ie ld  in the z = 0 plane 

gives the results 

c a i  1 

and 

B z  
c 3  a2 x - dx = 0.0122 . -6%' 

Now, taking these values into consideration, a new sector angle was chosen so as to  give a 

total  deflect ion of the ion beam from source to  col lector equal to  90°. The pole edges were 

therefore trimmed to  give a sector angle (see Fig. 8) 

With the source and the col lector set at  equal distances from the magnet edge, the coordi- 

nates of the image posit ion ( in  units of io )  are calculated from Eqs. (106) and (108). The results 

are 

and AX,) = -0.234 . x,, = 2.36 

We now estimate the magnitude of the second-order'aberration terms. As  was seen in Sec 2, 

h = n2 for an ideal conical f ield. Neglecting fringing, we obtain from Eqs. (66) t o  (69) 

A ,  = 5.687, , 
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Fig. 8. Sector F i e l d  for 90° Deflection. 

BOUNDARY 

A,, = -0.66~~ , 

A,, =-0.99 , 

-0.28 
=y- 

0 

Neglecting third- and higher-order aberrations as well  as pressure broadening effects, the 

total beam width at  the collector i s  

6v 2 ‘0 
B.W.=Mrsl+-(l + M r ) - + a r A l l  + a ~ A 4 4 + a Z 8 z A 4 5 + ( 6 ~ ) 2 A 5 5  , 

1 - n  V 

where s1 i s  the source s l i t  width and M ,  = 1 for the symmetric arrangement of source and re- 

ceiver. Using the parameters 

s1 = 8 x in. , 
sv 0.2 
-= -= 0.04 x 10-3 , 

5 x 1 0 3  

ro = 12.0 in, , 

6z=0.22 in. , 

a, = 0.013 radian , 

az = 0.008 radian , 

which are estimated from the source and tube dimensions, the estimated beam width i s  

B. W. = rO x (0.67 + 0.16 + 0.96 - 0.04 + 0.15 - 0.09) = 0.022 in .  
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This  beam width estimate i s  probably too large because o f  electrostat ic focusing i n  the ion 

source, which tends to make the effect ive values of s1 and ar less than those calculated from the 

physical dimensions o f  the source. in., the calculated 

resolution (70) becomes 

With a col lector s l i t  s2 = 16 x 

Note that i n  the absence o f  aberrations the resolution for these s l i t  widths would be 1000. The 

linear dispersion between masses 235 and 236 may be calculated from (55). 

The value o f  b required to eliminate the A,, aberration term, which 

second-order aberrations, may be calculated from Eq. (1  10) with the result 

b = bo + b ,  + 6, = 0.4423 - 0.0175 - 0.001 1 = 0.424 . 
This  calculat ion takes fringing effects into consideration and dictates the 

be calculated from Eq. (14), needed to minimize second-order> aberrations 

th is modification the resolution would be increased to 910. One could also 

focusing with conical pole shoes by carefully choosing the sector angle @. 

and so for n = 4, 1 

2(n - b) ~ 

X =  = l .  
1 - n  

The resul t  i s  

i s  the largest o f  the 

pole shoe profile, to 

(see Table 2). W i t h  

achieve second-order 

For th is  case b =  II , 2 

Then the angle a t  which the second-order aberration term A, , disappears, neglecting fringing, 

may be found from (92), with the result 

One could also make the A,, aberration coeff icient vanish by proper shaping o f  the pole 

boundary. For th is symmetric system the required radius, as calculated from Eq. (91), i s  -14.6 
in. The negative sign implies that the pole boundaries are concave with respect to  the obiect 

and image points. Th i s  resul t  i s  of questionable significance, since here the effects o f  fr inging 

have been neglected. 

Mi leikowskyS6 has suggested an empirical procedure for locating the image posit ion in the 

fr inging field. One imagines that the system behaves as an ideal magnetic lens (no fringing) wi th 

an effect ive” sector angle equal to the,angle between the in i t ia l  and f inal direct ions o f  the ion 

beam so that ro in the sector f ie ld i s  the same with and without fringing. He has found that the 

image posit ion calculated i n  th is manner agrees wel l  wi th experimental observations. In our 

, I  

56C. Mi leikowsky,  Arkiu F y s i k  7, 33 (1954). 
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Table 2. Shape of Pole Shoes 

1 
n =  / 2 

go = 0.760 in. 

rO = 12.00 in. 

z coordinate measured from median plane 

z (in.) 

For Conicol 

Pole Faces 

7 (in.) 
For A 1 ,  = O* 

9.000 

9.250 

9.500 

9.750 

10.000 

10.250 

10.500 

10.750 

1 1  .ooo 
11.250 

1 1.500 

11.600 

1 1.800 

12.000 

0.3301 

0.3343 

0.3386 

0.3428 

0.3470 

0.3512 

0.3554 

0.3596 

0.3638 

0.3679 

0.3720 

0.3736 

0.3768 

0.3800 

0.3325 

0.3364 

0.3404 

0.3444 

0.3483 

0.3523 

0.3562 

0.3602 

0.3642 

0.3681 

0.3721 

0.3737 

0.3768 

0.3800 

z (in.) 

For Conical 

Pole Faces 

T (in.) 
For A l  = O* 

12.200 

12.400 

12.500 

12.750 

13.000 

13.250 

13.500 

13.750 

14.000 

14.250 

14.500 

14.750 

15.000 

0.3831 

0.3863 

0.3878 

0.3916 

0.3953 

0.3990 

0.4025 

0.4060 

0.4093 

0.4 126 

0.4157 

0.4187 

0.4216 

0.3832 

0.3863 

0.3879 

0.391 9 

0.3958 

0.3998 

0.4038 

0.4077 

0.4117 

0.4156 

0.4 196 

0.4236 

0.4275 

*Requires b = 0.4237. 

case the effect ive sector angle i s  90’. 
displaced at  an angle c, a from the y axis. 

boundary may be calculated from (a), with the resul t  

As can be seen in Fig. 8, the virtual f ie ld boundary i s  

The image distance as measured from this virtual 

From our previous calculat ions we obtain 

I, = r o ( x 0  - c, u) = 27.1 in. 

Although the more rigorous mathematical treatment, based on the “factorization” approximation, 

gives a s l ight ly smaller answer, the two methods y ie ld  essential ly the same result. These 

findings are in qual i tat ive agreement with Mileikowsky’s observations6 that the optimum focus 

posit ion as determined experimentally i s  somewhat less than that predicted by the “effective” 

sector an g I e treatment. 

43 



With @ taken as 90°, Eq. (92) gives b = 0.425 as the f ie ld shape parameter needed to el imi- 

Th is  resul t  i s  a lso in good agreement with our previous calculation, 

If one completely neglects the fr inging field, the required f ie ld  

Th is  resul t  suggests 

nate the A,, aberration. 

from which we found b = 0.424. 

shape parameter for second-order focusing i s  calculated to be b = 0.442. 

that one cannot ignore the fr inging f ie ld when correcting for second-order aberrations. 

.’ 

. 
12. CONCLUSION 

Theoretically, nonuniform magnetic f ields which vary in f i rs t  order as r - n  in the median 

plane may be used to increase the dispersion and resolving power in mass spectrometers by a 

factor of (1  - n)-’ when compared with corresponding homogeneous f ie ld  (n = 0) instruments. 

Th is  potential improvement in resolution, however, i s  misleading unless steps are taken to reduce 

image aberrations. The chromatic aberration, proportional to  SV/V,  varies as (1 - n)-’ and so i s  

enhanced for the case of  nonuniform magnetic lens systems. The most important second-order 

aberration term, thot proportional to 0.3, i s  more than f ive times as large as the corresponding 

term in  a homogeneous f ie ld spectrometer for the example given in the los t  section. For the 

same values of ro, s,, s2, and SV/V used in th is illustration, the estimated resolution for a 

conventional spectrometer i s  440, which i s  only 30% less than that calculated for the n = /2 field. 

In principle, second-order radial focusing can be obtained by proper shaping o f  either the 

pole faces or the pole boundaries. Shaping o f  the pole faces appears to  be the more desirable 

procedure, since one can then take into account the effect which the fr inging f ie ld  has on second- 

order focusing. W i t h  th is  modification, the resolution for the instrument described in the las t  

section should be near’ly twice that for the corresponding homogeneous f ie ld spectrometer. Th is  

example serves to  iI lustrote the importance o f  the second-order geometric aberrations charocter- 

i s t i c  of inhomogeneous magnetic fields. Further improvement in the resolution i s  possible i f  the 

chromatic aberration term i s  reduced through the use o f  an electrostat ic velocity f i l ter  or through 

the use of lorger occeleroting potentials. 

1 

The length o f  the central ion path i s  proportional to (1  - T Z ) - ” ~ .  For a given n, the sym- 

metric arrangement of source and col lector gives the shortest ion path. Since the central path 

length i s  longer wi th the inhomogeneous f ie ld than with the homogeneous field, i t  appears that 

vacuum requirements are more r ig id  for the nonuniform magnetic f ie ld spectrometer i f  one i s  to  

obtain the same peak broadening due to residual gas in the analyzer tube. 

For a given n, maximum dispersion i s  obtained for the case where the ion path enters and 

Double directional ond second-order radial focusing leaves the f ie ld boundories a t  r ight angles. 

may be achieved simultaneously by choosing n = /2 ond by properly shoping the pole faces. 1 

The factorization approximation together with the improved radial shape factor appears to 

give a very satisfactory description o f  the effects produced by the magnetic fr inging field. Not  

only does this method permit one to predict the modif icat ion in the focal posit ion which the 

fringe f ie ld  produces, but one can also calculate the f ie ld shape parameter required for second- 

order radial focusing taking edge effects into consideration. To  a good approximation, one may 
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P 

empirically account for these fringing effects in terms of an "effective" sector angle taken as 

the angle between the initial and final directions of the ion path, provided the ion path radius in 

the sector field is  the same with and without fringing. 
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Appendix A 

SUMMARY OF NOTATION 

A magnetic vector potential. . 

I second-order radial aberrations. i 4 4 4 4  

a, 6z A 4 i  

w ~ A , ,  J 
B I magnetic induction field. 

f l 0  3 f ie ld on the median plane at yo. 

b coeff icient of the quadratic term in  the series expansion of the magnetic field. 

c 1 a =  joxo $ d x .  

x o  R Z  
c a 2 =  X- d x .  3 

0 

D I lateral displacement of the ion beam in  the y direct ion a t  the image position. 

D E  I energy dispersion or chromatic aberration. 

D 
mass dispersion I-. 

6m/mo 

gap width at  yo. 

object distance measured from f ie ld  boundary. 

image distance for radial focusing. 

image distance for vert ical  focusing. 

radio I magnification. 

vert ica I magnification. 

mass of the ion. 

coeff icient of the linear term in the series expansion of the magnetic f ield. 

linear momentum of the ion. 

charge of the ion. 

mass resolving power. 

t?, I radius of curvature of the f ie ld  boundary on the object side. 

R ,  = radius of curvature of the f ie ld  boundary on the image side. 

r I radial coordinate in the cyl indr ical  polar coordinate system used to  describe 
the motion of the ion wi th in the magnetic field. 

c 
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to = radius o f  the central or equilibrium path. 

s ,  I source s l i t  width. 

s2  = receiver s l i t  width. 

V I potential difference through which the ion has been accelerated. 

‘* 

2(n - b) 
X I Tasman’s f ie ld  shape parameter I 

I - n  

x o  I radial image posit ion in units of to  as measured from the axis wi th in the gap at  
which fringing begins. 

6 y  I horizontal source dimension. 

z I axial coordinate i n  the cyl indrical polar coordinate system used to  describe the 
motion of the ion wi th in the magnetic f ield. On the midplane within the pole 

gap z = 0, and the posit ive z axis i s  taken along the direct ion of the f ield. 

6z I vert ical source dimension. 

a,, I semidivergent angle of the paraxial rays from the source as measured in  the 

aZ I semidivergent angle of the paraxial rays from the source as measured In the 

radial plane. 

axial plane. 

I momentum spread factor. 

y = angle between the extensions of the conical pole pieces. 

E ,  I angle made by the central ion path wi th the normal t o  the pole edge on the en- 

I angle made by the central ion path wi th the normal t o  the pole edge on the ex i t  

trance side of the magnet. 

side of the magnet. 

8 P angle coordinate as measured from the @/2 plane for the symmetric arrangement 

p I dimensionless radial coordinate I (t - ro)/to. 
p’” dp/d+. 

of source and collector. 

po = value of p at  4 = 0. 
p i  = value of p ’at  4 = 0. 

p, maximum value of p for the symmetric arrangement. 

G-I dimensionless axial  coordinate = z/ro. 

G-’= dU/d+. 

u0 I value of G-at 4 = 0. 

50.1 value of 5 ’ a t  4 = 0. 

@ I magnetic f ie ld  sector angle. 

4 P polar angle in the cyl indrical polar coordinate system used t o  describe the 
motion of the ion wi th in the magnetic f ield. 

4 m = magnetic scalar potential. 
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Appendix B 
IMAGE D I S P L A C E M E N T  D U E  TO F R I N G I N G  F I E L D  - A S I M P L I F I E D  A N A L Y S I S  

A simplified, though less rigorous, estimate of the image displacement due to  the fringing 

Using the same coordinate system as defined in  Fig.  7, we see that f ie ld  i s  presented here. 

in the midplane the y component of the magnetic force on the ion i s  given by 

F,, = pX B Z ( x , y )  2 -pX(1 - B Z ( x )  . 
Assuming the f ie ld  fa l l s  from i t s  maximum value to  zero in a distance Ax,  the relat ive change 

of momentum of an ion passing through th is  distance in time At i s  

A p y  F y  At Ax  F y  A X  -- - - - %--J * --(l-np)-- 
P P u x p  ‘0 

Now Ax i s  of the same order of magnitude as the gap width, and so we write 

AX Cg = Cgo(l + p) , 

where C i s  a constant of order unity. Hence 

cg 0 cg 0 

P ‘0 ‘0 
2 -(1 - np) (1 + p) - 2 -E1 + (1 - n) pl - I hpy 

Now A p y / p  i s  just the change of slope of the ion trajectory produced by the fr inging f ield. 

Setting p = 0 we get the slope of the optic axis, namely, 

(>)o* = - -  cg 0 . 
r O  

Comparing th is  result w i th  Eq. (106) we are able t o  make the identi f icat ion 

- = c l a  . 
‘0 

Now the difference in  slope change between the paraxial trajectory (p + 0) and the optic axis 

(p = 0) produced by the fr inging f ie ld  i s  just 

(:)p-(?)oA = - p ( l - n ) c l a  . 

Without fr inging the image distance would be d = -p/p’, where p = p, cos (1 - n)”2 8 and i s  to 

be evaluated along the y axis. Thus with fringing, 

2 2 2 2  d 
- - =d€l-(l-n)c,ad+(l-n) c l a d  -... 1 . P 

x o  = - 
p’-p(1-7.2) c l a  1 +(1 - n )  c l a d  

Th is  resul t  i s  essent ia l ly  equivalent t o  Eq. (108) as obtained by the more rigorous treatment. 

* 

’. 
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Appendix C 
T H E  HOMOGENEOUS FIELD S P E C T R O M E T E R  

The image characteristics for the inhomogeneous magnetic f ie ld  spectrometer are perfectly 

general and reduce to  the corresponding equations for the homogeneous case where n = b = 0. 
Thus the radial focus condition (77) for n = 0 becomes 

lo  cos (@ - E l )  

cos E l  

which i s  Herzog’s well-known focus r e q ~ i r e m e n t . ~ ~ , ~ ~  The vert ical focusing result ing from the 

fringe f ie ld i s  given by (83) and with n = 0 becomes 

cos (@ - c2) lo sin [CD - ( e l  + c2)1 
- _- ) = o  I 

+ i.{ cos E g  Yo cos E l  cos E2 
Y O  sin @ + 

lz 

Y O  ( l o / Y o )  [ton 

CD + ( I o / r 0 )  ( I  - @ tan e l )  

+ ( 1  - CD tan E ~ )  tan E ~ I  - ( 1  - 
_ -  - 

tan E ~ )  ’ 

which i s  equivalent to  the expressions derived by CotteIS9 Camac,60 and Cross.61 

The aberration term A (66) reduces to Hintenberger’s r e ~ u l t ~ ~ , ~ ~  for n = 5 = 0 and e l  =e2  -0. 

I f  R 1  = R 2  = m, A l l  = -yo, which i s  va l id  for any symmetric homogeneous magnetic f ie ld spec- 

trometer. 

57R. Herzog, Z .  P h y s i k  89, 447 (1934). 

58J. Mattauch and R. Herzog, Z .  P h y s i k  89, 786 (1934). 
59M. Cotte, Ann. p h y s .  10, 333 (1938). 

6oM. Camac, Rev. Sci. Instr. 22, 197 (1951). 

61V/. G. Cross, Rev.  Sci. Instr. 22, 717 (1951). 

62H. Hintenberger, 2. Natur/orsch. 3a, 125, 669 (1948); 6a, 275 (1951). 

63H. Hintenberger, Rev. Sci.  Ins tr .  20, 748 (1949). 
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