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ABSTRACT

The experiments on allowed B transitions, which have provided virtually

a unique interpretation of the beta interaction in the form of the V-1.2A law,

shed no light on the question of the possibility of a contribution from the

pseudoscalar interaction. In order to determine whether such a contribution

is really needed, we have examined the 0 —* 0 (yes )beta transitions. The

only relevant experimental data are the B longitudinal polarization and the

B spectrum. Using the form of the pseudoscalar interaction, which results

from the Foldy-Wouthuysen transformation, the 3 longitudinal polarization,

resulting from the A and P mixture, has been calculated. The calculated 3

polarization and 3 shape factor depend on two parameters, namely, (l) the

ratio of the coupling constants of the P and the A interactions and (2) the

ratio of the nuclear matrix elements. We have tabulated the 3 longitudinal

polarization and the 3 shape factor for Pr (0~—> 0+) and Ho (o"-->0 )

considering the nucleus to be a sphere of a uniform charge distribution with

the nuclear radius as 1.2 A1'5 10" 5 cm and properly taking into account the

finite deBroglie wavelength effect. We have carried out an extensive numerical

analysis of the accurate experimental data on Pr (0~—=?0 ), namely, (l) the

3" longitudinal polarization measurement of Mehlhop et al and (2) the 3

shape factor of Porter and Day, as well as of the 3" longitudinal polarization

measurement of Ho due to Buhring. The conclusions are that (l) the absence

of the pseudoscalar interaction is consistent with the existing experimental

data and (2) the upper limit on \cp/Ca\» which also Sives afit to the ex"
perimental data, is 90 which is about half the previous estimate as appears in

the literature. The assumptions made are; time reversal invariance for the

tlWW«l*WWf|*«*t
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strong as well as for the weak interactions is valid and the two component

theory of the neutrino is used. It is pointed out that accurate

measurements of the 3 longitudinal polarization (with an accuracy ^ 1$)

at four or five different beta momenta and the beta shape factor in the

0-->0 (yes) transition can settle the question of the existence of the

pseudoscalar interaction in the nuclear beta decay.



CHAPTER I

INTRODUCTION

The determination of the nature of beta interaction has been the

subject of investigation for several years. The experimental con

firmation of parity breakdown in nuclear beta decay opened a new field

of experimentation, and a very clear understanding of the main interactions

has emerged from the "post" parity experiments. The experiments, to be

briefly described below (Section I), lead uniquely to the vector and

the axial vector interactions; but have no bearing on the pseudoscalar

interaction. In Section II, it is discussed why these experiments do

not have any bearing on the pseudoscalar interaction; then the experiments,

which can best determine the existence, and hence, the contribution, of

the pseudoscalar interaction are described (Section III). It is the

purpose of this dissertation to discuss the pseudoscalar interaction by

formulating2 the theoretical expressions for these experiments and by

comparing them with the existing experimental data.

1C. S. Wu, E. Ambler, R. Hayward, D. D. Hoppes and R. P. Hudson,
Phys. Rev. 105, 1413 (1957). The hypothesis of nonconservation of parity
in 3 decay was originally suggested by T. D. Lee and C. N. Yang, Phys.
Rev. 104, 254 (1956).

2We follow the formulation of the pseudoscalar interaction given
by M. E. Rose and R. K. Osborn, Phys. Rev. 93, 1315 (1954).



I. EXPERIMENTS INDICATING VECTOR AND AXIAL VECTOR INTERACTIONS

(a) One consequence of the parity breakdown is that the 3 particles

are longitudinally polarized in the nuclear beta decay. The longitudinal

polarization of 3 particles has been measured in many cases of "allowed"

beta transitions, and the results for 3" and3 are - — and — respectively

within an experimental error of 10$. Here — is the ratio of the
c

particle velocity and the vacuum velocity of light.

(b) The particle of spin |- and mass zero accompanying 3" emission

is called an antineutrino, and for 3+ emission, it is called a neutrino.

To explain the experimental polarization data, the vector and the axial

vector interactions require the neutrino to be "left-handed"; whereas

the scalar and the tensor interactions demand the neutrino to be a "right-

handed" particle. The left-handed and right-handed particles have

negative and positive helicity respectively. The experimental obser

vation of the neutrino helicity was made by Goldhaber, Grodzins and

Sunyar. This experiment involves Eu1^2 (0~), which by K-capture goes

3
C. S. Wu, Proceedings Rehovoth Conference on Nuclear Structure

(North-Holland Publishing Company, Amsterdam 1958), p. 359; and J. Heintze,
Zeits. fur Physik 150, 134 (1958). For a recent summary of 3 polarization
measurements, see A. I. Galonsky, A. R. Brosi, B. Ketelle and H. B.
Willard (to be submitted for publication in Nuclear Physics).

4
M. Goldhaber, L Grodzins, and A. W. Sunyar, Phys. Rev. 109, 1015

(1958). This has been confirmed by I. Marklund and L. A Page, Nuclear
Physics 9, 88 (1958).

IMWWlfr.aMPmilMMMJfflM^ - •^.^vwstMWi^^



3

to the excited state of Sm (l"); which in turn decays by a dipole

gamma transition to the ground state of Sm (0 ). By observing the

resonance scattering of these gamma rays in SmpO,, only those 7-rays,

which go in opposite direction to that of the neutrino, were considered.

The 7-ray helicity is the same as the neutrino helicity. The 7-ray

helicity was found to be negative and therefore the neutrino helicity

is negative.

(c) Thus the experimental data on 3 longitudinal polarization in

allowed transitions and the helicity of the neutrino lead to the vector

and the axial vector interactions. The relative sign and strength of

the vector and axial vector interactions are fixed by the nuclear 3 tran

sitions, where these interactions interfere. The most informative and

carefully analyzed case is that of a polarized neutron transforming into

a proton with the emission of an electron and an antineutrino. Burgy et

5
al measured the anisotropy of the electron and the antineutrino with

respect to the spin direction of the neutron . The result of this ex

periment is that the relative sign of the vector and the axial vector

coupling constant is negative. Comparison of "ft-values" (comparative

half lives) of a neutron and 0 gives (1.21 - 0.03) as the ratio of the

absolute magnitudes of the axial vector and the vector coupling constants.

The 3 interaction in the form of V - 1.2A law is consistent with the other

5M. T. Burgy, V. E. Krohn, T. B. Novey, G. R. Ringo and V. L.
Telegdi, Phys. Rev. 110, 1214 (1958) and Phys. Rev. Letters 1, 324 (1958).
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experiments on "allowed" beta transitions. To understand why the ex

periments on "allowed" transitions do not have any bearing on the pseudo-

scalar interaction, we give below the classification of the allowed and

the forbidden beta transitions which is commonly used.

II. ALLOWED AND FORBIDDEN TRANSITIONS

The most general parity nonconserving interaction hamiltonian

density for the nuclear 3 decay is

A number of recent review articles appear in the literature. See
references 7, 8, 9, 10, 11, 12.

'Invited papers at the Conference on Weak Interaction, Gatlinburg,
Rev. Mod. Phys. 31, 782 (1959).

M. E. Rose, Handbook of Physics (McGraw-Hill Book Co., New York,
1958) p. 9-90.

9D. L. Pursey, Proc. Royal Soc. of London, Series A, 246, 444 (1958).

10Ee J. Konopinski, Annual Rev. Nuclear Science 9, 145 (1959).

1:LM. Deutsch and 0. Kofoed-Hansen, Experimental Nuclear Physics
Vol. Ill (John Wiley and Sons Inc., New York, 1959) p. 427.

12Y. Smorodinskii, Soviet Physics Uspekhi 67 (2), No. 1, 1 (1959).

M. E, Rose, reference 8.
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H=2l (^fp J\ ^V *(4Je^LxLCx+Cx 75-l ^ +hermitian conjugate (l.la)

The summation over x implies the five possible interactions. The first

term represents 3" emission, and the hermitian conjugate of this gives the

3+ emission. C and C are generally called the parity conserving and parity

nonconserving coupling constants. j\ is a 4 x 4 matrix and in terms of

the 7-matrices which obey the following commutation rules:

V 7^ + 7/*» 7" = 2 0^>U (Z^and y = 1, 2, 3, 4)
Let J~l = 7^0. Then 0 has the following forms for the respective inter

actions

Scalar 1 (one component)

Vector 7 (four components)

Tensor 7 7; ^ "# ^ (six components)

Axial Vector y y (four components)

Pseudoscalar y (one component)
5

y y

Making use of 7k = -IP** (k =1* 2, 3); 7^ = -P , we write (l.la) as

H = ^_ H + hermitian conjugate. (l.lb)
x =1 x

where

* i

It is the occurrence of the cross terms between Cx and C that
give the parity nonconserving effects.

** /l 0\ _/0 $\
In this representation: 3 =[ I; a =( g )

1lo if 75 =7i727374; yf-^=^
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hs - (4£rN)(<p Ccs+v5] % )

HV • ^P V^I tVV5 ]%> - (^%)-(4^a UCV+C;751 * )
HT =(^3^%)'(f*P?[CT+C;75J^ )+(^pP5%).(y*Pa?LCT+V5-] ^ )

HA - W** ?%)-(?e * [CA+V5] 4i >- ^5YK)(^5 LVV5I Hi )
Hp= (r>5%)(Lv>5Lvc;75]^)
In equations (l.l), ^p and \J/ represent the creation operators for a

proton and an electron respectively, whereas Lp„ and V^* are the de

struction operators for a neutron and a neutrino in the negative energy

state. One can consider a neutron and a proton as the two states of a

nucleon, and we define an operator Q which transforms a neutron into a

proton. Thus we can write the equation (l.la) as

h6 - ;>j7 q . (y*Ax LVV5] %) +h- c- (1-lc)
X

Strictly speaking, the setting up of the interaction hamiltonian

density for the four fermions is a field theory problem and one requires

second quantization of the field amplitudes to insure the Pauli exclusion

principle and to describe properly the creation and the destruction of the

particles. The usual field theoretic * approach is to set up the first

order perturbation theory formula for the transition probability between

the initial and the final nuclear states. Then in this formula, \V and

j£ are treated as the proper Dirac wave functions. Using the relativistic

units (ft = c = m = l) the transition probability for p" emission between
6

»**»!»»liff*IBMiW*pl«^



the initial and the final nuclear states, represented as ^^ and ^J^, is

given by the following:

^^SlJvTf (1,2a)
9 is the density of the final states and ^ is the summation over all un

observed observables.

;• k=l J x

In (1.2b) beta interaction operator is written in the space of the kth

nucleon and the lepton covariant (^g/^. LCx+Cx753 V )is to be evaluated

at the position x of the k-th nucleon. The integration is over all nuclear

co-ordinates and it is to be summed over all nucleons.

The selection rules for the allowed and the first forbidden beta

transitions depend on the rotational properties of the interaction operators

in the nucleon space. The Coulomb effects on the P particle do not in

fluence the rotational properties and as such, in the following discussion,

the electron and neutrino are represented as Dirac plane waves.

Te -ue e (1.3a)

4i -uu e"1^ (1.3b)

In (1.3), p and q are the (physical) momenta of the electron and the anti

neutrino respectively. Letting P » p + q; substituting (1.3) in (1.2)



II -iP*r i d

X

r. is the position of the decaying nucleon and r, $ nuclear radius (r).
k •£

In the above we have introduced the conventional notations'

k=l J

P is at the most as large as 10 (in mc units), r = 0.02 — for A » 210;

therefore Pr<~ 0.2. In general Pr <<_ 1. Using the Raleigh expansion

e-i?.? =̂ (.if (2e+i) jt (Pr) Tt (W) (1.4a)

-iP-r
e

and

In arriving at (l.4b), we have used

I
i (vr)e , (**)
3t KtT) (21+1)11

M

;(J),r«sJ(9)
We write (l.4b) as

www«wpiwwwwwaw«wwiwwiwi^^



-iP

V.-^ (1.5a)

where

= 4jt(-i) mm rp^
£,m "(2t+i)i: $*

w

a (1.5b)

Substituting (l.5a) in equation (l.2c)

-2* S If(«X tCx+V5l u*} ^-a* ,1
x £,M

(l.2d)

Now JT is a tensor of a certain rank, depending upon the inter-
x

action. For example, J\x =P, 1, 75, P75 are zero rank tensors, because

these are scalar under three dimensional rotation. Let us denote them by

T tfl ). Similarly whenjT . per, £ , a, pa, J\ is atensor of rank
ov x" " X x

one and let us represent it by Tn (-A. ). In the nuclear matrix element

of equation (l.2d), we have

ffA^^^ijf.M

^x^ <?> •CM^x> # <?> - '

- 1 \iX TX ^x' ?)

L « 0 or L = 1.

(1.6)

where bT . is a constant, which for our discussion is irrelevant. Sub-
L £ A.

*b - C(L(ZX;/a-M, M,/^) is a Clebsh-Gordon Coefficient.
Xj c a*



J.AJ

stitutlng (1.6) in (l.2d) we have

li"'

w-2^|^(uX CVC>5l ^)£ V,M \,£X[yf V^^i
1 x e,M,\ J

(l.2e)

Ha.
T. are the components of tensor rank X where, in steps of unity,

/L-C I <; X<- U-l (1.7)

Thus L, c and X must form a triangle ) and we represent it as A (I>jL X).

This notation will be used wherever needed. To conserve angular momentum

in the nuclear matrix element of Eq. (l.2e), we must have ^ (J„XJ.). J„

aad J. «re tha spins of the final and the initial nuclear states. If we

represent the parity of \C-0^,r) as *(*.)> then * * =^x^* In tlae

Raleigh expansion, (l.5a), we get the leading term, when t, is zero. The

higher the value of C , the smaller is the term in the expansion. Also

from Eq. (l.lf) we observe that the even operators (in the Dirac sense,

like p) appear on the left side and odd operators (in the Dirac sense,

like a) appear on the right-hand side. As pointed out earlier, these

operators in the nuclear space are 4x4 matrices. In the nuclear matrix

elements the even operators connect the large component with the large

component and the small component with the small components of the nuclear

wave functions involved. On the other hand, the odd operators connect

the large and small components. The small component is of the order —

of the large component. As such the even operators with the leading term

^
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of the Raleigh expansion (for L= 0) give maximum contributions to the

transition probability. Such transitions, for which the selections are

given by &(JfXJ±) and itfit± =«(\)> and which have the largest tran

sition probability, are called allowed transitions.

Now we also note that for the pseudoscalar interaction, only an

odd operator p75 (a zero rank tensor) is involved. Therefore, the max

imum contribution of this interaction arises from the selection rules

A(jpOJ.) and A rt = - 1. Now, if there were no other interactions in

nuclear p decay, then this transition (AJ = 0; A« = - l) would be

called an allowed transition. But we know that there are other inter

actions (the vector and the axial vector) which have much larger contri

butions; therefore the transitions with these selection rules are called

first forbidden.

In the first forbidden beta transitions the contributions to the

transition probability come from

(1) The even operators with the term in the Raleigh expansion for

(2) The odd operators with the term in the Raleigh expansion for

1 = 0.

The selection rules for the first forbidden are 1^J| = 0, 1, 2

and & it = - 1.

In Table I we list the nuclear operators for the allowed (n = 0)

and the first forbidden (n = l) transitions. In Table II, we explicitly
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TABLE I

NUCLEAR OPERATORS FOR ALLOWED (n = 0) AND FIRST FORBIDDEN (n

TRANSITIONS

= D

-JT x
Interaction *cnx) Rank X *{\)

Even Operators

P Scalar

1 Vector

P <r Tensor

Axial Vector

Odd Operators

a Vector

P6? Tensor

'5
P7

5

Axial Vector

Pseudoscalar

p 0

Pr 1

1 0

-*
r 1

P? 1

P ffT 0

p£ X? 1

P(3^"zrz-^-r) 2

^ 1

0

<5" AT 1

(3G~ r -£•"?)
x z z '

2

a

pcT

75
Pr

5

1

1

0

0

One component of the tensor has been shown.

mmmmmmmmmm m>mmmimmmwmmmm

n

0

1

0

1

0

1

1

1

0

1

1

1

1

1

1

1

l*t«$^NiH*«*fW*s>1*(j*ia&*<f* ii
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TABLE II

ANGULAR MOMENTUM AND PARITY SELECTION RULES FOR

ALLOWED AND FIRST FORBIDDEN TRANSITIONS

Interaction Tx A it A(JiJfX)

Allowed:

Scalar P 1 ^(J±Jfo)
Vector 1 1 ^(J^O)
Tensor P«r 1 MJjJfl)
Axial Vector 1 ZiC^Jfl)

First Forbidden

Scalar Pr* -1 ^(JiJfl)
Vector

->

r -1 ^J^D
a -1 AC^Jjl)

Tensor pC"-r -1 ^(JiJf0)
P? xr -1 AC^Jjl)

p(3rr-<yr)
z» z

-1 A(JtJf2)
Axial Vector 5"-r -1 A(j.jJfO)

-4 -»

o-xr -1 MJ^D
(3 «"zrz- e--r) -1 A(JlJf2)

Pseudoscalar P75 -1 ^(J^O)

Only one conrponent of the tensor is indicated.
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give the selection rules for the allowed and the forbidden P transitions.

In general, the nth forbidden transition has the following selection rules

A J = n, n+1 for n > 1

&*- (-)n

III. EXPERIMENTS FOR INVESTIGATING THE PSEUDOSCALAR INTERACTION

Due to the parity selection rule, the experiments on the allowed

beta transitions do not have any bearing on the existence of the pseudo-

scalar interaction. The operator P75 (in the nucleon space) is a zero

rank tensor and has odd parity. Therefore, the pseudoscalar interaction

contributes when AJ=0 and A it = - 1. The pseudoscalar and axial

vector interactions contribute to nuclear transitions with J± = Jf = 0

and n.itf = -1. Generally this type of transition is written as 0 -> 0

(yes). Since the nuclear matrix elements are very hard to evaluate they

are treated as parameters, which are adjusted to fit the experimental

data. Though, in principle, the contribution of the pseudoscalar inter

action can be determined also from transitions (j^ =Jf -f 0; it±itf =-l)

where the pseudoscalar, axial vector and vector interactions contribute,

there are more unknown (nuclear matrix elements) parameters, thus making

the analysis harder. The best cases for investigating the existence of

the pseudoscalar interaction are 0-^0 (yes) transitions because the

vector interaction does not contribute at all. With the known negative heli

city of the neutrino, the pseudoscalar and the axial vector interactions,
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taken separately, give opposite longitudinal polarization of 3particles.

The relevant experimental data on 0 -^ 0 (yes) transitions are

(1) The 3 spectrum

(2) The longitudinal polarization of 3 particles.

At present, 0-j>0 (yes) transitions occur in the decay ^ of Pr ,Ho ,
_ ±k-k 152 206
Ce , Eu , and possible Tl

IV. STATEMENT OF THE PROBLEM

The problem, considered in this dissertation, is to investigate

the existence of the pseudoscalar interaction in the interaction hamil-

tonian density for the processes of nuclear beta decay, by:

(1) Formulation of the theoretical expressions for 3 longitudinal polar

ization and the 3 spectrum in 0 -» 0 (yes) transitions with the correct

2
form of the pseudoscalar interaction and the axial vector interaction.

(2) Making an extensive numerical analysis of the presently available ex

perimental data, using the derived formulas, with the calculated electronic

functions, which include accurately the nuclear finite size and the effect

due to finite deBroglie wavelength.

•TD. Strominger, J. M. Hollander and G. T. Seaborg, Rev. Mod. Phys.
30, 585 (1958).

*

M. E. Rose, Phys. Rev. 82, 389 (1951); M. E. Rose and D. K Holmes,
Oak Ridge National Laboratory Report No. 1022 (Unpublished).

M. E. Rose and C. L Perry, Phys. Rev. °£, 479 (1953)
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The remainder of this chapter summarizes the history and the

present status of the pseudoscalar interaction in nuclear 3 decay. In

Chapter II we find an expression for the interaction hamiltonian density,

by removing the odd operators with the Foldy-Wouthuysen transformation.

Also the representation and notation used is discussed. In Section I of

Chapter III, time-dependent perturbation theory is outlined and the

asymptotic wave function of the beta particle is given. Aftar a

brief discussion of the polarization operator in Section IIA, the main

problem of longitudinal polarization and 3 spectrum is set up for 0 —^ 0

(yes) transitions. After assuming time reversal invariance in weak and

strong interactions and the two-component theory of neutrino as valid, we

give the resulting formulas for the 3 longitudinal polarization and spectrum

in (3.35) and (3.37) on pages 89 and 90 respectively. The relevant ex

perimental data on 0 —^ 0 (yes) transitions are summarized in Section II

of Chapter IV. In Section III of Chapter IV, after a brief discussion

of finite nuclear size and finite deBroglie wavelength corrections, the

methods of analysis are described and results are given. Chapter V con

tains the conclusions of this investigation and a discussion of these

conclusionso In Appendix A, for clarity, the symmetry relations of

Clebsch-Gordon coefficients, Racah coefficients and X-coefficients are

listed along with some "relations" which already exist in the literature.

Appendix B contains the neutrino wave function in the negative energy state

in (Section l), and the general expression of 3 matrix elements for the
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axial vector and the pseudoscalar interactions is worked out in detail ,

in Section II In SectionIII ofAppendix B the results of Section 2 are

specialized to 0 —» 0 (yes) transitions. Appendix C shows the details

of a certain Racah recoupling in Section 1, and a short discussion of

time reversal invariance in strong and weak interactions in Sections 2

and 3 respectively. Appendix D lists the expressions of certain functions

(introduced in polarization expression of Chapter III) up to order R (the

nuclear radius).

V. HISTORICAL BACKGROUND

In 1934, Fermi formulated a field theory of beta decay in close

analogy with the field theory of electromagnetic radiation. He considered

only the vector interaction by taking the interaction hamiltonian density

as a scalar product of two 4-vectors (l^-py^y ^fN) and {^e7\^7^ % )•
15

Soon it was realized that one could make other possible combinations

in the interaction hamiltonian density, and they are called the (l) scalar,

(2) tensor, (3) axial vector, and (4) pseudoscalar interactions. In the

llj"E. Fermi, Zeits. fur Physik 88, 161 (1934).

A 4-vector transorms under Lorentz transformation as do x, y, z,
ict.

15H. A. Bethe and R. F. Bacher, Rev. Mod. Phys. 8, 189 (1936).
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setting up of the hamiltonian density, the following were assumed:

(1) The interaction hamiltonian density is hermitian so as to

treat e~ and e on the same footing.

(2) The beta interaction is direct, i.e., no derivatives of the

field amplitudes exist.

(3) The beta interaction is local, i.e., the field amplitudes

are taken at the same space-time point.

(4) The classical beta hamiltonian was, a priori, considered a

scalar. The experiment proved it otherwise.

In equation (l.l) setting C equal to zero gives the classical

beta interaction hamiltonian density.

In 1941 the theory of forbidden beta transitions was given by

Konopinski and Uhlenbeck and extended later by others. ' The ex

perimental data on P spectrum, half-life and electron-neutrino corre

lation were compared with the theory to determine the nature of P

interaction. The energy dependence of the p spectrum in allowed tran

sitions indicated that there is little or no interference between the

vector and the scalar interactions nor between the axial vector and the

tensor interactions. The above statement is generally expressed as

-1 c

E. J. Konopinski and G. E. Uhlenbeck, Phys. Rev. 60, 308 (l94l).

17E. Greuling, Phys. Rev. 61, 568 (19U2).

D. L. Pursey, Phil. Mag. 42, 1193 (1951).
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19 20
that the Fierz interference ^ terms are almost absent. As late as

September 1957, the scalar and the tensor interactions were considered

21
as the main interactions mostly due to erroneous results of Rustad and

22
Ruby.

From 1952 through 1957, several authors2'25'2'25 expressed doubts
•I (• -I Q

about the correctness of the conventional treatment ' of the pseudo-

scalar interaction. In the conventional treatment the parameters

describing the lepton field were considered as independent of those

describing the nucleon. In the "new" formulation of the pseudoscalar

interaction a gradient operator appears, which operates on the lepton co-

* 2
variant. As an illustration Rose and Osborn applied the formula for the

spectrum in 0 -> 0 (yes) transitions using the pseudoscalar and the tensor

19M. Fierz, Zeits. fur Physik, 104, 553 (1937).
20 j.
WJ. B. Gerhart, Phys. Rev. 109, 897 (1958): gives b = 0.00 - 0.12.

R. Sherr and R, H. Miller, Phys. Rev. 95, IO76 (1954): gives
bQ T = - 0.01 - 0.02.

21
E. J. Konopinski, Proceedings Rehovoth Conference on Nuclear

Structure (North-Holland Publishing Company, Amsterdam 1958T~p. 318

??
B. M. Rustad and S. L. Ruby, Phys. Rev. 89, 880 (1952).

25T. Ahrens, E. Feenberg, and H. Primakoff, Phys. Rev. 87, 663 (1952),
24

T. Ahrens, Phys. Rev. 90, 974 (1953).

25yG. Alaga and B. Jaksic, Glansik Mat-Fiz. i Astr. Tom. 12, No 1-2
(1957).

#

Reference 2 contains an excellent discussion. See also Chapter II
of this dissertation.
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210
interactions to RaE| but it turned out later that in RaE (Bi ) the

beta transition was l"-> 0+. Laubitz2 and Zyrianova 'made a detailed

analysis of 0-> 0(yes) in Pr1^ using the Rose and Osborn formula for
the p spectrum. Alaga and Jaksic25 applied essentially the Rose and

Osborn formulation with some extra parameters describing the nuclear
l66

forces effect, to the analysis of 3 spectrum of 0 -* 0 (yes) in Ho

Alaga, Sips and Tadic also consider a tensor and the pseudoscalar
144

interaction for the analysis of 3 spectrum of Pr .At present, our

knowledge of nuclear hamiltonians is not adequate to calculate the nuclear

matrix elements, and in the usual treatment of 3 decay, these nuclear
25

matrix elements are considered as parameters. Alaga and Jaksic intro

duce more parameters depending upon the nuclear forces. Now. if one did

know how to calculate the nuclear matrix elements, with some confidence,

then it might be interesting to see how many other parameters (depending

on the nuclear forces) are required to fit the experimental data. But

with our present knowledge of nuclear forces, it is neither practical

nor desirable to complicate the theoretical calculations with such para

meters ,

26M. J. Laubitz, Proc. Phys. Soc. (London) A69, 789 (1956).

27L. N. Zyrianova, Bull. Acad. U.S.S.R.—Physical Series 20, 1280
(1956). (Translated by Columbia Technical Translation, New York).

28G. Alaga, L. Sips, D. Tadic, Glansik Mat-Fiz. iAstr. Ser. II,
12, 207 (1957).

mmmmmmmmmmm
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After the experimental verification of the breakdown of parity

symmetry law in beta decay, a number of experiments on the longitudinal

polarization of P particles, the anisotropy of P particles from oriented

nuclei, and 3-7 (circularly polarized) correlation were done. In the
i-

29 30 31
meantime Lee and Yang, 7 Salanr and also Landau gave independently

what is termed as the two-component theory of neutrino. Also following

32 33
different approaches, Sudarshan and Marshak, Feynman and Gell-Mann

34
and also Sakurai proposed the vector and the axial vector theory of P

decay. As pointed out earlier in this chapter, the experiments on the P

longitudinal polarization in allowed transitions, the experimental de

termination of the neutrino-helicity and the anisotropy of e" and V from

the polarized neutron, uniquely indicate the vector and the axial vector

interactions. These interactions are consistent with the electron-neutrino

29T. D. Lee and C. N. Yang, Phys. Rev. 105, 1671 (1957).

5°A. Salam, Nuovo Cimento 5, 299 (1957).

51L. Landau, Nuclear Physics 3, 127 (1957).

32R. E. Marshak and E. C. G. Sudarshan, Phys. Rev. 109, i860 (1958).

55R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193 (1958).

5\j. J. Sakurai, Nuovo Cimento 7, 649 (1958).
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correlation experiments"^'^ ,J[ on He , Ne y and k".

As a consequence of the above development leading to the V-XA law of

beta decay the previous estimates of the pseudoscalar interaction based on

the analysis of a mixture of the tensor and the pseudoscalar interaction,

are no longer correct. Recently the beta spectrum of Pr (0 —? 0 ) has

been studied experimentally. '59' Graham et al^ set up an upper limit
2

for the pseudoscalar interaction using the Rose and Osborn formula with the

axial vector and the pseudoscalar mixture. To investigate the existence of

the pseudoscalar interaction one must consider all the experimental data in

any particular 3 transition, and the best transition as pointed out earlier,

is 0 —>0 (yes). Apart from the 3 spectrum, we have additional information

4l 42 43
about the 3 longitudinal polarization. A number of treatments ' ' of

55W. B. Hermannsfeldt, R. L. Burman, P. Stahelin, J. S. Allen and
T. H. Bird, Phys. Rev. Letters 1, 61 (1958) and J. S. Allen, Rev. Mod.
Phys. 31, 791 (1959). Also see F. Pleasonton, C. H. Johnson and A. H.
Shell, Bull. Am. Phys. Soc. 4, 78 (1959)-

56J. B. Gerhart, Phys. Rev. 109, 897 (1958).

5TW. B. Hermannsfeldt, J. S. Allen and P. Stahlein, Phys. Rev. 107,
641 (1957).

5 R. L. Graham, J. S. Geiger, and T. E. Eastwood, Can. J. Phys. 36,
1084 (1958).

59F. T. Porter and P. P. Day, Phys. Rev. 114, 1286 (1959).

^N. J. Freeman, Proc. Phys. Soc. 73, 600 (1959).

^G. E. Lee-Whiting, Can. J. Phys. 36, 1199 (1958).

k2T. Kotani and M. Ross, Prog. Theor. Phys. 20, 643 (1958).

^5V. B. Berestetsky, B. L. Ioffe, A. P. Rudik, and K. A. Ter-
Martirosyan, Nuclear Phys. 5, 464 (1958).
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the P longitudinal polarization in first forbidden transitions appear in

the literature. In all of these treatments, the "conventional" form of

the pseudoscalar interaction has been used instead of the correct formu-
44lation of the pseudoscalar interaction. Geshkeribein gives the longi

tudinal polarization in 0 ^ 0 (yes) transition, still not using the
45correct form of the pseudoscalar interaction. Tadic has analyzed the

earlier less accurate (22$) measurement of the P longitudinal polari

zation^6 in 0-> 0 (yes) of Pr1^. His treatment, though it introduces

parameters depending on the nuclear forces, is not rigorous and his

analysis is inadequate because of the approximations used therein. Re

cently Buhring^7 measured the longitudinal polarization of pparticles in

the 0—>0 (yes) transition of Ho . His analysis of the longitudinal

polarization measurement is not correct because he uses the formulas of

Lee-Whiting. Cuperman*8 has analyzed his measurement of the longitudinal polar-

ization of P particles in the (§+-* |") transition of Tl '. Apart from

kkB. V. Geshkeribein, Zhur. Eksptl'i Teoret Fiz. 34, 1349 (1958).

^D. Tadic (Private communication to Dr. M. E. Rose).

k6J. S. Geiger, G. T. Evan, R. L. Graham and D. R. Mackenzie, Phys.
Rev. 112, 1684 (1958).

U?W. Buhring, Z, Phys. 155, 566 (1959).

^S. Cuperman (to be published in Phys. Rev.)
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the fact that there are more parameters occurring, it appears that the

correct formulation of the pseudoscalar interaction has not been used.

49
Recently Mehlhop reported the measurement on the longitudinal polari-

+ 144
zation in the 0 ~—> 0 transition of Pr .In his analysis, very crude

approximations were used, along with the incorrect formulas of Lee-

Whiting. The effects of the finite deBroglie wavelength5 and the
51 52

finite size of the nucleus^ ,J are important in 0-^0 (yes) beta tran

sitions, and have not been properly considered.

Thus, until now, no consistent treatment for the search of the

pseudoscalar interaction existed in which the correct formulation of the

pseudoscalar interaction was used. This dissertation presents such a

treatment in which all the relevant experimental data are analyzed with

large scale computing programs using the accurate electronic functions.

49,fW. A. W. Mehlhop, "A Measurement of the Longitudinal Polarization
of Pr144 Beta Particles" (unpublished Ph.D. dissertation. Washington
University, Saint Louis 1959).

5M. E. Rose and C. L. Perry, Phys. Rev. 9£, 479 (1953).

51M. E. Rose, Phys. Rev. 82, 389 (1951 )•
52

M. E. Rose and D. K. Holmes, Oak Ridge National Laboratory Report
No. 1022 (unpublished).
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CHAPTER II

BETA DECAY INTERACTION IN NONRELATIVISTIC FORM AND NOTATION USED

In this chapter, we start with a brief discussion of the diffi

culties which arise in obtaining the nonrelativistic limit of the nuclear

matrix elements involving odd operators. The prescriptions of removing

the odd operators in the hamiltonian by the Foldy-WoutLuys^h^canonical)

transformation for a free Dirac particle and for nuclear beta decay are

given in Section I and II respectively. Section III contains the appli

cation of the results of Section II to the axial vector, vector and

pseudoscalar interactions and it is explained, why the conventional

treatment of the pseudoscalar interaction is not correct. For clarity,

the notation and the representation, used in later chapters, is explained

in Section IV.

The relativistic dynamics of a nucleon in a nucleus are not presently

known and as such we are ignorant about the details of relativistic

nucleon wavefunctions. In nuclear beta decay, the transition probability

between the initial and final nuclear states depends upon the matrix

elements of operators (4x4 matrices) in nucleon's space. Due to the

above reason, these nuclear matrix elements are very hard to evaluate.

However, there are some nuclear models like, the shell model, the Wigner

model, the optical model and the unified model, which have some success

in explaining some qualitative properties of nuclear structure. These
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models are nonrelativistic in nature and it appears that the relativistic

corrections are not very important. Thus, at least there is a possibility

of evaluating the nuclear matrix elements, provided the nonrelativistic

limits of these matrix elements are known. We represent the nuclear wave

function

r -i
u

where v and u have two components. In the nonrelativistic limit:

then v and u are called the small and the large components of f . In

the following the subscripts i and f refer to the initial and final

nuclear states.

Consider a matrix element of an even operator in nucleon space,

e.g., » -L(^)Q (in the axial vector interaction)

y^^-L^te^. -fu*£-L(£) u1 +rv*<? .L(3) v. (2.1a)
In the above equation, u's and v's are two component functions and o" is

a Pauli matrix (in the nucleon space) on the right-hand side of (2.1a).

Also the first and second term in (2.1a) involve only the large and small

components of the nuclear wavefunctions. To obtain the nonrelativistic

limit, we can neglect the second term as compared to the first one

...Luu.iii-.j....[uj...i J.LU-.U ' .jiJ.).iii.BtijiiiwiiiKiiPMffMWWiii|WiwwBii!|iWPiiMii!!'ii '' i' riiiiiitjiiijiT'iTirpirpirnrrr'riT'lf'inwirmitt nrim--r-"T—~ - - "~ ' <-^mmmmmm0mmmm
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1^*5*^(5)^ —>ju* ?.L(«?)Ui (2.1b)
In the pseudoscalar interaction, we are interested in the matrix elements

of an odd operator (which anticommutes with p) P71-L(P71-).

J4£ P75L(P75)^ =jv* L(P75)u± -ju* L(p75)vi (2.2a)
where we have used the representation

>"(o 1)! ^(i o) <8-ab>
and * • vU
the lepton covariant L(p7r)s. (V^e 37 [Cp+Cp753 "i> )• In (2-2a)> both
the terms involve the large component and the small components of the

nuclear wavefunctions, as such these terms are of the same order of mag

nitude. There is no simple prescription, as in the case of even operators,

to obtain the nonrelativistic limit.

There are two methods, which, in principle, can be utilized for

obtaining the nonrelativistic limit of the matrix elements of an odd

operator in the nucleon space:

(l) By eliminating the small components by making use of the re

lation between the small and the large components of the nuclear wave

function. As an illustration: if we take the wave equation for stationary

states of a nucleon (in units "n = m = c = l) as

- (S-p + PM -V)Y = WVf

y-0' then v=-(W-V+M)'1 £-pu* .jL ?• .pU (2.2c)
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if we take W - V - M <<s 2M

Substituting (2.2c) in (2.2a) gives

\^l ^(er^i --h ]<*•* UP* L(p75)ui+ kJu* *•* L(P75)ui
JLp* P75L(P75)Vj/i --|j, ju* £* -p L(P75)] u± (2.2d)

In (2.2d) p operates only on L(P7,-) and if L(P7,-) is considered as a

constant (as done in the conventional theory); then 6 >p L(p7,-) = 0, and

hence there is no contributionfrom the pseudoscalar interaction. The above

procedure may not be quite correct when the fields are present and is

very cumbersome in many body problems.

(2) By applying a Foldy-Wouthuysen (canonical) transformation to

the total hamiltonian of the system comprised of the decaying nucleon,

the lepton (e-^) field and the lepton, so as to remove the odd operators.

The odd operators can be eliminated up to any order in r:. This procedure

is theoretically more sound and we shall follow this prescription.

I. FOLDY-WOUTHUYSEN TRANSFORMATION (NO FIELDS)1'2

The equation of motion of a Dirac particle of mass M, with no

\. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950).

M. E. Rose, Relativistic Electron Theory (to be published by
John Wiley and Sons, New York) Sections 18 and 22.



29

fields present is

Hv£ =i>^ (2.3)
b t

where in the standard notation (using^h = c = l)

H = - PM - a-p (2.4)

In the equation (2.4) a is an odd operator and we want to eliminate, for

1

M

-» -» 1
the time being, a*p terms upto an order jz . Consider a unitary trans

formation generated by S and = 0
o t

^ =eS ^ (2.5a)

then the equation of motion (2.3) can be written as

S _ -S S .,, . ""b S.i)
e H e e If = i e 4_

H« L£' =i-^L (2.5b)
*b t

where the new hamiltonian H' is given by

H' = eS H e"S (2.5c)

^L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Company, New
York 1955) Sec. 43.
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H' * 1 + S +
i i „ r, ..s2
2
7-+...JHJ1-S + ^y - . . . J

30

H' =H+(S, H) +|(S, (S, H)) +... (2.6a)

where the commutator of S and H is written as

(S, H)= SH - HS

We choose

where 01 = -a.p* is the odd part in the hamiltonian (2.4). We evaluate

H' in equation (2.6a) up to order ^

H' - H+(" Im °i' h) +2t(" h °i> ' a'p) +' *' (2,6b)
Using

PO^ -v
Pa-p = - a.pp

a •p a*p = j2

*?. 1

(" §H V H)" (" Im °i> - eM "S^) - "°i -5 p* {2'7a)

lr(-|M°r-5-5)-|-„p2 <2^>
Substituting (2.7) in (2.6b)
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H' =-PM -a-p +a-p -|jj pp2 +...

H« =-pM -l^lp2 +... (2.6c)

We get the correct nonrelativistic hamiltonian by substituting 0 -> - 1
2 1N2

in (2.6c) as ^ + M. To remove odd operators in H* up to order (^ ),

this transformation is applied taking s= -|m ^odd •part in H'^' By

successive application of the Foldy-Wouthuysen transformation, odd

operators in the hamiltonian can be removed to any order in (« ). For
2

large M (say for a nucleon), the terms containing/ jA or of higher orders

are very small. A similar prescription can be applied when the fields

are present by considering

S =
P fo. + odd operator involving fields "1
2M

In the following, this procedure is applied to remove the odd operators

in nucleon space for a system of nucleon "source" coupled to the lepton

(e-u ) field.

4 5
II. FOLDY-WOUTHUYSEN TRANSFORMATION FOR NUCLEAR BETA DECAY iJ

The total hamiltonain is then composed of three parts (l) the

nuclear hamiltonian (Hjj), (2) p interaction hamiltonian (Hp), and (3) the

lepton hamiltonian.

V E. Rose and R. K. Osborn, Phys. Rev. 93, 1315 (1954).

5G. Alaga and B. Jaksic, Glasnik Mat-Fiz. iAstr. Tom 12, No. 1-2,
(1957).
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H=Hjj + Hg +Ee (2.8a)

In the space of the decaying nucleon, considering the nucleon obeying

the Dirac equation, we have

Hn= "P[MnT+ + MPT_J -a-p +v

HN =- 3M - a-p" - 4P(VMp)frz +V (2,8b)
In the above M and M are the neutron mass and proton mass. The ration-

n p M + M

alized relativistic units (n =c=melectron =l) are used. Mci —-E ,
and V represents the nuclear potential. In the following, p" emission

is considered.

V -6iJ^x(W)Q'L(-rix) (2,8C)
x

L(-^)» (M'a-ax LCx+V5l ^ ' (2-8d)
-O- in the nucleon space, for clarity is written as J^Lx(N). 3 emission

is obtained by hermitian conjugating Hg. in (2.8c). We write (2.8b) and

(2.8c) as

Hjj =HN(even) + 0± (2.9a)

Hg- = Hg-(even) + 0^ (2.9b)

where the odd part of E^t O.s. -a-p* (2.9c)

and the odd part of H__ is 0_.

Eleven) and EL .(even) in (2.9) represent the even parts of H^ and Hg_.

mmmmmmw
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Taking

s--|j (o1+o2) (2-10a>

S--fg (- a-p +02) y (2.10b)

t'he calculation of H', the transformed hamiltonian, can be easily

done by using:

H' = H+ (S, H) +|(S, (S, H)) + . ... (2.11a)

H' *HjJ +H^ +H' (2-ll^)

To remove odd operators in (2.1l) up to order ^ in a consistent manner,

the following are used:

(1) The terms containing ~ or higher orders are neglected.
M^

(2) The terms of second order in the coupling constants are ignored.

(3) The term -|(M -M )p f does not contribute to Hg.

(4) There is no contribution to H* arising from H£ .
6 7

(5) The odd part of the nuclear force operator does not contribute.

Making use of the above:

(S, H^) --^ (- pa'-p +P02, -PM -a-p +ve)

(S, Hj) -3-p -02 -Is p2 +yo2a-p +a-p02) (2.12a)

In the commutator (S, (S, H^) we take up to order ^

6Z. V. Chraplyvy, Phys. Rev. 91, 388 (1953).

7Z. V. Chraplyvy, Phys. Rev. 92, 1310 (1953)-
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a"*2 s(S, a-p -02) »Eg- -|(02a'.p +a-p02) (2.12b)

(S, Hg- (even)) is an odd operator because S is odd operator and it is of

order ^ . The only contributing terms from this commutator are of the

order (i) and so are neglected.
M

(s, o2) =-1^- p5-p +3o2, o2)

(S, 02) -|jOa.p, 02) -:L(302, 02)

(S, 0g) =§M(a-p02 +02a.p). (2.12c)

Substituting (2.12) in (2.11),

+2m(°2^ <*-p)+ +terms ^~2") or hi6ner

H' - [- PM +Ve - |M-|2J+ [Hg(even) +f^, a3)+] +BL, (2.11c)

HH5 - PM +Ve -|L92 (2.13a)

H3 - H3(even) +|m^02' °^+ (2.13b)
HJ=-H£ (2.13c)

The anticommutator (02, a°p) =02a-p +a.pO and 0 = odd part of the

Hg_. Using (2.13b) the odd operators in the vector, axial vector, and

the pseudoscalar interactions will now be transformed into even operators.
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III. BETA-DECAY OPERATORS IN THE NONRELATIVISTIC FORM

For P" emission, the interaction hamiltonian for the vector, axial

vector and pseudoscalar interactions is Hg> = Hy + HA + Hp

Hy -W.L(l) -aq.L(a) (2-l^)

HA =£q-L(c )-75Q'L(75) (2'lh^

Hp . 375Q'L(P75) (2'^c)

where the lepton covariant L^) =(4>*.A.X lCx+Cx75l %) ' In the
following, (as usually is done), we suppress the operator Q which con

verts a neutron into a proton. (2.13b) gives

V" V(eYen) +Im(02' °m*h
For the vector interaction °2 =-a*L(a)

(- a-L(a), a-p)+ =-[_2L(6?)-p +p-L(a") +i£-p xL(d)J

|jj (- a-L(a), a.p*)+ --|}[2L(a)-p +p-L(6?) +iff-p* L(S)J (2.15a)

For the axial vector 0£ = -7^(7^)

(- 75L(75), a«p)+ ="[2L(75)S -p +?-|L(75) ]

Ih (- 75l(75), s-p)+ - - §m[2L^5^^+ a^L(75} J (2'15b)
For the pseudoscalar interaction: 02 =P7^L(P7^)
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(P75L(P75), a«p)+ = - Pa-.p L(P75)

|jj (p75L(p75),a-p)+ =- |jj3-p L(p75) (2.15c)
Up to order ('M , H* is from (2.14) and (2.15)

' i t tHg- = Hy + HA + Hp

where

H; =l-L(l) - §^2L(a>p +^p-L(a) +I?.p*x 1.(3)], 1 (2.16a)

HA =S--L(^) - |L[2L(75)^-p +[£.pL(75) ^J (2.l6b)

%,= -|M[ 0 + \ff.?L(Py5) JJ (2.16c)
In (2.16), the even operators are the same as in HQ_. There are two

P

types of terms which arise in hI_ by removing the odd operators up to

order [^j : (l) the operator p= -iV acting on the nuclear wavefunction,

e.g., the first terms in the square brackets of (2.16). (2) The operator

p •= - i V acting on the lepton covariant—the terms in the curly brackets

of (2.16).

From the above considerations, the following major points come to

light:

(a) For the allowed beta transition; the results of using (2.16) and of

towmmmmm****'»»»Mwwia»a^^



37

8
the conventional theory are the same.

(b) The second type of terms, (involving the gradient on the lepton co-

variant), are generally very small compared to the leading terms in

transitions, where the even operators (in Hg) contribute. In the vector
t

and the axial vector interactions, essentially Hg gives the same results
Q

as the conventional treatment (Hg), provided the second type of terms

are neglected. Only the nuclear matrix elements have different forms.

To illustrate this, consider the contribution of the axial vector inter

action to 0 -> 0 (yes) transitions. In the new formulation (H^), there

will be the contribution of three matrix elements due to interaction

operators: (l) ?-r, (2) ± 6"-p, (3) jj ?•?. (3) is the contri
bution to the matrix elements owing to a gradient operator on the lepton

1 - ->
covariant. In such a case, one can neglect the contribution of ^ °" t

compared to the contribution of (l) 6" vr and (2) ^ 5 .p. In the con

ventional theory, the contribution to 0 -> 0 (yes) transitions is due to

<5 -r and y (e.g., see Tables I and II). By doing an explicit calculation,
1 -*> -» __ .

one sees that the contribution of 75 is the same as of -g er«p. Thus in

the presently considered case of 0 -» 0 (yes) transitions the conventional

treatment and the new formulation give the same results for the axial

8E. J, Konopinski and G. E. Uhlenbeck, Phys. Rev. 60, 308 (l94l).
Also D. L. Pursey, Phil. Mag. 42, 1193 (1951).

# See M. E. Rose and R. K. Osborn, Reference 1, Section III.
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vector interaction.

(c) In the pseudoscalar interaction, the only operator in Hg is

~ 2M ^ 'p •L^75^ in wnicn a gradient appears on the lepton covariant.

If the contribution of this interaction operator is neglected, then there

is no contribution from the pseudoscalar interaction. In the conventional

treatment of the pseudoscalar interaction, the lepton covariant L(07s)

is considered as a constant, i.e., independent of the parameters de

scribing the nucleon. In the nonrelativistic limit, the contribution

of the conventional treatment of the pseudoscalar interaction vanishes.

Thus, in the nonrelativistic limit, whereas very small correction terms

appear to the conventional treatment of the vector and axial vector inter

actions, completely different contributions of the pseudoscalar interaction

arise in the two treatments. Hence, these considerations point out why

the conventional treatment of the pseudoscalar interaction is wrong.

Therefore, to study the existence and the contribution of the pseudoscalar

interaction, the correct form of the interaction operator -^ c «p L(p7 )

must be employed. In this work, this has been done.

IV. NOTATION AND REPRESENTATION

9
^M. Deutsch and 0. Kofoed-Hansen, Experimental Nuclear Physics

III (John Wiley and Sons, Inc. New York, 1959) p. 515.

<##^immii)iiaBiMiagiwwww^
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A. Representation of Dirac Equation

The rationalized relativistic units are used"n = c = m =1
e

(m - mass of an electron). The Dirac equation for a 0" particle in a

central field V is
c

(-O-p -P+v )^= ±-~ - t2-1?)
c h t

3=f_., ^); P=[ J (2.18a)

( 0 1\ /0 -i \ /1 o

Mi o ; M* o ; Mo -x1 <2-i8b)

In (2.18a); 1 =
'1 0

0 1

The commutation relations are

a±p + pai =0 (2.19a)

a±a +axx± =2§±. (2.19b)

aZ 1
V =~— for the Coulomb field: a ** zrr= the fine structure constant •
c r 137

Z - the number of protons in the daughter nucleus. The solution of (2.17),

for stationary states, can be obtained by separating the equation in

,. . 10,11
polar co-ordinates '

10M. E. Rose, Elementary Theory of Angular Momentum (John Wiley
and Sons, Inc., New York, 1957) P. 152.

1:LM. E. Rose, Phys. Rev. 51, 484 (1937).
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where

yW,

Hi I <2.20a)

j - 1*1
i

" 2

I = at

I — . (* + D

if X > 0 (2.20b)

if x < 0

X< - 5c(^|j;M-Y,r) Y^"rXi (2-20c)
J ^p 2

Y£ " is aspherical harmonic. }(f =(0J and X i.2 =(]_ )

•*

C(l -§j; M-T, 7 ) is a Clebsch-Gordon coefficient

c(££jj*-ir,<r) = UIj,/-^ £,*-?,r).

Also in the representation (2.20a).

L2X,r=^ (*x +D Z~

2

*

^2 /U. , _ „ /U.
s2 xv:= 3/4 *~ (2.21)

K^"N Ptcr.L+D^M X^

We follow the conventions and notation of the Clebsch-Gordon co
efficients of M. E. Rose, Elementary Theory of Angular Momentum (John
Wiley and Sons, Inc., New York, 1957).
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f5t (r) and gH (r) obey the following coupled equations

|: f* =-V1 f* "(w-1"^)^ <2'22a)

^ gu -(W+l-V^f, --^±i g|| (2.22b)

In this work, we take

V = ; r > R (nuclear radius)

'c--i('-?)» -<*
The computation of fx and gx , which are required for the analysis

of p spectrum and longitudinal polarization, was done on the ORACLE.

fH and gK are real.

c£Za
For the Coulomb field V = and the normalization correspond

ing to one particle in a sphere of radius R, f and g are given by

'* )=(1 IW)M2pr)y e*y/2 ir(y +jy)l
2(WR)^ P(27 + 1)

f -ipr+i-^ _ ->
Xf e (7+iy) F(7+l+iy, 27+I, 2ipr) + complex conjugate S

(2.22c)

W » (p2 + l)5 (2.23a)

aZW

y S ~ (2.23b)
JL

7, =(X2 - a2Z2)2 (2.23c)
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2i

e V>t ._ *-laZ/P (2.23d)
7 + iaZW/p

F(a, b, x) ^1+|x+g|ffxj 27 +*'• (2-23e)
For the neutrino V = 0, we represent the radial functions of the

neutrino as F^ and GH

Fx =Sx qj€(_x j(qr) (2.24a)

gx -qJ«(x) (v) (2.2te)

q is the momentum of the neutrino and Sx represents the sign of X. .

The spherical Bessel function j^ (x) = ^ ^l+X W

* (2£+l)!l ^;o (2nJ!)(2^+2n+l)!!

For x <<. 1;

I

h ™* I2tWt (2'25)
B. Irreducible Tensors and The Wigner-Eckart Theorem

First we describe the spherical representation of a vector V.

The three components Vm (for m = 1, 0, -l) are

V __1_ (V + IV) (2.26a)
x p x. y

We take theDirac wavefunction for the neutrino in our calculations
and we discuss the relation to the two-component neutrino in Section C of
Chapter III.
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V = V (2.26b)
o z

V -JL (v - iV ) (2.26c)
-1 2 x y

The advantage of the spherical representation is that Vm transforms under a

three-dimensional rotation as the three components of the spherical

harmonic of order 1 or as an irreducible tensor of rank 1.

Also

A"-•B= f (-)mA B (2.26d)
-m m

m

An irreducible tensor operator of rank L is defined as a set of (2L+l)

functions T^, (M = -L, -L+ 1, ...,L) which transform under the
*

(2L + l)-dimensional representation of the rotation group

Thus an operator is an irreducible tensor of rank L, if it transforms

like the spherical harmonic of order L.

The most important advantage that accrues from the introduction

of these irreducible tensors is that one can make use of the Wigner-Eckart

theorem, which is:

(j'm- |TjJ |jm) =C(jLj«;m,M,m')(jll TL|1 j) (2.28)
The quantity (j'|| T, || j) is called the reduced matrix element of the tensor

operator T?1 and it is independent of M, m and m', as the notation implies.

M. E. Rose, Reference 10, p. 76-106.
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The conservation of angular momentum is contained in the Clebsch-Gordon

coefficient C(jLj«,mMm«), i.e., \j - L| ^ j' ^ (j + L) in steps of

unity. Generally this fact is expressed as A(jLj') and this notation

will be frequently used throughout this work.

Throughout, the rationalized relativistic units (n = m = c = l)

are used. In the following chapters, M represents the nucleon mass

i \ y
(^1836) in units of the electron mass, % =£P— and X=— 1 .

^A r?.?
We introduce also the following notation:

(1) t = iH and t —i^fox the electron.

(2) H = f and (' = / for the neutrino.
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CHAPTER III

FORMULATION OF THE PROBLEM

In Section I, the first order time-dependent perturbation theory

is outlined and the probability amplitude of the electron, due to P

interaction, is given at large distances from the decaying nucleon.

This asymptotic form of the probability amplitude (outgoing wave) is

used in the calculations of the p longitudinal polarization and p spectrum

in 0 —> 0 (yes) transitions, (Section II).

I. FIRST ORDER TIME-DEPENDENT PERTURBATION THEORY

We follow Rose, Biedenharn and Arfken and use^ = c= mg = 1.

For the time-dependent perturbation R^e"1" +H* eikt, the wave equation
is

(Ho +H, e"ilrt +Hl* eilrt) <£ (r.t) =i J&SiiH (3,1.)
h t

H - is the unperturbed hamiltonian.
o

Introduce the Fourier transform of ^ (r, t) as

j

2n

then - «*3

CO
r

^(r, t) eiWt dt (3.2a)

1M. E. Rose, L. C. Biedenharn and G. B. Arfken, Phys. Rev. 85, 5
(1952).
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SP (?,t) - tf(r,W) e-iWt dW (3.2b)
-<=<3

Multiplying (3.1a) with jL eiWt and integrating over t,
oO oO oO

~-° -«o -Vo

i_
2n

Using (3.2) and

oQ

=Q

[-^\F(?,t)Je1Wtdt
d t

oO

1

2jt *(r,t)Wg,t) .tut at .w_ [

(3-lb)

iWt
dt

(3-lb) becomes

HQ If (r» +Hl f (?,W-k) +h/ ^ (f*,W+k) -W?(r» (3.1c)

W is the final state energy. Energy conservation dictates that

either the second or the third term in (3.1c) contributes to any transi

tion caused by the perturbation. Therefore considering the second term

as contributing, (3.1c) becomes

(Ho -W) ^ (?,w) =-1^ y (?, W-k) (3.1d)
(3»Id) is an exact equation. In the first approximation,

Sf(?, V-k)-> 4>±(r, W±)

where the initial energy of the system W. = W - k. U\ is the wave
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function describing the initial system, before the perturbation is "switched"

on.

(Hq -W) 4> (?, W) =-E1 Lf^r, W.) (3-3a)

For an electron in a Coulomb field Vc = - —

(a.p +3-V +W) ^ (r, W) =E1 ^(r, W±) (3-3b)

we have taken

H = - a-p - P + V
o '-

The equation (3.3b) can be solved by finding the Green function G(r", r«)

(a-p +P-V +W)G(?, r')= S(?-r')l (3-^)
c

1 is a 4 x 4 unit matrix. Then

^(r, W) - dr' G(r,?') H^r') ^(S',10 (3.3c)

**, 2It has been shown, in detail, that

,r«) --«i*2_ $*(r) §f*(r») for r>r'G(r

U,M

where

(3.4b)

W notation, see Chapter II, Section IV, of this dissertation.

•X-X-
Rose et al., loc. cit.

2M. E. Rose, Relativistic Electron Theory (to be published by
John Wiley and Sons, New York), Section 34.
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I
1 f* X-H

5>t *H

f^ and g,t are such that ^) represents asymptotically an outgoing
3 4

spherical wave '

m
JL

B* r-^^o L *pJ

where

I

and

— ^ rW-lf eipr+^r f,, > - — I S.

r w+if > **•

^ i5H ipr
= e -

<a / "i fx 9(

g* A k

(3.5a)

(2.20a)

3
For the radial current only, the outgoing wave contributes.

E. Greuling and M. L. Meeks, Phys. Rev. 82, 531 (1951).
4
For the nonrelativistic case, H. A. Bethe, Ann. Physik 4, 443

(1930 .

mmmmmmMmmmmmmimMmmmmMmwmmmmtmmmmmMwm^ mm mmmmmmmm
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7>L L J 7 + iaZW/p

Substituting (3.4b) in (3.3c)

<j> (?,W) =-«i|d?«^_ <J^(r) JV)^')^?')

^(r,w) =-«i^ |"*(?)^ $"(?*) |^(rOl^^)^ (3.3d)

Substituting (3-5a) in (3-3d)
i

W-l-i */*.

4>.« ---* ^ £ *M C(?,,i**•>! W"PJ*"
(3-5e)

,2 -"V /U.rw-if y
The spinor / L pJ -x 1 is an eigenfunction of the free particle

[v-?i x I
Dirac hamiltonian - a«p - P, with eigenvalue W. This can be easily

checked by taking p along r and using (A.2)

^r TC-X. = " A-vi

2,, AX

In nuclear p" decay, a neutron transforms into a proton with the

emission of p" and I> (antineutrino).

n -» p + e" +"v (3.6)
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The electron is in the Coulomb field of the daughter nucleus. According

to the Dirac "hole" theory, the creation of 13 is equivalent to the

destruction of a neutrino in negative energy state. The nuclear p" decay

problem (3.6), therefore, can be considered as one in whichM in a negative

energy state (representing the initial state ^ .) is absorbed by a

neutron, due to p interaction, making it a proton, and an electron appears

in the final state (as ^ ). In (3-3e), therefore for nuclear p" decay

<$r(?,) IHil ^i(r,)>-^<^f IV^i> (5-T)
4^f and \Jj> represent the nuclear final and initial states respectively.

Substituting (3-7) in (3-3e),
i

2 ^ ^

[ [iff**™
(3.8a)

After a brief discussion of the polarization operators, this

asymptotic form of ^f (r,W) is used, in the next section, for calculating

the 3 longitudinal polarization and spectrum in 0 -* 0 (yes) transitions.

II. BETA LONGITUDINAL POLARIZATION IN NUCLEAR BETA DECAY

The breakdown of parity and charge conjugation symmetry laws are

•.-^.^aji^iaateaHaaHtaa^M^^ HHUHUIiiMii nuutwrff-- r-ff^^M^^imm^iwiiiiiiii^iiipir^orWiniTiWraiMltlJI
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5
now well established in nuclear beta decay. This implies the existence

of the pseudoscalar quantities ''' in the processes of nuclear P decay.

One such pseudoscalar quantity is the longitudinal polarization (S«p; of

P particles"' from unoriented nuclei.

A. Polarization Operator for Electrons

The covariant description of the spin of an electron has been given

11 12
by Michel and Wightman and also by Tolhoek.

An operator Q(n) * i75V ^V is considered for the description

of the spin. (LpQ(n)y) transforms like a pseudoscalar quantity, n^ is

5C. S. Wu, E. Ambler, R. Hayward, D. D. Hoppes and R. P. Hudson,
Phys. Rev. 105, 1413 (l957)A In this experiment, the angular symmetry^of 3
particles from oriented Co60 nucleus i5+ --> 4+) was observed. <J > -p
is a pseudoscalar quantity because <J> - the average value of nuclear
spin is an axial vector and ^ -the momentum is a polar vector. The ex
perimental observation of <J> -p proved the nonconservation of parity
in nuclear 3 decay.

6T. D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1956).

^T. D. Lee, Conservation Laws in Weak Interactions (Unpublished).
Lecture Notes at Harvard University, March 1957.

8T. D. Lee and C. N. Yang, Elementary Particles and Weak Inter
actions (Brookhaven National Laboratory 1957) B.N.L. 443~TT-91).

9J. D. Jackson, The Physics of Elementary Particles (Princeton
University Press, New Jersey, 1958) P« 91

10J. D. Jackson, S. B. Treiman, and H. W. Wyld, Jr., Phys. Rev.
106, 517 (1957).

UL, Michel and A. S. Wightman, Phys. Rev. 98, 1190 (1955). Also
see C. Bouchiat and L. Michel, Nuclear Physics 5, 4T6 (1958).

12H. A. Tolhoek, Revs. Mod. Phys. 28, 277 (1956).
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a 4-vector and is (n, 0) in the rest system of the electron. One defines

another 4-vector p^ which is (0, i) in the rest system of the electron.

Clearly in the rest frame of the electron n^ p^ =0. Since it

is a scalar product of two 4-vectors, therefore n p = 0 in any Lorentz

reference frame, therefore only three parameters are required.

Using 7k =-iPd^ ', 7^ =-P and 7a= <?

Q(n) =iyy^ n^ =-p?»n -i7^ (3-9)
In the rest frame of the electron, 0 —> - 1 and n> = 0

Q(n) —•> <5 «n

Thus Q(n) gives the polarization operator in the rest system of the

electron, if we take n along the spin direction. However, for the pur-

pose of calculations Rose introduced the polarization operator & as

©-* A A -* a a -» A A / \= <o -e. e1 -p<5>e2 e2 -p5".e, e, (3.10a)

where e.., e?, and e, form an orthogonal right-handed set of unit vectors

and e^-z p (unit vector in the direction of momentum). First we show that

3 , indeed, reduces to the correct polarization operator in the rest

frame of the electron and then we list its important properties.

C5" can be written as

M. E. Rose, Reference 2, Sections 19 and 20. We use^the repre
sentation in which Dirac hamiltonian for free particle is -"a-p-P and

^ =f jwhich in the nonrelativistic limit goes to ( J. The results,
in the representation used in this book (H ="a«p+P), can be converted
in our representation by changing 2 -> - a°and 0 -» - 0.

^ninwMpipaiBiiaiiwwwwmiiwiwwtiiiww'WHWiwiii HH*«**S^ -i**%Qi*t»***»
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•± -i A A -» A ^ -aa
6^ = o •e1 e. + <^ .e_ e^ + <o .e, e..
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0 ff = 0^-e1 e1 + 0^-e2 e2 + 0«s--e5 e?

Substituting for p5-'e? e2 + 0<?«e\,/e, in (3.10a),

& = ^ ^ . p? +3^.^ %± (3.10b)

In the rest system 0 —> - 1,

6 -» ^ (3.10c)
13 —*The following are listed some useful relations involving © :
-* A

(1) For positive energy states; (i;j^n^ -& -n) acts as a null

operator and as such they are equivalent.

(2) Each component of O on the unit vectors e1, e2 and e\, commutes with

the hamiltonian of the free particle.

(6 -e^ -a-p -3) =0 ; j=1, 2, 3

(3) (© -ek, O \ ) » 2i€kGwPm ; ^k' * and mcyclic Permutation)

(4) (©-£/=l
(5) The polarization "vector" is given by

15R. H. Good, Jr. and M. E. Rose, Nuovo Cimento 14, 872 (1959).

See for the application to the polarization of conversion electrons
following beta decay, R. L. Becker and M. E. Rose, Nuovo Cimento 13, 1182
(1959).
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where q) implies summation over all the observables not observed. For

longitudinal polarization, we need only consider 6" «p. For ^P , p is
e*o

A

in the same direction r.

B. Beta Longitudinal Polarization in 0 -» 0 (yes) Transitions

The longitudinal polarization (P,, ) of 0 particles is given by

" <(Mi., ^) >

where the unit vector r is in the direction of the momentum of the 3 particle,

The round brackets indicate the scalar product with respect to the spinor

indices only. The angular brackets in (3.12a) denote (l) the summation

over all observables ( ">tM , Mu )of the neutrino (not observed) and (2)

the average over the magnetic substates of the initial and final nuclear

states. In 0 -=> 0 (yes) beta transitions, M = Mf = 0, so the averaging

is trivial and it gives unity. The differential energy 3 spectrum is

given by -r \ (%> ,T,^ )/

4^ --t«"V-i * <yfIVI^i>
*,//- 1 -*

(3.8a)

\ t¥] %»^
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The vector interaction does not contribute to 0 -* 0 (yes) transitions.

/v^\H6-\4^->) is worked out in (B.2.7) of Appendix Bfor the axial
vector and pseudoscalar interaction. We have used the conventional form

of the axial vector and the correct formulation of the pseudoscalar

interaction.15 For 0 -» 0(yes) transitions,, (Appendix B, equation

(B.27))

Q6(al +l)J* C(t l« ;00) w(« «i;t J)(f„. 0„ +g^ F„ )]«* -r +(f„ F„ -g>l ojijrjj
C C* f ")

(3.13a)

S is the sign of X and M is the nucleon mass in units of the electron mass.

Ss and £ are Kronecker deltas. \S".r and 17,. are re-
O x ,h^ aA, -Mu J J 5

duced matrix elements and are independent of magnetic quantum numbers

and in the theory of nuclear p decay, are considered as parameters. Since

This is an exact statement. In the nucleon space, the even operator
of the vector interaction is 1 and for the parity change, r must occur at
least once (or an odd number of times). But r, being an irreducible tensor
of rank 1, cannot make a A (0 1 0). Similarly a - the odd operator of
the vector interaction cannot make a A (0 1 0) and there is no combination
of "& and "r which can contribute to 0 -» 0 (yes) transition. Also this can
be seen from Tables I and II.

15M. E. Rose and R. K. Osborn, Phys. Rev. 93, 1315 (1954). Also
see Chapter II.
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/ LP \ KQ_\ 4^±\ depends on*. ,/*, (of the electron) and x^ ,A*» (of

the neutrino) quantum numbers, it is convenient, for calculations, to

define<J (>c , xu ) as

<4M Viyi> = fe(-r+'+JJ(^**)S"N-^ (3-151l)
where

Jo,».)^ («A5»,X(, -s* < Sx,-«„ >[»(2« +ia* st*1* >00>
w(< iJi;< iKf*. G„ +gx f^ )J>-? +(fH f^ -^ o„ )iJr5 "j
PC* r+(i2lSKXv "Sh £&*f_ ^ )^<f,cFM+g^Gx)j*-2 (3.13c)

Substituting (3.13b) in (3.8a)
JL

X Xa- , „ , ^2 ry /A

(3.8b)

1 2Substituting (3«8b) in (3.12a) and cancelling the common factor ^7- r , we

get for the 3 longitudinal polarization in 0 -^ 0 (yes) transitions

P„ =§ (3.12b)

where

B^pygiWiipi»pwipiip^;Btomv^^Bs^^g;w^w»
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i(^x - $n') ^ - ^+0"J' *+ e'
N=-^ > y (-) (-)

TCj *-> *' /"vA' M

•

^(>t',H,) ^(X^JS^.^^.^ (\,/7(^) (3' 14b)

and

<^ C— i(^- $ ) XA.-V+J-J. /+*'
D = ^ y t e (-) (-)

xv> x **.' M/>> A' ^

In obtaining the above equations, we have used the following relations:

AX Aa KK Aa-

Ha.' M. Ha _ dA.

(3) <X>^V - <.•*->

and the fact that M' + j' is an integer.



58

The differential energy spectrum N(w) is, then, given by

"<»>= \^%=,%>) o.iia)

"("'= 72= (3.11b)
4rt

The 3 longitudinal polarization (p„ ) in 0—> 0 (yes) transitions,

is given by

p - 2

Thus we wish to calculate N and D as given in (3-l4b) and (3.15b) respectively.

In the following pages, we show the details of these calculations and the

resulting expressions for N and D are given in (3-l4f) and (3-15f) on pages

66 and 67 respectively.

These results are simplified by using the assumptions of time-

reversal invariance in the weak (3 decay) interaction and in the strong

(nuclear) interaction. Nand D are given on pages 83 and 84 respectively.

The formulas of the 3longitudinal polarization and the 3 spectrum

in 0->0 (yes) beta transitions are, then, given on pages 89 and 90 re

spectively; we assume the validity of the two-component theory of the

neutrino.

m ^m*m<mmi^m'm»»ri'm^-t
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Making use of ^^ _M and ^ , _ t ,

2W ^T *Z>»-^<\.)i-y (.)«**' ^(x,,»«w)J(x,^ )N = - — / e
P ^- t

Changing the summation letter yW to /*>

2W
N = - ~

P ><-*, , X '. >l
£_ al(5x " 5w> (OW'**' jft V, «,)J(», X, )

^f (Va-*' »'lte)
Similarly

»-S ^_ .1(SR"^,,>(.)J-i,W+<' ^T(V,^)J(x,x, )
p

X, » *> X

In (A.7) of Appendix A:

i
2

^ C(j'jX;-/*,/u) Y°(r) W(j'j Vt',X\)
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Substituting for ( %,, ^_ ^ in (3-l^c), we get

2W
N = - —

p x^x^x* *
S % el(5>1 "^ (.)«•+<+«• J*< „.', x. )JU ,*„)

*c( i .7x,oo) [(2'̂ ^Ll)+l)(gjH"1>(2J,+1)J ^<?>

<w(j'j r?A4) 2 (-)<*+* OO'JX;-/^,*.) O.ita)
AA

Now noting that C(j' jO;-/a,M)=(-)JI+/U [2J+1]"2

1[(-)^ C(j»jX;-^,^) -^{-)^'y [2j+lJ? C(j'jO;-/^,A) C(j»JX;-/*.,/*.)

'(-^ C(j'jX;-^,^) =(-)*"Jf [2j+lf &^0 (3.16a)

Substituting the above in (3-l4d), and summing over X

M-

2^ ***» -LVo>'K~0'«l^ 4 41. I , 0 \ i_4 1 A ,"I \2^_ *$*- *»•> (_,j-j.+/+< •(.,i-r (8Jrt,*(y*

[-(2^l)(2^+l)(2j+l)(2j»+l)J cU,J0;0Q) J*( ^ ^ )3(yt)Hj, )

x w(j«j^V;o|)

Using (A.lb) and (A.8f), we get



2jtp

or

yt,-

TT
, {-) | 2t +11 2

W(j«j VH',0\) = '

C( g'£0;00) m C , c(££ 0;00)
VJ >t, ~ X

C(i»?0;00) - £ . (-) jj^+lj

**,*

(")2 Sj.j^ 6e',;
[(2j+i)(2e+i)j;

Substituting the above relations and simplifying, we obtain

* (2J+1) J ( x! = -x, * )dU, *u )
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--4
Hy,H

^5*-S->.) (2j+1)J*(_x,*v)3 (•*,**) (3.l4e)

Now substituting (9( ,, ^ )in (3-15c)

D = 2H
P Xv»X.»>t

1(Sh-^x.) (.)J-J,+ e+^ J*( u',*,) J (*,*„)

x-Zee *.* x;°0) [(2'+i4m;)i)(2'Hl)(2j,+1)J y^ w<^ ^ **>
X

2 (-)/U+^ C(j'jX;-M,M)
4a

Using

^ (-)^+* C(j'jX,-^,^) - (-)*"J' &x>0 [2j+l]f (3.16a)
/I*.

i <. - i
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and summing over X, we get

D-2W *> J-^* "£*'} t *J-J'+*+*» ^* ^

yc( vtotoo) ^(^^)(^^i)(2j+i)(2j'+ij^i_^ w(JfJ ^ ;0i)

Using in (3.15d)

CU'£0;0O)« £ , C(**OjOO) =(-/ £ , [2^+11 '

[(2j+i)(2£+iy)

For ?c= -^t'i j = j'; and summing over x.1 gives

D
P

_£-a-t
W(j'j {** jof) = — • r

1 2

•?

f* ^L ^^^ ^^"^ ^ ^ **=*, *„)£(*, H»)

(e/4i)(2fri) £-(8Jrt)(8,rtg-i ^^y-i L2J+1Ji

D=2^p" Z__ ^+1^ 3 (k,^ ) J(x,>t^) (3.15e)2«p

Pll » d (3.12b)
where
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N and D are given in (3-l4e) and (3-15e) respectively. Now we define

2 c(/l?;00)

>l*»

.W(£lj|;?|)(f.xG_x+g.xF_>t)( js-r)* +(f.x F_h -g.^ Xijr/j
* „.*

w^y&fiXfaG* «*]••,, )Js-r +(f^F^-g^o^XiJr5) J

- (i I '̂.h, -s» a ^,-»» >S (f» F* +sx°»)( J?'?)
(3.17b)

We have for the radial functions of the neutrino,

F
x

S^ qj, (qr) --Sx GH (5-1&0

g-h= *Ae (qr) =s* F* (3,l8b)
Using (3.18a) and (3-l8b), we get

f.x G-X +«-* F-* =S*<f-x Fh "8-x °h ) (5-l8c)

*.* *.K -«-* G-X "-S*<f-*G* +g-^ ) (5'l8d)
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f_xF_x +S_>cG-x - M- f>LGK +g-»F* ) (3.l8e)

Also from (A.lc) and (A.8d)

C(^lZjOO) . - (§fg)* C(Tie iOO) (3.16b)

*(* lJi; *±) - - W(Fljfc *£) (3.16c)

Since £* +-£ is odd integer.

Substituting (3.18) and (3.16b) and (3.16c) in (3.17b), we get

xC(fl^OO) W(?lJi;^i)(-f_>tPKH«.H0>t)(|?^)* - (f_xCv+g_xFM)(i/75)*J
# *

C C r • 1

Xl (i Ca£k,M„ "S-CA S-x, xv >[l^W <**!*,00) W(Jl^H)

c c* /* a V

where

Carrying out the multiplication, we get



3X(* )- i(C*c;+CAC;*) S- 6(2? +1) [c(« If ,00) W(-?lj£; £f)]2

X(-f.uFx +g_HG„ )(fK G„. +gKFu ) \$4\2

- (*.>**. +e.HF* ><**** -g*G*) \{?5f

- [6(2e+l)J*C(«ll;00) W(^lj|;^)(-f_KF>1 +8^0^ )

X(*VFx - shg^)( J5 4)*(i jr5)
- 6(2^+1) *C(Il£*00) W^ljfj^Kf*. G^ 4-g^F^)

*(f-^G* +8-.Fh) (iJV5)*(j*-r) "J
+̂ (gpgp+c^cp) |sr ("f-H gh +8_x Fn )fc (fx F* +Svt G» ))>•' I2]
"|i( ^/p^aV [ 6(2^+1) ^C(?l£ ;00) W(i Hfc^X-f^ +g_xGn )

£?<*»** +g,cG, )]|J«-*/2
"Im (CICP+CA#CP) [(f-xG- +g-F- >fe (f-F- +«*°*>< J^'^JV*

+k ^A^kQ ?L6(2^+1)3* c(?1^°°) w(?uij*i)'

*(*VGx +SkFh )|? ("f.xGK +g_HF*) ll^l2 }

(3.17c)



We had

N
(Sx-S.h)

2«p L

where x = -1, 1, -2, 2

and

j = |*j - I

We introduce

Then we get

O 9 O

2itp L-

i(^-<S „)
N

(2j+l) 3±(^) (3-l4e)

(3.19a)

(2j+l)[iA1(x) +A2(~)] (3.l4f)

where from (3.17c), rearranging some terms and introducing the notations

Re and Im as meaning the real and the imaginary parts, we have

Ax(>-)* - (2 Re CAC|*)j 6(2I+l) [C(£li;00) W( Ilfel i)f (-f.^♦g^ )
x(fKGH +g>tPx ) | ^-r|2+ (f.^G^+g.^Fx )(f>cF. -SkGh )|[75|2

JL _

+ [6(2e+l)J2 C(U« jOO) W(4lji;0£) (-f.x'^-i^5

^(fnFH-gKGH )(j^^)* (iJ75) +(^GH+S>tFK )(f-^GH+g-vtFH >
( Jc.?)(iJV
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+-^ (Re CpC£*) jk (-^Ok '̂h >IV (fnFvc+g,cGK) | £'*| *}
- In [Re (CAc/+C^cJ)] S [6(2?+l)j2 c(f 1« ;<X» V(/lj£j*i)

*[("f-*-P* +g-*GH >IV (f* Fx +«>uGH )"(fvt °>t+S**»i )|r (-f.^+g^ 3

yI£.3 |2 +(f->t0H4«^FH )|r (f^F, +g^G)f )J^.r (ij7/
"<**'* -BKGK) ^ (-f.xGx+g_>tFK )(j* *)* (i]r5)) (3.19b)

A>(*)ft "h[m lCACP**CA(i)'] )£6(2*+!)]^ C<< 1 '̂G0) WC^1 '̂1*)
*(-f-xFx+«->cGH }I? (f~F* +g* G* )+(V G^,Fh )|? (-*_* G+g.vtF>t )

x|fe-|2 +(^G^g.^F, )fc (fH FK +g>LGH )( J? 4)(i J7/

K**.*** ><]**>* ^JV \ (3.19c)+(^^-SxeJlK/

We had

D" 2£d* 2^2J+l) ^/J<X, *„)J (*-,** ) (3-15e)
We define ^- „ M ,

then, we get

D=̂ ^(2j+1) J2(>t) (3.15f)



J (*) =5)(-i c* & -s c-*S )

/ [[6(2 e+l)]* C(Fl< JOO) W(Fl.J±;*±) (f^^gj^ )( j> 4)*

+(f>tFH -g>tGH.)(iJ^)* J

♦sr^S^ -s*cp*Sx,->v )d7(fxF,+g.GK)( ft*)*\

Xf(i CaSh,^ -SxcAcSx,-m^ }[P(2^ +1)^ C^1 '̂00) w(^Ui;g4)
X(fKGK+g>tFH )(]?•$) +(fxP^-g^G^JdJrj) J

+Im (* SS^x, -SXCpSh,^)fe (fvcF.^G,)( J* *>^ (3.20b)
There are two points to be noticed in the above equation.

(1) There will be no terms containing the primed and the unprimed coupling

constants because of Kronecker deltas. This leads to a well known result

that the measurement of the 3 spectrum does not show the effects of

parity breakdown.

(2) op( *-) is a positive definite quantity, as the intensity term

should be

32(x)

- (|GA!2+ |C |̂2)^6(2e+l)[c(fU;00) W(^lj|j^)J2 (f^G^g^F, )2^ -r j
+(fK F^ -gKGH f J|75|2 +[6(2F+l)p C(llt ;00) W( 71&, l±)

*(fxGx+gvtF^(f>c F* "g>cGA )[<J* '"r)(i JV* +(^ *r)* (iI75}jj +

mwmwws<rw*mi

* 2
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+^ (icPi2 +i^i2) J& (fx f, *„ kt \Is-r}
+|_ [*. (CAC*+c;C/)j J [6(2?+1)]* C(?lC ;00) W(?ljj; <?i)(fH (^ +g„ F„

♦ SB [<0A°ta<>< J^HiJr/* (cJWtycfa •*>" ^fV]

*{(*»V-«» Gx )5<f* Fx +«H G» >"J (5-2°0)
Now we assume that time-reversal invariance is valid in nuclear 3

decay15 and in strong interactions. If time reversal invariance holds

in strong interactions then (l) all the combination of nuclear matrix

\ -, 16,17elements (in the cross terms) are real.

15M. A. Clark, J. M. Robson, and R. Nathan, Phys. Rev. Letters 1,
100 (1958). The measurement involved the detection of a term like
D ?• (p v"p )

L_ H— where for the vector and axial vector interactions in the

2Im (CyCA +C'C- ) ^
decay of polarized neutron D = « -5 -75 ; Trl Pe SX10-

p -the momenta of the electron and antineutrino respectively and J being
the spin direction of the neutrons. Under time reversal this quantity
changes sign. D = - 0.02 - 0.28, by experiment.

l6C. L. Longmire and A. M. L. Messiah, Phys. Rev. 83, 464 (1951).

1^For special case, see L. C. Biedenharn and M. E. Rose, Revs.
Mod. Phys. 25, 729 (1953).



75)( Jct) is real and for weak interactions(3

decay) (2) the coupling constants are real. Making use of the above,

2(X~) in (3.16c) vanishes because of the factor Im (C.C' + C'Cp).

From (3.19b), we get

Ax(x)

=-2CAC^6(2?+l) [c(/ l£;00) W(5ljl^|)J2 (-f./K+g_HGx )
*(fx <v+^F>t )| I* 4|2 +(f-MGx+g-. Fh )(** fh -gH GH )jJ75j2
+[6(2?+l)]* C«? It ;00) W(Jlj|j «i) [(-f_xFH +g^ GH )
x(fxF>t "gKGK >+(f*G*+gxF>c K^^+^f* )(]* 4)* (ijr5)l

+̂CPCp||:(-f-xGH+g^F>c)|7(f>tF>c^GH) |I"««r|2 I
-|m (cAc^c;cp)j C6(2«+i0* c(^iejoo) w(fij|j^i)

(-f-xFH+g.uGH)d7(VFX+gKG^ " ^GAFx)

*Sr '̂-x^^- '̂k >] II* -I2 +[<f-X°X*-x FH )
*fe (fXFK+SKG>c) - (**** -g^ ) <L (-f.H.0)t+g.HP>! )

(1<*T 4)* (ij 75) 1 (3.19d)

*WWJWMW!l|WaWiCTWTOIIiiroil«WCT

(i j7c)( J5" °r) is real^as proved in Appendix C.
5

T. D. Lee and C. N. Yang, Reference 8, p. 23. Also see Appendix
C for proof.
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And from (3.20c), We get, using these assumptions,

JoU)2y

4M2

- (CA+CA2) )6W+1) t0U 1*;00) W(Flji;^i)J2 (^G^gJ, f\fe £f
+<fx.F* "g*G* )2 Jfo|2 +2L6(2€+l)]* c(?l£ joo) w(* Ui;£jr)

x(fxGx+gxFx)(f-K Fx -S*G*><j* *>* (iI7'5) }
^(GP^p2)|d7(fxFK+BKGx)]2)>.r|2 }

| (CACp+C^Cp $[6(2*+1)]^ C(? ie ;00) W(?lJi; «i)(fK GH«*H Fw )

+<** Fx -g,G« )h (fH Fh ** G* ><J* *>* <*>5> J (5'20d)
We have, j = |X| - | or 2j + 1 » 2 |xl

N

PH " D
where

N =JL5; e^^'^^IXl iA,(x) (3.l4f)
2itp <— ' 1

* X

D=_w_ <T 2hl| 32(x) (3.15f)
,_. x

A,(>0 and J2(*0 are given in (3.194) and (3-20d)

•yt = -1, 1, -2, 2, . . .

We introduce

1*1 3 k
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Then

N-̂ 2. k• iAL(x=k) +ke k °"k i^(* =-k)

(3.l4g)

Similarly, we obtain

D=*p X kG32(7L=k) +̂ 2(* ="k) ] (3.15g)
ForA1(x= - k), we replace, in (3.19d), x. by - k
we see that

(2*+l)£ C(£lF;00) W(/lj|j?|) =(2?+l)* C(fl^ ;00) V( f lj£;4 £)
(3.18a)

For the neutrino radial functions,we have

f_x = -sxGh (3.18b)

G.*_ = sx F* (3.18c)

where S^ is the sign ofX .

It is very easy to see, by substituting the above that

y\x(>L --k) --A^U »k) (3.19e)

Substituting (3.19e) in (3.1kg), we get

w < r i(^k-^-k) -*•(&*-& J AN=̂ Z ik[e k ~k -e k ^jA^k)
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A L(X )is given in (3.19<l).
Now we simplify the expression forA ^ >0 for X =k

("f-kFk+g-kGk)(fkGk+gkFk)

'"f-kgkFk +g-kfkGk "(fkf-k"gkg-k>FkGk (3'21a)

(f-kGk+g-kFk^fkFk-gkGk)

-fkg-kFk "gkf-kGk +(fkf-k"gkg-k)FkGk (5*21b)

(-f-kFk+g-kGk)(fkFk"gkGk) +(fkGk+«kPk)(f-kGk+8-kPk)

--(fkf-k-gkg-k>Fk +(fkf-k-gkg-k^Gk +2(fkg-k+gkf-k)FkGk (5'21C)

Now

If (fkFk+gkGk> - fkFk+fkFk+gkGk+gkGk
The prime in the above equations means differentiation with respect to

1 P
r. To evaluate this, we use the coupled equations where V is the

potential energy.

fk -IT fk "(w-v-^gk (5,22a)

1^M. E. Rose, Elementary Theory of Angular Momentum, (John Wiley
and Sons, New York 1957) P. 153. Also see M. E. Rose, reference 2,
Section 26.
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k+1g^= (W-V+l)fk -^gk (3.22b)

For the neutrino: q = the momentum of the neutrino (in m c units)

Pi-¥Pk-*°k (3.22c)

Gk=*Fk-¥Gk (3-22d)
We define

u =rW - V - q (3.22e)

Using (3.22), and rearranging terms,

2

+£, l*pll (V^-V_k) +(^-ix^-g^) +24V*-V.*>

+*%^ uf**-K ""^ »f-AJ "A (5-a»)
Similarly

("f-kFk+g-kGk) dF (fkFk+gkGk) -(fkGk+gkFk> h ("f-kGk+g-kFk)

•"2[f-A +2*¥* (V-k+gkg-k>]Fk +2[V-k -%^ (V-k+gkg-k)]Gk
-2[u(fkf-k+gkg-k) +^V-k-V-k5] FkGk (3-21e)
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(f-kGk+g-kFk} h (fkFk+gkGk) - (fkFk-gkGk> If (-f-kGk+g-kFk)

-[• u(v-k+«k«-k) - (v.k-^K+ Lu(v-k+v-k)

- (fkf-k-gkg-k>JGk+ [- ? (fkf-k+gkg-k>+ 2fkg-k+2f-kgk] FkGk <5-21f)
In nuclear 3 decay, the lepton functions are evaluated at the nuclear

radius. In this work, we shall denote the radius of the nucleus as R.

In the relativistic units, the nuclear radius is given by

where a ^t?? •
137

*

We define the following:

2> x-1 „2-2k
Vi » (pV1 r f^-k Sln<^ *- *.*> (5-25a)

B, x= (p^)"1 R"* f.A sm(5k- <5.k) (3.25b)

Dk-i ='A,'"1 Rl"2k (V*-V^ sin(S k- *-k> <3-23d)
F is the Fermi function
o

F. h(2PE)2<^> „ ^ irv«-*>r (3,5e)
7l -[l -(az)2]5

See Appendix D for analytical expression up to order R.
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Now we define

A (k) =i\(k) (p^)"1 R2"2k Sin(£ k- 6_k) (3.24a)
So that

N--f (A*5 1 kR2k"2A(k) (3.19g)
k

Substituting (3.21) in (3.19d) and using (3.23), we get

Aw

=-2CAC;5- 6(2 ?+l) [c(?l« ;00) W(fljf;<? |)]2
|2(Bk-i R'Fk -Vi Gk +Dk-i ™A> \& - f

+<Vi Fk - Vi R'Gk +Vi OTk0k> \fol*

+[6(2F+l)]i C(Tlt ;00) W(f ljfj «±) [- D^ RF2

k-1 k

- (u2-l)Bk_1 R2J F2 +^2(k+l)(uDk_1 +Ck_1)
- 4(k+l)2Bk_1 +(u2-!)^^ G2 +J^k2-!^.

-1.+ (u^-ljRD^ + 2uRCk_1 + 4(k-l)R"xAk_1u

-4(k+l)RuBk_1-]FkGkl|Ja .r|2 -
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hi (^p^aS^2 L6(2^"+i)]? C(?lg jOO) W(flj^ £)

x[" (R\-i +(k-^ck-i)Fk +(Vi - (k+1>ck-i>Gk
- (uRC^ +RD^F^JlJ^-rj2

+[- («RCk-1 +RD^^F2 +(uRCk_1 +HD^) G2

2R\-1 +*w>'A] <{* *># ^5 ) (5-2to)
where

u = W-V-q (3.22e)

In (3-15g)

^^?k[J2(^=k) +J2(^ =-k0
k

J2(X) is given in (3-20d)
Now, as before, the following are to be evaluated at the nuclear radius.

(fx GH+gaFH f - f2 G2 +g2, F2 +2f>1 gx Fx G^ (3.25a)

(** FH -gMGK f - f2 F2 +g^G2 - 2^ g>tFH G„ (3.25b)

(fxG>t+g>tF>c)(fxFvt-gKGH)

- (^ "4>P» GH " fH gv Gl+ f. g>tF2 (3-25c)

+ (" UCk-l +



[-J? «V F„ +g„ G„ )f

0 ii^il- f| +(u-l)2g2 - 1. iH^l (u-l)f. g„ ] F

(u+l)2^+l>ii±ii-g2 .*I±!£2
r

(u+ik* s^Qx

+2[ 2iilil (u+l)f2 +2i2i±l) (U.l)g2 . (u 1*^0 +u2_lK ^ ^%
(3.25d)

(fx gh +g* *V ) |r (^ PH +S), G« )

=[2-^f.g>t-(u-l)g2 J F2

+[(u+l)f2 -2%tl)f.g><JG2

b+ 2
(*-l) J2fH + 2fK S^ " 2 r("+l)

*. *vG>u >l

(f* F* "B* G* ) |7 (*\ FH +S, G* )

=[2 %^ f2 - (u-l)fH g^F2 - [(u+l)f, g„ -2
+[(u+l)f2 - 4£- fK gH +(u-l)g2.] FK G^

Using (3.l8a) and noting from (3.18b) and (3.18c)

2 2F , = Gf
-k k

F.G, = - F. G.
-k -k k k

2 2
G , = FT
-k k

(3.25e)

(h+1) 2 -, „2

(3.25f)



19and with the following definitions

Lk-1 " «* Fo

\-l " ^X

Kk-1 " to Fo

pk-i - to\

\-i - (2p2Fc

Rk-i • to2V

[J2(7t=k) +J2(X «-k)] (2p2Fo)-1RS
- (CA+CA2)^6(2^+1) [C(^I^OO) W(7lj|; |̂)J2^1 R2F^

+vi<^-2Hk-iHF,kok]ii3'-'r

+[Lk-i Fk +\-i R"Gk +\-i WA] 1J^f
+2[6(2F+l)]^ C(£l^;00) W(^lj|;^)[- Nk-1 RF2

.iRGk+(Vi -w2^ d* *>* (iJ75)y+ N.

-1 p2-2k /_2 . 2 vR (fk + g.k)

•1 .--2k /-2 . 2xR (f.k + gk)

_1 Rl"2k (f.kg-k " fkgk>
•1 D2-2k / 2 _2x

R (g-k " V

R (gk - f.k)

^ Rl"2k (^.kg-k +W
•1 „2-2k

19

(3.26a)

(3.26b)

(3.26c)

(3.26d)

(3.26e)

(3.26f)

19E. Greuling, Phys. Rev. 61, 568 (1942); D. L. Pursey, Phil.
Mag. 42, 1193 (1951). Also see M. E. Rose and R. K. Osborn, reference 15,
equation 59•
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+ -jL (c2+C.2) ^[4(k-l)2 r\_± +(u2+l)R2Mk_1 -2uR\_±
+Mk-DuN^ +4(k-l)Rk_11 F2 +^(u^l)^

- 2uPk_1 +4(k+l)2 M^ +4(k+l)uNk_1 - 4(k+l)Rk_1l G2

+2|"2(k-l)ii"^1 - 2(k-l)R~LPk_1 +2(k+l)uRMk_1

-,2(k+l)RQk_1 +4(k2-l)R"1Nk_;L +(u2-l)RNk_1lFkGk\j £<?•
HC'CAcp+c^cp )[6(2/+!)/ C( fl «;00) W(F ij£. £i) ^^(k-l)^
- uR2^ +E\_^ F2 +[- uPk_1 +Lk_x - 2(k+l)Rk_1-| G2

+[- 2(k-l)R-1Pk_1 -2^ -2(k+l)RQk_1-j FkGklj| J£4]2

\[- 2(k-DR-\.i "^k-1 ~Mk-l] Fk
-[uRRk.1-RNk_1-2(k+l)RQk_1-]G2

["^k-i +Lk-i "^k-i +̂ \-i ' *X-i) FkGk^
(^4)*(iJ75) \ (3.27a)

From (3-15g)

D-h (2A>>£ **~2{[3^= *> +32<~=-*> ^V1*2"2^
(3.15b)

-^I^I^W'WISMWB^^
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where the expression in the curly brackets in (3.15b) is given by (3.27a)

»=-|(p\)£ kR2*-2A(k) (5.1*)
k

where /\ (k) is given by (3.24b)

and

Now

Also

P =1*h - d

I - * • x > 0

£= - (X+l) • * < 0

.-><.= •*-

k-1Fk = q. ^(q?) * q(qR) [(2k-i)u] -x

Gk =qJk(qR) or q(qR)k [(2k+l)lJ J"1

In (3«19g) we evaluate the first term of the series, corresponding

to k = 1.

Then, for k = 1 i = 0, t = 1, j = 2

6(2* +l) ^C(?1*;00) W(Flj|;^i)

=(6)2 C(011;00) W(01j|;l|)

=(6)* (-)1 c(ioi;oo) (-)*"1-*w(iij£;o£)

o(6)2 (6)"^ =1 (3.28a)
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Also

f-l =q2

G2 - qV/9

= 2q2 C,

2

2 M2"^

+k (cacp +c

. (. Dq +£ R2Do +§qAQ +§qR^) R(

Define

R 16* t •= \C°r

mmwmmmmmmm

(3.28b)

(3.28b)

F^ =q5F/3 (3-28d)

Substituting (3-28) in (3.24b) for k = 1

N(k-l) - - f (P2F0) A (k - 1)
using (3.24b)

A(k-D

-(A0-^R\+fR2VI^5i2

•|(u2-l)Bo +£[- 4(uDo+Co) +16Bo -(u2-l)Ao]
+§[- (u2-l)DQ -2uCQ +8uBo] j R2 JJ6" •? |2

!ACP^ 2[Bo +̂ (" Ao +2Co> +IK+I)o>] ^ll* "r!2
[uCo +Do +f- (" uCo - V** +f (UCo "2R3Bo - 2V

>R(p-r)* ijV5 \ (3.24c)
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Since' R « 1 for A = 144, R = 0.016 (— units, we neglect all terms of
' v mc /

o

order R or higher orders. In this approximation, the second term of

the series in (3-19g), namely, 2R2A (k « 2) gives only

2-R2 -^ cpc^ •m-\ •iA2 |S»-*|8

However, this term compared with the leading term in (3«19g) is small

and as such is neglected. Therefore substituting (3.24c) in (3.19g), we

get

--^ <¥iW*K +#[l6Bo -"frW -(u2"1)Ac]
+I [8uBo - (u2+l)Do -2UCJ j |F-II2

+fe (Vp^aS' {[B0 +£ (2Co-V +f («°0+Do»H ^ 'rl2
+1 K+Do+ r (2Co-V tf* -?)* (iJ"Vj J

Similarly we take the term for k = 1 in (3.15b) using (B.27a), (3-28)
2

and neglecting terms of order R or higher orders.

(3.29a)
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D- 2 (p2q2Fj | (C2+C„'2) j (K + i q2L. - | qN_) 1fe.?»2

+ L

+ ^ (Op+o/) ?(u2+l) M0 - 2uQ0+ i- |(u+l) Lo

*2uP +16M +8uH0-8Ro"J +^ IMuM0-«0) +(u2 -1)»0]}| to- .r|2

+M<CaVCA°P j[" UVMc 4 [-*o*o "K) "f ("o +2«o>] 1j* -?!2
2

- fuR +n + ^r R2(uR -N -4qJ
Loo 9 o o ^o'

+f (^0-V,+Vr2(uVVW( ^ •*>* (i Jr5) (3'30a^
where LQ, MQ, NQ, PQ, QQ, and RQ, AQ, BQ, CQ, and DQ are defined on pages

79 and 75 respectively.

The longitudinal polarization of P particles in 0 -*0 (yes) transitions

assuming time reversal invariance in strong and weak interactions is

P = N
'I D

where N and D are given in (3«29a) and (3.30a) respectively and from (3.11)

the differential energy P spectrum N(w) is given by

N(W) = -1- D
4/

Now we specialize these results assuming the validity of the two-component

theory of neutrino.

iWimmmmmwmmnmmmmmmMwmmvm
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C. The Two-Component Theory of Neutrino

After the experimental confirmation of parity breakdown in nuclear

pdecay, it was proposed20'21'22 that aneutrino can exist either in a

positive helicity or a negative helicity state but not in both. Whether

a neutrino is left-handed or right-handed, is to be decided by experiment.

Goldhaber, Grodzins and Sunyar25 measured the neutrino helicity to be

negative.

The wave equation of neutrino, with negative helicity, is

H^ -1
•bl

H = - <5" -p

We have taken the mass of neutrino to zero and use"h = c = 1. Then for the

stationary state of energy W=qand $v=cJ>e"q;-<3--q^=<$.

Clearly the helicity operator <? -q commutes with the hamiltonian (- <T -q.)

and as such helicity is a good quantum number, (in fact, in our case

it is -l).

C. S. Wu et al, reference 5.

20T. D. Lee and C. N. Yang, Phys. Rev. 105, 1671 (1957).

21A. Salam, Nuovo Cimento 5, 299 (1957).

22L. Landau, Nuclear Physics 3, 127 (1957).

25M. Goldhaber, L. Grodzins, and A. W. Sunyar, Phys. Rev. 109,
1015 (1958). Also these results have been confirmed by I. Marklund and
L. A. Page, Nuclear Physics 9, 88 (1958).
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Since, in our calculations, the Dirac wave function for the neutrino

was taken, we show the connection of the two-component theory and the Dirac

theory of the neutrino.

For stationary states of W = q, the Dirac equation gives
-9 A

then

-a-q 4> - % (3.32a)

•q ^

Since y commutes with a, therefore from (3.32a), y ^) is also a

solution. If we impose the condition

75%'*% i C- =t1 (3.32b)

Then we show, below, that l|£ represents a two-component neutrino of

negative helicity for 6=1

->•(::)
From (3.32b)

f(l +75>t -| (1+6 )t

0

"A

We consider here positive energy states.

wi-a.wnmmmm.wMmmnm*mmmmmmmmm>*m*wmmnmwmmmm m**msmm«m
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Consider <£ = 1

/1 (i- '•%) <t
2 VXI-^7 Ty

(5-33)

V|(i-^m>
In (3.55), the upper and the lower components of % are the same. The

helicity of V , for 6 = 1, is negative.

In nuclear p decay, the interaction hamiltonian for an interaction

can be written as

Hx= Jlx(N)Q.(^JlxLV^5]% )

=-Ax(N)Q.(^*JIx[| (Cx+Cx)(l+75) +|(C^i^1-^^ ^ )
(5.54)

Thus to find the condition so that neutrino has negative helicity (eigen

value of •% -q is -1) for positive energy states,** from (5-54), we observe

*ln fact |(l+75) and \(l-yj are the projection operators for spin
of the neutrino and these projections operators acting °^ My select
states of negative and positive helicity respectively. J°™ ***? *'£**
(or -1) in (5.52b) gives for the neutrino anegative (or positive; helicity.

**ln fact W. t qin (5-52aJ corresponding to positive and negative
energy states of neutrino. Then &-q. %(l - 7*) % =+ ^ 2^ " V %
where Sw is the sign of W. From this it is clear that |(l -7?) % ***
the eigenfunctions of the helicity operator C-q. For Sw P0^^;
1(1 -7)% represents states of (+) helicity of v . For Sw negative.
i(l +/)f represent states of (±) helicity of M For an antinuetrino
in positive"energy statet \(l ±7?) %represent (±) helicity of 33 .



that (Cx+Cx) and (C^.-Cp are the amplitudes for positive (negative) and

negative (positive) helicity of antineutrino (neutrino). Therefore the

longitudinal polarization of p is

P- = (Intensity spins \\\) - (intensity spins antiparallel'q)

(Intensity spins W\) + (Intensity spins antiparallel q)

P lCx+Cxl2-lVCxl2
|C +C \2+ iC -C'l^
1 x x1 • x x1

Assuming time reversal invariance in nuclear beta decay, (C = C • c • = C*)
x x' x x

we get

20 C
p x x

From the above equation, we see that

(1) P^j- = 1 for CY = C*
x x

and (2) P_ = -l.forC = -C •
* xx

The choice Cx = cv is the correct choice, consistent with the experimental

determination of the negative helicity of the neutrino. Thus the results

derived in using Dirac wave functions for the neutrino in nuclear pdecay,

can be converted into those using the two-component theory by substituting

Cx= Cx for a11 the interactions. In our case of the 0^ 0 (yes) transition,
we get

and

C = C1
A A

C = c1
P P

l^¥**«I*i$*^8S«8WiSW.**t.«,#;•-
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D. Formulas for Longitudinal Polarization and P Spectrum in 0 -> 0 (yes)

Transitions, Using the Validity of the Two-Component Theory of Neutrino

Cancelling common factors

4W

itp
(P2*2*,) C2 p5--r|2j in (3.29a) and (3-30a)

after setting

CA = CA '' CP = CP ' WC get>

N'
P - —

where " D'

n's-Hb -£a +|D -A ttI^^D -fqA)iil5l= [ I o 9 o 3 o o ||̂ .-12 o 3 H o j£<r J

"i fef I(u2"l)Bo +£L16 V*(«VCo> "(u2"l)Ao ]
+a[8uBo- (u2+l)Do-2uCo] j

+[ |̂Bo +̂(2Co-Ao^f(UVDo)
+IK+V f (2Co-Ao)l j?V ) ] (3.56a)

1 2 2 U75^ , 1 ^Â^5D« 3 ** +± q%, - I qN + L * > + 2(-N +± qL ) —^- •o 9H o 3Ho o \^.Cl2 c> 3*o' lla.r° \^.;i2 ° 3 o' p

To check these formulas in the limit Z -> 0, it is necessary to
takeX = * 2; in those terms which vanish for |5t| = 1, for example to N'

1/cp \ ft2we should add -r[ r^-J •^ qA and for D'j we should consider

c, 2 Al/Cp\ 8 2.
IT\ md7) 9qLr



2

+̂a) {(u2+l)Mo"2uQo +̂[(u2+1)Lo-2uPo+l6Mc
+8uNo-8rJ +|a [MuM0-Qo) +(u2-l)No] ^

C f 2
jj- \ M-uQ +S_ (- uP +L -4R ) - | ^-. ._„ ,
MC. / o o 9 o o o' 3 o o

- FuR +N + %-2- (uR -N -4Q ) - J }' - uP +L -4Rn
Loo 9 voo o 31- oo o

if 1+K2(uQ0-Mo)}] 0- j (3.56b)
The differential energy p spectrum

N(W) =\ D
4*2

pWq2F
N(W)5 —^ C

2jT P

* ^ 1+71
CQ is called the Shape factor. For allowed transitions it is L '- -3—.
p o c

CP -CAD' lf?-?!2 (3-37)
D' is given, above, in (5.56b).

In (3-36)

u= W - V - q

R=0.43(157)_1 A1/3
For P" emission, V = -az/R and for P emission, V = az/R

•y

This shape factor was derived by M. E. Rose and R. K. Osborn,
Phys. Rev. 9_3_, 1315 (1954).

Wf »IM^p<WPflMWWW»IIWWW^^
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The functions A , B , C , D and L , M , N , P , Q . R^ are defined in
o o o o o o o o o o

equations (3.23) and (3.26). Units are such that (n = 1% = c = 1).

1 J 75
W = (p~+ l)d and in these formulas —r_»' 1 is a real number, because

2 .^ _a 4_ ^__ ^ n_ -» 5
Jcr .r

of the assumption of the validity of time reversal invariance in strong

interactions. The neutrino energy represented by q is equal to W - W,

where W is the end-point beta energy.



CHAPTER IV

EXPERIMENTAL DATA ON 0->0 (YES) BETA TRANSITIONS
ITS ANALYSIS WITH THE DEVELOPED THEORY

AND THE RESULTS

In the previous chapter, we developed the theoretical formulas for

the p longitudinal polarization and the shape factor for 0-^0 (yes)

transitions using the axial vector interaction and the correct form of

the pseudoscalar interaction. In this chapter, Section I gives the pres

ently available experimental data on the p longitudinal polarization and

the f3 spectrum of 0->0 (yes) transitions. Section II starts with a

short discussion of the finite nuclear size corrections and the finite

deBroglie wavelength effects; then the numerical coefficients for the

formulas of the p longitudinal polarization and the P shape factor are

given in Table IV for Pr1^ (0"-» 0*") and in Table V for Hol66 (0~-* 0+).

In Section III, the methods employed for the analysis of the experimental

data are described and the results of the extensive computations are

graphically presented. The main results are given in Section IV.

In the final chapter, we give the conclusions and a discussion of

these conclusions.

I. EXPERIMENTAL DATA ON 0-»0 (YES) TRANSITIONS

The 0—>0 (yes) beta transitions have been established in the decays

of Pr1^, Hol6°, Eu152 and Ce1^. A0->0 (yes) transition has been re-

1
D. Strominger, J. M. Hollander and G. T. Seaborg, Revs. Modern

Phys. 30, 585 (1958). See pages 724, 743, 732 and 723.
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2 . m-,206
ported in Tl

The relevant experimental data for our purpose of investigating

the existence of the pseudoscalar interaction are (l) the p longitudinal

polarization* and (2) the p shape factor in 0-*0 (yes) transitions.

(1) Pr1^-^ mlkk (P")

The decay scheme of Porter and Day3 is given in Figure 1. The
+ l44maximum p" kinetic energy is 3 Mev in the 0 -*> 0 branch. Pr1- has a

half-life time of 17 minutes. The advantage of the study of Pr (0"-^> 0+)

is that this transition is very intense (~98$). The log ft value is

6.6.

Anumber of groups3, '5have studied the p" spectrum and the
general conclusion is that the P" shape factor of the 0""-•*> 0 branch is

independent of the p" energy within 6f0. For our analysis we take the

3shape factor as given by Porter and Day.

Table III summarizes the p" longitudinal polarization measurements

of the 0"-* °^ branch.

2L. Zyrianova, Bull. Acad. Sciences U.S.S.R. 20, 1280 (195b). (Trans
lated by Columbia Technical Translation, New York).

,y,

For a recent review article, see L. A. Page, Revs. Mod. Phys. 31,

759 (1959).

3F. T. Porter and P. P. Day, Phys. Rev. 114, 1286 (1959)-

S. L. Graham, J. S. Geiger and T. A. Eastwood, Can. J Phys. 3_6,
1084 (1958). This paper contains the references to the previous work.

5N. J. Freeman, Proc. Phys. Soc. 73, 600 (1959)-
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pr144 (17
mm

807 ±5kev
(1.0 ±0.1%

299±15kev

2 ±0.17o

2996±3kev
(97.87o)

Nd
144

UNCLASSIFIED
ORNL-LR-DWG 48106

1 2.19 Mev

2+ 0.697

Figure 1. Decay Scheme of Pr144 of Porter and Day, Phys. Rev. 114, 1286 (1959).
The numbers in the parenthesis refer to intensity.
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TABLE III

EXPERIMENTA DATA ON BETA LONGITUDINAL POLARIZATION

Longitudinal
Polarization

in units of (v/c)

(0.986 + 0.030)

(1 +°*00)u* - 0.13;

(0.96 + 0.04)

(0.90 +0.22)

(O.77 + 0.21)

(1.08 + -.26)

144 •
OF Pr 0 0

Energy Range
of p particles

1 Msv to 3 Mev

0.3 Mev to 3 Mev

0,3 Mev to 3 Mev

0.3.,Mev to 3 Msv

0.4 Mev to 1.1 Mev

1.2 Mev to 3 Mev

Method of

Measurement

Miller Scattering

. 2
Circulation Polariization

of Bremsstrahlung

Multiple - Mott Scattering"

k
Miller Scattering

5
^ller Scattering

Miller Scattering

"""W. A. W. Mehlhop, Ph.D. dissertation (Unpublished) Washington
University, Saint Louis'(1959).

2S. G. Cohen and R. Wiener, Nuclear Physics 15_, 79 (i960).

3J. Heintze, Z. Physik 15_0, 134 (1958).

^Geiger, et. al., Phys. Rev. 112, 1684 (1958).

5Frauenfelder, et. al., Phys. Rev. 10£, 643 (1957).
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The most accurate measurement of the p " longitudinal polarization

- + 6of the (0 -->> 0 ) branch is due to Mehlhop et al. In this experiment a

relative measurement of the p" longitudinal polarization was made with

respect to the p " particles of the 2"-? 0 (unique) transition of Y .

The p longitudinal polarization in Y^ (2"-» 0 ) was assumed to be - JL.
P 11 ) ^

Mehlhop found the average of " over the p " spectrum of Pr (0~-»> 0+),
v/c

for the kinetic energy of the p " particles from 1 Mev to the end point

(~ 3 Mev), to be

P./ "\- -(0.986 i0.030)
\ v/c/'A

v/c is the ratio of the P" particle velocity to the vacuum velocity of

light.

(2) Ho166-^ Er166 (p")
The decay scheme of HoXDO is shown in Figure 7. Its half-life time

is 27 hours and its log ft value is 8.2. The P" spectrum of the 0"-^ 0"1"

branch (^ 47$ intense) has not been very carefully studied experimentally.

We do not, therefore, make a detailed analysis of the shape factor.

6
W. A. W. Mehlhop, E. D. Lambe and T. Pond, Bull. Am. Phys. Society 5,

9 (i960). Also W. A. W. Mehlhop, Ph.D. dissertation, (Unpublished), Washington
University, Saint Louis, 1959.

7
J. M. Cork, M. K. Brice, R. G. Helmer and R. W. Woods, Jr., Phys. Rev.

110, 526 (1958). Also see Strominger et al., op_. cit. p. 743.

Private Communication from Dr. R. L Graham.
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Buhring8 measured the p" longitudinal polarization in the 0 -* 0

branch and the results are:

{(-̂ )m?66} = (0-99 i0.02) (( -%)Fy>/
The range of the p~ energy was from 0.18 Mev to 1.8 Mev and the angular

- 32 > + +\
brackets mean the averaging over this range of the p" energy. P (1 —» 0 )

is an allowed p" transition and we assume, for our analysis, P„ =- v/c

in this case.

(3) Eu1^ Gd1^2 (p")
The decay scheme is given in the tables of isotopes by Strominger

et al. The intensity of the 0~—> 0 transition is ^ 70$ and the half-life

time is 9.2 hours. No accurate measurement of the p" spectrum is avail

able. Also the p" longitudinal polarization has not been measured. We

do not carry out any analysis of such cases where the accurate measurements

of these are not available.

144 144
(4) Ce —> Pr (pi

Strominger10 et al. give the decay scheme. The half-life time is

about 285 days. No detailed study of the beta spectrum has been made of

the (76$) intense 0+-t> 0~ transition and also no measurement of the beta

longitudinal polarization has been reported.

8W. Buhring, Z. Physik 155, 566 (1959).

^Strominger et al., op_. cit., p. 732.

Strominger et al., pp_. cit., p. 723-



206 206
(5) Tl —> Pb ( p")

*

The decay scheme is given by Zyrianova. The half life time is

4.2 minutes and the log ft value is 5.2. The beta end point energy is

1.5 Mev and the P" spectrum is a simple one. The beta energy differ

ential spectrum is of the allowed shape within %. But a careful analysis

is desirable to establish the decay scheme. Accurate measurements

of the P~ longitudinal polarization and P~ spectrum are required.

Now we describe the method of computation and the nuclear finite

size and the finite deBroglie wavelength effects.

II. METHOD OF COMPUTATION

The formulas of the P longitudinal polarization and the P shape

factor, as developed in this work, are given for 0 ->0 (yes) beta tran

sitions on pages 89 and 90. In these expressions, we have A0, B0, C0,

Do> Lo> Mo> Wo> Po> ^o and Ro> which depend on the electronic radial

functions evaluated at the nuclear radius. For the p decays of Pr1^

and Ho , these electronic radial function f1} glf f_1, and g-]L, evalu

ated at the nuclear radius 0.43 a A? (—\, were computed taking into

consideration (l) the finite nuclear size effect, by considering the

nucleus as a sphere with a uniform charge distribution and (2) the finite

deBroglie wavelength effects. Sin (Sx - &_{) was computed, only con

sidering the Coulomb effects. In the following, we briefly describe these

two effects and then give the numerical coefficients of the formulas.

Zyrianova, loc. cit.

w»s*i[**i*iS: m*i««>>-»i



99

A. Nuclear Finite Size Effects

In our calculations, we have taken for the electron

J + t
fk ~ Cl R

-VM-

H (r) A *

where fx(r) and g^(r) are freal and are the radial functions. It has

been shown by Rose11 that the indieial behavior of the radial wavefunctions

for any central field V(r) is given by the following:

(a) For X = k ; k is a positive integer,

r
using the notation x = -p—

21+1
and w(x) = (2j + 2) x ,

1

H~ T2T71T7 (B)J +l I V(x) "(x) te
0

(b) and for X = -k

C Y
*-* ~ 2JT2 *'+l I VW vWto

S-k ~ C2 R<5 +'̂ (^.1^)

11M. E. Rose, Phys. Rev. 82, 389 (1951).

(4.1a)
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From (4.1) it is clear that gfc and f_k are "field sensitive" and for

large angular momentum, the weighting function approaches a delta

functiona However, for small values of angular momentum, this effect

becomes important. In 0-»0 (yes) transitions, the finite nuclear size

corrections are therefore important.
1 -,

We take R the nuclear radius as 0.43 aA^ (— units) and a uni-
mc

form charge distribution in the nucleus,which gives:

V= --2-Z ; r>R (4.2)

v- --Ir o --4-)J r<"R
R

a ^ I37 and Z iS the number of Protons of the daughter nucleus. The

details of the computation of the radial functions, using the potential

in (4.2) are given elsewhere.12

B<> Fi"ite deBroglie Wavelength Effects.

Usually, the analytic expressions are given1-5 for Lo, Mo, No,
*Po, Qo, Ro and also Ao, Bo, Co, and Do by considering the first term, in

the power series expansion of these combinations of the radial functions.

12
C. P. Bhalla and Mo E, Rose, Oak Ridge National Laboratory Report

<0RNL~2954)e

13^E. Greuling, Phys. Rev. 61, 568 (1942).
14

D. L. Pursey, Phil. Mag„ 42, II93 (1951).
*

Appendix D. of this dissertation.

if-ti'iwiwiwrimpunwii
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The validity of this procedure rests on the fact that the beta particle

deBroglie wavelength is very large compared to the nuclear radius or

to be more exact PR <;< 1. However, where we have either large p mo

mentum,or for small momentum but aZ not small, these approximate

expressions are not quite valid. The desirable procedure is, therefore,

not to terminate the power series expansion by considering the first

term only, but to take into account a large number of the terms in this

expansion. The correction arising from this procedure has been called

15
the finite deBroglie wavelength effect.

In our analysis, these corrections have been properly considered

by computing all the required functions on the ORACLE of the Oak Ridge

National Laboratory.

C. P Longitudinal Polarization and Spectrum Formulas of

^^(0% Q+) and Ho (o"-»0+) with Numerical Coefficients

We write the formulas for the p longitudinal polarization and

spectrum, as developed in this work as:

ao+al *+a2X -avf +(a4 +a5X }? (4,3)
~" " bQ +bx X2 +b2 X+b3 <£ +(b4 +b5 X)£

and the shape factor C - as

C- =bQ +bx x2 +b2 .X +b3 f +(b4 +b5 X)% <SM

15m» E. Rose and C. L. Perry, Phys. Rev. go, ^79 (1953).



where we have introduced

1 J7,

and

X 3 —

(4.5a)
J^ »r

Y " MC^~ (^5*>)

2

o ~ <d 3 <d 9 o (4.6a)

al s ~Ao (4.6b)

a2 s Do " -f~q Ao 0*.6c)

a3

2

-J- j (U2 - 1) BQ +-^q[8u BQ - (u2 +:l)D0 - 2u cj

f [l6 Bq -4(u Do +CQ) -(u2-l)Ao]^ (4.6d)

% = Bo +"Hu Co +V +"I" <2 c0 " Ao) (*•&)

a5 = T-[uCo+Do+3-q(2Co "Ao)J (4.6f)

1 2

bo s Mo - "T1 Wo +T" ^ Lo (*.7a)

bl = Lo (4.7b)

b2 = ~2(N0--fqLo) (Mc)

b3 - Tj(u2+ 1)Mo "2u %+-f^ [> Mo "% +̂ -i^o]
+-f" l>2 +1)L0 - 2u Pq +16 MQ +8u NQ - 8Rq] (4.7d)
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*k S MQ - UQ - | q (NQ +2QQ)+ SL (-uPQ + LQ - 4RQ)
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*o —o 5 H K"o ' - -o' • 9 * "o o o- (k.le)

b5 s - [uRQ +NQ - -i^L j - uPQ +LQ - 4RQ +R2(uQQ - MQ)}

+-i-q2R2 (URQ -NQ -4Q0)J ih.lt)*

Lo> Mo> V Po> V Ro' and V V Co' and V are defined in (3-26)
and (3.23) on pages 79 and 75 respectively.

These coefficients, as defined in (4.6) and (4.7) are given in

Table IV for Pr1^ (0"-» 0+), taking WQ =6.854 (mc units), and in Table V
for Hl66 (0'-* 0+), taking W =4.514 (mc2 units). The pmomentum p is
in mc units. These coefficients are given for various values of p, assuming a

uniform charge distribution in the nucleus, with radius 0.428a A? (-^)

and taking into account the finite deBroglie wavelength effects.

III. METHOD OF ANALYSIS OF DATA AND RESULTS

In (4.3) and (4.4) we have two unknown quantities (l) \ - -^7- ,

the ratio of the coupling constants of the pseudoscalar interaction and

the axial vector interaction divided by the nucleon mass in (~ 1836) units

of m, and (2) X, the ratio of the nuclear matrix elements. Our

motivation is to investigate the existence of the pseudoscalar interaction.

Therefore, first we investigate whether or not the axial vector interaction

alone can explain the experimental data (% ^ 0); then we want to find an

upper limit of the value of ^ which is consistent with the experimental

p

*In (4.7f), the terms containing R can be neglected.



TABLE IV

Pr

POLARIZATION AND SHAPE FACTOR FORMULAS*

LVU-XJ. UU.LMhjj H
O

p
0 al a2 a3 a4 a

5 bo bl b2 b3 \ b
5

1.0 112.3 0.6400 16.97 14290 91o54 1.922 153.4 0,9026 23*53 20780 2260 175.7

1.5 131.5 0.7487 19.85 17740 108,,5 2.182 153.9 O.8976 23.50 21830 1768 141.1

2.0 140.7 0.7992 21.21 20250 117.7 2.261 153.8 0.8917 23.43 23050 1445 116.7

2.5 145.1 0.8234 21.86 22390 123.3 2.248 153»6 0.8854 23.32 24480 1217 99-48

2.783 146.6 0.8310 22,.08 23520 125.7 2.229 153.3 0.8816 23.25 25320 1116 91.95

3.0 147=3 0.8348 22.19 24370 127.3 2.203 153.1 O.8787 23.18 26010 1050 87.00

3-5 148.5 0.8395 22.33 26380 130,5 2.128 152.5 0.8720 23*05 "27680 923.5 77.60

4.0 148.9 0.8402 22.37 28410 133.2 2,047 151.8 0.8651 22.92 29490 825.4 70.33

4.5 148.9 0.8385 22.35 30510 135*8 1.964 •J-.^? JL0"U 0.8582 22.76 31400 746.6 64.52

5.0 148.7 0.8354 22.29 32730 138.2 1.870 150.3 0.8512 22.62 33480 681.8 59.83

5»5 148.2 0.8312 CZtCZ. c CL\J 35020 140.6 1.770 149.5 0.8442 22.45 35670 627.9 55°94

6.0 147.6 0.8264 22.09 37430 142.9 1.690 148.7 O.8372 22*31 37990 582.0 52.67

6.5 14? o0 0,8211 21.97 39960 145.3 1.595 147.8 O.8302 22*15 40460 542.6 49.89

Equations (4.3) and (4.4). These coefficients have been calculated considering (l) the
nuclear radius to be 0.428&CAO (^/mc), (2) the corrections due to the finite nuclear size and
(3) the finite deBroglie wavelength effects.
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TABLE V

? 0+. NUMERICAL COEFFICIENTS FOR BETA LONGITUDINAL

POLARIZATION AND SHAPE FACTOR FORMULAS

p a0 al a2
a

3 a4 a5 bo bl \ t b3 b4 b5

0.76 95.95 0.5323 14.30 16800 84.46 1.441 152.6 0.8758 23.,12 28130 2809 217-9

1.0 111.8 0.6200 16.66 20050 99.02 1.661 152.8 0.8734 23.,10 28670 2505 195-1

1.5 130.8 0.7239 19.47 24820 117-5 1.882 153.1 0.8673 23-•05 30080 1983 156.2

2.0 139.6 0.7713 20.76 28220 127.4 1.936 152,9 0.8602 22,>93 ,31750 1615 128.7

2.5 143.9 0.7932 21.37 31080 .133.7 1.919 152.4 0.8525 22..80 33620 1354 109.3

3.0 145.9 0.8026 21.65 33700 138.1 1.869 151.6 0.8446 22 .62 35620 1163 95-15

3*5 146.8 0.8055 21,76 36290 141.6 1.801 150.9 0.8364 22.47 37820 1018 84.52

4.0 147.O 0.8046 21.76 38910 144.7 1.724 149.9 O.8282 22 .28 40120 905.6 76.26

^Equations (4-3) and,(4.4). These -coefficients have been calculated considering (l) the
nuclear radius to be 0.42&XA^ft/mc), (2) the corrections due to the finite nuclear size and
(3) the finite deBroglie wavelength effects.

o
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data. However, there is one difficulty; x has also to be treated as

a parameter.

Nuclear Matrix Elements

No reliable calculations of X , the ratio of the nuclear matrix

elements have been done because not enough is known about the nuclear

forces. However, several attempts have been made to calculate the value

of x, using certain assumptions. Equations (4.9) and (4.10) give these

results. We write

Then, on the basis of the single particle (j - j coupling scheme) model,
16Rose and Osborn give; ("h = m = c = 1)

A „ {Rt} +A<Wo-*> (4.9a)
(R^ )̂ 1to 4/3. Wq is the maximum p total energy.

A is the mass difference of neutron and proton and R is the

nuclear radius in units of (JL. ).
mc

Using a semi-empirical energy formula, Ahrens and Feenberg17 obtain

A 1.2 +-4- (WQ -A)] (k.9b)
a z

18 .Pursey, using an explicit form of the nuclear hamiltonian and single

16
M. E. Rose and R. K. Osborn, Phys. Rev. 9_3, 1326 (1954)

17T. Ahrens and E Feenberg, Phys. Rev. 86, 64 (1952).

l8D. L. Pursey, Phil. Mag. 4_2, 1193 (1951).
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particle wavefunctions, gives

A =2fl+ A (w -A) J (4.9c)
L az °

For Pr1^ (0"-> 0+), Pearson1^ has calculated x,assuming the

single particle potential to be an infinitely deep square well. With

this assumption:

i J 7L~Z = 2.5 (4.10a)

And using the harmonic oscillator potential of equal strengths for the

parent and the daughter nucleus, he obtains:

X = 8 (4.10b)

But from the equations (4.9) one gets for Pr (0~_* 0+)

X r~ -30 to -37 (4.10c)

and for Hol66 (0"_^ 0+)
X ~ -31 to -37 IS-U-)

The Coulomb contribution provides the dominant term in the expressions

of \ as given in equations (4.9). This fact favors a value of X from

, i44 j tt l66
-30 to -40 for Pr and Ho

But it must be remembered that these calculated values of X, cannot

be accepted with much confidence, because of the lack of the knowledge

concerning the nuclear forces; therefore, we shall consider \ as a para-

19J. M. Pearson, Can. J. Physics ^8, 148 (i960).
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meter in the following analysis, rather than relying on certain calculated

values.

A. Analysis of Data on Pr1 (0~-» 0+)

1. p" longitudinal polarization

(a) Pure Axial Vector Interaction, (i.e. £ =0)

The calculated P longitudinal polarization (Pl( ) in units of

- v/c, is plotted (Figure 2) versus p" momentum in mc units for

X. = 10, 30, 110, -30, -50 and -150. The region of P" kinetic energy

for the measurement of Mehlhop et al. is from 1 Mev to c 3 Mev, and this

is shown in the Figure. From Figure 2, we observe that in the p~
P.,

energy range of Mehlhop's data, the calculated r1 deviates less than
v/c

0.25/o from 1.000 for large values of |x\ ( >100). The upper and the

lower limits of /- ^7^Vf this data are 1.016 and O.956 respectively.
A large number of the values of X. , the ratio of the nuclear matrix ele-

p V
ments, can be found, for which the calculated values of / - -V-Mie well

\ v/c/

within these limits (of Mehlhop*s data). Therefore, the pure axial vector

interaction can easily explain his data.

(b) Axial Vector and Pseudoscalar Interactions. (6, 4^ 0)

Using both the axial vector and the pseudoscalar interactions, we

now investigate the regions of the values of £ and \,for which the

calculated /- —JivLies within the experimental limits. Figure 3 shows

-if

Mehlhop et al., op_. cit. And also Mehlhop, op_. cit.

mmmmmmmmmmmmmmmmm mwwmmmmm*
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Figure 2. Calculated Longitudinal Polarization in Units of -v/c versus /3 Momentum for A
Interaction Only. The numbers attached to the curves give the ratio of the nuclear matrix
elements (A).
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these permissible regions. In this Figure, the curves designated by

L and U represent the loci of the points in the (^, X) plane, for the
P v

lower and upper limits (0.956 and 1.016 respectively) of <^- -r-Y The

lightly shaded regions, in between the curves designated by L and U,

give the permissible values of £ and X for the longitudinal polarization

measurement of Mehlhop.

Figures k, 5, and 6 respectively, give the typical curves of the

P..
calculated -r- versus p momentum for the following:

v/c

(1) ^ = 0.05; X =90, 100, -65, -150 and -190

(2) ^ = -0.05; X = 150, 175, 190, -110, -150 and -190

and (3) %= 0.002, 0.004, 0.006, 0.008, -0.002, -0.004, -0.006, and

-0.008 for X = -35

It is interesting to notice that for the pure pseudoscalar inter

action, our calculated value of P„ is (0.97) ~g- at p = 1.0; however,

using plane waves for the electron we get P|( =0.8 v/c at p =1.0.

2. p" shape factor

We compare the calculated shape factor curve indirectly with the

experimental data. The comparison is made between the calculated shape

factor and a cubic (in p) fit through the experimental data. The cubic

fit to the data on the shape factor data of Porter and Day is as follows:

c _ = 9^59.32 -375.752 p + 89.8U0 p2 -8.499^ P3 (4-12)

This implies neglecting the Coulomb effect and other corrections,
used in our analysis.
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numbers attached to the curves give A.
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Figure 6. Calculated Longitudinal Polarization in Units of -v/c versus BMomentum for A=-35. The numbers
attached to the curves give Cp/MCA.
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The mean sum squared of the residuals* of this fit from the experimental

data is 1.217-

For our analysis, we arbitrarily normalize the shape factor (4.12)

and the calculated shape factor (from Table IV) to Unity at p = 5-0.

Thus we get from (4 12): C normalized to unity at p = 5-0.

0_=8 * k£9459.32 -375-752p +89.840p2 -8.4994P3 ] (^-13)
/& i \For p = 1.0 to p =6.5 in the steps of 0.5, we calculate l-yr- ' >

where A X, is the deviation of the calculated shape factor (from our

formulas) from the value (Xi) given by the cubic fit. Then we compute

for the cases of interest. We consider the calculated shape factor a

"reasonable" fit if A< 0.005; this generally corresponds to the maximum

A X-
deviation ! being less 4$.

i n

(a) Pure A. Interaction (%-a ~- =0) .
v i MC.

We find, for the pure axial vector interaction, that for X;> 0,

we always get a reasonable fit and for X= -50, we also get such a fit to

the shape factor.

5 /v. ^2
X ("c - »)

*The mean sum squared of the residuals is defined as lk-6- 4)
where n and n are the computed values and the experimental values of the
p shape factor. There were 46 experimental points in this experimental
shape factor.



This implies that the pure axial vector interaction can explain

the experimental shape factor of Porter and Day.

It is interesting to observe that it appears in the literature

that there is no fit to the shape factor for X< 0, contrary to our

finding (x<-50). In the previous works, -X was only considered in the

region of a large destructive interference (^>10 to 30), where there is

no fit. We have investigated taking -X to be as large as 200 and find

that for x, <-50, there is a reasonable fit.

(b) Aand P Interactions (^ ^ 0)

We now consider the axial vector and the pseudoscalar interactions.

The results of the computations are summarized in Figure 3, page 110. In

this Figure, we show by the shaded regions, the permissible values of

and x, for a reasonable fit to the data of Porter and Day.

The overlapping regions of the 0 shape factor fit and a fit to

the polarization data of Mehlhop, is shown as a crosshatched region. The

values of jf. in this crosshatched region depend on x. It is interesting to

notice that we can find values of £ for x = -35 which are consistent*

with the experimental data. In the previous works, no such value of £
0

(=t&- ) was reported.
MLA.

* P
See Figure 6 for a plot of 1L- versus p" momentum for x= -35

and a number of values of £ . v/c
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B. Analysis of Data on Hol66 (0"-> 0+)

The decay scheme of Hoxuu of Cork et al. is given in Figure 7.

3" Longitudinal Polarization

(a) Pure A. Interaction (^ =0)

The calculated P" longitudinal polarization in units of - v/c

is plotted (Fig. 8) versus P~ momentum in mc units for X =10, 30, 130,

-30, -50 and 130. The range of the p" kinetic energy for the 0"longi

tudinal polarization data of Buhring is 0.18 Mev to 1.8 Mev. A large

number of the values of X , the ratio of the nuclear matrix elements,

can be found for which the calculated values of <(- -!L- > lies within the
\ v/c /

experimental limits. Therefore, as before for Pr1^4" (0"-> 0 ), the pure
**

axial vector interaction can easily explain Buhring's data.

(b) A and P Interactions ($f£ 0)

Using both the axial vector and the pseudoscalar interaction, the

P \.

regions of %and X,for which the calculated value of/-^y^-y lies within
the experimental limits, are shown (Fig. 9) by the shaded region. The

curves denoted by L and U give the loci of the points in the (^. ,X) plane

for the lower and the upper limit (0-97 and 1.01 respectively) of the p"

longitudinal polarization data of Buliring.

In Figure 9, the region of large destructive interference, (-25<X<-5)

*
Cork et al., loc. cit. Modified by Strominger, op_. cit. 743•

Buhring, loc. cit.
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Figure 7. Decay Scheme of Ho166 of Cork et al., Phys. Rev. 110, 526(1958). The
numbers in the parenthesis refer to intensity.
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Figure 8. Calculated Longitudinal Polarization In Units of —v/c versus /3 Momentum for A Interaction Only. The numbers attached to the curves
give the ratio of the nuclear matrix elements (A).
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is so indicated.

We do not analyze any shape factor for Hol6° (0"-> 0+), because

so far no accurate measurement exists.

IV. RESULTS

(1) We'find that the pure axial vector interaction can explain the

existing data on Pr1^4 (0"-^ 0+) and Hol66 (0~-» 0+).
(2) We find the upper limit of §L. ,which is consistent with the ex-

perimental data.

For Pr1^ (0"-» O-*)
CP

(a) jjg- = -0.05 for X as large as 200

(b) r&- _ 0.045 for-\, as large as 200
MC

A

166For Ho166 (0> 0+)

(a) Sis- = 0.0^8 for X as large as 200

0>) §|- =-0.04 for -X ^ 200



122

CHAPTER V

SUMMARY AND CONCLUSIONS

In Section I, we summarize what has been covered in the previous

chapters. Then in Section II, we list the main points of this work in

cluding the assumptions used in this investigation of the existence of

the pseudoscalar interaction. The conclusions of this work are given

in Section III, followed by a brief discussion of these conclusions.

I. SUMMARY

In Chapter I, the statement of the problem considered in this

dissertation is given: the investigation of the existence of the pseudo-

scalar interaction by the formulation of the theoretical expressions for

the 6 longitudinal polarization and the P spectrum in 0-» 0 (yes) beta

transitions and by a comparison of the existing experimental data with

the developed theory.

In Chapter II, we explain the reasons for the incorrectness of

the conventional treatment of the pseudoscalar interaction, and then

give the correct form of the operator for this interaction.

In Chapter III, using the correct form of the pseudoscalar inter

action and the conventional form of the axial vector interaction, we

develop the p longitudinal polarization and the p shape factor formulas

for 0 -» 0 (yes) beta transitions.
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2_kk /_- n+\
In Chapter IV, we analyze the experimental data on Pr (0 -* 0 ;

and Ho166 (0"-> 0+) with the formulas of Chapter III, which in these cases

are tabulated on pages 10^ and 105 respectively.

II. MAIN POINTS OF THE PROCEDURE

1. We have used the conventional form of the axial vector inter

action and the correct1 operator for the pseudoscalar interaction. The

derived formulas of the P longitudinal polarization and the P spectrum

are given in (3-35) and (3-37), on pages 89 and 90 respectively, for the

0 ->0 (yes) beta transition. These developed formulas are expressed in

terms of (l) %,the ratio of the coupling constants of the pseudoscalar

interaction and the axial vector interaction, divided by the nucleon mass

(-1856) in units of electron mass, (2) X,the ratio of the nuclear

matrix elements and (3) certain functions, which are defined in (3-23)

and (3.26), depending on the electronic radial functions, evaluated at

the nuclear radius.

2. All the electronic radial functions,2 used in the numerical

analysis, were computed on the ORACLE of the Oak Ridge National Labora

tory, taking into account the following:

(a) the nucleus was considered to be a sphere with a uniform
3

charge distribution - the nuclear finite size effect

1M. E. Rose and R. K. Osborn, Phys. Rev. 93,, 1315 (195*0.

2The details of the actual computations are given by C P. Bhalla
and M. E. Rose, Oak Ridge National Laboratory Report (to be issued).

3M. E. Rose and D. K. Holmes, Oak Ridge National Laboratory Report
1022 (unpublished).
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(b) the nuclear radius was taken to be 0.428 a A^ (—)
^mc'

and (c) the finite deBroglie wavelength effects were properly

considered.

3. A comparison of the developed theory was made with the

following experimental data:

(a) Prlkk (0"-^0+)

(1) The P longitudinal polarization datum of Mehlhop et al.5

(2) The P" shape factor of Porter and Day.

(b) Ho166 (0"-> 0 )
•7

Only the P longitudinal polarization measurement of Buhring.

4. Time reversal invariance is valid in strong interactions.

This implies that the ratio of the nuclear matrix elements is real.

5- Time reversal invariance holds in the nuclear beta decay.

This assumption gives the reality condition on the coupling constants.

6. The two component theory of the neutrino is used. This

assumption gave CA =CA and Cp = Cp in the theoretical formulas,

k
M. E. Rose and C. L. Perry, Phys. Rev. 90, 479 (1953).

W. A. W. Mehlhop, E. D. Lambe, and T. Pond, Bull. Am. Phys.
Soc. 5, 9 (i960). And also W. A. W. Mehlhop, dissertation, Washington
University, Saint Louis, 1959.

6
F. T. Porter and P. P. Day, Phys. Rev. 114, 1286 (1959).

7
W. Buhring, Z. Physik 155, 566 (1959).

WWSW»*j»»W^lil«|^IWW»JH|»«
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developed using the 4-component Dirac neutrino.

Now we present the conclusions of this investigation.

III. CONCLUSIONS

1. We have developed the theoretical formulas for the p

longitudinal polarization and the p shape factor in 0-> 0 (yes)

transitions, without any known significant approximations, using the

correct form of the operator for the pseudoscalar interaction and the

conventional form of the axial vector interaction.

2. By the application of these formulas to the most accurate

existing experimental data onO-^0 (yes) beta transitions, we have

been able to conclude that:

(A) The absence of the pseudoscalar interaction in nuclear beta decay

is consistent with the existing experimental data. This data does not

contradict the V-1.2 A law, which is well established by the experiments

on the allowed beta transitions.

(B) A new upper limit on the ratio of the coupling constants of the

pseudoscalar interaction and the axial vector interaction can be set

and this is

Cr, |

< 90
CA

which is about half the previous extimates, as reported in the litera-

ture; then the contribution of the pseudoscalar interaction is < .002,

*The ratio of the shape factor for the pure pseudoscalar inter
action to the shape factor for the pure axial vector interaction at
the p kinetic energy of 1 Mev for Pr1^4 (0"-} 0+).
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3- Within the framework of the developed formulas, it is

possible to decide the question of the existence of the pseudoscalar

interaction in nuclear beta decay, provided that

(A) The p longitudinal polarization in 0 -?0 (yes) beta transitions

is measured with an accuracy of r~-ify at four or five different values

of the p momentum, throughout the beta spectrum.

(B) The accurate P spectrum measurements are performed, as in Pr (0 -7 0 ),

for the other 0 -> 0 (yes) beta transitions.

Discussion of the Conclusions

This work represents a consistent detailed analysis of the pseudo-

scalar interaction in nuclear beta decay. The essential limitations

which influence the results of this analysis are the following:

1. The ratio of the nuclear matrix element has to be treated as

a parameter.

2. The two accurate (2 to 3$) measurements of the p~ longitudinal

polarization in Pr1 (0_~»> 0+) and Hol6 (O'-^O4) give the average of

^•7- over the beta kinetic energies from 1 Mev to 3 Mev and from 0.18 to

1.8 Mev respectively. These measurements do not provide a sensitive

test of the existence of the pseudoscalar interaction, because a wide

C
range of the values of -r^- and the ratio of the nuclear matrix elements

°A

*

The Oak Ridge group has achieved an accuracy of <~ 1.2$ in the
p longitudinal polarization measurement for p32(i+_s> o+) at v/c = 0.8912,by
Mott Scattering.

mmnmmmmm"mm>
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measurements. However, if the p longitudinal polarization, is measured

at about four different beta momenta, (say by Mott Scattering), then

these parameters cannot take on a wide range of values and still give

a fit to the experimental data. This can be readily understood, because

the pure pseudoscalar interaction and the pure axial vector interaction,

taken separately, give the opposite signs for the beta longitudinal

polarization.

Also the accurate p shape factor measurements of the 0-» 0 (yes)

beta transitions are extremely useful to investigate the possible con

tribution of the pseudoscalar interaction, provided that the beta

longitudinal polarization measurements are available for these cases,

(as explained above).

Finally, we wish to point out that the necessary accuracy of the

measurements in 0 -} 0 (yes) transitions required to settle the question

of the existence of the pseudoscalar interaction in nuclear p decay,

is within reach of experimental measurement.
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APPENDIX A

The following relations, which have been useful in this work, are

listed. The proofs and discussions appear in the literature*

Clebsch-Gordon Coefficients or C-Coefficients

^ ™ 1Throughout this work, notation of C-Coefficients as given by Rose
2

is used; and for reference, it is compared with that of Condon and Shortley.

cO^Jjm^nigjm) £. (JiVl11^ \ h^2"m^
Since m, +nig =m; for brevity Ctj^^n^nigm) is also written as

C^jgjjn^m-n^).

The following are the symmetry coefficients of C-Coefficients.

^rWVW =(_)^+ 2°3cOi^'W^ (A,la)
1 +3 ~<3=(-) 1 2 l3c(j2J1J3;m2,m;L,m3) (A.lb)
J. -m / 2j + 1\*

=(-) (2i7TTjc(V3J2^^ltt3^m2) (A-lc)
J2

Making use of (A.la) through (A.lc), additional re-latj^ons can be derived

."Si. E. Rose, Elementary Theory, of Angular Momentum (John Wiley
and Sons, Inc., New York 1957) p. 37•

2E. U. Condon and G. H. Shor-tfey, Theory of Atomic Spectra (Cambridge
University Press, 1935)

M. E. Rose, op. cit. p. 38-39•
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C(j1J203;n1,n2,ni3) =(-) I23+T/C^3J2jl;"m3'm2'"ml^ (A.ld)
1

h~mi/2h +M*= ("> ( 2JTT1 0(03^2^3,-m^mg) (A.le)
J2

1

j2 + nw2j + 1\ >
=(_) (2jl +ljc^233Jl3"nl'1B3*1Bl) (A*lf)

In (A.l) the phases are real and the parity C-Coefficient

C(^2'3;000) = 0 uniess ^ +#2 +£ is eyen.

(Tr A% = - ^-* (A.2)

(Reference 1. p. 154)

1

(J'*' U^lJm) =£^<Sm',m +n (-^ [j(j +l)]*c(jlj;m +n,-n) (A.5)
(Reference 1. p. 85)

W'* )y^(*'f)
^f^ +1)(2(!2 +1)-)*-

=fLW (2g +1) JCfq^JV^cC^fjoo^^ +m2(^ (A.6)
(Reference 1. p, 6l)

'X*1 ,^l )=5(-)^ +H(^ +l) (26' fl) (2.1 +1).(2J' -H)fc(/,n,on.
''V'Ax' ' Zj ; U7^ 4* (2> +1) J

c(JjJa ;-n,n*) y , w(jjV^^i) (A.7)
(Proof given on page 158 of Reference l)

WMiPBMMiWW»«Wl.iW»>
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#

W (jj'Cd.';A-j) is a Racah Coefficient and is defined as

C(abe; aP) C(edc; a+ P,S )=2£(2e +l)(2f +l)]*C(bdf;0S" )
x C(afc; a, P+g )w (abcd;ef) (A.8a)

W (abcd;ef) =o unless A(abe), A(edc ), 4(bdf ),A(afc) (A.8b)

Symmetry Relations of Racah-Coefficients

In W (abcd;ef) the following permutations of (a,b,c,d;ef) are per-

missable without any phase change.

(badc;ef), (cdab;ef), (dcba;ef), (acbd;fe)

(cadb;fe), (bdac;fe),(dbca;fe) (A.8c)

The Racah coefficients of the following argument permutations give

(-)b +c "e "f W(abcd;ef)

(aefd;bd), (eadf;bc), (fdae;bc), (dfea;bc)

(afed;cb), (fade;cb), (edaf;cb), (defa;cb) (A.8d)

The Racah coefficients of the following argument permutations give

(-)a +d "e "f W(abcd;ef)

(ebcf;ad), (befc;ad), (cfeb;ad), (fcbe;ad)

(ecbf;da), (cefb;da), (bfec;da), (fbce;da) (A.8e)

Also,

n (-)f"b~d£abSe.d (A flf)W (abed;of) = ±^—< »—a——. (.A.or;
Q(2d + l)(2d + 1)J *

(Reference 1. p. 113)

, See M. E. Rose, op..cit., p. 110.

**
See M. E. Rose, op. cit., p. 226.
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We give, below, the gradient formulaJ

Definition of X-Coefficient

X = X(^1s1J1;f^s2o2;LSj)

=(-) 2. (2t +l)w(s1«2J1L;t^1) W(^2s1J2S;ts2)W(LJ1S,12;tJ) (A.10a)
<3~= £± +s± + jx +^2 +s2 +j2-+ L+S+J (A.10b)

If the nine arguments are arranged in a square array:

r 11b1 0-l -,

i2 s2 d2

L S J

then the entries in any column or any row form a triangle. Any pair of

rows or columns can be interchanged, introducing a phase (-) .

As a special case

\C + g -a -e.

X(abc;dec;ggO) =-^
[(2c +l)(2g +1)J a

(Reference 1. p. 192)

W (abde;cg)
(A.10c)

M. E. Rose and R. K. Osborn, Phys. Rev. 9_3, 1315 (195U) equation kf >
Also M. E. Rose Reference 1„ p, 120

M. E. Rose, Reference 1. p. 191-192.

#*M###*mwmmmiimmmammmmK
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APPENDIX B

In the process n^p +e" +U ,a neutron transforms into a proton,

with the emission of an electron and an antineutrino. By the Dirac "hole"

theory, the creation of the antiparticle (antineutrino) is equivalent to

the destruction of the particle (neutrino) in a negative energy state. By

the charge conjugation operator, the wave function of a neutrino in nega

tive energy state is obtained in Section 1 (B.lc). Using the Dirac wave-

function of the electron in a Coulomb field, and the neutrino wavefunction

(B.lc), the general matrix elements for the axial vector and pseudoscalar

interactions are set up (B.23)• In Section 3, the H?_ matrix elements of

0 _»o (yes) transitions are obtained from (B.23).

1. NEUTRINO WAVEFUNCTION IN NEGATIVE ENERGY STATE

The charge conjugation operator is i^Og KQ where KQ is a complex

conjugating operator.

10 0 0

0 10 0

0 0-10

\000-1 /

a2 =

<P° = ip a K 4> = iPa2 u/
\u 2 o V ^ v

/-IF* (r) )U

\
Gx (r) A

/A.

0 0 0-i

(B.la)
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A = Z c^xi j* ;n -T,r) Y£ A,

FK (r) and G^(r) are real functions:

F* = s* 1 J£c_^, (qr)

GM = qJ£(:R)(qr)

^ =x * ^ (B.lb)
r1 F* ^2 5r

% A A = 1(-) * 2A (B.2a)Using

ry. /*->*-

and Y MX_, vM y -Mana I L _ (-j Y L (B.2b)

<£ ^x =i(^f-i^cU^^.^r)^ Y£^
T

Changing the summation letter T —=f - V, we get

(B.3a)



l4i

Using the symmetry property of C-coefficient (A.la), we obtain

-2 9c;x =i(.fi £<-)'*+* -* c(e^ij; -,-r,r)xr y;;
^ * .,.,,4.^.-1 < .« . .rS -n-r

r

«i Z* "-i(-f^"J X? (B.3b)
Also

% Tf.y. =i(-r<>c^ X:£ (B.4a)

We have used tx+ ^_ +1 =2 )a/ = even integer.

<q V X=i (-)^x+1 ^ ^ "^ (B.4c)
-x ->

(B.3b) can be written considering that "^ is an integer, therefore

Substituting (B.3c) and (B.4c) in (B.lb)

V""' \
(B.lc)

We have introduced the subscript V for clarity.
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2. GENERAL NUCLEAR MATRIX ELEMENTS FOR A AND P INTERACTIONS

For the axial vector interaction

HA -"?. (^?LCA +CA ^]4t)Q- y5(^75LCA +Ci75]^)Q
(B.5a)

For the pseudoscalar interaction, the hamiltonian is

hp =^ ?.v(Hi*^5[cp +cp 753%C)Q (B'5b)
In the above Q is an operator which transforms a neutron state into a

proton state.

For the axial vector and pseudoscalar interactions,

Hp. = HA +Hp (B.6a)

We introduce the following notation:

MA (1) =F CA £. (%* £ %°)Q &^

MA (2) = C; ? . (44*^ 75 4j)Q (B.8a)

^A 0) - -CA 75 . (4/ 75 ^)Q (B*9a)

^fA(4) H -C; r5 . (ipe* ,5 75^J)Q (B.lOa)

Kp (i) 5 ^ cp 3. q(vpe*p 75 l£) Q (B.Ha)

^P <2> = 2li CP *'-* <^ 75 75 lf£) Q (B.12a)
In the following, >fA (l), >£A (2), XA (3), >CA (*0, >Cp U) and
Xp (2) are evaluated and the results are given in (B.7<i), (B.8d),

'••**wmmmmmm
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(B.9b), (B.lOc), (B.llc) and (B.12d) respectively.

First we evaluate ^f. (l) and show the details of the calculations

-> . ..,* -, .. ,c^A(i) s cA f. <y* <? %C)Q
We shall suppress Q in the following:

Using spherical basis, we write (B,7a) as

^A« =cA1 <-)m Cm( V <£ 4j,c)
m.

Jv +^x -M.^ 44. G X~>
(-)

1 Fx., £

<Y ^ %C) -

Jv +^>U "^ +1

(B.7a)

(B.7b)

(-) lf*G*
M- \~\

(X J ^m X* ) +1«xFv <*V *m*-Kj

Now we evaluate

(Xx, e^ Xx0 =

llc(^ij;u-r,r)c(€,i jV-t1, r') y^y^"7"
7 y'

X(Xl > ^n ^ )

(B.13a)

(B.l4a)



Using (A.5). which gives

( Xi , 51 %1 )
i m i

Of, r +m (-)m JT C(\ 1 -i ; y' +m, -a)

Substituting the above in (B.l4a)

^&r> t' +m (")m <3)* cUi jjn-*,nc( ^tj'jn«- r, f)
or t'

|a-T n'- 7 '
X C(tli;^' +m,-m) \ Y^ (B.l4b)

Summing over T', (making use of o t, V + m) and using (A.6)

(^y-> Sa ^x' >=

A -J

x ^w c(a'Mv-r+m)c(e{ jjh-* ,r)c( €»ij';u'-r-«i,r-a)

* C( \ I i ;Y, -m) (B.l4c)

Using (C.lc) for the summation over T

o£>«: 3&> -i-r^tm 1 [6<2gtl'(2V1)(2'rtl)JV' X
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n'-n-m ^ \

X C(tV%;00) Y^ 2 (2s + 1) C(>sj;n -n« - m,n« +m)
s

* C(j' | Sj-^', -m)w(> e>j^; ffs)w( e«j' 1 l;is) (B.l4d)

From (B„7b) and (B.13a)

-v 0 Jv + ^v "M-jJ +1 -—-*A <i> - <-> *•' ** cA 1 tffc 0^(^6^(51^ r„7£^ )
m v

+*«xP^ ^ 51m <**> ^ *~*J (B.7c)

Using (B.l4d) changing X-* ~X ; x!-* X^, > n'-^ -\iy

m ' -// m 5<v

=2. (-)m <=C (O^* +1+ ^ "Htt 5* 6(2°g +1)(2 ^ +1)(2JV +1) c(^ ^ |0Q)
-m £ 4T

Ypv ^ (2s + 1) C(/sj;m.> ny -111,-114,+ m)C(jv | s;^ ,-m)

* w(* ^ Ji;£s)w(-^ j x Ij^s) (B.15a)

We have introduced the following notation

lu^£.^y 4» 2 ^ (B.l6a)
Also ~L + (!_ + 1 = even integer (B.l6b)



Now, in general, the definition of an irreducible tensor is

T^(^,3-) =f, cOlL;M-m',m') l£">) C£7

and

^"m fr) ^ -^ C(AlL;M-m,m) T^(?,£)
L

L is the rank of the irreducible tensor and the parity of

TT N (?, £") is (-) , since <j- is an even operator.
h, A

In (B.15a) we combine

eim <"^"^ =£ C(> lL;m-n-^,-m) T~^ (B.l6c)

TlT" =2 C(> lL;m-u-^,-m) J*^ (^ (B.l6d)
m

Therefore, (B.15a) becomes

t- <->m si u\<z*l) -ill (-)^+1+i- .,'
m ' i ^ L

X

s

f 6(2 t+l)(2 ^+1X2^+1) ^ _

^_ (2s+l)C( ^lL;m-|a-(j.>),-m)c( A st3;M.-HV*m>*'lJ>>"ffil)

* i— / \VP; commutes with p. (i = 1, 2, 3)
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* C(jvi sjutj,,- m) wO^y Jf;es) W^vj^il ;xs) (B.15b)

Again we use (A.8a) on the three C-coefficient in the summation over s„

C(> I L;m - [i - nv , - m)c(/l sj;|i + (iu - m)C(j>, | s;n^ - m)

= (_)A+B-j (_)Jy +l-s C(A| L.m _ ^ _ ^ - m)C(jw » s; - nw ,m)

XC(s Aj; - uv + m,n + <iy -m)

-0+/+jw +1 <^ a.
= (-) C(> | L;m-u-ny ,-m) Z-)_(2s,+l)(2s+l)J C(l^ s1 i-^^-Hi^ +m)

s '

* C(j„ s'j;-|av ,n+^) W(j^ I j >;s's)

Substituting the above in (B.15b) and making use of

2- C( >> I Ljm-u-ny ,-m) c(> I s ' ;m-u-nv ,-m) = N.
m Ls>

£(-f o--(3tv^Z^ )
m *^

_ *> *> / \^v + 4/ +^+jv -j f6(2£ +l)(2*y +l)(2Jn +l)(2L+l)'l m-M-u^
L > L** J L>

A C( ttv% ;00) C QyL^-u^u + MV )

x'S. (2S+1)W(> ^v ji;jfs)W(^ jil^s)w(j^lj>;LS) (B.15c)
s

By definition of X-coefficient (A,10); and using (A„8c)

"2 (2s+l)w( 'Xtu ji; fs)w( l» jil;iS)w(jwlJ>;LS)



- (-) x(l i> ;Jv i 4^ ;3 ^£ )
Substituting the above in (B»15c) and -using (Al,e)

a l ^

tr 6(2 t +D(2Cy +l)(2J» +l)(2L+l)-)<-x L— j C(i: t, > iOO)

* CQy, LJ;u„ ,-n-U|i )S^ X(LL> jj,, ^ tn J4 i f ) (B*1^)

From (B,15d)j *-» -*, *-v-» - **

m .. r i j

K

V6(2 C+l)(2 Zu +1)(2JA/ +1)(2U1)~| c(( (- ^ .Q0)

x C(JV Lj;up ,-u-tv )T^* X(II* jjv i. fv ;J £*) (B.15e)

Substituting (B.15d) and (B„x5e) in (B«7c) and using 2JV +1 - even

,_, J+lp+H «-- ^ r6(2Jv+l)(2L+l)}**CA (l) - cA i (-) 2. 2.[^ •• h, Jc(j„ um*,-H-H* )
> L

x

T"^ j (-)fc [(2(f+l)(2^ +1)/ C(?^^jOO)fKG^ X(U};J„ i^ i F)

mmmmmmmmmmm
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i

I
+(-) [(2^+l)(2£>+l)] -Cite,,* ;00)g>tF>c^X(Ll^;jwi4 JH^J (B.7d)
Next we calculate

m

cUsing y and 4^ ; (B.8b) becomes

m l—

+̂ gx^X^Sl*X, )J
Using (B.l4d) and proceeding exactly as before, we get

^(2)5 CAd; (1^*^%)

^•Hi-rj ^ c r6(2jp+l)(2L+l)l'1-

i

Xj(-)^ +1 [(2?+l)(2^ +1)J c(e ?w1 ;00)i^FXj/ X(L1> ;jvilp ;j^e)
+(-) f(2£+l)(2^+l)]* C(^O;00)gxG^X(Ll>|j ^tv;i^t) I (B.8d)

Now we consider XA (3) = -CA 75(q>e h^ i£)

(B.8c]



~>0

(fe* *5 <£> "(-)°*+V'V^ -y^^1^) +s^ trK,%-£) (».17»)
•|x -vM-'Using (X^Zi.) te.(A.6);

^+4,-^-^+ i <-T (2j+l)(2Jw+l)-j"2.

x f -fxFHy [(2f+D(2^+l)J2 C(7f„Ji ;00)W(jjv ?£,;*£ )

1

+gxGHj/ [(2^+l)(2VDj;LC(^£^;00)w(jj>/^^ iH )J

Again, we introduce the irreducible tensor

^. Jy+Vu^-rX+i <^r(2j+l)(2Jw+l)-,"i
X (3) " "CA <-> l[kn(2->+l) J C(JJ^ ;-„-,>)75Y-;-^)

1

73-*~W"@) =T^ (J,75) (B.17b)

The rank of the irreducible tensor is and its parity is (-) because y^

is a tensor of rank zero and is an odd operator (in the Dirac sense).

Writing the Dirac equation in Co-variant form (7m,-^— + 1)^ = 0;

it is easily seen that under the Parity operator P: P^(?) = 7Ap(-^r)J
An operator-^T. in the Dirac space, then, transforms as 7u~fL/u under the
parity transformation „ Since y^ anticommutes with y^, therefore, 7j, 7c7l
= -7c : and hence the parity of y^ is odd and is odd operator (in the
Dirac sense). '
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Substituting (B.17b) we get

~XA (3) -

2.1 w(2 +i) J cu*»*> »> »»nn K'yy-cA (-)
?

-f^ [(2£ +1)(2^/+1))2 c(£ .^;00)w(jj t l» ; X± )

i -

+g^G^ [(2^+l)(2^ +l)j' C(£-0 ;00)W(jj f ^ ; x| ) J (B^)

^A(4)g -CA75(4V575M£)

--c>5^h£) (Ba0a)

xA (.) =_; U^^^x^V ♦ f^rtiX >] (B8l0b)
Using (A.7) in (B.lOb)

^ (4) =-iCA (-) XlMg^lH c^^-^}

\>(^7 )rf«G»vli2 f+1)(2^+1fl* C( r^v> iOO)W(jJ^ Tw JX* )

+g^ [(2^+1 )(2$ +l)J2 CU-^a ;00)W(jj^£ ; X|- )J (B.lOc)
For the axial vector interaction we have

HA- ^ (1) +3fA (2) +XA (3) +XA (M (B*5a)



where, explicit expressions for >^ (l), ^ (2), XA (3) and ^ (4)

are given in (B.7d), (B.8d), (B.9b) and (B.lOc) respectively.

In the following, the pseudoscalar interaction is treated,,

Hp =± &-XHy* P75(cp +c>5)q/yc) (B«5b)

Hp =XF (1) +^p (2)

^P (DS aljCp^.tfC^p^) (B.lla)

Xp (2) a 2liCP?^^e P^) (B.12a)
,H\*

>*„ ,.c

«*«w -";o::k^s.3>t ' H- "* *-**>

Substituting the above in (B.lla), we get

^p (1) =* §s (-} [*v ^V*-A*-"** +S*VXT> X^J
Using (A.7) and "?• V= ^ (-)m g- ^

m

lib)

<V+V^ -H-.1 Cp f (2j+l)(2jv+l)-)i

Wvf[(2( +l)(20+l),t __
YX ) L 27-S J °( ' ^ >.i°0)^P W(JJV .( ^j x| ) +

^ (1)"* ("> i L—G J Z (-' e-mvm io(JV,-^^)
m Ltt
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1

r(2M)(2^+in" 7 -i
+ L 27 +1 J cCf^jOOjg^G^Wtjjy/^ ;5\t )J I (B.llc)
We introduce -L

R

C(2£ +l)(2^+l)"f __
1* I 2~jT5 JC(e«y> ;00)fHP^W(jjv^/yj>^) (B.l8a)

J.

f (2^ +l)(2< +l)*A

R2 * L 2*13" J ct^^s00^ W(jJy€^;^^) (B.lSb)
then 3

VC-Mjru-iCL, f(2J+l)(2j +Df< m
3<p(i)-i(-) a^L v% Jf (-fcQj^,-^)

-U--Uy

* S-m Ym ** (r) (H± +Rg) (B.lld)

Using the gradient formula (A.9a) and

and

^ y-JJ"^*1 (r) - f C(^-l,l,L;-n-^-Hn.,-m)T-^^ (?, ? ) (B.l8c)
-a ^^.1 ^ L, > -1

-V, Jy+V^-u-iO, r(2<3+l)(2jv+l)~)2. .

^ a

i

[2T+3~f^ ^^ >+1i-^-rXy,a)c(> +l,lL;^-^-»m,-m)TL^ ThOK^^

\2~hll2' ^C(*1}-1'>"W>Mc(A-l,l,U-Wy™,-n)\^1 D+(A)(R1+R2)\



where

n ( \ \ i
dr r

d+ (>)a |r-f (B.i8d)

D+.(^)r A +^ (B.l8e)

T^-^ ^ T -fx-u„ (A^} (B.l8f)
L^-h 1 = L^+ 1

Using (A.Id) and (A.la)

k+C-^-n-i cp r(2j+i)(2jy+i)-| a.^
X-P (i) =i (-) a; I- kH J Zl0^5'^

j

*('̂ )(S§' |^Ji(-)1"mC(>+l l^;-^v-m,-m)C(^+l lL;^-^^,^)

K C(^-1 lL;-n-^-wi,-m) t"^_^ D+ (>)(R;L+R2) V (B.lle)

Using

2_ C( ^+1 1) j-ii-iXj/fm,-m)c( !^+l lL;-|i-M.>,-rm,-m) = O^ -
m

and

*9 C( >-l l>;-^-np-fm.,-m)c(> -1 lL;-|j.-|a>-+m,-m) = £ , (B.l8g)
m /*>m.

We get
Jy+V-u-u^+l iCp r(2<3+l)(2ji/+l)-|z.

^P (1) =(") 2iT ll 4^ J 2,C(jj>>;-^,-u>) *

i»^winwmw»wwiw-*.Ma^^
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2 -iXlnl -W»

tfhere R,, R , D_0), D_|0) and T^"^ are defined in (B.l8a), (B.l8b),
L, >+|

(B.l8d), (B.l8e) and (B»l8c) respectively.

Now we calculate

>tT (2)S ^p ?.^(Y*P^) (B.12a)

j +^ -u +1

Using (A.7) i

, * c ^Vux,-H+Af(2J+l)(24,+l)T* , -u-u

\r(2€+i)(2<M+i)il- _
ML 2ina J C(^UlOO) f^G^wQj^^^; A^)

1

r(2£+i)(2 6, +])]i- ->
(J.____ J c(* ^ ;00)gxF^w( jjy / ty ;2i ) S

Substituting the above in (B,12a) and using

3-\7 - £ (-)mGTnN7M
r (2^+1) (2^ +l)-)l

R3 =L 21+1^ J C^^> lOO^G^wQ^l^;} 1 ) (B.19a)2^+1

(2^+1)(2 £,+!)-."£
R4

r(2e+ij(2^+ij-)2.
- " L 2j+T~~ C(e ^ ^ jOO)gKFx^W(j^^ ^ ; >1 ) (B.19b)
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Jv+^^-H+i/Cp\r(2j+l)(2j>+l)l^ m

*p (2) - - (-) * ."(dUt G JZ- ("> ccw^i^-nv)

Applying the gradient formula (A.9a)

D_ (» and D+ (/I) are given in (B.l8d) and (B.l8e)

Substituting the above in (B.12b) and using (B.l8c)

•Nj J +*>-nJ,-n+i cp r(2j+i)(2jJ,+i)1i<r<r^ m
X (2) =(-) *(- 2S)| Tit J Zi£(-) C(«^-u,-^)

r <- L ^ m

r X

>jf^lj'cO 1>+lj-u-uwa)C(^+l lL;-^-^-HE,-m)T^^ D.O )(^k)
1

-[2^l]UC(>l >-lju-uv,a)C(^-l lL;-u-u^,-m)T^^D+(>)(R3^)^ (B.12c)
As before in Xr, (l), using (B.lflg), (A.la) and (A.Id)

1

J^+V^v-^+i CP [(2j+l)(2j>+D ~| ^
xP (2) - (-) (§1) L—^—J z c(^> '-^-^

•fcrf TaT+i d-w(w -\M \Z: *<»<w3 (Ba2d)
R and R^ are defined in (B.19a) and (B.19b),



For the axial vector and pseudoscalar interactions, the p hamiltonian

becomes from (B.7d), (B.8d), (B.9b), (B.lOc), (B.llc) and (B.12d)

j+^+F-Hi

V 4 icA (-)"** 1 ^fafM'ji(W„„,t)i-"'
I, L X 1" ^

X|_27+l)(2^+l)Ja C(?^X;00)fKGx^x(LlX jj^ *v Jj T̂)
-^2«+l)(2^+l)]^C(«ry A.j00)g^FXyX(LlX. ]j,iJ,]j^)J Z

(, M»+*+U-l^ .("6(2^+1)(2L+1)-| 2 ^„

^r[(2F+l)(2?y+l)]2 c(? 7„ *jOO^F^X (LI* ;Jvi ^,;J J2)
+[(2^+l)(2^+l)J*C(e^>;00)g>tG^ X(L1 >jjv i £,;Jl I)1 <T

J1/+C-^-^+l^r(2J+i)(2j^+i)l2
A /_\ H-3U£ A+A,} J •" " • ' ' ' " ' A Ok V- ,/ej

i r(2j+l)(2j^+l)-J2 .

2[w(2a+i) J c(J^>s-^-^)\$ (*,?5)

<f-[(2f+l)(2^+l)]^ 0(7.7,} j00)fxF^W(jjy7^;> x)

+j(2t+l)(2^l)Jt C(^4>;00)gxGM>(W(jjv/^4y; >1 ) J V

r , oy+^-^^+|^r(2j+i)(2j +i)-ii- _u -u
"[iCA <") 2LW(2 +1) J c(j^>;-u,-^)T>^ (?,,,.)

157
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l

where

[(27 +l)(2^+l)J C(i& AiOOf^G^JJy?^ ; 3( 1 )

+(_(2^+l)(2?v+igi 0(^7y} ;00)g>(FH^w(jjve7vj >£) X

Cp ^+C"^-M-v+T^r(2J+l)(2j>+l)-)2- ,
2jLm2a+i) J °(«v>i-^-^)'P / vU>' V ^ ^

+ri2M(")

I (^+i)V^ d„(a) - ^ t"11"^ D(»1 (R-L+Bg) V

+f 2ii<->
jy+V^"^+ ir-f(2j+l)(2jy+l) -jl

21 M2>ii) J C^>i-^-^)

f Ofl)1 T~^ D.(» - (»"L T~^ D+(*)7 (R,^) | (B.6b)

P
RiH'

(2£+l) (27^+1)-] 2-
•J C(7 7V> jOOjf^ W(jJvJt>M ; }±) (B.l8a)

2 }+l

•(2<+l) (2^1)
R. - L" 2TT" J C(e^^jOO)g)G W(jjv^y ; >i)2 " L 2 } +1

(27+1) (2/^ +l)-|i'
R, 4- 2 01+1

-Jc(^O;00)fxG^W(j^^^; 3ii )

R
4

r(2*+i)(2l„+i)")* _
-~b—2i+i—"J CU*»* iWtejH^M**- *»'> ^V

D+ (*)S

D (X) ^

d , /+!
dr "*" r

A.. A
dr " r

(B.l8b)

(B.19a)

(Bo19b)

(B.l8e)

(B.l8d)
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T'^(r\3-)- <£_ COlL^-^^-ijY^^^) (T.m (B.l6d)
L ^ m

t;;'1?,75)= y"^)75 (b.^)
Thus far, no retardation expansion has been made and the results

given above are the most general for the interaction hamiltonian for the

axial vector and pseudoscalar interactions.

Now to get a matrix element between nuclear states specified by

J., M. and J-, Mf; we shall use the following notation:

k f
Where in the above,J 2-T(k) is an operator acting in the space of the kth

nucleon. Q(k) is the operator which converts the kth nucleon from one

charge state to the other. There is a summation over all the nucleons.

In (B.6b), we have the following:

L - rank of the irreducible tensor

% - order of spherical harmonic for the axial vector interaction.

Z lv - refers to the orbital angular monentum of the electron and

neutrino for Jt .and -^

Jt ,1^ are£^x and £ _M respectively.

By Wigner-Eckart theorem,

(Jf Mf|T^ M,) =C(JiLJ.;Mi MMf) (Jf j| TL||J.)



i6o

and also since nuclear states have definite parity:

n^ it(T) = Jtf

it., jcf, st(T) are the parities of the initial, and final nuclear states

and the irreducible tensor respectively.

We shall use also the standard notation

TT(Jf ||TL|| J±)S jl
To find the matrix elements of HQ„ as given in (B.6b), we are

P

(1) (J MI T"^"0r\ £) \ J, M. ) = C(J. LJf;H,,-ri-^A) TlX (r\ ? )
111 L> lix iii IJij (B.J

and

*. *- = (-r J A(J, U-) (B.20b)
"i "f ^ " > '• 1 f'

(2) (Jf Mf| T^^(^75)| Jt M.) =C(J± XJfJM1^u-^j,Mf) T (r,75)
J ' (B.21a)

and

*± xf =(-) X+1 JA(J± XJf) (B.21b)

(3) (Jf Mf |*'*'*&, *) JJ± Hl) - C(JjL XJf;M±,^^,Mf) jl^ >+1(r\?r\?)
A> /+1 J (B.22a)

*i rtf =("> X+1 JA(Ji XJf> (B.22b)
and

(4) (Jf Mf | T^"^ (r,?) | J. M.) - C(J1 >J^M^-n^,^) JT^ ^(^S5 )
(B.23a)

and

it± *f =(-) X"1 l A(J± Uf) (B.23b)

CTMMMMWIWllWJgWWWHWW'CTlliniWnWMWpwiMWII^
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In (B.20), (B.21), (B.22) and (B.23), Mf = \ + (-u~Uy)° Using

(B.20a), (B.21a), (B.22a), (B.23a) and (B.6b), the matrix elements of

H - for the axial vector and the pseudoscalar interaction involving a
P"

nuclear transition from astate (J.^ %±) to (Jf, «f) is ,i &-•'

i L *

* C?L> (£,<?)[[(27+1)(2^+1)^ C(llvh00)flLGlij/X(L\fX}ivi^^T)
-[(2e+l)(2TJ/+l)^CtfFw^ jOO)gxF^X(Ll*jJvl7yjJiOj V

f • 6 T> ^ f6(2jv+l)(2L+l)^+TC' (-) 51c ^T ^Jc(^LJ;^-u^JC(JiUf|Mi^u-ui;,Mf)

X(tl (r, ?)r[(27+l)(27J,+l)Jc(7 7vA jOO)f*F^ X(L I>jj^^; j£€ )
+̂ 2^+l)(2^+l)^C^^>j00)gxG^X(L|̂ ;jv|C;j^)J V

, (_}jv+^h-^+| Sjw(2>+i) Jc(Jj*> J^*-^)cCJ±^ Jf;Mi,^-^,Mf)

xfr (^,75)f -[(27+i)(27y+i)J* c(7iy^oo)fVF^w(jjx"£7yjxi)
+[(2£+l)(24+l)^ C^^XjOOjg^^wU^^y jXj)J Jf

(t (r\7-) [(27+l)(2^+l)J^ C(?<v>jOO)^GKyWUdye£i;X '̂)

+[(26+l)(27J,+l)J2C^7J, >jook^wQ^i* jx£)J i +
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S. CP, ^+V^+| ^((2J-H)(2^+1)-|I
+J12M(-) ZL 442^+1) J C(jJv>i-rX,-Uy)

y^U+1)2" C(J1>JfJM.,-n-^,Mf) \T^>+,(^?)D.(>.)
- (x)*C(J1>JflM.,- |̂;,Mf)JT^>_;L(P,?)D+(^J)( (R1+R2) \

°P , Jy+VlX"Hi>+|. ^T(2j+l)(2jv+l) ^
^L 4jt(2A+l) J

X[(^+1)2 C(J±> J^-ji-n,,^) fo^+1(*,?)D_(X)
-(A)€ C(J.> J^M.,-^ ,Mf)jr^^ (?,3)D+ (X)J (R3 RU) ^r

(B.6c)

3" MATRIX ELEMENTS OF H^_ FOR Q->0 (YES) TRANSITIONS

Now we specialize the equation (B.6c) for J. = J = 0 and

Two types of irreducible tensors occur for the axial vector inter

action. Namely, t'^" (P, <t) and T~^» (£><-).

(jf Mf lT£V*(^?)l Ji Mi) =C(JiLJrMi^^^Mf)rTL^(r,«?) (B.20a)

In this case ^ itf =(»)X and A(J±LJf) (B.20b)
X —> 1 so that jt. st- = -1

L-> 0 (since J^ =Jf =0) and the projection of a zero rank tensor is

also zeroj therefore, u + u^ = 0.

By definition:

T01 &?) s 5 C(l»0;m,-m) Y* (r) 5-
m -1 "m

,,r.-™.™TOJW,__^..,„^„_^^^7__m. „„.. ,„„u M.l.MM,l„_il.liM_M—MI„•— ..„•„•„, in..—i-i, •• •ii-M.il -1 • •M^^^wwsw,BWMaw(|p ,mhJrmi„T1|rw||T[(]w|ffl

^J r f ,^"^^Tf ^123+1 n23„+lj ^
+T2M^ '2L"M2^+1) J C^>^^

vrrw"**»t*,K*;.,*m
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=i<-r-JJ o(|oWm,o)J^ ?B ^
m

&(*.?> =-Ji *,r

_0Matrix elements of TQ1 (r, <r) for J^ = Jf =0 are

(OOl^tf.^M-.^^jg' {"?.? (B.20C)
Similarly for the case

(Jf Mf | T^"(?.75)| Jt \) =C(J.>Jf;Mi,-u-n1,,Mf)jT^>(?,75) (B.21a)
and as pointed out earlier:

«tf =(-)^+1 ;andA(J1>Jf) (B.21D)
In 0 -^.0 (yes), j£± nf = -1; therefore, !X =0
and also p. = -p., .

T00 <?"5> =^0 «> ?5 =ji
(00 IT°Q (r\75)|00) -$L Sp,-P„ J^ (B.21c)
In the pseudoscalar interaction, there are two irreducible tensors

T?1"^ A?') and t"^"^ (*,*)* where *, *, =(-) +̂1. Thus we con-
A, A+x x /, > -1 xx

sider ^= 0, and as before p =* -\iu

.0 TT ^2 A
T01 r— C*.r

4jt

75

(00 IT^r-,^) | 00) =-JjjL SH,-H„JV .? (B.22c)
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m

ButT^* tf,3)i <£ C0l>-l,-p-py+m,-m) Y^^ (r) CT
/, > -1 m / -1 m

>-p-pi/+m . .
= 0 ; Y^ _i (r) = 0 and as such there is no contribution of

T (r,i?) to 0-^0 (yes) transitions.
},} -1

The coefficient C( (±(2^y00) is called the parity C-coefficient,

if -C^, €p, and & are integers.

Using (A.la)
''-ri~ t -i

0(^(2^,00) =(-)1 23C(^^^,00)
For the equation to be true, £, +£2 -/ = even.

and so C, +(p +( = even.

Also CjJ^im^) =£̂ £̂ (B.23c)
Consider in (B.6c) for 0-^0 (yes)<$beta transition

r i+C +7+u^ <rr6(2jy+i)(2L+i)r
5f CA(-) * 4^L £T •Jc(^Lj;pv,-p-pp)c(j.LJf;M.,-p-pp,Mf)

g2e+l)(2f?y+l)Ji 0(7^^00)^0,, X(Ll?l;jy i^;j ^ )TL>tt*)»
X

i.
2

-L(2^+l)(2Vl)J& C(er£y^;00)g F X(L1> jj„ 1^jji^ )
* " fc * (B.24a)

Since in the above \= 1, the parity C-coefficients gives

C(£ev|;00) = £ C(7ei;00) (B.25a)

C(Uy|;00) = £ JL C(t7| ;00) (B,25b)

mwmmmmmMmwmm\wmmm<mm>*im.



andC(jOJ5p,-p-py)=S^g^
then X-coefficient&become

X(011;j±e;iJ i f) = x(7i rJij;iio)

yfmi.u..1l7 x / >M w(7jgijji)X(OUjJt*;Jj.< ) - (-) [3(2J+l)j VC
Using (A.8c)

xfoii-i "<-u? ) - f-V3-^ ^iV1^Xv011,,}-<!,,] J£ J - V-J [3(2M)jVv
Similarly,

X(0U;Ji7;Jt«) - (-)J"*+i rll'SvHl*- *- [3(2,3+1) J v»-
Also C(j0J;nw0) = 1

Substituting (B.25) and L = 0 in (B,24a), we get
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(B.25c)

(b,25d)

(B.25e)

(B.25f)

X,

Using (A.lb)

[(27+i)(2^+i)]1 c^ooJyy-^M ^(/j?AHi
i

g2^+l)(27 +1)}Z C(tfl;00)gxFK (-)J"Ui rffgjtM^ ]

C(£7l,00) = (~f+^~1 0(7*1,00) =0(7^1,00)

(^ (1) - -i C(.)3+^-M( C f(2feL)(27+l) -1J A A o^-^Ox;^ L gjt2 J

/ C(^l,00)w(C^i;lj)rfHG>t- (-)*"* g>Fx 1 ]<? A
.r

i
2-
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Using Z + & + 1 = even and 2j + 1 = even integer

fv m , r f /"Hi+i C C f(2^l)(27+l) -A
J^a (1) =i ca (-} 2 Sp,-p a*»vL 8jt2 J

xC(7^1,00)W(7?1 i^Xf^+g^) J£.r (B.24b)
Similarly we consider

J^A (2) SC; (.J^*^1 ^ 5; [•6(2^l)(2L+l)jlc(.vL.^^,^^)
XC(JiIJf;Mi,-p-pJ/,Mf)J TLA(r,?) f[(27+l)(2^+l)]^ C(7 7^X ,00)fKF^

* X(Ll>;jyi7v;0p ) +[(2<+l)(2^+l)]^ C(*^;00)g>LG>tiX(Ll^^C;JiO]
(B»24c)

Again for 0->0 (yes) transitions,

X= 1 ; L = 0

The parity C-coefficients give

c(7v 1;00) = £ „ 0(7 a 1,00)

C(ff 4, 1,00) - £ C(*F1,00)*£ _M C( J4 1,00)

X(011,j|£.;,j| 7) and X(011,j£ g"; j££) are given in (B.25d) and

(B.25e).

C(j0j;Mv0) = 1.

Substituting these relations and (B.20c) in (B.24c)

C-X to\ p« t (+/^+* £ i f(2d+l)(2Jg"-H)-)l

c(7^i,oo)w(?^M;ij)(fxF-x-sKG^:r '* (B,2l+d)

Wi»jWilWffliM||ll)!|WB|WWWIIfWi



r

~\f ,_v _ r ( xJy&-*-^+&<'T(2J+l)(2J +1)12^A (3) - -CA (-) ZL4n(2^+l) J C<JJ*> ^> -Ay)

* CfJi^ Jf;Mi,-A-/a^,Mf) W?"5> -[(27 +l)(2^ +l)]2C(^ O ;00)
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<V„p w(JJ 7*,;;>£) +[(2^+i)(2t+i)J2c(iM;Oo)g>tGvw(jo^4;^i)J
(B.24e)

From (B.21): ^=-0; after simplification, as shown above,

we get

_f*A (3) - g <->**%_„>->.,, (V, -8>0„ )J;
Similarly, we evaluate

\X (k)= -*n' r^J>+^-A"/t<y+M(2j-H)(2j^+l)]2 ,
J^a W- icA ( ) Z[T7(2T+ij J C(J0^ j-A'"Ai

xfe 7+i)(2^ +i)J5c( 7AJ;00)fK gHv w(jjv 74 ;a|)

+[(2^+l)(2^ +l)J C(£^^;00)g>cF^ W(JJV^V ;H)1
Substituting the values of Racah Coefficients and simplifying,

we get:

(B.24f)

J}^ CO --i-IT^(-)0+ "^(^-A^^-K^ (f^.^F.jfy
(B.24g)

Now we consider the terms due to the pseudoscalar interaction.

For the general case we have:

iCP
- {.r- /- -y «=

Pi

*«• ^-H^^^Kayj'^^^^ *
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t

K,^ -l(^ *> d+ a)J ^i*^ (B,26a)
rx, R|, D (>) and D. (>) are defined in (B.l8a), (B.l8b), <B.l8e), and

(B.lfli).

Using (B.22c) and simplifying, we get fjtf 0-»0 (yes) beta transitions

•J T 8*M a*,*w ar u j (B.26b)

Similarly we consider J^p (2) and we get in 0->0(yes) transition^,

A
r

(B.26d)

For 0 -* 0 (yes) beta transition^ we get

Aft ft-| H^-fe (^ +J*A (2) +J*A (3) +j^A <«o^u>+J$fr<2>
where the terms on the righthand side are given by (B.24b), (B.24d), (B.24f),

(B.24g), (B.26b) and (B.26d) respectively.

BTow

Fic s sx * ^ (^

therefore, F^ = -S^ q ^ (v) = "bk G^

and G... * q J . (v) * s* Fx

Making use of the above and using (A.lc) and (A.8d), we obtain the nuclear

p matrix elements tor 0 ->0 (ye*) transition^,

wmmwMm'-^wmmmmmmm
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(^fiVlfi)

H-r'+V.„.. ucA8,IT v ' oa^.^j^iox,^ u«"a 2?+l)]2 C( « If ;00)

W(C I ^5^)(tG. r + <f* F* -<?*. 0»)ij

(B.27)
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APPENDIX C

Al.1. Evaluation of

We show the details of some Racah recoupling, which have been

used.

4 Sj(-t~'1^ll'A\rr- n,rx' -T+m)c(e|j;p«r,r)c(e,|j';p'-'r+m,7--m)
x C(§1 |;T,-m) (Cla)r x C(| 1I

c(^'A;T-p,p'-r«i)c(e5- j;p -Y,r)
'2

s (_ '̂ +p' -r- - r^ • -,n2-+m[|j^jl .C(>^in-n'-n,n'-r-Ha)C(4 JJH -%T)
=(<>)£. +li. -r+m^|L+_ij^(2si +1)(2, +1)j* cas_^ . ^_m^, +m)

X C(£- |Sl;n- -7+a, 7) W(^£/ j|;^s1) (C.2a)
In arriving at (C.2a) we have used (A.id) and(A„8a)«

Similarly,

<2 -- 2J

* c(t r \; -^+ H' +a,- p')C(| 1|; -T+ a, -m)

=(_}£' '-ri' +T+ 1C£2<1. +1)(2S2 +i)]Xc(j'l s2; -u«, - m)
xC( £'s2 |; -T+ n' +l*a, -p' - m) W(£ j' | 1; | s2) (C.2b)

restituting (C.2) in (Cla) j.

A =*2_ (~f +X+mf"(2>+l)(2j'+l)(2s1 +l)(2s2 +ljlc^^p-p'-m '̂ +m)
S1S2

i-^w^iiMrB»wl||«ipw>^iiW!l]WW'IWfflili)IIWI
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XCQ'l s2;-p', -m) W(>£'ji Ub^ W(£< J'| lj \ *2)

2" (-)"^c( |̂S;L;p -f+a, V) C(£'s2 |;-T+ p' +m, -p' -m) (C.lb)
Using (A.lc)

*2_ (-)T C(C 1^; p-7+m,r) C((2's2 |; -T+p' +m, - p1 - m)
T

-5(-f (-/' +T""' '"/af1— c<£'k '̂ -^->r)fjr . / 2 + l

C(£' hsA, p' -T+a,r)
i A

v£' - p* - m

"^ " ^ [2S2 +1]i al?2
Substituting the above in (C.lb) and summing over s2 j_

^ =^(-)^ +1 +l' ' M-' [(2> +l)(2j' +l)(2s +l)2j C(^sj;p-p'-m,p' +m)

*C(j« 1 s; -u', -m) W( £'j|; £s) W(£j'| 1; | s) (Clc)

2. Time Reversal Invariance in Strong Interactions

The present evidence is that time reversal invariance holds in

strong (nuclear) interactions to a high degree of accuracy.

The time reversal operator, for a Dirac wave function, is a non

linear operator and is i <3TK, where K means complex conjugation.

Vf(f =-t) =l'f(t) = iGg y (t)

1TS D. Lee and C. N« Yang, Elementary Particles and Weak Inter
actions, Brookhaven National Laboratory, B.N.L. 443 (T-9l"7 (1957l~P« 16.



Therefore, if we consider a nuclear matrix element of an operator it

between initial (t[) and final (fy ) nuclear states, then under time

reversal it goes to

jy^ -

and

(THp-nt UK)

-(jV«i*a*«:>ri)*
-lH*~n-r *)*

where^J £,-= Gu^/lO^. In the above * means hermitian conjugate and X

implies complex conjugation. In our problem, we have;

iJ75(j?.r ]*-_-> i(j(75)T) (jcTr)T)

=-i(j75)X \&^ = <jJV (j^"} iC-2)
We have used

(75)T =%75 <£ = 75

(S".r) =(^••^.r^- =-?.r
7

From (C,2) we get (i J7 _)( }<$ »r ) = its complex conjugate and, there-

fore i 7,- ( r* .r) is real

3 > Time Reversal Invariance in Weak Interactions

We prove, that under the assumption of time-reversal invariance



173

being valid in nuclear p decay, all the coupling constants are real.

The p interaction hamiltonian density is

In (C.3) the first term represents p" emission and the second term

(which in hermitian conjugate of the first) represents p emission.

In the above, we have taken -/"Lx to be hermitian.

Under time reversal, the Dirac wave function transforms as

follows:

4> (t< =-t) =T^t) =i <?2 y (t)

Let us now consider a matrix element

(1^X1%):= (Vl-A.M'j,)

^ (1^,-flT Lp2)

= (^1, <o2^n. <s-2 4^2 )

- (ipx, r2A. 61 v^2 )*
Now ( [yit (OQ -JV(^ ^2) is a 1 X1 matrix! therefore, complex
conjugation is equivalent to hermitian conjugation.

Introducing -I tjj, = CT -A. £"2

(fr-n. vf2)-*( fr-^-T ^2}*
.<vy2, -a; mv

In (C,4b) we note that \V xandL^2 have reversed their positions.

(C.4a)
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-^7- <52-Q-**2>*
-A* =<T2^ = -AT

In general ^ either commutes withv/T; in which case A.- =-A. = -^j

or 6~2 anticommutes with -A , in which case AZ =-A-j- - -Si .

Also, Ji, is either real or pure imaginary. In the former case

-A =A and in the latter, J~L = - Si „ But in any case, at the most

Si = Si^= + J\. (C.5a)
Similarly,

(-^-75)T =+ 75 j^ (C.5b)
Substituting (C.4b), (C.5a), and (C.5b) in (C.3), the + signs cancel

out, as they occur twice (once in the lepton covariant and also in the

nuclear space).

Comparing (C.3) and (C.6), they are exactly the same, provided:

C = C
x x

*

and C[ - C '

Hence the coupling constants C and C' (for all interactions) are
x

real, provided H„ is invariant under time reversal operation,

mmmmmmmmmmmm
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APPENDIX D

We introduced A ,B , C and D in the expression of longitudinal
o o' o o

polarization. We give, below, their analytical expressions up to order

R (the nuclear radius).

Vl = (p2Fo)"X R"2k f_k gk Sin(^k-S_k)

-* Ef LJLZ +ai W(27.+ 1 - 2k) 7(7 +1- k)p2
w[ 2R2 + R 27 +1 TTTWF

_(aZ)2 # (47+3)(7+l-k)1 22k p2k-2 /Ik-liL)
(1 +27)2(7 +1) J V 2k>/

Ck.x - (P2^)"1 R1"2* (fkf.k +Skg.k) Sln(^ - ^_k)

v P 27k [2k 2k-2 ((k - 1)1 \2 Vl 1
* " W* 27 + 1 L \ 2kJ / . Fo -J

\_i = (p2^)"1 R1_2k (fk f-k - sk s-k> Sin(Sk - S-k>
* .faz ^ 2W , 2-2, ? f 2k 2k-2/k_^ljf fj^l")->S ^R" + 2TTT (7-2aZ)J^2 P Uk! 1 Fo J

In the above,

2 2„2 1 j,
7pi/

r,2 2„2 i[k - a z J

Z corresponds to the daughter nucleus,

2 fk-l
Fo
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R - ^3AX/3
Wo (.p2 +1] X-/2

K" *-k »%"7 -k' where e2l7x - •* +lazw/p
For

az «1
,

7X^1 - |(QZ)2

and Fl*Fo

then,

V*"
P

W 2
Bo-> S[(f) + •

C -* -
o

| L2/3 J

Do -* w lv R J 3 wj

Al->- w L 9 P J

1/ az\„ 1 2 "j

x^-l* ^_]_ and N^ are given by Greuling, ^v.i*^ v-i* and
2

Rk-1 are §iven ^ Pursey and these have been tabulated for Coulomb

functions by Rose, Perry and Dismuke. The nuclear finite size

E. Greuling, Phys. Rev. 61, 568 (1942),

2
D. L. Pursey, Phil. Mag. 42, II93 (1951).

3
M. E. Rose, C. L. Perry and N„ Dismuke, Oak Ridge National

laboratory Report No. 1459 (Unpublished).
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corrections have also been given by Rose and Holmes.

V E. Rose and D. K Holmes, Phys. Rev. 8_3_, 190 (1951) and
Oak Ridge National Laboratory Report No. 1022 (Unpublished).

5C P. Bhalla and M. E. Rose (Oak Ridge National Laboratory
Report to be issued); containing tables of functions, with finite
nuclear size corrections, for polarization and £ spectrum.
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