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STUDIES OF THE SPHERICAL HARMONICS METHOD IN NEUTRON TRANSPORT THEORY
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for the Milne Problem
with Anisotropic Scattering and Absorption.

Planning of the Numerical Calculations.

Walter Kofink™

Introduction

In two earlier reports(l) it was shown that:
(l) the spherical harmonics solution in PL-approximation for the angular
distribution of neutrons at any point of the space in plane geometry is the exact

solution of an equation, which one obtains by adding an "error-source' term to the

original Boltzmann equation. This error-source is a multipole of the order 2L+l;
(2) +the sum over £ = O through L, which occurs in the Py,-approximation of

the angular distribution, can be performed explicitly in the case of plane geometry

by application of two Christoffel formulae. This summation enables on€¢ toishow

(3) that the spherical harmonics solution for the angular distribution can
be split in two expressions at every degree L of approximation. One of these two
expressions is the corresponding solution which follows by application of the Gauss-

quadrature method in the same degree L of approximation to the Boltzmann equation.

L+l)

This expression is in
2

L + 1 A R . . .
5 positive directions (pj = Cos ﬁ?d >0; J=12,...,
identical with the corresponding expression of the spherical harmonics method,

namely, in those directions in which the second mamber of the split expression venishes. .

*¥0n leave of absence from the Institute of Technology, Karlsruhe, Germany. This
work is supported by the Bundesminister fuer Atomkernenergie und Wasserwirtschaft,
Bad Godesberg, Germany.

(L)w. Kofink, "Studies of the Spherical Harmonics Method in Neutron Transport
Theory", ORNL-2334 and ORNL-2358. Published partially in Nuovo Cimento, Sup. 2
to Vol. IX, p. 497-5k1 (1958). The equations of these reports are quoted here
by the numerals I and IT before their numbers.




-2 .

In all other directions the angular distributions according to the spherical

harmonics and the Gauss-quadrature method are different.
(4) This difference is removed by integration over all directions, and the

average of the "error-source" over all directions vanishes, of course. Therefore

the density, the flux, the characteristic equation and the coefficients in the

Milne problem are identical in both methods at every degree L of approximation.

(5) These coefficients of the partial solutions entering the solution of
the Milne problem were calculated for anisotropic scattering with absorption.

(6) It was shown that the second part of the spherical harmonics solution,
which arose by the splitting, does not contribute at all to the exact solution

in the limit-process L »@®m. It is the Gauss-quadrature part of the angular distri-

bution which converges straight forwardly to the exact solution of the Boltzmann
equation for positive directions u = cos vg(pointing to the Vacuum). Using once
more the Boltzmann equation to avoid the poles of the Gauss-quadrature solution
in some negative directions (pointing to the deeper interior of the medium), an
expression of the angular distribution for negative directions was obtained which
should converge to the exact solution for I, - 0O

(7) By application of Euler's sum formula the limit bProcess was performed
for the distance A of the extrapolated endpoint,for the emerging angular distri-
bution of the neutrons at the boundary of the medium into the vacuum and for the
current-density.

In a third report,(g) the properties of the exact characteristic equation
were investigated more closely. Furthermore, the degree Ly of approximation by

the spherical harmonics or the Gauss-quadrature method was calculated, at which

(2)w. Kofink, "Studies of the Spherical Harmonics Method in Neutron Transport
Theory, Part III", ORNL-2650, (1959).

g
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the largest root Ap of the approximate characteristic equation leaves the interval

0 < AN <1 converging to the corresponding root of the exact characteristic equa-
tion, which lies always on the outside of this interval for ¢ > O.

The purpose of this report is to complete the limit-process for the distance
A of the extrapolated endpoint (see Equations 18a and 18b), for the linear extrapo-
1ation distance & (see Equation 29), for some constants of normalizations N, o(0)
and j(0) (see Equations 27, 28; 33a and 33b; 352 and %5b), for the angular distri-
bution of the emerging neutrons at the boundary of the medium (see Equations 36a
and 36b), for the current-density 3(¢) and for the density o(t) of the neutrons at
an arbitrary point { in the interior of the medium (see Equations 38, 39, 43, Uk,
46), All these expressions are calculated for anisotropic scattering with, re-

spectively, a positive or a negative constant of anisotropy a = Bya(l-yt); that 1is,

respectively, for preferred forward or preferred backward scattering, and for pre-
vailing absorption, 75 > O (c<1). The case of prevailing multiplication 7, < O,
c > 1 is left for the future. Incidentally, the case of no absorption ¢ = 1,

Yy = 0 is treated as an extraordinary case in section 3. In the sections 1 through
6 it will be shown that all quantities, mentioned above, can be represented with
the aid of eight different integrals, denoted by 6, et, 67, B, ¢O, X(u), X; and
X5 (see Equations 2 to T and 52, 5%). All these integrals contain in their inte-
grands a common weight function w(u) as a factor. W(u) is singular at the upper
end u = 1 of the integration as ’V(l—u)'l [log(l-u)]'g. This fact is inconvenient
for the numerical calculation with the electronic computer. But the integrals are
convergent in the area of the c,a-plane [c <1, - c(l-c) 2 a= c(l-c)}, for which
we want to produce tables this time. There are of course different ways to remove

the singularity from the process of integration by the computer. Two methods are

given in sections Te and Tf. In the first method the integrals are integrated in

their original form from u = O to u= D (p < 1) and the remainder of the integral
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from u = p to u =1 is transformed into an integral without a singularity on a new

finite path of integration. In the second method the whole integral is transformed

into the new form.
Incidentally, the transformation of the integrals has some heuristic value

also. The weight function W(u) (see Equation 1, la, 1lb and 56) mentioned above

is connected with the continuous spectrum of the Boltzmann operator, which is a

"non-normal" operator. By the transformation of the integrals a connection of

the function W(u) related to the continuous spectrum with the characteristic func~

tion (i.e., the secular determinant for L —->0) Ch(\) is uncovered. The roots of

Ch(\) = O form the discrete spectrum of the Boltzmann operator. W(u) is replaced

in the transformed integrands by the logarithmic derivative of Ch(A)/A in a complex
w-plane and the path of integration u = 0 to u = 1 is replaced by a finite complex
path in the w-plane (A = cotanh w and see Equation 74). The brocedure, starting
with the spherical harmonics or Gauss quadrature approximations, going to fhe

1imit L » o and transforming the occurring integrals, will yield always the loga-
rithmic derivative of Ch(x)/x, This function could be derived easily for any more

complicated scattering law than that assumed here.




-5 -

1. Some Notations.

Some results of the sections 3 to 7 of part II(l) will be rewritten here in

a more concise form. To do that the following notations are introduced;

function

W) = »bg_ - Bbleasu) gle,a,u)
1 - u? 1 -

h(c,a;u) and g(c,a;u) were defined in the equations (IT 52 and 53)
h(c,a;u) = c + [c2 -c + 'a(B-c)] w2+ é,[a + }(c—l).‘v u

g(c,a’;u) = l/{[l + au® - u(c+au2) tanh’l u]g + [—g— u(c+au2)] 2} H

the function W(u) occurs in the following integrals:

1
1
6 = = tanh-1 —— ) W(u) du
0 2 .
O
0

for a > 8

1 :
ot = 2 tan.’l/gu W(u) du a
2 c and z <1
0

©
]
]
-

<1

l
f tanh™L / u) Wlu) du for a <0
0 ¢ and -lil-

log <l— )] W(u) du

Ooo

St

It
=l
o\H

¢a = %fl [log (l+-z‘- u2):\ W(u) du | (for a>-c)
0

=
P
T
o
]
-

1
f [log (u+u):\ W(u) du (for p not in - 1€ p < 0)

0

A weight

(1)

(1a)

(1v)

(2)

(3)

(&)

(5)

(6)

(1)



-6 -
The functions (2) to (7) depend all on c¢ and a by Moo and W(u) in their integrands;
but ¢ and a are omitted mostly in the writing below. In part IT (between the equa-

tions II 54 and II 55) it was shown that

1
EﬁW(u) du = 1. (8)

0

This integral is convergent; no doubt its integrand has s singularity at u = 1,

but only of the kind
l/{(l-u) [1og (1_u)} 2} - i[log (l-u)J -,

This point, however, makes numerical calculatiohs rather difficult and will be
avoided by a transformation of the integrals, which contain W(u) in their inte-
grands, in section 7.

By the integrals (2) to (7) defined above we shall eXpress a sequence of con-
stants and functions which appear in the neutron transport theory of the Milne
problem. They were found in part IT from their expressions in the spherical
harmonics and Gauss—quadrature method in L-th approximation by going to the limit
L - 0.

From the Equations I 33 and IT 5% one recognizes that the function (7) is

the limit (L+1) /2
i ‘ T Ovs)
lim p(-\) 1im 11 J
L.~ oolog [‘ —_r(—x):l = OoZLog (Lil)/Q = X(\) . (9)

éDi (rg)

A has to be chosen on the outside of the interval - 1 <« A < 0 in (9). The equa-

tion remains valid for A = Q for which Equations II 54 and 63 show that

5
8
i_l
1
3
N
o
S
T
I
>
—~
o
S
1
i_l
)
®
o~
<
)
X
(—f.
>
S
8_
[

log <;6j:7;ji§ K00;> . (9a)
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2. The Distance of the Extrapolated Endpoint.

Equation (8) enables one to extract a factor p from the integral X(u). This

yields Equation (II 55) which is valid under exclusion of the interval - 1 = A = O:

| 1
lin o, <p(->~) > _ l/ log (hf) Wlu) du . (10)

2
0

The reversal of the sign of A is then easy and leads to Equation (II 56). The

difference of both is (with exclusion of the interval - 1 £ A < 1)

o [ p(\) p<x) J f(ta bl %) W) an (11)

L>o r(-)\) r(%.)

This function occurs in the distance of the extrapolated endpoint and in some
normalization constants. For the characteristic root N\ = KOoo it is the quantity
named 64 in (2) and for A /lal it is the quantity named ©~ in (4). The dis-
tance A of the extrapolated endpoint contains a function.é(k), which is related to
the expression on the left side of (ll).

tanh-1 _ﬁ_l > log [_ p(-\) <§(k{>]. (12)

r(-A)/ \z(r)

By comparison with (ll) one recognizes that 8(%) converges in the limit L - ® to

1
5(N) = X\ tanh Ef (tenh™t %) w(u) du] (13)

0
lim

I > o before 5(N) from now on. For pure

for real A without writing the sign

imaginary A = ix one obtains

1
. 1 -1 u
8(ix) = x tan [E/ (tan™1 §) W(u) du}, . (13%a)

0

We consider in this report only the case O < ¢ < 1, in which the two roots + Moo

of the exact characteristic equation (II 58)
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2

000 ) cotanh'l A = 0 (lh)

2
- Kooo(c+ak 0o

Ch(hpey) = 1+ an 0o

are real. The constant of anisotropy a can be positive or negative. In aniso-

tropic scattering the quantity (1 35)

%/g- pure imaginary for positive a (lBa)

TET real for negative a (le)
[ a -

plays a role, KOoo and A, enter 3(N) as a possible A and we shall meet later the

following different versions

~ ﬂ]_
/Etan [—]:J (tan'l/éu) W(u) du = /—E tan 6% for a > 0 (16a)
a 2 c a

5(hg) = 0
1 :"l | —C—_
_ [~ tann |= / (tanht /—131— u) W(u) du = /== tanh 6~ for a < O (16b)
J lal 2 J c |2
0
and (17)
8(Moop) = Moo tenh |= [ (tann™t 2 ) w(u) au - tanh £ 1
5300 = Oco © > an ;— u u = K&n an @O or O<c<«l.
o) 0o

Then the distance /& of the extrapolated endpoint is in the limit L - o Eaccording

to Equation (II 70), omitting the times sign before Aj

/
[Qo + tanh’l(/% Mo TR @*)] a >0 (18a)

K[@O - tanh'l</_l§1_ Moo tanh @‘)] a = -lal<o. (18b)




-9 -

3. The Case of No Absorption (c = 1).

Incidentally, we should remember the well-known special case of no absorption

B(l—c)(l-yt) becomes O because of ¢ = 1

i

c=1, a=0. In this case a = 37a(l‘7t)

for every arbitrary 7i. But

lim a 52 1 -7

a—0, c—l, Lﬂpc O 7+

i

is a finite constant, different from O for y # 1, because the characteristic

root Agg (mean diffusion length in units of mean free path) goes to infinity for
c—>1 [see section I 9(a)1. Therefore this special case needs a more careful per-
formance of the limit-process a - 0. From (l8b) one obtains for instance

1
A = L .1 u W(u)‘du for ¢ = 1 and arbitrary 7t (19)
7t e
0
(7t # 1 for anistropic scattering, Yt = 1 for isotropic scattering.)
This simple limit will be assumed, because the arguments of all the tanh™1
and tanh involved in A, 6p and 6~ converge to O. Hence the first and the second
term§on the right side of equation (18b) converge to the following limits:

lim 1

N 6~ = "/ u W(u) du
0] 0]
(a-0,c»1) P e )

. 1
lim lim
. tann-1 ( M2l Ao tanh 9') lal xgoo L[ u W) au
(a~0,c>1) “® c (a=0,c-1) ¢© 2

1
¢ -1 1
= . —'jr u W(u) du .
2
0]

it

7t

From the last equation we see that the second term gives a contribution to A for
no absorption (C,=z l) but anisotropic scattering 7t # 1, although the constant a

vanishes. This was well known long ago.
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One may add a further interesting remark to this special case. The 1limit

of the difference My - Al between the sum Mj of the positive roots M of the

characteristic equation (I 14) for ¢ = O

L+1
)
2

PL_,_]_(U'j) = 0 (J =1,2,...,

and the sum /A; of the positive roots of the characteristic equation (I 65) for

¢ = 1 (leaving out No however ), both in L-th approximations,

P () - A WL(A) = 0 (s =1,2..., Eigi )
is connected with u, the mean value of u over % w(u),
/e (1) ! =
14 11 +1)/2 -1)/2 1 _
Hn (Ml'Al) = Z My - L Ngp = -Jr uWlu) du = u = O0.710k
I~ I~ 3=1 s=1 2

0

for arbitrary 7+ and ¢ = 1. In this case the distance A of the extrapolated end-

point and the linear extrapolation distance © become equal, namely

. h (19a)

=l

A last remark to this special case of no absorption results from the com-
: 1

parison of 1im 7a7tkg = = (equation I 59) and equation (9a), which gives
a=0, c>1 5

~ the mean value of log u over % W(u)

(e1)

_ i _ _ lim 1 L
log u = 3 f(log u) W(u) du = X(O)/ = 40, ol 10g</;a7t }\O> = -3 log 3
c=1 Teoo
a=0

for arbitrary 7y and ¢ = 1.
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il

W(u) has of course in this section its form for ¢ = 1, a 0, namely,

W(u) = - (1a)

(1-42) [(1-0 tannt w2+ G w?]

L. Different Ways of Normalization.

O one has to calcu-

(a) For normalization to unit density at the boundary {

late [-see equation (I 55)]

+1
" . (L-1)/e .
po(0) = 27Tj £(O,u) du = %Un L B 5 % 1lim 8T W(1+ a )\2) p(0)
1 "0 ¥=0,0,1... Lroo r(0)
m(1+ OCD)L—m (o) (22)

ek .2 2.2 y lim
8r/l - ¢ 5)‘000 (l+c)‘000)L—>ooN

after the application of equation (II 65). It remains to calculate 1im N.

N was defined by equation (1 36). We consider

a o ,

1im 1 _ 1im 8(%0) * TA55(na)  [p(-n) , 2(%0) (23)

Isoo N I~m - ‘ ! )
5(n) r(-ng) r(h)
The first factor results immediately from the equations (16a, b, 17)
5(hg) + % >‘-§ 5(hg) 1 +/%_ Moo tan 6% cotanh 9, forax>o0 (2ka)
m —
5(np)
0 1 - /ia;L Moo tanh ©7 cotanh ey for a < O . (2L4p)
' c

The second factor of the equation (23) follows from the equation (10)

lim ,ép(—ko) X p(ko)} .
r(')\o) I‘()\O)

%fllog (]_+>\'L ) W(u) du % /lldg (l-)-\u—) W(u) du
0o |E€ 0 ' Ooo -e 0 Ooo

(25)

- B0
= - 2}\000 e sinh QO



- 12 -

with ¢O from equation (5) and 6y from equation (2) and the formula

1
+
e*l . eX2 = 2 eg(xl X2> sinh %(Xl-xg) .

Hence one obtains

. a
[s:.nh 6y + »/'chOoo tan 61 cosh QO} for a >0 (26a)

[sinh oo - /—L&g-'— Mo tanh 67 cosh 90] for a < 0. (26b)
Both of these versions for a >0 and a0, respectively, can be rewritten as one

formula by the introduction of the distance A of the extrapolated endpoint from

equaticns (17a, b), which gives

for a > O: /%»%'Ooo tan ©F A
= tanh (}\— - 90> . (18)

for a< 0: - _|?i >‘°Ooo tanh 6~ 0o

c
Therefore one gets finally
- ¢O N

1i .
L—ljclo N = & [sinh 9 - cosh GO cotanh ——] (27)
2 KOCD Cao

and

o(0) = b/l -c -3 <l+ 7"Ooo> ¢O [cosh 8y cotanh AN sinh @~] (28)

Moo

One remembers from equation (I 20) that the linear extrapolation distance &

is just

- tann 2. (29)

>"Ooo 7‘“000

Hence one may introduce 5 instead of A in equation (27)

| E— N
p(o) = lwrﬁ;l -c - % <l+-24 kgoo [—%@ cosh @y - sinh QO] . (%0)




= 5.
(b) For normalization to unit current density at the boundary £ = O one has

to calculate [see equation (I 55):|

£l , Lim (L-1)/2
j(0) = e | uiOu) du = (- Wr(1-c) _% akxk)
Y1 L~ k=0,0,1...
(31)
; A -
= 16m(1-c) A5 oy plrg) D(he)
o hg [r(-ha) B(ha) - 7(ha) B(-1a)]
For the reciprocal of the last factor follows again from equation (lO)
1im r(-ng)  r(hg) g [cos 6" fora >0 (32a)
Ay - = - 2€ &
p(-rg)  (2g) cosh 8~ for a < 0 (32p)

and we obtain

wr(1-c) rog, @72 70)

{cos 6" sinn 8y + /2 ngy, sin 6 cosh % jr (33a)
cosh 8~ sinh og - /—ji‘—' Moo Sinh 67 cosh 9/ (55b)

j(o) =

with the upper expression in the denominator for a > O and the lower expression
for a < 0. Using the distance A of the extrapolated endpoint for the represen-

tation of j(0), we get

br(1-¢) Mo e(¢a'¢0) A ,
j(o) = [cosh 8y cotanh — - sinh @OJ . (3ha)

cos OF Mow
cosh 6~ (34p)
The gradient of both normalization constants (28) and (34) is

- +
(0) S BaeEig, e fe [orsT frazo .

5(0) (1-¢) Moo tcosh o- for a < 0 (35b)
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5. The Angular Distribution of the Emerging Neutrons

at the Boundary of the Medium.

In egquation (II 75) the angular distribution f(O,p) at ¢ = S in the direc-
ticn p = cog W was normalized to unit current density j(O} = 27Tb/ p"f(Q',p);dp at £ = 0.
The limit L - oo was taken from the Gauss quadrature expression £I(0O,u) in L-th
approximation (I 41). Applying the equations (9; 16a, b; 32a, b) to equation

(IT 75) one gets for 0 < u <1

LA
£(0,p lim {0, u)
3{0) 27T‘[ pf(0,u) du
- L

= ° —

c + a.}\goo 1 +% 1N T [r(xa) r{-Ng) ( p(—u))
N -

a’ ’
gr(1-c) A3 - k2 el Hp(n,)  pl-2a) r{-p)
a )
] o+ a:)‘goo 6[7«“) _ ¢a:| , cos 6t + ﬁ i sin ot a >0 (36a)
br(i-c)n2 -2

L) Moo ) cosh 6 - -Ii—"— b sinh 8= a< 0  (36b)
, JA) \
crengy Trapgtem (Aop-d) D)) | feeset a0 (%)
bar(l-c) xgoo - e cosh 6 a <0 (36d)

6. The Current-Density and the Density of the Neutrons.

It was shown in psrt II, section 7, that the limit-process L = ®© can be

performed with higher mathematical precision for the current density j({) than

for the density p(f) itself. For ¢ # 1 the relation

(c-1) o(8) = a?i(cé) (37)
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may be used to derive p({) later from j(¢) . In L-th approximation the follow-

ing expressions hold (I 21, 51)

IS (L-1)/2
p(6) = om ff(g,u) du = b7 fOO(C) = 47 _Z erC/}"k
-1 k=0,0,1, ...
oy (38)
: ) L-1)/2
b 51nh[(A g)/xo] .\ 5 o eC/?\.S
sinh A/KO s=1,2,...
and by use of equation (37)
N n (A-C) /A (L-1)/2
(8) = bm(1-c) ¢ 202 Ctiro Lo ag et/ (39)
sinh (4/Ap) s=1,2, ...
The first, so-called asymptotic parts of both expressions go immediately to the
limit for L = oo
. A— I
0a() = i SER[@-D /o) ¢ =0 (ko)
sinh(A/?\.Ooo)
and
ni{a-6)/a
5a(8) = Wr(1-c) Apg — [(4-)/ro0)] £ <0 (41)

sinh(A/Kooo)

in which A now has the meaning of equations (18a, b) and Moo 18 the root of the
exact characteristic equation (14). The normalization of (38) and (39) is such
that the two coefficients a5 and an of the 2 asymptotic partial solutions have
the sum &4y + 0y = 1. Consequently, the asymptotic part of the density P, (0)

at the boundary is normalized to 47 and the asymptotic part of the current-density

is normalized to

Ja(0) = 4m(1l-c) Npy cotanh (}TA_ ) (Loa)

0o

= 5 .
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In the last‘expression the linear extrapolation length is introduced by applying
equation (29). Other normalizations may be introduced for instance by using
equations (28) or 34).

Finally we have to perform the-limit-process I - co for the transient parts

-1)/2 6N

L
56(6) = bw(e-1) AR L agp, el f (43)
5=1,2, 5 v
and
1 244(8)
Pl = = S (c #1) . ()

The last squation suggests to obtain pi(§) by numerical differentiation from

jt(C) . We perform the L%igé for jt(g) according to part I, section F:

. (L-1)/2 6/n
Jt(C) = bm(c-1) Lli@bo Z ashs e’ ®
, 5=1,2¢0
I
_ W;:Til) Lli;mo3 fx\u_) e [see equation (II 82)]
br(l-c) lim E'- % " 6(kai] GEC/u p(1)
:-—27T—i—— Moo (c+a7\,0 ) L > o fo ~ du (ks5)

o 2
o (erau®)(u2-25g ) r(p)

\ - A 1S
LI—'!T(:L-(:) (G+a}\';%oo) e ¢O 1 NOOD - U tanh(% - @O> [X( -IJ.) + “_:I
= e dIJ. .
A . . ’ 2
cosh 8 cotanh —— - sinh @5 271 (C+3H2)(k 'H?
?\.Om 0 CJ O )
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One finds the last equation by applying the equations (27; 16a, b; 18; 9) to
the third. Finally we remember that the medium: lies on negative § = - lq

and we obtain

(46)
— A
; (C) ) 2(1-0)(c+a>\.800) e ¢O (1) Nog = M tanhG"O—oo— Qo) e[x(’“)"—uc_l]du
t = -1 .
cosh 6 cotanh ié— - sinh 6, C; (c+ap2)(Kga3—u2)
Oco

The closed compilex path Cj of 'integration has to encircle the real interval

O = p =1 counter-clockwise excluding, however, the points M=+ Ag and

b= 2 Mo

C

For a < 0 it is easy to show that Ny = T~ 1s larger than A

|l Oco *

In part IIT it was shown that Moo Temains constant on a straight line in the
C,a-plane. If we name cy the point in which this straight line cuts the c-

axis, we can represent the anistropy constant a by C, Coy kOaﬁ using the

characteristic equation (14) for a4 0 and a = 0:

a = —— with co = .
AE (1-cp) 1 Stanh™t
Oooll-cqo O -¢Otanh kO@)

For a < 0 we have co < ¢, because 1 - ¢y is always >0, and we may express

N A e(1-cq)
a la Ooof ¢ - ¢
0
The radicand
c(l-cq) co(i-c)
..__L = 1 + _.O—__. > 1

c - cp c - ¢y
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is larger than 1, because the additional term to 1 is > O in consequence of
Co >0 and cy <c <1 for a <0 {compare for instance l.c.(g) Figure 2). Hence

we have always

Ag > Mgy for a<O0 and O<c <1l. (L7)

Furthermore we know that A\y,, = 1 for O < ¢ <1. A convenient path Cj of inte-

gration would be a circle with its center in p = % and with its radius % Nooo
. 1
for the case a <« O. This circle cuts the real axis in the point E(l*‘kOan) < Moo
. . \ . 1
on the right side between 1 and KOoo and in the point 5(1— kOoo) < 0 between O
and - Mygpon the left side of its center. Therefore this path fulfills the con-
ditions which were imposed on it.

The equation of the circle in the complex p-plane is
_ . 1 in
b= o ey = 51, e, (48)

if M is the angle between the real H-axis and the radius to the point u. Then

we have

1 :
hy = 5(l+7\.OCD cos 1) , Ho = 3 Mg sin Mo (48a)
furthermore, we use the abbreviations
2 2 1, .2
T E(Noq3+1fF2Koq) cos M), m = up/m, m = bo/m ,
(48b)

1 2
my = Wy - Hp = E(l4—2x0a) cos M + Ny COS 27) .
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The differentdial du becomes
A . 1
dp = 1 —ZO" etldn = [-up+ i(ul-§)] dn . (49)

The introduction of n into the transient part ji({) of the current (equation 46)

yields
2(1-c)(crarz ) e %o
jgle) = .
cosh QO cotanh Jé— - sinh QO
N
O

(46a)

2

e(xl—mllcl)
o Vi o+ Vg

in which some new abbreviations have the following meaning:

Vo= e(hS -my) + a[me + mo (Moo -2m0) N
‘ Vo = 2“1“2[% - a(%%a)-Qmoﬂ
f (50)
t
T = - (M- '22 - 2to k1)

1 t %

- .1 - ] :
Yo = =S Moo - (Mg 2)“1+tomo ;

ty = tanmh (}—\;A;- o) (51)
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1
Xi = Xi(pl,pg) = i J[ logEn -2y u + ug] W(u) du (52)
0
1
m
Ko = Klopue) = 5 [ Gt =) W) e (53)
0 .

and in which Mis Mo, m, My, My, M, are given as functions of 1 by the equations
(48a, Db) andWXi(Hl;Hg) + 1 Xg(ul,ug) = X(-u).

For a > O, however, a similar simple estimate of the position of

c(1l-cp)
N, = i/—;jz N (54)

a
cn - C
0

gives only O <:|AJ < oo; this inequality does not give any information in which
case Ag lies on the outside of the circle Cj, which we chose as the path of in-
tegration for a < 0. If we want to use this circle also for a > 0, Ag has to

fulfill the followling inequation:

2

fll

el

1
[x > T O‘(E)oo‘l) . (55)

ol
The right side of this inequation is the square of the ordinate at which the
circle Cj cuts the imaginary axis in the complex p-plane.
. 2 ¢ 1.2 1
On curve I in Figure 1 is Ika] =2~1 KO@)' and for all ¢, a-values below
this curve the inequality (55) is fulfilled. In the area above curve I the in-
equality (55) is not satisfied; in fact, Npoy increases to the limit @, if a

increases (at c = const.) until it reaches the straight line a = 3(1 - c),

2
whereas 'Kal decreases to the limit c/ [3(1 - c)] on that line. The straight
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line & = 3(1 - ¢) in Figure 1 is the border of all cases belonging to exponen-
tially decreasing or increasing solutions of the Boltzmann equation.  On the
right side of this line we have oscillatory solutions, which we do not consider
in this report.

The curve I, however, comprehends a much ampler area of ¢,a-values than
curve IIT with the equation a = c(l - ¢). The points below curve III satisfy
the condition that the probebility of a single neutron scattering event (includ-
ing fission and absorption) is non-negative in every direction, and it is assumed
that scattering, absorption and fission obey the same linear anisotropic law.
This condition is called sometimes the !'geometrical condition"”. Under these

assumptions the area of the ¢, a-values, for which stationary solutions exist is

so mich restricted ‘that the iise of the circle Cs as the path of integration is

also allowed for a > O.

Curve II in Figure 1 finally satisfies the equation.lka' = kOoo; 'kal

is larger than KOG)below resp. smaller than Mpg above curve II.
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UNCLASSIFIED
ORNL~LR-~DWG 42623

Fig. 1. Three Curves as Borders of Different Areas in the ¢, d—Plane,in which Interesting
Inequations Hold.
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The following tables give some information about the characteristic values
?\'Ooo as functions of ¢ and a on the 3 curves.

1) For curve I with the equation % = .)lI(?\.goo-l):

TABLE T
Now c a N c a
w
1 0 0 1.5 0.370 1.186
1.0001 12,6 - 1076 0.253 1.6 0.433 1.110
1.001 177 - 1006 0.356 1.7 0.488  1.033
1.005 1,23 .+ 10-3 0.490 1.8 0.536 0.957
1.01 2,91 - 1073 0.580 1.9 0.578 0.886
1.02 7,05 - 103 0.698 2 0.616 0.821
1.05 0.0234 0.912 2.3 0.703 0.655
1.1 0.0581 1.106 2.6 0.764 0.531
1.15 0.0976 1.211 3 0.821 0.0
1.2 0.139 1.266 3.5 0.867 0.308
1.25 0.181 1.288 L 0.898 0.239
1.3 0.222 1.289 h.5 0.919 0.191
1.35 0.264 1.275 5 0.934 0.156
1.4 0.300 1.251 10 0.983 0.0L0
1.45 0.336 1.221 @ 1 0 .
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2) TFor curve IT with the equation i = Moow:

TABLE II
MNom Co c a Moo Co c a
1 0 1.2 0.695 0.532 .370
1.0001 .2019 .11230 0.11228 1.5 0.828 0.707 .31k
1.001 .2628 15131  0.15101 2 0.910 0.835 .209
1.005 .332 .199 0.197 5 0.987 0.973 .0389
1.01 .373 .230 0.225 10 0.9967 0.9933 .0099
1.02 L2s .270 0.259 20 0.99916  0.99832 .0025
1.05 .513 .345 0.313 80 0.99992 0.99984 .00016
1.1 597 RITETS) 0.352 © 1 1
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3) For curve III with the equation a = c(1 - c):

TABLE TTT(3)

c a Moo c/a 111(7;800 -1)
0.99 0.0099 7.082 100 12.288
0.95 0.0k475 3.187 20 2.289
0.9 0.09 2.272 10 1.0k
0.85 0.1275 1.872 6.67 0.626
0.8 0.16 1.637 5 0.420
0.75 0.1875 1.480 L 0.297
0.7 0.21 1.366 3.33 0.216
0.65 0.2275 1.280 2.86 0.160
0.6 0.2k 1.213 2.5 0.118
0.55 0.2475 1.160 2.22 0.086
0.5 0.25 1.118 2 0.062
0.45 0.2475 1.084 1.82 0.04L
0.k 0.24 1.057 1.67 0.029
0.35 0.2275 1.036 1.54 0.018
0.3 0.21 1.020 1.43 0,010
0 0 1 1 0

The last two columns of this table may show how much larger c/a is than

1,.°2
E(%'Ooo -

O<c <1l; for ¢ =1 both sides become equal and infinite.

. . 1 (2 . s
l) . - The inequality c/a >8 - n (}"Ooo - 1) is satisfied always for

(3)1 owe the characteristic numbers Moo OF this table to Mr. H. S. Moran.
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7. Transformation of the Occurring Integrals into a Form in which they

Remain Finite Along & Finite Peth of Integration.

a. FProperties of W(u).

The function W(u) defined by equation (1) is one factor in the integrand of
the integrals 6, e*, o7, Bos ¢ajx[(h) (equations 2 through 7) which are important
in this report. W{u) is a representative of the continuous spectrum(u) of the
Boltzmann-operator; this is easily recognized if one follows the limit-process
L —» o backward to its origin. Reviewing the equations (II 47, 45, Lk, L1, Lo0)
of the second reporz l.c.(l) one may find that W(u) is reiated to the quotient

of the angular differences AJél) = ﬁél) - Jﬁig and AJEE) = Jgg) —‘I<2% by

S+
(2)
; ' A
1 ( 41m B ]
I R o (56)
s

'}(l) = cos"l i and,y(z) = cos_l Ag are the angles which belong to the eigen-

S s s
values of two different characteristic ejuations in PL-approximations; namely,

1)

oY
(2) . s ps .
Mg = cosxﬂé resp. Ng = cos'ﬂé ’ are the roots of the characteristic equations

in L-th degree of approximation

PL+1(“S) = O (for ¢ = 05 a = 0; perfect absorption) (57)
resp. (l+ak§) PL+1(NS) - ks(c+ah§) Wlh,) = 0 (forc#0, af0). (58)

1 _ L +1
s takes only the values s = 2, 3, .

in tne first equation and s = 1, 2,...

L -1
2
converges t0o Ayo, on the outside of the interval O € A £ 1, whereas L] converges

in the second equation. The largest roots K1 and Ag are excluded. A\

Tﬁ)Wigner, E. P., Colloquium Publication of the Amer. Math. Soc.
(Meeting on the Mathemetical Aspects of Reactor Theory, New York,
April 23-24, 1959.)
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to 1, yielding a finite difference KOG) - 1 in the limit L - oco. The differential
quotient, involved in the right side of Equation (56), would therefore become
infinite. So these two roots have in fact no place in a finite W(u). In the
course of the limit process they separate themselves from the other eigenvalues
in a quite natural way. Hence % W(u) du is the limit of a function of those roots

L-o
of the characteristic equations (57) and (58) which lie certainly in the interior

of the interval 0 < A <1 for every degree L of approximation. In the limit

L » o, however, the roots in the interior of this interval create two continuous
spectra: +the set of xgl) builds up the continuous spectrum of the perfect absorber
end the set of A{2) that of the problem with c,a 4 o.

By partial integration of Equation (11 50) l.c.(l) one recognizes that

h 2 d T u(c+au2)
W) - —f 2L [T o) (59)
1 - v° T du 2 P(u)
with P(u) = 1 + au® - u(c+au?) tanh-l u . (60)

(An additional remark is important for partial integrations, namely, that the
branches of the inverse tangent involved in Equation (59) are those on which
tan~l is - 7 for u = 0 and O for u = 1. P(u) vanishes at u = ugy, where the tan-1
of the expression in curly brackets is therefore - g. This branch condition was
found during the performance of the limit process L - oo in section 3 of Part II
l.c.(l) This peculiarity does not occur in the following.)

P(u) is different from the characteristic function for the discrete spectrum,
Equation (14), becausé it contains a tanh~l instead of a cotanh™l. P(u) is also
a representative of the continuous spectrum.

The functions h and g may be written with the aid of P(u) and P'(u):
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h{c,az;u) = (l;ug).ﬁc+5au9) P(u) - ul(c+au?) P‘(ui] (61)
(e,a30) - 1/{P2<u> au u<c+au9>}9}. (62)

b.  Transformation of W(u)ran&lof the;pgth of Integration.

We consider an integral of the form
1
A A (63)
5 .
where T(u) stands for the different first factors in the integrals of the equa-

tions (2) through (7). By the transformation of the variable u of integration

u = tanh v, Vv tanh™t u, du = (1-u2) av we remove the pole L in W(u) at the
u

upper limit u = 1 of the path of integration:

I = fT(tanh v) h(tanh v) g(tanh v) dv . (64)

0

The path of integration, however, how has infinite length. The denominator of

g(u) can be written as the product of two complex conjugate factors

g |+
1l

[P(u) T u(c+au2)} . [P(u) I u(c+auz)}

2
(65)

[l +oau? - (v+ I u(c+au2{]-[i +au? - (v-TL) u(c+au?)
2 2 .

Using this we can divide the integral I in many ways. A reasonable way is found
by the additional request that no factor of the integrand should go to zero or
infinity in the limit ¢ - 1, a = 0. As a guide, the first factor of the integral
Moo €0 (see equations 18a, b, and 2)_which for ¢ =1, a = 0 goes over in the
finite distance of the extrapolated endpoint. The first factor is T(u) = é%FP
tanh™t 9 . If we divide T(u) by-u, we have in T(u)/u a factor which goes to

O
1 in the case ¢ - l/a - 0, where KOaj goes to infinity, Hence it appears
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reasonable to split

u h(w) glu) = (1-u2) u W(w) (66)
in its partial fractions. The result is (with u = tanh Vv as an abbreviation)

1+ (c-1+a) u + 2a,BV4-gi) u - l] ue(1-ue)

1
u h(u) g(u) = — -
T 1+ au? - (v+ g—-}—) u(c+au?)

(67)

1 + (c-1+a) v +2a [(v-g—i) u - l; u?(1-u?)

1+ au® - (V-g}-) u(c+au2)

Verification: we have to show that

u h(u) = —l— <{[l + (c 1+a) u + 2a(vu- l) 2(1 ue)] + 7T1au5(l ug)}

+ a2 - vu(crau?)| + I y(crau®
{ B m(eran)] + Iy )}
{l + (c l+a) W + 2a(vu- l) 2(l—ug)] - 7Tiau5(l-u2)}
+ au® - c+au - 2L y(c+au®
{1 vuf )] > ( )>
= u {9 [l + aul - Vu(c+au2):l au®(1-u2)

3

+ [l + (c-1+a) u® + 2a(vu-1) ug(l-ue)] (c+au2)}

u{c + [02 -c + a(j-c)] u2 + a[a + j(c-l)] uu}

Compare the last expression with equation (la) to see that it is in fact

u h(u) .
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For real u the second expression {n (67) is the complex conjugate of the

first. If we apply now different transformations, namely

Tl

W o= V4= to the first (68a)
2

and w o= v-Ii to the second (68pb)
2

expression in (67), we obtain the same integrand in both cases because

u = tanh Vv = tanh (w ¥ T2y - cotanh w (69)

no

yields the same function in w. The paths of integration, however, are different

now for the two parts of the integrand. w funs from gi to o + gi for the first

part and from - gi to @ - gi for the second part. Hence we may write with A\
cotanh w as an abbreviation

i

~

(I)+? (I)-%i— §
: 1 Jf Jf T(A) 1 + (c-1+a) A% + 2alwn-1) A2(1-A%) 5
[, - . . W
i 1 _ T_Tj'_ A 1 + 8)\.2 - w}\.(c+a}\.2)
2 2
(70)
(oo
1 NT(A) 1+ (e-1+a) A2 + 2a(wn-1) A2(1-A2)
= - + dw
L . AR c¢h(n)
- L oo+
o 2
dw . (71)

1 1+ (c-1+a) A2 + 2a(wn-1) A2(1-02)
= - ——-J[\T(k) .

i A Chin)
C

The two paths of integration in (70) could be joined at w = co; the integrand

vanishes for large w and ¢ > 0. The denominator behaves there like - (c+a) w and
-2w

the numerator like 2aw(1l - cotanh® w) ~ Baw e . Hence the path C of integration

obtains the form shown in Figure 2.
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iW2
Ti A «——¢C LT
2 L F 5
® U > W]_ I
Yo c
Ti i
- ® -3
C—

Figure 2. Path C of integration in the complex w-plane.

The denominator of the integrand is the characteristic function Ch(h) (see equa-
tion 14). Tt has, as we know, a zero at A = Ay, or at w = wy = cotanh™l Ao On
the real wj-axis in the complex w = w1 + 1wp plane. w, lies for ¢ =1, i.e.,
Moo = @, in the origin of the w-plane and joins there the second root - Wy =
cotanh™ (- Agg ) of the characteristic equation. Wo shifts to the right side,

- Wy to the left side on the real wi-axis for decreasing c. It follows from the
characteristic equation (lh) that Vo is connected simply with the point of inter-
section Cyy at which the straight line, labeled by a fixed characteristic number
Noaps Cuts the c-axis in the c,a plane (see l.c.(z) Equation 1k),. The straight
line contains all c,a-values for which the characteristic equation has the same

characteristic number Nooo and therefore also the same

2
1 + akOoo 1

. (72)

_ -1 _
W = cotanh KOoo =

2 =
.)\OCD (C+a?\ooo ) .)\OOO CO

Co is the special c-value for a = 0. For cy > O (perfect absorption) Nooo - 80€s
to 1 and Wy to infinity; this is a limit case which we have to exclude if we want

to make the path of integration finite later.
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The whole factor of T(x) in the integrand of (71) can be written

- ___E__— [L + (c-1+a) xe + 2a(wn-1) KQ(l—KQ)] = EL log <éh(h>> . (73)
A Ch(n) aw A

This is easily verified remembering A = cotanh w and d\/dw = 1 - AS. Hence the

integral (63) takes the simple form

1 d ch(n)
I:E[T(x)alog(x> ¢ dw . (74)

It is to be expected that the procedure (which begins with the spherical har-
monics P;-approximation and ends with the limit process L - oo) to find the
second factor g; log <§E£L2 will be always the same, irrespective of the number
of terms supposed in the scattering law for single neutrons. Therefore one will

always have this second factor in plane geometry and the specilal scattering law

will be represented in it by the corresponding characteristic function of the

problem. The first factor T(k) and the combination of expressions occurting in
the guantities to calculate, however, depend also .on . the boundary conditions,

They cannot be predicted without further study.

c. Separation of the real and imaginary part in the integral I.

To prepare numerical calculations of the integral I we separate real and
imaginary parts. We denote w = wp + iwp, N = Ay + ikp, Ch(N) = Chy + iChy,
. d ChiN
T(%) =Ty + 1Ty, T log (-%—l> =91 + 1S,. These quantities are the following

functions of Wy and wo:

N sinh 2wl ( .
= 75)
1 cosh Bwl - Ccos 2w2 /

- sin 2w2
Ny = ‘ (76)

cosh 2wy - cos evp




_55_

e 2 . 2
o sinh® 2wy + sin® 2w
A= PF o= e = 22 (77)
(cosh 2wy - cos 2wp)

inhe 12
o o) sinh® 2wy - sin- 2w
M = >\'l - >\2 = 2 . (78)
(cosh 2wy - cos 2w2)2

These quantities are abbreviations which are used in the following more compli-

cated expressions:

fCh(?x)|2 = Ch% + Chg = 1+ 2aM+ a4 (w§+w§) A(cBr2achtaY)
- anpngfe e+ alen1) A+ a2A?] (79)
o engé[c‘ + 2aM - a(c-1) A+ a2/\2]
and with ' = 4/dwy

Chy Ch{ + Chy Ch} = Aq [ea - ¢ + a(3-c+2a) A - 32N - 6aM]
+ wl{- ¢ + c(c-2a) A + a(c-3-3a) A® + 38N
+ M[(c-5a-ac) + 2af{ec-a) A + 322 A2 « 6aM]} (80)
- 2WphMg [(c—5a+ac) - 2a(cta) A+ 38/ + 6a]

+ (w§+wg) Kl[cg + c(2a-c) A + a(2c+5a)/\2 - Ba%A? + 2acM(l—3Aﬂ
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Oh; Chj - Chy Chl = Mg [Ea - ¢ - a(3-c+2a) A - 3 /C - 6aM]
+ wg{; ¢ - c(c-2a) A + a(c-3-3a) A - 3a2A0
+ M[}c—Ba—ac) - Ea(Ec-a) A + BaaA? + 6aMi} (81)

+ EWlKlKE[(c-5a+ac) + 2a(c+a) A+ 32°A° + 6aM]
+ (W§+W§) KE[- 02 + c(2a-c) A - a(2c+3a) A? - 3a2A5 - 2acM(1+3/)| .

The last expressions occur in 87 and So

A- 1 Chy Ch{ + Ch, Ch/ R(wy,wp)
51 = M Tt R 2 = - , 2 (62)
} ICh(x) | /\JCh(?\) |
A+ 1 Chy Chy - Chy Chy Q(wy,wp)
82 = }\.2 + 2 = 2 . (85)
A lcn(n)| Alca(n)|
With these denotations the integral (7&) will become [R = R(wl,we),
Q = Q(Wl,Wé)]
N { (Rav+ Qawy) + To(Raw - Qavp)
I = - ————= T+ (Rdws+ Qdwy) + Rdw, - Qdw
T | /\|Ch(>")|2 1 2 1 2 1 2
NEAE | (81)
C

+ 1 [Tg(Rdw2+ Qdwy) + Ty (Qdwp - Rdwl)]j .

The double-integral sign in (84) means that one has to integrate over the Wy andl
wo ranges which occur on the curve C. Hence there is always a relation between
dwy and dwp, If one expresses wy and wé er instance by an angle P along the
curve C (a circle or an ellipse), the integral (84) will become a single integral

over the range of ®.
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Finally we give the expressions R and Q for numerical calculations

R = N (D-E) - wp(F-G) - wi(J-H) (85a)
Q= N(D+E) - wy(F4G) - wo(J+E) (85b)
with
-
D = /\[(l—c+2a) - LhaM - 23.2/\2 + 2a(w]2_+w§) /\(C—ECM—&/\E)]
E = 1+ 2aM+ alc-3-a) A° - 2a(c+a)(w§+w§) N2
F o= 2ah, [c + 2aM - a(l+c+a) /\2]
( (86)
G = lLany ﬂl‘—EM—af;%) :
H = M(c+paM) + Agikcg-c-ac—a) + a(3c-a-1) M + 2a2ﬁ?]
J = 2aAR1+a) Ae + M(1-a/P) - 2M2] . )

d. Finite paths of integration.
As long as one does not move over a singularity by contracting the path of

integration C of Figure &, one may take any finite path in the complex w-plane

which joins the points w = - %% and w = %3. There is, however, a pole of the

expression %; log Ch(A\) at w = wo (see equation 72). At this point lies the root
of the characteristic equation Ch(KOOO) = 0, The first factors T(\) are different

functions. In the case of the integral 6p (see equation 2) the first factor

T(N) = tanh ™t 2~ has a branch point at wy = cotanh~1 MNooo? Decause A/Ngo, is

Oco
Just 1 at this point. The same is true for the integral Jo (see equation 5). 1In

other cases, in which the first factor is regular at w = Wy, one could use the
residue theorem at w = wo and contract the integration path for the remaining

integral to the straight junction from w = - i to w = gi . But we shall use
2
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always the same contour in the w-plane to have the same program for the numerical

calculations of all integrals (2) to (7) and (52, 55). We prefer therefore to

use always an integration path which passes the point w = wy on the right side.
This method has the advantage also that it remains practicable for ¢ =1 where
the pole of the second factor at w = wo = O joins another from the left side of

the w-plane, namely w = - wy = O, to a double pole at w = O.

e. A half parallelogram as the path C of integration.

W(u) becomes infinite at the upper end of the integration path u = 0 to
u= 1. This is inconvenient for numerical integration. One has to detach the
environment of u = 1 from the integral and to treat it separately. This can be
performed by choosing the half parallelogram in Figure % as path C of integra-

tion.

Niw
sl e oz
2 2
d
o ¢ - T
2 C —— 2

Figure 3. How to make the path of integration finite.

Then we may write

1
I = JF T(u) W(u) du
0

0
C)C“‘“vmj
=
£
=
£
Q
c
+
l
\
=
Z
|@
I_l
0
o0
Q
=8
>
fo¥
=
=
d




- 37 -
with p = tanh g. The point g of intersection may lie at every finite distance

d > O on the right side of W

N +1
qQ = d+wy = d+ cotanh™t Mo = d+= log O~ — (88)
@® 2 Moo - 1
oo}
1 + Ao tanh d 1 (xgoo -1) tanh d 1
P = tanh g = = 1+ > (89)
XOG) + tanh 4 >\.ow }\Ow + tanh d >\'OOO
The first integral on the right side of the equation (87) fromu=0 to u = r
is equal to the two parts on the path C in Figure 3 which are parallel to the
real axis Wy
b o o N
(1) T(u) c + E: -c + a(B—c)] u“ o+ a[a + B(C-lﬂ u
e = 5 - (90)
0 1 -2 [l + au2 - u(c+au2) tanh UJE-F[E u(c+au2)]2
To write down 1(2) we remember (84) and that dw; = O on its integration path.
Hence from (84) remains
+7/2
I = = —-—-E—[(TlR- T,Q) + i(T2R+ TlQ)] (91)
T /\lCh(x)[
- T/2

T, and Tp in (91) are the real and the imaginary parts of T(A\) = Ty + iTp;

and A, |Ch(>\)|2, R and Q are given by (77), (79), (85a), (85b), together with (86).
1(8) ig always real for the integrals 6p, 6%, 67, @y, ¥, [see equations (2)

through (6)], and it is real also for the integral X(\) [see (7)], if N is real,

for instance if N has the meaning of u = cosqﬂ of the direction’:zaof neutrons in

£(0,1)/3(0) of the equations (36a and 36b). Then the imaginary part of (91) is

zero and we obtain simply



T/2
1 dw,
Ig‘ggl = % f /\ICh(i)IQ (.‘TlR_TQQ’) . (92)
- /2

Finally, one finds that the integrands are symmetric to Wy = 0 and may be written
as twice the integrals from wp = O to W/2:

T/2
Il(é;l _ 2 f ——%—(TlR -T,Q) . (92a)
m Alen(n)|?

Because d is an arbitrary positive number, we get a check of our numerical calcu-
lations with the electronic computer by choosing different values for d. The
form (90) of the integral I(l) is the original one, but without the diverging
part of the integrand from u = p to u= 1. One has to choose d, which is in-
volved in p and ¢ according to the equations (88) and (89), in such a manner
that both integrals I(l) and 1(2) can be calculated with good precision. If d
is too small one comes too near to the singularity of the integrand of I(E) at
W = Wo; 1f d is too large one comes too near to the singularity of the integrand
of I(l) at u= 1. It is to suppose also that the best value of d could be a
Tfunction of ¢ and a. By taking 2 or 3 different positive values of d one obtains
a check of the accuracy of the result.

Finally, we consider the double integral ji({); see equations (L46) and (L6a).
We chose there a circle in the complex u-plane as one path of integration. We
separated real and imaginary parts of X(— p)_= Xl(ul,ue) + ixé<“1:“2)° Zi and Xg
depend on py, Hp, ¢, & and u. As long as we integrate over u each of these
functions is a real function T(u),vsﬁitable‘to be put in I(l) of equation (90).
By the transformation of the path of integration into the complex w-plane, how-

ever, K = X'(u sy Hos Ny +iIN ) and X, = X'(u‘,u sAy+iN,) become complex functions
L N1 RRs 0] 2 2 VP11 B AL 2
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again, now in the w-plane. In equations (52) and (55) the functions T(u) in the

sense of (63) are given for ?’(l and 7(2. They shall be written down in the follow-

ing, together with their separated real and imaginary parts T(\) = Tl + iT5 1n

the complex variables w = w1 + iwp and N = N + ik, respectively:

(a) for?(l
1 2
T(u) = M log (m-2ujutu®)
T, = log | (me-zuns)® 4 W2 -n )2 ]
I A L R P e R
1 1 enplpp-ng)
T S | o(H1-M

m+ M - Ep.l?\.l

(b) forX:2

1
T(u) = = tan™1 -

2 -

-\ -] -A\
r - = <}an'l Mgéul %) + tan ug(ul %) S
1k (H1-M1)= + R+ oo (h1=2p)= + A" = poho
(n1-n )2 + (potnp)® 1 -1 2o
7, - = H1-A1 Hothp = T tanh poho
8 (Hr-?\l)g + (pho-Np)2 (Ml“kl)g + Mgg + ?‘-22

The quantities H1s Mo, m are related to the variable of integration 71 by the
equations (+8a and 48b) and A Apy M to the variable wy (Wl is a constant in
section Te) by the equations (75, 76, 78) or to the variable? on the elliptic
path of integration in section 7f by the equations (97, 98). The integrands

are symmetric to Wy = 0 again and we may apply formula (928.) for the integral

(93a)

(93b)

(93c)

(9ka)

(9kb)

(9ke)

over w.. Hence we obtain for the quantities?(l and 7(2 involved in the transient -

2
part of the current density jt(f ):



- Lo -

p
1
Xﬁ = g log (m—2p1u+u2) W(u) du
0
/2
1 dw2 {j [ o 2 o)
b= ——E— R+ log |(mM-2uqng)2 + 15 (ug-Aq) (95)
b f Alen(n) |2 et
Aoy -Nq)
+ 2Q « tan~1 Chlst
m+ M- E“lkl
| P ,
Xé = E jﬁ (tan"l ——EEL—Q W(u) du
2 M1 - u
0
/e (1 0y) (51 ny)
1 dw Mok =N Mol -A
+ - _____2__5 OR [Fan'l 22 L 2 + tan™t 22 12 = J’
Tro /\'Ch(?\.)l (B -MDT + A5 + pohg (1A 5 - iong
(hy-7)2 + (hothp)2 (96)
- Q-log .

(Hl—Kl)g + (Hg'xg)e

2

The quantities A, ICh(k) > R, Q have the meaning indicated by the equations
(77, 79, 85a, 85b). Putting these expressions in (95) and. (96) one gets the

quantities Xi and Xé as functions of 7, which 1s the variable of integration in

the integral (46a) for the transient part of the current jt(g).

f. A half ellipse as path C of integration.

We determine the ellipse by the request that Yo and - wy should be the
focuses of the ellipse and g its minor half axis. This guarantees that the
ellipse passes the point Wy = cotanh™t Nooo 2t the right side, its vertex being
at ry = wg + %2 . A point P on the ellipse is defined by the angle ¢ between

the real wl—axis and its distance between wy = L) and the point P (see Figure k).




P “«—c

v

w1

Figure 4. A schematical picture of the half ellipse as

path C of integration in the complex w-plane.

The coordinates of the point P are w = w] + iwp with

e cos f + cos
W1 = WO+£—- ? = I‘O —-——-—_——?
io + Wy cos P 1L+ f cos g
e sin ¢ sin @
Wp = — = ro(l-fg)
4 ry + Wy cos @ 1+ f cos@
o)
with the abbreviation f = — = - cOs qi .
To

The differentials are

Vo de
1+ f cos @ 1L+ fcos?

(97)

(98)

(99)

(100)



b2 -

The angle 1, belonging to the upper endpoint Wy =0, wp = gé is

(101)
T 2w T - T 1 A + 1
Ppo= T+ tan~t =2 - = + tan l<_2_ cotanh™1 N ) = — + tan~1 <— log L) .
2 T 2 T @, 2 T Moo - 1
T
¢l lies always between 5 and m. In the case of isotropic scattering without
absorption (¢ = 1, a = 0) the half ellipse degenerates in a half circle because
Wy lies then in the origin of the complex w-plane, and we have ro = g and ¢i = g.

In the case of perfect absorption (¢ = O) on the other hand Wy tends to c and
?l to .

The advantage of the elliptical way is that we have to calculate only one
integral I instead of two integrals I(l) and I(E) in section Te.

The integrals 90 @+, e, ¢O’ ¢a‘and }KR) for real \'s Eee equations (2)

and (Y)J,have in their transformations in the form (7&) the quality of accepting
in the lower half w-plane the conjugate complex values of those in the upper
half w-plane. Hence the integral can be reduced to an integration over @ from

0 to @ . They take the following general form

I = —
2ro

P
- /fl T, [R(£+ cos ¢) - Q sin 9] - Tp[a(s +cos ¢) + R sin @] ap  (102)

/ A~ fen(a)[2- (14 £ cos 9)2

cn(n)| 3,

with their corresponding functions T(x) = Tl + iT2 and the functions A,
R, Q denoted in the equations (77), (79), (85a) and (85b). Using wy and wy from
(95) and (96) again, one obtains a representation of the integral which contains

only the constant f of (99):
ol
2

Ty2y - Tpzp, -
I = - e g T N ‘ —;
T ( A‘Ch(x)‘g (L+f cos ?D

0]

ap - \ (103)
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with

Zq (1-£2) wiR - R (10ka)

il

Zis (1-£2) wQ + VR . (104b)

For the calculation of the transient part jt(g) of the current—den§ity the corre-
sponding functions Tp and T, are given for Xi by the equations (95b) and (95c)
and for X, by the equations (94b) and (9kc).

The integral I is only a little more complicated than the integral (92a)
because Z1/(1+f cos @) and Zy/(1+ T cos @) replace now R and Q, their representa-
tives of the elliptic path of integration. Furthermore, the interval of inte-
gration is extended from 0 < P = T/2 to 0 € PP (/2 < 9& < T). We gained,
however, the advantage of having to evaluate only one integral for each of the
quantities 6y, 6%, 67, @y, @5, X(N), X{ end X,- The two different methods of

integration may serve as a check of the results.

ACKNOWLEDGEMENT

The author wishes to thank Dr. Alvin M. Weilnberg for several helpful dis-
cussions and for the opportunity to spend the summer 1959 at the Ozk Ridge Na-

tional Laboratory.






R A PR G

C.

ORNL-2901
Physics and Mathematics
TID-4500 (15th ed.)

INTERNAL DISTRIBUTION

E. Center

Biology Library

Health Physics Library
Central Research Library
Reactor Experimental Engi-
neering Library

Laboratory Records Department

Laboratory Records, ORNL R. C.

Alvin M. Weinberg
Lb B.

J.
J.
E.
E.
A.
M.
W.
W
G.
R.
Se
F.
A.
J.
We
M.
Je
R.
X.
T.
A,
C.
C.
C.
D.
H.
D.
E.
A.
Jo
R.
L.

Emlet (K-25)
P. Murray (Y-12)
A. Swartout
H. Taylor

D. Shipley

H. Snell

L. Nelson

H. Jordan
Kofink

E. Boyd

A, Charpie

C. Lind

L. Culler
Hollaender

H. Frye, Jr.
M. Good

T. Kelley

L. Fowler

5. Livingston
Z. Morgan

A. Lincoln

S. Householder
P. Keim

S. Harrill

E. Winters

S« Billington
E. Seagren
Phillips

0. Wollan

J. Miller

A. Lane

B. Briggs

D. Roberts

201.
202.
203.
20k,
205.
206.
207.
208.
209.
210.
211.
212.
213.
21k,
215.
216.
217.
218.
219.
220.
221.
202,
223.
o2k,
225.
226.
227.
228.
229.
230.
231.
232.
233.
234.
235.
236.
237.
238.

239-240.

21,

W.
H.
E.
R.
G.

C..
. C.

R.
wh
E.

Haefele

S.
I.
R.
R.
P.
A.
N«
C.
P.

Moran
Inonu
Coveyou
Satchler
Bhalla
Preskitt
Lyon
Koehler
Blizard

M. E.
M. J.
J. E.

Rose

Skinner

Sherwood

R. B. Murray

R. R. Dickison

J. A. Harvey

A. Simon

P. M. Reyling

J. J. Pinajian

F. C. Maienschein

E. Guth

G. T. Trammel

T. A. Welton

A. C. Downing

L. Dresner

W. K. Ergen

W. Gautschi

W. F. Gauster

E. P. Wigner (consultant)
R. F. Christy (consultant)
W. A. Fowler (consultant)
H. Peshbach (consultant)

M, Goldhaber (consultant)
M. S. Livingston (consultant)
N. F. Ramsey (consultant)
J. R. Richardson (consultant)
Jo A. Wheeler (consultant)
J. H. Van Vleck (consultant
ORNL - Y-12 Technical Library,
Document Section

N. Betz



242,
243.
D4d
45246

247-250.

251.
252,
253,
254..
255-864 .

- L6 -

EXTERNAL DISTRIBUTION

Division of Research and Development, AEC, CRO

W. K. Panofsky, Stanford University

A. Glassgold, University of Minnesota

General Dynamics Corp., San Diego, Calif. (1 copy each to F. de Hoffmann
and L. W. Nordheim)

California Institute of Technology (l copy each to R. P. Feynman,

M. S. Plesset, H. W. Liepmann, and P. S. Epstein)

H. Jehle, University of Nebraska

L. C. Biedenharn, Rice Institute

H. Margenau, Yale University

V. Bargmann, Princeton University

Given distribution as shown in TID-4500 (15th ed.) under Physics and
Mathematics (75 copies - OTS)




	image0001
	image0003

