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for the Milne Problem

with Anisotropic Scattering and Absorption.

Planning of the Numerical Calculations.

Walter Kofink*

Introduction

In two earlier reports^1' it was shown that:

(1) the spherical harmonics solution in PL-approximation for the angular

distribution of neutrons at any point of the space in plane geometry is the exact

solution of an equation, which one obtains by adding an "error-source" term to the

original Boltzmann equation. This error-source is amultipole of the order 2+1;

(2) the sum over &= 0 through L, which occurs in the PL-approximation of

the angular distribution, can be performed explicitly in the case of plane geometry

by application of two Christoffel formulae. This summation enables one to;.show

(3) that the spherical harmonics solution for the angular distribution can

be split in two expressions at every degree L of approximation. One of these two

expressions is the corresponding solution which follows by application of the Gauss-

quadrature method in the same degree L of approximation to the Boltzmann equation.

This expression is in L+1 positive directions (uj = cos <^. > 0; j=1,2,...,—-—)

identical with the corresponding expression of the spherical harmonics method,

namely, in those directions in which the second member of the split expression vanishes. .

*0n leave of absence from the Institute of Technology, Karlsruhe, Germany. This
work is supported by the Bundesminister fuer Atomkernenergie und Wasserwirtschaft,
Bad Godesberg, Germany.

(l)w. Kofink, "Studies of the Spherical Harmonics Method in Neutron Transport
Theory", ORNL-233>+ and ORNL-2358. Published partially in Nuovo Cimento, Sup. 2
to Vol. IX p. ^97-5^1 (1958). The equations of these reports are quoted here
by the numerals I and II before their numbers.
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In all other directions the angular distributions according to the spherical

harmonics and the Gauss-quadrature method are different.

(k) This difference is removed by integration over all directions, and the

average of the "error-source" over all directions vanishes, of course. Therefore

the density, the flux, the characteristic equation and the coefficients in the

Milne problem are identical in both methods at every degree L of approximation.

(5) These coefficients of the partial solutions entering the solution of

the Milne problem were calculated for anisotropic scattering with absorption.

(6) It was shown that the second part of the spherical harmonics solution,
which arose by the splitting, does not contribute at all to the exact solution

in the limit-process L ->cd. It is the Gauss-quadrature part of the angular distri

bution which converges straight forwardly to the exact solution of the Boltzmann

equation for positive directions u= cos -/(pointing to the vacuum). Using once

more the Boltzmann equation to avoid the poles of the Gauss-quadrature solution

in some negative directions (pointing to the deeper interior of the medium), an

expression of the angular distribution for negative directions was obtained which

should converge to the exact solution for L -» co,

(7) By application of Euler's sum formula the limit process was performed

for the distance A of the extrapolated endpoint^for the emerging angular distri

bution of the neutrons at the boundary of the medium into the vacuum and for the

current-density.

In athird report/2) the properties of the exact characteristic equation
were investigated more closely. Furthermore, the degree Lg_ of approximation by

the spherical harmonics or the Gauss-quadrature method was calculated, at which

(2)W Kofink, "Studies of the Spherical Harmonics Method in Neutron Transport
Theory, Part III", 0RNL-2&SQ, (1959).
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the largest root \0 of the approximate characteristic equation leaves the interval

0 < \ •& 1 converging to the corresponding root of the exact characteristic equa

tion, which lies always on the outside of this interval for c > 0.

The purpose of this report is to complete the limit-process for the distance

A of the extrapolated endpoint (see Equations l8a and l8b), for the linear extrapo

lation distance 6 (see Equation 29), for some constants of normalizations N, p(o)

and J(0) (see Equations 27, 28; 33a and 33*; 35a and 35*), for the angular distri

bution of the emerging neutrons at the boundary of the medium (see Equations 36a

and 36b), for the current-density j(0 and for the density p(0 of the neutrons at

an arbitrary point £ in the interior of the medium (see Equations 38, 39, ^3, *&,

kG), All these expressions are calculated for anisotropic scattering with, re

spectively, apositive or anegative constant of anisotropy a= 37a(l-7t)"> that is'

respectively, for preferred forward or preferred backward scattering, and for pre

vailing absorption, 7a > 0 (c^l). The case of prevailing multiplication 7a < °>

c > 1 is left for the future. Incidentally, the case of no absorption c = 1,

7 = 0 is treated as an extraordinary case in section 3. In the sections 1 through
St

6 it will be shown that all quantities, mentioned above, can be represented with

the aid of eight different integrals, denoted by 0Q, 9+, 9", 0a, 0O, "X(n), X± and

X2 (see Equations 2to 7and 52, 53). All these integrals contain in their inte

grands a common weight function W(u) as a factor. W(u) is singular at the upper

end u=1of the integration as ~(l-u)"1 [log(l-u)] "2. This fact is inconvenient

for the numerical calculation with the electronic computer. But the integrals are

convergent in the area of the c, a-plane [c <1, -c(l-c) *a£c(l-c)], for which
we want to produce tables this time. There are of course different ways to remove

the singularity from the process of integration by the computer. Two methods are

given in sections 7e and Jt. In the first method the integrals are integrated in

their original form from u=0 to u= p (p < l) and the remainder of the integral
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from u = p to u = 1 is transformed into an integral without a singularity on a new

finite path of integration. In the second method the whole integral is transformed

into the new form.

Incidentally, the transformation of the integrals has some heuristic value

also- The weight function W(u) (see Equation 1, la, lb and 56) mentioned above

is connected with the continuous spectrum of the Boltzmann operator, which is a

"non-normal" operator. By the transformation of the integrals a connection of

the function W(u) related to the continuous spectrum with the characteristic func-

tlon (i.e., the secular determinant for L -00) Ch(\) is uncovered. The roots of

Ch(\) =0 form the discrete spectrum of the Boltzmann operator. W(u) is replaced

in the transformed integrands by the logarithmic derivative of Ch(\)/\ in a complex

v"plane and the Path of integration u = 0 to u = 1 is replaced by a finite complex

path in the w-plane (X = cotanh w and see Equation jk). The procedure, starting

with the spherical harmonics or Gauss quadrature approximations, going to the

limit L-Qo and transforming the occurring integrals, will yield always the loga

rithmic derivative of Ch(\)/\. This function could be derived easily for any more

complicated scattering law than that assumed here.
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1. Some Notations,

Some results of the sections 3to 7of part II^1) will be rewritten here in

a more concise form. To do that the following notations are introduced? A weight

function

W(u) =' r-^~
" 1 - u2

h(c,a;u) g(c,a,u)

1 - uc

h(c,a;u) and g(c,a;u) were defined in the equations (II 52 and 53)

h(c,a;u) >. c+[c2 -c+a(3-c)] u2 +|[a +3(c-l) u

./111 +au2 - u(c+au2) tanh-1 uT +j- u(c+au2) I ;g(c,a;u) = 1

the function W(u) occurs in the following integrals:

i f /tanh"1 -±- ) W(u) du
2. v w

5+ =-f(tan^yf-u) W(u) du
0

9" = - T(tanh-1 A^- uj W(u) du
0

^o = r f [logCi-^)]^) du
J L XOooJ

1 r _ 1
log (1+^u2)

C

for a > 0 \

and — < 1
c

/'for a < 0

Mand -l^L < ly
c

&
W(u) du (for a > - c)

0

X(n) = 2 log (n+u)] W(u) du (for p. not in - 1^ |J ^ 0)

(1)

(la)

(lb)

(2)

(3)

w

(5)

(6)

(7)
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The functions (2) to (7) depend all on cand aby \Qqo and W(u) in their integrands;
but c and a are omitted mostly in the writing below. In part II (between the equa

tions II 5^ and II 55) it was shown that

- / W(u) du = 1 .

This integral is convergent; no doubt its integrand has a singularity at u=1,
but only of the kind

l/j(l-u) [log (l-u)]2| =d_fiog (1-u) -1

(8)

This point, however, makes numerical calculations rather difficult and will be

avoided by a transformation of the integrals, which contain W(u) in their inte

grands, in section 7.

By the integrals (2) to (7) defined above we shall express a sequence of con-

stants and functions, which appear in the neutron transport theory of the Milne

problem. They were found in part II from their expressions in the spherical

harmonics and Gauss-quadrature method in L-th approximation by going to the limit
L -> 00.

From the Equations I; 33 and II 53 one recognizes that the function (7) is
the limit

iim , r p(-\)
log

L..-* co I r(-X)

(L+l)/2

-.. IT (miO
-lm log—j=i L
L - co (L-l)/2 = X(\)

\ has to be chosen on the outside of the interval -1<\<0 in (9). The equa

tion remains valid for \ = Q for which Equations II 54 and 63 show that

(9)

lim r p(o)
log

L -* 00 I r(0)["*»]= x(0) =logC^"t^oo) - ^(A-«-fO •(9a)
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2. The Distance of the Extrapolated Endpoint.

Equation (8) enables one to extract a factor u. from the integral X(u). This

yields Equation (ll 55) which is valid under exclusion of the interval - 1 £ \ * 0:

1

li- lQg /pU)
L -* oo V-\r(-\)y

) =if log (1+^) W(u) du .
'' 0

The reversal of the sign of X is then easy and leads to Equation (II 56). The

difference of both is (with exclusion of the interval - 1 f \ £ l)

lim

L ^ 00
log

p(-x) //p(\y

r(-\)Ar(\)/_
(tanh-1 -) W(u) du

'0

(10)

(11)

This function occurs in the distance of the extrapolated endpoint and in some

normalization constants. For the characteristic root X = Xqqq it is the quantity

named 9n in (2) and for X =
'0

it is the quantity named 9" in (4), The dis

tance A of the extrapolated endpoint contains a function &(x), which is related to

the expression on the left side of (ll).

p(-fc) //vM
tanh'•1B&1 = 1

X

log
_ r(-\)/\r(\),

(12)

By comparison with (ll) one recognizes that &(x) converges in the limit L -» od to

&(x) = X tanh 1 / (tanh"1 H) W(u) du
2J *•
• 0

limfor real X without writing the sign -^ _^

imaginary X = ix one obtains

before o(x) from now on. For pure

o(ix) = x tan
r r
i / (tan"1 H) W(u) du

(13)

(13a)

We consider in this report only the case 0 < c < 1, in which the two roots + Xqqq

of the exact characteristic equation (ll 58)



Ch(Xnm )
Oco 1 + aX0oo " ^Ooo^^Ooo) cotanh_1 \)co = °

are real» The constant of anisotropy a can be positive or negative. In aniso

tropic scattering the quantity (I 35)

i/— pure imaginary for positive a
v a •• • • '' '• "~~

X,, = 1 - = <

real for negative a

\v

(Ik)

(15a)

(15b)

plays a role, ^qqq an^. Xa enter S(x) as a possible X and we shall meet later the

following different versions

r /c
— tan

5(U = <

and

tanh

(tan-1 /- u) W(u) du = - tan 9H for a > 0 (l6a)

1
i > /
— (tanh ~ /-•—•- u
2 / V J c

0

-l /M ) W(u) du = -—- tanh 9 for a < 0 (l6b)

(17)

5(^0oo) = X0oo tanh (tanh-1 -iL- ) W(u) du = X0oo tanh 9 for 0<c<l.
x0oo

Then the distance A of the extrapolated endpoint is in the limit L -* co [according

to Equation (ll 70), omitting the times sign before

/

'0Qn + tanh-1//- X^ tan 9
c Oco

a > 0 (18a)

A = x0oo^

^e0 "tanh"1(/17L\)oo tanh a = - a < 0 (18b)
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3- The Case of No Absorption (c = l).

Incidentally, we should remember the well-known special case of no absorption

c = 1, a = 0. In this case a = 37a(1"-7t) = 3(l-c)(l-7t) becomes 0 because of c = 1

for every arbitrary y^x But

lim a x2 = 1 ~ 7f,
a-O, c-*l, L^c Goo jt

is a finite constant, different from 0 for 7+£l, because the characteristic

root X0oo (mean diffusion length in units of mean free path) goes to infinity for

c -»• 1 [see section I 9(a)] . Therefore this special case needs a more careful per

formance of the limit-process a -+ 0. From (l8b) one obtains for instance

1

A = — •- / u W{u) du for c=1 and arbitrary 7t. (19)

0

(7t / 1 for anistropic scattering, yt = 1 for isotropic scattering.)

This simple limit will be assumed, because the arguments of all the tanh"1

and tanh involved in A, 90 and 9" converge to 0. Hence the first and the second

terms on the right side of equation (l8b) converge to the following limits:

lim ]_ r

(a-*,c~l):X°» 9» = 2/ °"(U) ""

tJ!Ld **•>tenh_1 (/? **»tmh q-) - (aCi) ^xL •*lu ww du
7t - 1 If

= —' • / u W(u) du .
7t 2i

From the last equation we see that the second term gives a contribution to A for

no absorption (c.=: l) but anisotropic scattering yt 4 1, although the constant a

vanishes. This was well known long ago.
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One may add a further interesting remark to this special case. The limit

of the difference M-^ -/!]_ between the sum M.-^ of the positive roots u.^ of the

characteristic equation (i ik) for 3-0

and the sum Aj_ of the positive roots of the characteristic equation (i 65) for

col (leaving out Xq however), both in L-th approximations,

PL+]_(XS) -Xs WL(XS) = 0 (s =1,2,..., t^i )

is connected with u, the mean value of u over — W(u),

(20)
t t Kl+i)/2 (L-l)/2 ^ 1 plim (M..A) = llm 1 Z p. - Z XB\ = - [ uW(u) du £ u = 0.71C*L-00 1 1; L-coi J=1 ^ s=1 SJ 2J

^ ^ 0

for arbitrary 7^ and c = 1. In this case the distance A of the extrapolated end-

point and the linear extrapolation distance 5 become equal, namely

A = 5 = — . v (19a)

A last remark to this special case of no absorption results from the com

parison of llm 7a?tK) = ^ (equation I 59) and equation (9a), which gives
a=0, c-*l 3

the mean value of log u over — W(u)

1 (21)
log u s I /(log u) W(u) du =X(0) / =J^ log^7t XQ) =-\ log 3

0 cil JiHIOO-
a=0

for arbitrary 7^ and c = 1.

mwwmpwwwwmmmmwnmmmm
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W(u) has of course in this section its form for c=1, a= 0, namely,

W(u)

+1

(l-u2)[(l-utanh"1u)2 +(|u)2]
^' Different Ways of Normalization.

(a) For normalization to unit density at the boundary £=0 one has to calcu
late [see equation (i 53)]

(L-l)/2I (L-lp(0) = 2tt / f(o,u) du = lim •kv. ~£
t/ L-*oo . — .

k=0,0,l.
Oh,

lim

L-*oo
3ttN(1+^X^)a PN p(0)

c 0' r(0)

= 87T(l+ax2 )lim WlMC 0QDy I>OD r(0)

r-8ir a -v
C - - X ^2 \ limU+f >03 Oco v c Oco' L->oo N

after the application of equation (ll 63). It remains to calculate lim N.
L-+00

N was defined by equation (i 36). We consider

( \ — 2 /
lim 1 = lim ov^pJ + c kp-oUa)
L->oo N L->oo

6M

p(-^-o) p(^o)

r(-Xn) r(xj
*0 0'

The first factor results immediately from the equations (l6a, b, 17)

B(\)) +t ^Omo(Xa)

&(Xn)

^a

^ +/c \)oo tan e+ cotanh 9Q for a> 0

•1 - /JM. X0co tanh 9" cotanh 90 for a< 0 .

The second factor of the equation (23) follows from the equation (lo)

(la)

(22)

(23)

(24a)

(24b)

lim j P(-^p) P(X0)
\)co

A 1 h,.5 J log (1+5— )W(u) du i J log (l-r~) W(u) du
e 0 ^Ooo _ p 0 Oco

(25)

2\)oo e^° sinh 9Q
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with 0n from equation (5) and 9Q from equation (2) and the formula

exi - eX2 2e^xl+x2) sinh |(Xi_X2)
Hence one obtains

lim 1

L->co N
2Xoooe

sinh 90 +/I X0oo tan 9+ cosh 90 for a>0 (26a)

[sinh 90 -/-^- X0QO tanh 9" cosh 9Q] for a<0. (26b)

Both of these versions for a>0 and a<0, respectively, can be rewritten-.as one

formula by the introduction of the distance A of the extrapolated endpoint from

equations (l7a, b), which gives

/a +
for a > 0: 77 Xrw tan 9c ^Oco

for a < 0: X0oo tanh 9"
• = tanh

X000

Therefore one gets finally

and

lim

L-*oo
N =

2 X

[.iinn 9
0

Ooo

cosh 9A cotanh —
0 X,

uoo-

2 ~!„-0r,(0) - ^/T7T|(i+|4Je-?o cosh 9p, cotanh
A

Ooo

sinh 9n|

One remembers from equation (l 20) that the linear extrapolation distance &

is just

X,
tanh

Ooo
X,Ooo

Hence one may introduce & instead of A in equation (27)

p(0) = lwr/1 -c -j(1+- X,a ,2 \
3 V ' c "-Oco/

X Oco

L S
cosh 90 - sinh 9,

0

-::^m*Mmmmwmmmrnmrwm&mvmmm*™mmmmmmmmm

(18)

(27)

(28)

(29)

(30)
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(b) For normalization to unit current density at the boundary £ = o one has

to calculate [see equation (i 55)1

+1

j(0) 27T / uf(4.u)^ =
i • / (L-l)/2 n

k=0,0,l...

l6V(l-c) X2 lim

Oco
N P(^a) P(-^a)

]>GO *a[r(-*a) P(^a) "r(Xa) p("0

For the reciprocal of the last factor follows again from equation (10)

lim r(-Xa) r(xa)

Ir*co [P(^a) p(\J

and we obtain

2e ^a
cos 9 for a > 0

cosh 9" for a < 0

Mi-c) w e{^40)
'OooJ(o)

'cos 9+ sinh 9Q +/f X0ao sin 9+ cosh 9Q

,cosh 9" sinh 9Q - /iSi X0oo sinh 9" cosh 9,
0-'

(31)

(32a)

(32b)

(33a)

(33b)

with the upper expression in the denominator for a> 0 and the lower express

for a < 0. Using the distance A of the extrapolated endpoint for the repr

tation of j(0), we get

ion

j(0)
4tt(1-c) x0oo e

fcos 9+
Icosh 9"

cosh 9q cotanh A
"Ooo

sinh 9
0

The gradient of both normalization constants (28) and (34) is

,(0) /1"IJlii^i^Oaole'
J(o) (1-c) X,

Oco

[cos 9+

Icosh 9"

for a > 0

for a < 0

esen-

(34a)

(34b)

(35a)

(35b)
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5 o The Angular Distribution of the Emerging Neutrons

at the Boundary of the Medium»

In equation (ll 75) the angular distribution f(0,u) at (; = 0 in the direc

tion u = cos'si" was normalized to unit current density j(o) = 2irJ uf(Q, u) ,d|i at t, = 0.
0

The limit L -> oo was taken from the Gauss quadrature expression fl(o,u) in L-th

approximation (i 4l)„ Applying the equations (9; l6a, b; 32a, b) to equation

(ll 75) one gets for 0 < u < 1

f(0,u.)

j(0)

lim

LrKX)

^(0,0.)

27T J Uf(0, u) du

c + aX^ 1 + c 8(Xa)u

3tt(i-c) X:
Ooo

lim J

L->oo J£
rUa) r("^a)

)(\.) p(-Xa).

P(-M-)

r(-u);

c + aX
Ooo

e
[x(^)-0a] . rcose++il^sln9+ a > 0

4TT(l-c)(x2oo-,2)
-cosh 9~ - u sinh 9" a < 0

c+a4o X+X7^otanhfc^-&0) [X(u)-0a] /cob 9+ a>0
4tt(1-c) x2

•\)co
cosh 9" a < 0

6. The Current-Density and the Density of the Neutrons.

It was shown in part II, section 7> that the limit-process L -* 00 can be

performed with higher mathematical precision for the current density j(£) than

for the density ,p(£) itself. For c f 1 the relation

(c-1) P(0 =
sj(0

(36a)

(36b)

(36c)

(36d)

(37)
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may be used to derive p(£) later from j(0 . In L-th approximation the follow

ing expressions hold (i 21, 51)

T1 (L-l)/2 „,
>(0 = 27T J f(£,u) du = Wf^) = 4tt _Z ake^/Xi

£/x^
sinh 4/x0 s=l,2,...

and by use of equation (37)

t»\ 1 / \ CX0 cosh (A"0/Xn (L"l)/2 .Aj(0 = Mi-c) /, /0 - Z asxse^n • (39)
(^ sinh (A/X0) 8=1,2, ...

The fifst, so-called asymptotic parts of both expressions go immediately to the

limit for L ->• 00

p (0 = >i~ slnhKA^)AnJ
smh(A/x0oo)

and

Ja(» - Ml-C) X0ro C°Sh^-C)M £i0 (1,!)
sinh(A/x0oo)

in which A now has the meaning of equations (l8a, b) and XQoo is the root of the

exact characteristic equation (l4). The normalization of (38) and (39) is such

that the two coefficients a^ and aQ of the 2 asymptotic partial solutions have

the sum a£ +aQ = 1. Consequently, the asymptotic part of the density p- (o)

at the boundary is normalized to kir and the asymptotic part of the current-density

is normalized to

ja(0) = 4tt(1-c) X0ao cotanh^ j (42a)

=wrinb[(A-Q/xn1+a-l)/2ase,As (38)

4tt(1-c) X§,
6

00

(42b)
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In the last expression the linear extrapolation length is introduced by applying

equation (29). Other normalizations may be introduced for instance by using

equations (28) or (34).

Finally we have to perform the'limit-process L -»• oo for the transient parts

Jt

(L-l)/2
(0 = Mc-1) l1^ £

6=1, 2,
«S>-S e

Uk

and

/°tU) =
1 £jt(0

i ^
(c ^i)

The last equation suggests to obtain p^(0 by numerical differentiation from

limj+(0 . We perform the for 'j+(0 according to part II, section J:
L-» oo

(L-l)/2
Jt(t) = M=-i) LLtmm E

S=l, 2.-

lim '•-v-"- JAs
l axe

4tt(c-i) llm X-wX £/uf X(u-) e du [see equation (ll 82)]
27Ti

L -»• oo

CJ

47r(l-c) 2

27Ti
2X0m (c + aX„ )

lim

Ooo ' L -»• co

[l - | uB(XJ e p(m-)
du >

CJ (c +au2)((u - ^Ood ) r(u)
^

(43)

(44)

(45)

47r(l-c)(c+aX§00) e"^0 1 X\)oo- I1 tanh(^~ eo) [X(-^) +iI1
cosh 9q cotanh A^ sinh 90 2iric_ (c+au2)(x0co-u2)

du

[wwimHiawmwpimwinniiw
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One finds the last equation by applying the equations (27; l6a, b; 18; 9) to

the third. Finally we remember that the medium, lies on negative £ = - |£|

and we obtain

Ck6)

cosh 90 cotanh -=*- - sinh 9n p. (c+au2)(x2 -u2)X0oo ° CJ * Ooo

The closed complex path Cj of.'integration has to encircle the real interval

0 i u 5 1 counter-clockwise excluding, however, the points u = + Xa and

^ = ± \)oo •

For a < 0it is easy to show that Xa = /"y- is larger than XQ .
In part III it was shown that X0oo remains constant on a straight line in the

c,a-plane. If we name c0 the point in which this straight line cuts the c-

axis, we can represent the anistropy constant a by c, c0, Xn ,using the

characteristic equation (l4) for a ^ 0 and a = 0:

cQ - c -,
a = — with

x6co(1-co) X0co cotanh"1 X0qq

For a < 0 we have c0 < c, because 1 - c0 is always >0, and we may express

The radicand

Xa Vial ~ X0oo
/c(l-cn)
c - c0

c(l-c0) c0(l-c)
= 1 + > 1

c - c0 c - CQ
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is larger than 1, because the additional term to 1 is > 0 in consequence of

c0 > 0 and c0 < c < 1 for a <0 (compare for instance l.c.^2/ Figure 2). Hence

we have always

Xa > X0oo for a < 0 and 0 < c < 1 . (47)

Furthermore we know that Xqqq > 1 for 0 < c < 1. A convenient path Cj of inte

gration would be a circle with its center in u = — and with its radius — Xqqq

for the case a < 0. This circle cuts the real axis in the point p(l+Xoao )^ \)oo

on the right side between 1 and XQ and in the point p(l- \)oo) < 0 between 0

and - Xqoo011 ^he left side of its center. Therefore this path fulfills the con

ditions which were imposed on it„

The equation of the circle in the complex u-plane is

u = ux +iu2 = |(l+̂ 0oo&iT1) , (48)

if T] is the angle between the real u-axis and the radius to the point u. Then

we have

ux = 2(l+X0oo cos ri > ^2 = 2 ^Ooo sin ^ ' ^8a)

furthermore, we use the abbreviations

? P 1 Pm = ^ + u2 = ]];(X0ao+l +2X0oo cos T)), m1 = p^/m , m2 = u2/m ,

(48b)

2 2 1 pm0 = ux - u2 = Ij:(l+2X0oo cos i\ + X0qd cos 2r\) .

mmmmmmmm
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The differential du becomes

du = i is»eiid, . [-^ +1(^-1)] cLti (49)

The introduction of r\ into the transient part j^(0 of the current (equation 46)

yields

Jt(£) =
2(l-c)(c+aXo00)e"!Z(0

cosh 9~ cotanh - sinh 9,
'0

\)oo
0

(46a)

27T

dT]
i(*i-*iUP

0 Vl +vl
'(VlY2.-V2Yl) cos (X2+m2ld) " (V1Y1+V2Y2) sin (X2+m2|£|)| ,

in which some new abbreviations have the following meaning;

Vl = c^Ooo'̂ +a[m +"to^Ooo-2^)

V2 = 2^lti2[c - a(X2Qo-2m0)]

Yn ^(^•Ooo- "J - 2tQ ux)

1 / ^o
P x0oo " (^ooo" T ' ^1 + tom° ;

tQ = tanh ( - 9q^ ;
^\)oo '

^

> (50)

V

(51)
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X1 = X1(u1,^2) = - / log[m - 2ux u+u2] W(u) du (52)
0

1

if/ I ^2 \Xo = X2(u-,,u2) = p (tan~ ) W(u) du (53)
J u-, - u'
0

and in which u-j_, u2, m, mQ, m-j_, m2 are given as functions of r\ by the equations

(48a, b) andX^M-i,^) + 1'M^l'M = ^(" ^'

For a > 0, however, a similar simple estimate of the position of

/c~ /c(l-cn)
^a = Vf = 1W^-^ (5McQ - c

gives only 0< |XgJ < 00; this inequality does not give any information in which

case Xa lies on the outside of the circle Cs, which we chose as the path of in

tegration for a < 0. If we want to use this circle also for a > 0, XQ has to
* El

fulfill the following inequation:

\f - f>t(4x,-1) ' (55)

The right side of this inequation is the square of the ordinate at which the

circle Cj cuts the imaginary axis in the complex u-plane.
pnp

On curve I in Figure 1 is |Xa| =-=^ X0qo -1 and for all c, a-values below

this curve the inequality (55) is fulfilled. In the area above curve I the in

equality (55) is not satisfied; in fact, X0oo increases to the limit 00, if a

increases (at c = const.) until it reaches the straight line a = 3(1 - c),

whereas |Xa| decreases to the limit c/ [3(1 -c)l on that line. The straight
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line a - 3(l - c) in Figure 1 is the border of all cases belonging to exponen

tially decreasing or increasing solutions of the Boltzmann equation. On the

right side of this line we have oscillatory solutions, which we do not consider

in this report.

The curve I, however, comprehends a much ampler area of c,, a-values than

curve III with the equation a ~ c(l - c). The points below curve III satisfy

the condition that the probability of a single neutron scattering event (includ

ing fission and absorption) is non-negative in every direction, and it is assumed

that scattering, absorption and fission obey the same linear anisotropic law.

This condition is called sometimes the "geometrical condition". Under these

assumptions the area of the c;, a-values, for which stationary solutions exist is

so much restricted that the1 use of the circle Cj as the path of integration is

also allowed for a > 0.

Curve II in Figure 1 finally satisfies the equation |xa| = XQoo ; |xj

is larger than XQoo below resp. smaller than X0oo above curve II.
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°-1 0.2 0.3 0.4 0.5 0.6 0.7 0.6

UNCLASSIFIED
ORNL-LR-DWG 42623

0.9 1.0

Fig. 1. Three Curves as Borders of Different Areas in the c, <7-Plane,,n which Interesting
Inequations Hold. y



- 23 -

The following tables give some information about the characteristic values

Xn as functions of c and a on the 3 curves.
X)co

l) For curve I with the equation c _ 1

a
(V>rr>_1):If ^Ooo

TABLE I

x0oo c a

1 0 0

1.0001 12,6 • 10"
-6 0.253

1.001 177 • 10"
-6 0.356

1.005 1,23 • 10'-3 0.490

1.01 2,91 • 10'-3 O.58O

1.02 7,05 • 10 -3 O.698

1.05 0.0234 0.912

1.1 0.0581 1.106

1.15 0.0976 1.211

1.2 0.139 1.266

1.25 0.181 1.288

1-3 0.222 1.289

1.35 0.264 1.275

1.4 0.300 1.251

1.45 0.336 1.221

>^000

1.5 0.370 1.186

1.6 0.433 1.110

1-7 0.488 1.033

1.8 0.536 0.957

1.9 0.578 0.886

2 0.616 0.821

2.3 O.703 0.655

2.6 0.764 0.531

3 0.821 o.4io

3-5 O.867 0.308

4 0.898 0.239

4.5 0.919 0.191

5 0.934 0.156

10 0.983 o.o4o

CO l 0
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2) For curve II with the ec^uation — =
a

TABLE

2

x0oo:

II

^Ooo co c a X0co

1.2

co c a

1 0 0 0 O.695 0.532 0.370

1.0001 0.2019 0.11230 0.11228 1-5 0.828 0.707 0.314

1.001 0.2628 0.15131 0.15101 2 0.910 0.835 0.209

1.005 0.332 0.199 0.197 5 O.987 0.973 O.O389

1.01 0-373 0.230 0.225 10 0.9967 0.9933 0.0099

1.02 0.425 0.270 0.259 20 O.99916 0.99832 0.0025

1.05 0.513 0.345 0.313 80 0.99992 0.99984 0.00016

1.1 0.597 0.426 0.352 00 1 1 0
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3) For curve III with the equation a = c(l - c):

TABLE Iir3)

c a N)qq c/a ^Qoq-1)

0.99 0.0099 7-082 100 12.288

0.95 0.0475 3-187 20 2.289

0.9 0.09 2.272 10 1.041

O.85 0.1275 1.872 6.67 0.626

0.8 0.16 1.637 5 0.420

0.75 0.1875 l.48o 4 0.297

0-7 0.21 I.366 3.33 0.216

0.65 0.2275 1.280 2.86 0.160

0.6 o.24 1.213 2.5 0.118

0.55 0.2475 1.160 2.22 0.086

0.5 0.25 1.118 2 0.062

0.45 0.2475 1.084 1.82 0.044

0.4 0.24 1.057 1.67 0.029

0.35 0.2275 1.036 1.54 0.018

0-3 0.21 1.020 1.43 0.010

0 0 1 10.

The last two columns of this table may show how much larger c/a is than
1 2 2
I^X0oo" ^ * The inequality c/a >8• •1 (X0oo -l) is satisfied always for
0 < c < 1; for c = 1 both sides become equal and infinite.

^3Ji owe the characteristic numbers X0oo of this table to Mr. H. S. Moran.
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7- Transformation of the Occurring Integrals into a Form in which they

Remain Finite Along a Finite Path of Integration.

a. Properties of W(u).

The function w(u) defined by equation (l) is one factor in the integrand of

the integrals 9Q, Q+, 9-, 0Q} 0a, ^.(x) (equations 2 through 7) which are important

in this report. W(u) is a representative of the continuous spectrum(^) of the

Boltzmann-operator; this is easily recognized if one follows the limit-process

L -»• oo backward to its origin. Reviewing the equations (ll 47, 45, 44, 4l, 4o)

of the second report l.c.^1' one may find that W(u) is related to the quotient

of the angular differences A^ =^i1) -$}) and A$2) =^(2) _/(2) ty
S+-L s s s+1

;(2)

1«* * ' l!?a.(l -^h • (56)
s

s = cos us and ^ ' = cos-1 Xs are the angles which belong to the eigen

values of two different characteristic equations in PL-approximations; namely,
«2)
g ' are the roots of 1

in L-th degree of approximation

us =cos# resp. Xs = cos ^2^ are the roots of the characteristic equations

PL+l^s) - ° (for c= Oj; a = 0; perfect absorption) (57)

resp. (l+axf) PL+1(\S) -\s(c+a\f) WL(X„) = 0 (for c4 0, a4 0). (58)

s takes only the values s = 2, 3, ... ~~ in the first equation and s =1, 2,...
L - 1

2
in the second equation. The largest roots ux and X0 are excluded. X0

converges to X0oo on the outside of the interval 0 £ X ± 1, whereas U]_ converges

(4JWigner, E. P., Colloquium Publication of the Amer. Math. Soc.
(Meeting on the Mathematical Aspects of Reactor Theory, New York,
April 23-24, 1959.)

«W»MW*t»ffWW»|IMPWlllllMM°l»i»
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to 1, yielding a finite difference XQco -1 in the limit L -> oo. The differential

quotient, involved in the right side of Equation (56), would therefore become

infinite. So these two roots have in fact no place in a finite W(u). In the

course of the limit process they separate themselves from the other eigenvalues

in aquite natural way. Hence \ W(u) du is the limit of afunction of those roots
L -» 00

of the characteristic equations (57) and (58) which lie certainly in the interior

of the interval 0 < X £ 1 for every degree L of approximation. In the limit

L -* 00, however, the roots in the interior of this interval create two continuous

spectra: the set of Xg1) builds up the continuous spectrum of the perfect absorber
and the set of Xs2' that of the problem with c, a4 0.

By partial integration of Equation (ll 50) l.c.t1) one recognizes that

with

m( \ h§ 2 d i ft u(c+au2)V
W(u) = = - — tan L <-

1 - u^ ir du ^2 P(u) (59)

P(u) = 1+ au2 -u(c+au2) tanh-1 u . (60)

(An additional remark is important for partial integrations, namely, that the

branches of the inverse tangent involved in Equation (59) are those on which

tan"1 is -7T for u=0and 0for u=1. p(u) vanishes at u=uq, where the tan"!
of the expression in curly brackets is therefore -|. This branch condition was

found during the performance of the limit process L -» 00 in section 3 of Part II

I.e.1- J This peculiarity does not occur in the following.)

P(u) is different from the characteristic function for the discrete spectrum,

Equation (l4), because it contains a tanh"1 instead of a cotanh"1. p(u) is also

a representative: of the continuous spectrum. •. '

The functions h and g may be written with the aid of P(u) and P'(u):
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h(c,a;u) = (l-u2)"(c+3au2) P(u) -u(c+au2) P'(u)]

;(c,a;u) = l/jp2(u) + - u(c+au^) 21
J"

b. Transformation of W(u) and.of the; path of integration.

We consider an integral of the form

1

I = / T(u) W(u) du
0

where T(u) stands for the different first factors in the integrals of the equa

tions (2) through (7). By the transformation of the variable u of integration

(61)

(62)

(63)

u tanh V, v = tanh-1 u, du = (l-u2) dv we remove the pole in W(u) at the
1 - u

upper limit u = 1 of the path of integration:

00

I = / T(tanh v) h(tanh v) g(tanh v) dv

The path of integration, however, how has infinite length. The denominator of

g(u) can be written as the product of two complex conjugate factors

P(u) -— u(c+au2)] •fp(u) +^ u(c+au2)
2 J L 2

1 + au2 - (v +—) u(c+au2)
2

1 + au2 _ (v-I1) u(c+au2)
2

(64)

(65)

Using this we can divide the integral I in many ways. A reasonable way is found

by the additional request that no factor of the integrand should go to zero or

infinity in the limit c -» 1, a -* 0. As a guide, the first factor of the integral

X,Ooo y0 (see equations l8a, b, and 2) which for c= 1, a = 0 goes over in the

/ \ ^-Oco
finite distance of the extrapolated endpoint. The first factor is T(,u) = —p-

tanh'
-1 u

X,
If we divide T(u) by-u, we have in T(u)/u a factor which goes to

Oco

1 in the case c -» la -* 0, where XQoo goes to infinity, Hence it appears

IHUMI WWtiWWWI'WWffW m-ms,m'mm*mmm mmtm*mKmmm*^»



29

reasonable to split

h(u) g(u) = (l-u2) u W(u)

in its partial fractions. The result is (with u = tanh V as an abbreviation)

u h(u) g(u) =
1 |1 + (c-l+a) u2 + 2a V Ti\

(v+o-) u

7T1 1 + au2 - (v+-—) u(c+au2)

u2(l-u2)

1+(c-l+a) u2 +2a[(v-|i) u-l] u2(l-u2)

1 + au2 - (v--i) u(c+au2)

Verification: we have to show that

1

u h(u) = — I[l + (c-l+a) u2 + 2a(vu-l) u2(l-u2) + Triau5(l-u2)

1 + au2 - Vu(c+au2) + — u(c+au2)[
J 2 J

1 + (c-l+a) u2 + 2a(vu-l) u2(l-u2)l - 7Tiau5(l-u2)

1 +au2 - Vu(c+au2)J - —u(c+au2)i]
r

<2|1 + au2 - Vu(c+au2) au2(l-u2)

1 +(c-l+a) u2 +2a(vu-l) u2(l-u2)J (c+au2)i

u •< c + - c + a(3-c) 2
xr + a a +3(c-l)J ^

Compare the last expression with equation (la) to see that it is in fact

u h(u).

(66)

(67)
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For real u the second expression (n (67) is the complex conjugate of the

first. If we apply now different transformations, namely

iri
w = V + — to the first

2

and
TTi

w = v - — to the second

2

expression in (67), we obtain the same integrand in both cases because

u tanh V tanh (w + —)
2

= cotanh w

(68a)

(68b)

(69)

yields the same function in w. The paths of integration, however, are different

TTi. TTi
now for the two parts of the integrand, v funs from — to 00 + — for the first

2 2

part and from - — to co - — for the second part. Hence we may write with X =
2 2

cotanh w as an abbreviation

TTi

I =

00 -

TTI

2

711

T(x) 1 + (c-l+a) X2 + 2a(wX-l) X2(l-X2)

X 1 + aX2 - wX(c+aX2)
dw

_ Hi

+

TTi

2„
T(X) 1 + (c-l+a) X2 + 2a(wX-l) X2(l-X2)

dw

X

CO + -
Tfl'

Ch(x)

1 T 1 + (c-l+a) X2 + 2a(wX-l) X2(l-X2)
— / T(x) . _ _ dw
^i J X Ch(x)

C

v

(70)

(71)

The two paths of integration in (70) could be joined at w = 00; the integrand

vanishes for large w and c > 0. The denominator behaves there like - (c+a) w and

the numerator like 2aw(l - cotanh w) ~ 8aw & . Hence the path C of integration

obtains the form shown in Figure 2.

MM***aw«m*wmm
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00 +
TTi

—I 00
TTi

Figure 2. Path C of Integration in the complex w-plane.

The denominator of the integrand is the characteristic function Ch(x) (see equa

tion 14). It has, as we know, a zero at X= X0oo or at w= wQ = cotanh-1 X0od on

the real w^axis in the complex w = W}_ + iw2 Plane. wQ lies for c = 1, i.e.,

\)oo = °°> in the origin of the w-plane and joins there the second root - wQ =

cotanh" (- Xqco ) of the characteristic equation. w0 shifts to the right side,

- w0 to the left side on the real w;|_-axis for decreasing c. It follows from the

characteristic equation (l4) that wQ is connected simply with the point of inter

section cQ, at which the straight line, labeled by a fixed characteristic number

Ndoo' cuts the c-axis in the c,a plane (see l.c.(2) Equation 14),. The straight

line contains all c, a-values for which the characteristic equation has the same

characteristic number Xqoq and therefore also the same

wQ = cotanh"1 X0co
1 + aX,Oco 1

\)oo (.c+aX0oo) ^0coco
(72)

cQ is the special c-value for a = 0. For cQ -> 0 (perfect absorption) X0oo goes

to 1 and wQ to infinity; this is a limit case which we have to exclude if we want

to make the path of integration finite later.
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The whole factor of T(x) in the integrand of (71) can be written

1 r o o o' d /ch(x)\
1 + (c-l+a) \d + 2a(wX-l) X2(l-X^) = ~ log . (73)

X Ch(x) L dw \ X /

This is easily verified remembering X = cotanh w and dx/dw = 1 - X . Hence the

integral (63) takes the simple form

1 f .. d /Ch(x)\ . ..
I = — /T(X) — log • dw . (74)

TTi £ dw \ X /

It is to be expected that the procedure (which begins with the spherical har

monics P^-approximation and ends with the limit process L -* 00) to find the

second factor — log (—±£u-\ will be always the same, irrespective of the number
dw I X I

of terms supposed in the scattering law for single neutrons. Therefore one will

always have this second factor in plane geometry and the special scattering law

will be represented in it by the corresponding characteristic function of the

problem. The first factor T(x) and the combination of expressions occurting in

the quantities to calculate, however, depend also on the boundary conditions.

They cannot be predicted without further study.

c. Separation of the real and imaginary part in the integral I.

To prepare numerical calculations of the integral I we separate real and

imaginary parts„ We denote w = wj_ + iw2, X = X]_ + iX2, Ch(x) = Ch-j_ + iCh2,

T(x) = T-l + iT2, — log (—£-*-} = Sx + 1S2. These quantities are the following
dw e [ X

functions of ¥-, and w2:

sinh 2w-iXl = —_ L_-_ (75)
cosh 2w^ - cos 2w2

- sin 2wo

^2 = ' ' (76)
cosh 2w-j_ - cos 2w2
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A = N2 =

2 2 sinh2 2w-l + sin2 2w2
/*-< i />.p •—

(cosh 2W]_ - cos 2w2)2

M - ,1- 4
sinh2 2wj_ - sin2 2w2

•

(77)

^2 (78)(.cosh 2w]_ - cos 2w2)

These quantities are abbreviations which are used:.in the following more compli

cated expressions:

|ch(x)|2 = Chi +Ch2 = 1 + 2aM + a2A2 + (wf+w2) A(c2+2acM+a2A2)

: :-. 2v1X^Jc,,| 2aM +a(c-l) A+a2A2] (79)

;+.•2w2^{c f 2aM - a(c-l) A+ a2A2l

and with ' = d/dwj_

Ch-L Chj_ +Ch2 Ch2 = X^a - c+a(3-c+2a) A- 3a2A2 - 6aM?

+wJ- c + c(c-2a) A+ a(c-3-3a) A2 + 3a2A5

+MJ(c-5a-ac) +2a(2c-a) A+3a2 A2 +6aM] [

- 2w2X1X2[(c-3a+ac) - 2a(c+a) A+3a2A2 +6aMJ

+(w1+w|) XxLc2 +c(2a-c) A+a(2c+3a) A2 - 3a2A3 +2acM(l-3A)]

(80)
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2a -c-a(3-c+2a) A-3a2A2 -6aMj

r - pYn-Pa.^ A + a.(r.-^-^a.) A2 -+w2|- c-c(c-2a) A+a(c-3-3a) A2 "3a2A3

+ M (c-3a-ac) - 2a(2c-a) A + 3a2A2 + 6aM (81)

+ 2w1X1X2 (c-3a+ac) + 2a(c+a) A+ 3a2A2 + 6aM

+(w2+w2) X2[- c2 +c(2a-c) A-a(2c+3a) A.2 -3a2A5 -2acM(l+3A)

The last expressions occur in S]_ and S2

Sl = \l /x
A - 1 Cni Onj + Ch2 Ch2 R(w1,w2)

2
Ch(x) Ajch(x)

A+ 1 Ch-L Ch^ - Chg Ch{ Q(wx,w2)
s2 = X2

A lch(x) A|ch(x)|

With these denotations the integral (74) will become R = R(wj_,w2),

Q = Q(w-|_, w2)

I =

ir J J A|Ch(x)
Wn ,Wp

C

,T1(Rdw2+ Qdwx) + T2(Rdw1- Qdw2)

+ 1
ll[T2(Rdw2+ Qdwx) +T1(Qdw2 -Rdw-^l ?

(82)

(83)

(84)

The double-integral sign in (84) means that one has to integrate over the w-, and

w2 ranges which occur on the curve C. Hence there is always a relation between

dw-|_ and dw2,. If one expresses w-j_ and w2 for instance by an angle © along the

curve C (a circle or an ellipse), the integral (84) will become a single integral

over the range of 0.
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Finally we give the expressions R and Q for numerical calculati

R = XX(D-E) - w2(F-G) - wx(vJ-H)

= X2(D+E) - w1(F+G) - w2(j+H)

ons

D = A (l-c+2a) - 4aM - 2a2A2 +2a(w2+w2) A(c-2cM-aA2)]

1 + 2aM +a(c-3-a) A2 - 2a(c+a)(v2+w|) A3

2X^2 f~c +2aM - a(l+c+a) A2]

4aX1Xg |(.l-.2M-a,Af)

~X

E =

F =

H = M(c+2aM) +A2[(c2-c-ac-a) +a(3c-a-l) M+2a2A2]

J = 2aAf(l+a) A2 +M(l-aA2) -2M2] .

d- Finite paths of integration.

As long as one does not move over a singularity by contracting the path of

integration C of Figure X, one may take any finite path in the complex w-plane

which joins the points w=-| and v=^. There is, however, apole of the

expression -— log Ch(x) at w = wQ (see equation 72). At this point lies the root

of the characteristic equation Ch(x0oo) = 0, The first factors T(x) are different

functions. In the case of the integral 90 (see equation 2) the first factor

T(X) =tanh"1 — has abranch point at wQ =cotanh"1 XQoo, because X/X0oo is
just 1 at this point. The same is true for the integral 0O (see equation 5). In

other cases, in which the first factor is regular at w = wQ, one could use the

residue theorem at w = w0 and contract the integration path for the remaining

integral to the straight junction from w = - li to w = — . But we shall use
2 2

>

(85a)

(85b)

(86)
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always the same contour in the w-plane to have the same program for the numerical

calculations of all integrals (2) to (7) and (52, 55)- We prefer therefore to

use always an integration path which passes the point w = Wq on the right side.

This method has the advantage also that it remains practicable for c =1 where

the pole of the second factor at w = wq = 0 joins another from the left side of

the w-plane, namely w = - Wq = 0, to a double pole at w = 0.

e. A half parallelogram as the path C of integration.

W(u) becomes infinite at the upper end of the integration path u = 0 to

u = 1. This is inconvenient for numerical integration. One has to detach the

environment of u = 1 from the integral and to treat it separately. This can be

performed by choosing the half parallelogram in Figure 3 as path C of integra

tion.

A >. iw2 • c
TTi

2

( > s

d

A_
\

TTi

) wQ 1

2 :c - >

, TTi

->wi

7T1

Figure 3. How to make the path of integration finite.

Then we may write

1

I = / T(u) W(u) du

0

mmmmmmmimw>mm*mm«m>\ iniiiiiiiiiiiiininiwiwwpwi

T(u) W(u) du + —
TTi

TTi
q + —

dw \ x
TTi

= l(D + l(2)

(87)
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with p = tanh q. The point q of intersection may lie at every finite distance

d > 0 on the right side of w,
0-

q= d + wn = d + cotanh"1 X~ = d + = lo
Oco

X0co + 1

X0oo " X

p = tanh q =
1+X0oo tanh d 1 J" (\§cd _1) tanh d
X0oo + tanh d X,

•Ooo

1 +

Xqqo + tanh d X,Ooo

The first integral on the right side of the equation (87) from u = 0 to u = p

is equal to the two parts on the path C in Figure 3 which are parallel to the

real axis w-i

-(1
) _r T(u) c+[c2 -c+a(3-c)] u2 +a[a +3(c-l)] u^
{ 1-u2 \l +au2 -u(c+au2) tanh"' ul2 +IX u(c+au2)] >l]2+-[|u(c+au2)]:

du .

To write down l(2) we remember (84) and that dwx =0 on its integration path.

Hence from (84) remains

+ it/2
-(2) a.

dw..

* i/2 AlChM2
(T^-TgQ) +i^R+T^)]

(88)

(89)

(90)

(91)

T-[_ and T2 in (91) are the! real and the imaginary parts of T(x) - T-, ...+ 1T2;.

and A, |ch(x)|2, Rand Qare given by (77), (79), (85a), (85b), together with (86)
l(2' is always real for the integrals 90, 9+, 9", 0O, 0a [see equations (2)

through (6)J, and it is real also for the integralX(\) [see (7)], if Xis real,
for instance if X has the meaning of u = cos J? of the direction i$- of neutrons in

f(0, u)/j(0) of the equations (36a and 36b). Then the imaginary part of (91) is

zero and we obtain simply
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it/2
i r d^2

" J A|ch(x)|2
- tt/2

(T-.R-TpQ) . (92)

Finally, one finds that the integrands are symmetric to w2 = 0 and may be written

as twice the integrals from w2 = 0 to tt/2:

tt/2
(2) 2 C <iw2

4il - r J AU^P (V"^ • (92a)
0

Because d is an arbitrary positive number, we get a check of our numerical calcu

lations with the electronic computer by choosing different values for d. The

form (90) of the integral Iv1/ is the original one, but without the diverging

part of the integrand from u = p to u = 1. One has to choose d, which is in

volved in p and q according to the equations (88) and (89), in such a manner

that both integrals 1^ ' and lr ' can be calculated with good precision. If d

is too small one comes too near to the singularity of the integrand of J\2' at

w = Wq; if d is too large one comes too near to the singularity of the integrand

of iW at u = 1. It is to suppose also that the best value of d could be a

function of c and a- By taking 2 or 3 different positive values of d one obtains

a check of the accuracy of the result.

Finally, we consider the double integral j^-(^); see equations (46) and (46a).

We chose there a circle in the complex u-plane as one path of integration. We

separated real and imaginary parts of J( - u). = At_(u-j_, u2) + iT^C^i^ ^2^ * ^1 and ^2

depend on u-]_, ug, c, a and u. As long as we integrate over u each of these

functions is a real function T(u), suitable to be put in 1^ ' of equation (90).

By the transformation of the path of integration into the complex w-plane, how

ever, X.j_ = X2_(u-]_, u2;Xj_+iX2) and X2 = X^u^, u2;X:]_+iX2) become complex functions

>«iWIHB»WIIW'l»ilMM^
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again, now in the w-plane. In equations (52) and (53) the functions T(u) in the

sense of (63) are given for %1 and Xg. They shall be written down in the follow

ing, together with their separated real and imaginary parts T(x) = T-, + iT2 in

the complex variables w = W]_ + iw2 and X = X-|_ + iX2, respectively:

(a) forXx

T(u) = - log (m-2u1u+u2) (93a)

Tx =ilog [(m+M-211^)2 +4x2(u1-X]_)2_ (93b)

1 _i f 2X2(u]_-X1) \T2 = --tan1 ] ; (95c)
4 Vm +M " 2^1^!

(b) for%0

1 .! H2T(u) = - tan"1 2_ ^^
2 ^x -U

1 4 \ (u^X^ + X2 + u2X2 (hi--\l) + X2^ - u2X2 I

T = ilo (m-Xi) +(u2+X2)2 _ 1tanh-l 2u2*-2 . (94c)
2 8 (n1-X1)2 +(u2-X2)2 k (uq-Xq)2 +u22 +X22

The quantities u.^, u2, m are related to the variable of integration r\ by the

equations (48a and 48b) and X-j_, Xq, M to the variable w2 (w, is a constant in

section 7e) by the equations (75, 76, 78) or to the variable Q on the elliptic

path of integration in section 7f by the equations (97, 98). The integrands

are symmetric to Wp = 0 again and we may apply formula (92a) for the integral

over Wp. Hence we obtain for the quantities%-, and X2 involved in the transient

part of the current density j+(r ):



4o

X
1 4

log (m-2uqu+u2) W(u) du

7f/2
1 r dw2

w J A|ch(x)|2
0 2X2(u1-X1) ^

+ |r- log [(m+M-gu^)2 +4X2 (u1-X1)2

1

+ 2Q «tan"1

P

-1 ^2»2 = _ i (tan-1 —) W(u) du
2 J M-i - u

0

m + M - 2^! ;

(95)

tt/2
dw,

2

^J A|ch(x)|2
0

2R< jtan"1
u^-X^

(uq-X-]_) + x2 + u2x2
+ tan

.1 M^l"^)
2 2(Mq-Xq) +X2-|i2\2_

log
(^-X^2 + (u2+X2)2

(uq-X^2 +(u2-X2)'

The quantities A, |ch(x)|2, R, Q, have the meaning indicated by the equations

(77, 79, 85a, 85b). Putting these expressions in (95) and (96) one gets the

quantities Aj_ and Xg as functions of T], which is the variable of integration in

the integral (46a) for the transient part of the current jt(0-

f• A half ellipse as path C of integration.

We determine the ellipse by the request that wQ and - wQ should be the

focuses of the ellipse and - its minor half axis. This guarantees that the

ellipse passes the point wQ = cotanh"1 X0oo at the right side, its vertex being

(96)

/w0 + HT ' A Point P on the ellipse is defined by the angle f between

the real w-^axis and its distance between w-l = wQ and the point P (see Figure 4)

is™.-,i«i^,l,WM*sJH*lllSltl$#
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k » wi

Figure 4. A schematical picture of the half ellipse as

path C of integration in the complex w-plane.

The coordinates of the point P are w = wq + iw2 with

COS 9 f + cos <p
7TC

wl = w0 + ~
±q + Wq COS <p 1 + f COS

7j-2 sin
Wg - — - XQ

+ rQ + Wq cos <p

Wq
with the abbreviation f = — =

r0

The differentials are

f = r,(l-f2)

cos *L

dw.

w2 drp

1 + f cos 9
, dwQ =

sin <p

1 + f cos ?

w-,(l_f2) 1 dr/>

1 + f cos f

(97)

(98)

(99)

(100)
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The angle f±, belonging to the upper endpoint wx =0, w2 = |, is

2w (101)<Pl = 1+ tan"1 -^ =1+tan-Vi cotanh"1 XqJ = 1+tan"1 (I log ^ +"
2 V7T Xooo _ q

IT9± lies always between ^ and tt. In the case of isotropic scattering without

absorption (c = 1, a = 0) the half ellipse degenerates in a half circle because

w0 lies then in the origin of the complex w-plane, and we have rn = I and <A = I
u 2 1 2

In the case of perfect absorption (c = 0) on the other hand wQ tends to oo and
f± to ir.

The advantage of the elliptical-way is that we have to calculate only one

integral I instead of two integrals l(1) and l(2) in section 7e.

The integrals 90, 9+, 9", 0Q, 0a ,and X(x) for real X's [see equations (2)

and (7)J have in their transformations in the form (74) the quality of accepting
in the lower half w-plane the conjugate complex values of those in the upper

half w-plane. Hence the integral can be reduced to an integration over ffrom
0 to <£]_. They take the following general form

R(f+cos 9) -Qsin <p] -T2[Q(f+cos f) +Rsin q>it r tx

?r / ~ I i ^ " df (102)0 l A" |ch(x)|2>(l+f cos^)2

with their corresponding functions T(x) =T± +iT2 and the functions ,\ |ch(x)|2,
R, Qdenoted in the equations (77), (79), (85a) and (85b). Using Wl and w2 from

(95) and (96) again, one obtains arepresentation of the integral which contains
only the constant f of (99):

2 P1 TXZX - T2Z2/
r d? (103)

I = -
7T

0

0

A|Ch(x)|2 (l+f cos cp)

mmmmmmmmmm
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with

Z-l = (1-f2) WjR -w2Q (10Iva)

Z2 = (l-f2) wxQ +w2R . (10Ub)

For the calculation of the transient part jt(£) of the current-density the corre

sponding functions Tq and T2 are given for X, by the equations (93b) and (93c)

and for X2 °y the equations (94b) and (94c).

The integral I is only a little more complicated than the integral (92a)

because Z-]_/(l +f cos <p) and Z2/(l +f cos tp) replace now R and Q, their representa

tives of the elliptic path of integration. Furthermore, the interval of inte

gration is extended from 0 ± <p ^ tt/2 to 0 £ f £ f, (tt/2 i <R d w) . We gained,

however, the advantage of having to evaluate only one integral for each of the

quantities 9Q, 9+, 9", 0q, 0a, X(x), X± and XQ. The two different methods of

integration may serve as a check of the results.
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