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ABSTRACT

The experiments on allowed B transitions, which have provided virtually
a unique interpretation of the beta interaction in the form of the V-1.2A law,
shed no light on the question of the possibility of a contribution from the
pseudoscalar interaction. In order to determine whether such a contribution
is really needed, we have examined the 0 =0 (yes ) beta transitions. The
only relevant experimental data are the B longitudinal polarization and the
B spectrum. Using the form of the pseudoscalar interaction, which results
from the Foldy-Wouthuysen transformation, the B longitudinal polarization,
resulting from the A and P mixture, has been calculated. The calculated B
polarization and B shape factor depend on two parameters, namely, (1) the
ratio. of the coupling constants of the P and the A interactions and (2) the
'ratio of the nuclear matrix elements. We have tabulated the B longitudinal

14k (O-\—-) O+) and H0166 (O—M7O‘+)

polarization and the £ shape factor for Pr
considering the nucleus to be a sphere of a uniform charge distribution with
the nuclear radius as 1.2 Al/3 10'13 cm and properly taking into account the
finite deBroglie wavelength effect. We have carried out an extensive numerical
analysis of the accurate experimental data on Prluu (0°—=0"), nemely, (1) the
B~ longitudinal polarization measurement of Mehlhop et al and (2) the B~

shape factor of Porter and Day, as well as of the B~ longitudinal polarization
measurement of Ho166 due to Buhring. The conclusions are that (1) the absence
of the pseudoscalar interaction is consistent with the existing experimental
data and (2) the upper limit on \CP/CA\, which also gives a fit to the ex-

perimental data, is 90 which is about half the previous estimate as appears in

the literature. The assumptions made are: time reversal invariance for the




xi
strong as well as for the weak interactions is valid and the two component
theory of the neutrino is used. It is pointed out that accurate
measurements of the B longitudinel polarization (with an accuracy ~ 1%)
at four or five different beta momenta and the beta shape factor in the
0—0 (yes) transition can settle the question of the existence of the

pseudoscalar interaction in the nuclear beta decay.



i SR R s

CHAPTER I
INTRODUCTION

The determination of the nature of beta interaction has been the
subject of investigation for several years. The experimental con-
firmation of parity breakdown1 in nuclear beta decay opened a new field
of experimentation, and a very clear understanding of the main interactions
has emerged from the "post" parity experiments. The experiments, to be
briefly described below (Section I), lead uniquely to the vector and
the axial vector interactions; but have no bearing on the pseudoscalar
interaction. In Section II, it is discussed why these experiments do
not have any bearing on the pseudoscalar interaction; then the experiments,
which can best determine the existence, and hence, the contribution, of
the pseudoscalar interaction are described (Section III). It is the
purpose of this dissertation to discuss the pseudoscalar interaction by
formulating2 the theoretical expressions for these experiments and by

comparing them with the existing experimental data.

lC° S. Wu, E. Ambler, R. Hayward, D. D. Hoppes and R. P. Hudson,
Phys. Rev. 105, 1413 (1957). The hypothesis of nonconservation of parity
in B decay was originally suggested by T. D. Lee and C. N. Yang, Phys.

Rev. 10k, 254 (1956).

2We follow the formulstion of the pseudoscalar interaction given
by M. E. Rose and R. K. Osborn, Phys. Rev. 93, 1315 (1954).



I. EXPERIMENTS INDICATING VECTOR AND AXTAL VECTOR INTERACTIONS

(a) One consequence of the parity breakdown is that the 8 particles
are longitudinally polarized in the nuclear beta decay. The longitudinal
polarization of g particles has been measured in many cases of "allowed"
beta transitions,3 and the results for B~ amdB+'are - % and % respectively
within an experimental error of 10%. Here % is the ratio of the |
particle velocity and the vacuum velocity of light.

(b)‘ The particle of spin 1 and mass zero accompanying B~ emission
is called an antineutrino, and for 5+ emission, it is called a neutrino.
To explain the experimental polarization data, the vector and the axial
vector interactions require the neutrino to be "left-handed"; whereas
the scalar and the tensor interactions demand the neutrino to be a "right-
handed" particle. The left-handed and right-handed particles have
negative and positive helicity respectively. The experimental obser-

vation of the neutrino helicity was made by Goldhaber, Grodzins and

Sunya.r.h This experiment involves Eul?2 (07), which by K-capture goes

3C. S. Wu, Proceedings Rehovoth Conference on Nuclear Structure
(North-Holland Publishing Company, Amsterdam 1958), p. 359; and J. Heintze,
Zeits. fur Physik 150, 134 (1958). For a recent summary of f polarization
measurements, see A. I. Galonsky, A. R. Brosi, B. Ketelle and H. B.
Willard (to be submitted for publication in Nuclear Physics).

L

M. Goldhaber, L Grodzins, and A. W. Sunyar, Phys. Rev. 109, 1015
(1958). This has been confirmed by I. Marklund and L. A Page, Nuclear
Physics 9, 88 (1958).




to the excited state of Sm 2 (17); which in twrn decays by a dipole

gamma, transition to the ground state of Sm152(0+).

By observing the
resonance scattering of these gamma rays in Sm205, only those y-rays,
which go in opposite direction to that of the neutrino, were considered.
The y-ray helicity is the same as the neutrino helicity. The y-ray
helicity was found to be negative and therefore the neutrino helicity
is negative.

(c) Thus the experimental data on B longitudinal polarization in
allowed transitions and the helicity of the neutrino lead to the vector
and the axial vector interactions. The relative sign and strength of
the vector and axial vector interactions are fixed by the nuclear B tran-
sitions, where these interactions interfere. The most informative and
carefully analyzed case is that of a polarized neutron transforming into
a proton with the emission of an electron and an antineutrino. Burgy et
al5 measured the anisotropy of the electron and the antineutrino with
respect to the spin direction of the neutron . The result of this ex-
periment is that the relative sign of the vector and the axial vector
coupling constant is negative. Comparison of "ft-values" (comparative
half lives) of a neutron and Olh gives (1.21 £ 0.03) as the ratio of the
absolute magnitudes of the axial vector and the vector coupling constants.

The B interaction in the form of V - 1.2A law is consistent with the other

5M. T. Burgy, V. E. Krohn, T. B. Novey, G. R. Ringo and V. L.
Telegdi, Phys. Rev. 110, 1214 (1958) and Phys. Rev. Letters 1, 324 (1958).
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experiments on "allowed" beta transitions.* To understand why the ex-
periments on "allowed" transitions do not have any bearing on the pseudo-
scalar interaction, we give below the classification of the allowed and

the forbidden beta transitions which is commonly used.
II. ALIOWED AND FORBIDDEN TRANSITIONS

The most general parity nonconserving interaction hamiltonian

*x
density for the nuclear B decay is

*
A number of recent review articles appear in the literature. See
references 7, 8, 9, 10, 11, 12,

7Invited papers at the Conference on Weak Interaction, Gatlinburg,
Rev. Mod. Phys. 31, 782 (1959).

8M, E. Rose, Handbook of Physics (McGraw-Hill Book Co., New York,
1958) p. 9-90.

p. L. Pursey, Proc. Royal Soc. of London, Series A, 246, ik (1958).

1%, J. Konopinski, Annual Rev. Nuclear Science 9, 145 (1959).

11M. Deutsch and O. Kofoed-Hansen, Experimental Nuclear Physics
Vol. III (John Wiley and Sons Inc., New York, 1959) p. 427.

12

Y. Smorodinskii, Soviet Physics Uspekhi 67 (2), No. 1, 1 (1959).

*%
M. E. Rose, reference 8.




2 * * . .
H - 21 (Y N, Wy (Yo, | €€, 751 1) + hernmitien conjugate (1.1a)

X =
The summation over x implies the five possible interactions. The first
term represents P~ emission, and the hermitian conjJugate of this gives the

C and C are generally called the parity conserving and parity
. maw b wrilfon
nonconserving coupling constants. \ﬂ_ is a 4 x 4 matrix and qln terms of

gt emission.

the y-matrices which obey the following commutation rules:

Y Y tla N =2 é,»w,u (Mand ¥ =1, 2, 3, L4)
Let flx; 7) Ox. Then Ox has the following forms for the respective inter-

actions
Scalﬁr 1 (one component)
Vector Yoo (four components)
Tensor T A FY (six components)
Axial Vector Z~75 (four components)
Pseudoscalar 75 (one component)
Making use** of 7, = -15&% (x =1, 2, 3)57l;= -B , we write (1.1a) as
H = i H + hermitian conjugate. (1.1v)
x=1 X

where

It is the occurrence of the cross terms between C and C that
give the parity nonconserving effects.

* . 1 o\ , [0 &
‘In this representation: g =( s ao g o

- -

1 ° o =
= o 1 5 75 = 7172737)+; 75a = 75 =G .



By = (YW (Wee Legrogre] Y, )

my = (4 (Y, [Cv"c\'/’s %) - (ngLYN)'(q/ZJ[CV+C\;753 % )
iy = (V% W) (W B [opCprs1 ) + (Wppd W) (Woed Lopersy g )
= (P2 W) (e F (051w ) - (Wprs W (Wors (S5 )

* * t
By = (Y prs\Wy) (W75 [ CptCprs) Y, )
* *
In equations (l.l), ‘4)P and \%( represent the creation operators for a
e
proton and an electron respectively, whereas \4)N and \+L are the de-
struction operators for a neutron and a neutrino in the negative energy
state. One can consider a neutron and a proton as the two states of a
nucleon, and we define an operator Q which transforms a neutron into a

proton. Thus we can write the equation (1.la) as
* (]
HB = Zj)k Q - (\Peﬂx [-Cx+cx75] \.Vy ) + h. c. (1.1c)
x

Strictly speaking, the setting up of the interaction hamiltonian
density for the four fermions is a field theory problem and one requires
second quantization of the field amplitudes to insure the Pauli exclusion
principle and to describe properly the creation and the destruction of the
particles. The usual field theoretic } approach is to set up the first
order perturbation theory formula for the transition probability between
the injitial and the final nuclear states. Then in this formula, \+1e and
#ﬁ are treated as the proper Dirac wave functions. Using the relativistic

units (h = ¢ = m, = 1) the transition probability for B~ emission between




T

the initial and the final nuclear states, represented as L+)i and \J)f, is

given by the following:

w=2nS,J I f’ (1.2a)

f is the density of the final states and E; is the summation over all un-

observed observables.

S‘HB z J cd YT N ) a®) (pin, [cac ] Y, (2.20)

In (l.2b) beta interaction operator is written in the space of the kth
nucleon and the lepton covariant (HIZJ]X [foc;ysj V& ) is to be evaluated
at the position X of the k-th nucleon. The integration is over all nuclear
co-ordinates and it is to be summed over all nucleons.

The selection rules for the allowed and the first forbidden beta
transitions depend on the rotational properties of the interaction operators
in the nucleon space. The Coulomb effects on the B particle do not in-
fluence the rotational properties and as such, in the following discussion,

the electron and neutrino are represented as Dirac plane waves.

Lr - ei-";
e e (1.3a)
\'I{, = uv e-iq’.r (l'3b)

In (1.3), D and q are the (physical) momenta of the electron and the anti-

-y
neutrino respectively. Letting P =D + a; substituting (1.3) in (1.2)



(@3]

-iP r

o (0075) v >§w§n fay, | e

r, is the position of the decaying nucleon and rks nuclear radius (r).

k

In the above we have introduced the conventional notation®
A . -i-f’ r i -h
2 av...d Yo (k) e Q(k)\-l/i qfﬂx e Y,
k=1

P is at the most as large as 10 (in mc units), r = 0.02 %E for A = 210;

therefore Pr ~ 0.2. In general Pr ¢¢ 1. Using the Raleigh expansion

e'i?'? = 2(-1) (2€ +1) 3 (Pr) B (P (1.4a)
> 5 ¢ -t L
elPr___.h.,(Z(-i) @%Zexg(myg(s)
-i;'ﬂ M
e r = lbx ZM_ (—m—g (P)Py (l.’-l—b)
In arriving at (1.4b), we have used
e
3y ()= 2ePi{ T

B (D) = 2 Dy yﬁp) 1 (F)

M

and
M /> 4
Yp @z 4@

We write (1.L4b) as




o-1Per "’% ae,M’\jZﬁ @) (1.58a)
M

L X
20 ,m " 1212“4,-;153: l\jﬁ (F) (1.5b)

Substituting (1.5a) in equation (1.2c)

Wzgﬂs

where

2
* ' * ,
Z(ue.nx [CtCy75] Y )2 a, ,Mfkyf‘nxg’ @) Y, l [
x é,M ¢
(1.24)
Now ﬂx is & tensor of a certain rank, depending upon the inter-

action. For example, (L. = B, 1, 75, 875 are zero rank tensors, because

X

these are scalar under three dimensional rotation. Let us denote them by
-

'I‘o(ﬂx). Similarly when\fl.x =Bz, % , a, B3, ‘nic is a tensor of rank

one and let us represent it by Tl(-ﬂ.x)., In the nuclear matrix element

of equation (1.24), we have

ﬂx’\jeM @) = ) \cﬁd () - ;L=0orL=1.

‘ -
X .
* .
vhere bL o is a constant, which for our discussion is irrelevant. Sub-
*
b = C(L@ A;m-M, M, ;o) is a Clebsh-Cordon Coefficient.

Lea



10
stituting (1.6) in (1.24) we have

2
J

* ' *x M >
v o= 2’)’5 li (ue, (0,757 u, ) 2 89 MPL, 2 J:‘Vf Ty ML, 7)Y,

€M\
(1.2e)

T;A'are the components of tensor rank A where, in steps of unity,

[L-2] S 2SIl (1.7)
Thus L, é and A must form a triangle * and we represgnt it as & CLZ 2.
This notation will be used wherever needed. To conserve angular momentum
in the nuclear matrix element of Eq. (1.2e), we must have £S(JfXJi). Je
asd Ji are the spins of the final and the initisl nuclear states. If we
represent the parity of TXCJIX;;) as n(Ti); then m.x, = ﬂ(TX). In the
Raleigh expansion, Kl.Sa), we get the leading term, when ? is zero. The
higher the value of‘(a s the smaller is the term in the expansion. Also
from Eq. (1.1') we observe that the even operators (in the Dirac sense,
like B) appear on the left side and odd operators (in the Dirac sense,
like a) appear on the right-hand side. As pointed out earlier, these
operators in the nuclear space are 4 x 4 matrices. In the nuclear matrix
elements the even operators connect the large component with the large
component and the small component with the small components of the nuclear
wvave functions involved. On the other hand, the odd operators connect
the large and small components. The small component is of the order g

of the large component. As such the even operators with the leading term




11
of the Raleigh expansion (for L - o) give maximum contributions to the
transition probability. Such transitions, for which the selections are
given by £>(JfXJi) end moxt, = “(TX)’ and which have the largest tran-
sition probability, are called allowed transitions.

Now we also note that for the pseudoscalar interaction, only an
odd operator 875 (a zero rank tensor) is involved. Therefore, the max-
jmum contribution of this interaction arises from the selection rules
A(JfOJi) and Ax = - 1. Now, if there were no other interactions in
nuclear B decay, then this transition (6T =0; on=- 1) would be
called an allowed transition. But we know that there are other inter-
actions (the vector and the axial vector) which have much larger contri-
butions; therefore the transitions with these selection rules are called
first forbidden.

In the first forbidden beta transitions the contributions to the
transition probability come from

(1) The even operators with the term in the Raleigh expansion for

l. 1.
(2) The odd operators with the term in the Raleigh expansion for
L-o.

The selection rules for the first forbidden are |4>J| =0, 1, 2
and A n = - 1.

In Teble I we list the nuclear operators for the allowed (n = 0)

and the first forbidden (n = 1) transitions. In Table II, we explicitly
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TABLE I

NUCLEAR OPERATORS FOR ALLOWED (n = O) AND FIRST FORBIDDEN (n = 1)

TRANSITIONS
Ly Interaction N ) T, Rank . =(T,) =n
Even Operators
B Scalar + B 0 + 0
Br 1 - 1
1 Vector + 1 0 + 0
7 1 - 1
B & Tensor + B& 1 + 0
BG&-T 0 - 1
BE x P 1 - 1
*
B(36 r -7 R) 2 - 1
- Z Z
1y Axial Vector + & 1 + 0
S 0 - 1l
& xr 1 - 1
*(36-r -&F) 2 1
3 zrz- r -
0dd Operators

-y -

a Vector - a 1l - 1
Bd Tensor - B 1 - 1
75 Axial Vector - 75 0 - 1
875 Pseudoscalar - 575 0 - 1

.

*
One component of the tensor has been shown.
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TABLE II

ANGULAR MOMENTUM AND PARITY SELECTION RULES FOR
ALIOWED AND FIRST FORBIDDEN TRANSITIONS

—
Interaction
Allowed:
Scalar B 1 (J 19 fO)
Vector 1 1 A (JiJfO)
Tensor BE 1 A(3,301)
Axial Vector = 1 al(J 19 fl)
First Forbidden
Scalar pT -1 &(J,3.1)
Vector r -1 a(3,3.1)
o -1 a(3,a.1)
Tensor BE-T -1 A(JiJfO)
i} BE x T -1 a(3;3.1)
B(36,r, -3 F) -1 a(J,3.2)
Axial Vector .7 -1 a( JiJfO)
i S'Xr* -1 4(3,3,1)
(3 o, G.T) -1 a(3,3.2)
Pseudoscalar 675 -1 A (JiJfO)

*
Only one component of the tensor is indicated.



1L
give the selection rules for the allowed and the forbidden B transitions.

In general, the nth forbidden transition has the following selection rules

AJ =n, ntl forn » 1

an= ()"
ITI. EXPFRIMENTS FOR INVESTIGATING THE PSEUDOSCALAR INTERACTION

Due to the parity selection rule, the experiments on the allowed
beta transitions do not have any bearing on the existence of the pseudo-
scalar interaction. The operator 675 (in the nucleon space) is a zero
rank tensor and has odd perity. Therefore, the pseudoscalar interaction
contributes when A J =0and Ax = - 1. The pseudoscalar and axial
vector interactions contribute to nuclear transitions with J i = J = 0
and A = - 1. Generally this type of transition is written as O —> O
(yes). Since the nuclear matrix elements are very hard to evaluate they
are treated as parameters, which are adjusted to fit the experimental
data. Though, in principle, the contribution of the pseudoscalar inter-
action can be determined also from transitions (J =9 e F 05 MM = - 1)
where the pseudoscalar, axial vector and vector interactions contribute,
there are more unknown (nuclear matrix elements) parameters, thus making
the analysis harder. The best cases for investigating the existence of
the pseudoscalar interaction are O =» O (yes) transitions because the

vector interaction does not contribute at all. With the known negative heli-

city of the neutrino, the pseudoscalar and the axial vector interactions,
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taken separately, give opposite longitudinel polarization of B particles.
The relevant experimental data on 0> O (yes) transitions are

(1) The B spectrum
(2) The longitudinal polarization of B particles.

166
At present, 0 =0 (yes) transitions occur in the deca.yl3 of Prlhh, Ho s

152 206

Celuh, , and possiblq Tl

Eu
IV. STATEMENT OF THE PROBLEM

The problem, considered in this dissertation, is to investigate
the existence of the pseudoscalar interaction in the interaction hamil-
tonian density for the processes of nuclear‘beta decay, by:
(1) Formulation of the theoretical expressions for B longitudinal polar-
ization and the B spectrum in 0 - O (yes) transitions with the correct
form of the pseudoscalar intera.ction2 and the axial vector interaction.
(2) Making an extensive numerical analysis of the presently available ex-
perimental data, using the derived formulas, with the calculated electronic

*
functions, which include accurately the nuclear finite size and the effect

*%
due to finite deBroglie wavelength.

l3D. Strominger, J. M. Hollander and G. T. Seaborg, Rev. Mod. Phys.
30, 585 (1958).

*
M. E. Rose, Phys. Rev. 82, 389 (1951); M. E. Rose and D. K Holmes,
Oak Ridge National Laboratory Report No. 1022 (Unpublished).

**M. E. Rose and C. L Perry, Phys. Rev. 90, 479 (1953)
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The remsinder of this chapter summarizes the history and the
present status of the pseudoscalar interaction in nuclear B decay. In
Chapter II we find an expressionrfor the interaction hamiltonian density,
by removing the odd operators with the Foldy-Wouthuysen transformation.
Also the representation and notation used is discussed. In Section I of
Chapter III, time-dependent perturbation theory is outlined and the
asymptotic wave function of the beta particle is given. After a
brief discussion of the polarization operator im Section ITA, the main
problem of longitudinal polarization and Pp spectrum is set up for 0 0
(yes) transitions. After assuming time reversal invariance in weak and
strong interactions and the two-component theory of neutrino as valid, we
give the resulting formulasfor the B longitudinal polarization and spectrum
in (3.35) and (3.37) on pages 89 and 90 respectively. The relevant ex-
perimental data on 0 — O (yes) transitions are summarized in Section II
of Chapter IV, In Section III of Chapter IV, after a brief discussion
of finite nuclear size and finite deBroglie wavelength corrections, the
methods of analysis are described and results are given. Chapter V con-
tains the conclusions of this investigation and a discussion of these
conclusions. In Appendix A, for clarity, the symmetry relations of
Clebsch-Gordon coefficients, Racah coefficients and X-coefficients are
listed along with some "relations" which already exist in the literature.
Appendix B contains the neutrino wave function in the negative energy state

in (Section 1), and the general expression of B matrix elements for the
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axial vector and the pseudoscalar interactions is worked out in detail .
in Section ¥I 1In SectionIII of Appendix B the results of Section 2 are
specialized to 0 —> O (yes) transitions. Appendix C shows the details
of a certain Racah recoupling in Section 1, and a short discussion of
time reversal invariance in strong and wesk interactions in Sections 2
and 3 respectively. Appendix D lists the expressions of certain functions
(introduced in polarization expression of Chsapter TII) up to order R (the

nuclear radius).

V. HISTORICAL BACKGROUND

In 193k, FermillL formulated a field theory of beta decay in close
analogy with the field theory of electromagnetic radiation. He considered

only the vector interaction by taking the interaction hamiltonian density

* * *
as a scalar product of two 4-vectors (q}P7hz“-q}N) and (q/e7hzquL ).
Soon it was realized that one could mske other possible combinationsl5
in the interaction hamiltonian density, and they are called the (1) scalar,

(2) tensor, (3) axial vector, and (4) pseudoscalar interactions. In the

14, Permi, Zeits. fur Physik 88, 161 (193L).

*
A L-vector transorms under Lorentz transformation as do x, ¥y, 2z,
ict.

lSH. A. Bethe and R. F. Bacher, Rev. Mod. Phys. 8, 189 (1936).
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setting up of the hamiltonian density, the following were assumed:

(1) The interaction hamiltonian density is hermitian so as to
treat e~ and e’ on the same footing.

(2) The beta interaction is direct, i.e., no derivatives of the
field amplitudes exist.

(3) The beta interaction is local, i.e., the field amplitudes
are taken at the same space-time point.

(4) The classical beta hamiltonian was, a priori, considered a
scalar. The experimentl proved it otherwise.

In equation (1.1) setting C; equal to zero gives the classical
beta interaction hamiltonian density.

In 1941 the theory of forbidden beta transitions was given by

17,18

Konopinski and Uhlenbeck16 and extended later by others. The ex-
perimental data on B spectrum, half-life and electron-neutrino corre-
lation were compared with the theory to determine the nature of B

interaction. The energy dependence of the B spectrum in allowed tran-
sitions indicated that there is little or no interference between the

vector and the scalar interactions nor between the axial vector and the

tensor interactions. The sbove statement is generally expressed as

16E. J. Konopinski and G. E. Unhlenbeck, Phys. Rev. 60, 308 (194l).

11g, Greuling, Phys. Rev. 61, 568 (1942).

18 1. Pursey, Phil. Mag. L2, 1193 (1951).
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that the Fierz interferencel9 terms are almost absent.zo As late as
Septenber 1957, the scalar and the tensor interactions were considered

as the main interactionsgl mostly due to erroneous results of Rustad and

Ruby.22

From 1952 through 1957, several author52’23’2h’25 expressed doubts

about the correctness of the conventional treatmentl6’l8 of the pseudo-
scalar interaction. In the conventional treatment the parameters
describing the lepton field were considered as independent of those
describing the nucleon. In the "new" formulation of the pseudoscalar
interaction a gradient operator appears, which operates on the lepton co-

*
variant. As an illustration Rose and Osborn2 gpplied the formula for the £

spectrum in 0 — 0O (yes) transitions using the pseudoscalar and the tensor

19M. Fierz, Zeits. fur Physik, 104, 553 (1937).

207, B. Gerhart, Phys. Rev. 109, 897 (1958): gives b, = 0.00 t o2,
R. Sherr and R. H. Miller Phys. Rev. 93, 1076 (1954): gives

bG.T. = - 0.0L T o.02.

lE J. Konopinski, Proceedings Rehovoth Conference on Nuclear
Structure (North-Holland Publishing Company, Amsterdam 19587—b 313

223, M. Rustad and S. L. Ruby, Phys. Rev. 89, 880 (1952).

23, Ahrens, E. Feenberg, and H. Primakoff, Phys. Rev. 87, 663 (1952).

2y, Ahrens, Phys. Rev. 90, 974 (1953).

25G° Alags and B. Jaksic, Glansik Mat-Fiz. i Astr. Tom. 12, No 1-2
(1957).

*
Reference 2 contains an excellent discussion. See also Chapter II
of this dissertation.
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210

interactions to RaE} but it turned out later that in ReE (Bi ) the

beta transition was 1~ — ot. Lau'bitz26 and Zyrianova27 made a detailed

1hk using the Rose and Osborn formula for

analysis of 0 » O (yes) in Pr
the B spectrum. Alaga and Jaksic25 applied essentially the Rose and
Osborn formilation with some extrs parameters describing the nuclear
forces effect, to the analysis of B spectrum of O = O (yes) in Hol66.
Alaga, Sips and Tadic28 also consider a tensor and the pseudoscalar
interaction for the analysis of B spectrum of Prlhh. At present, our
knowledge of nuclear hamiltoniansis not adequate to calculate the nuclear
matrix elements, and in the usual treatment of B decay, these nuclear
matrix elements are considered as parameters. Alaga and Jaksic25 intro-
duce more parameters depending upon the nuclear forces. Now. if one did
know how to calculate the nuclear matrix elements, with some confidence,
then it might be interesting to see how many other parameters (depending
on the nuclear forces) are required to fit the experimental data. But
with our present knowledge of nuclear forces, it is neither practical

nor desirable to complicate the theoretical calculations with such para-

meters.,

26y, J. Leubitz, Proc. Phys. Soc. (London) A69, 789 (1956).

27L. N. Zyrienova, Bull. Acad. U.S.S.R.--Physical Series 20, 1260
(1956). (Translated by Columbia Technical Translation, New York).

28G. Alega, L. Sips, D. Tadic, Glansik Mat-Fiz. i Astr. Ser. II,
12, 207 (1957).
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After the experimental verificationl of the breakdown of parity
symmetry law in beta decay, a number of experiments on the longitudinsal
polarization of B particles, the anisotropy of B particles from oriented
nuclei, and B-y (circ?larly polarized) correlation were done. In the

u51

meantime Lee and Yang,29 Salam;o and also Landa gave independently

what is termed as the two-component theory of neutrino. Also following
different approaches, Sudarshan and Marshak,52 Feynmen and Gell-Mann55
and also Sakuraiy‘L proposed the vector and the axial vector theory of B
decay. As pointed out earlier in this chapter, the experiments on the B
longitudinal polarization in allowed transitions, the experimental de-
termination of the neutrino-helicity end the anisotropy of e~ and 2 from

the polarized neutron, uniquely indicate the vector and the axial vector

interactions. These interactions are consistent with the electron-neutrino

297, D. Lee and C. N. Yang, Phys. Rev. 105, 1671 (1957).
%), selam, Nuovo Cimento 5, 299 (1957).

511, Lendau, Nucleer Physics 3, 127 (1957).
32R. E. Marshak and E. C. G. Sudarshan, Phys. Rev. 109, 1860 (1958).

33g. p. Feynman and M. Gell-Mann, Phys. Rev. 109, 193 (1958).

BhJ. J. Sakurai, Nuovo Cimento 7, 649 (1958).
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35,36,57 6 Nel9 ana a3,

correlation experiments on He

As a consequence of the above development leading to the V-AA law of
beta decay the previous estimates of the pseudoscalar interaction based on
the analysis of a mixture of the tensor and the pseudoscalar interaction,

are no longer correct. Recently the beta spectrum of Prll"lL (0"— 0") has

38

been studied experimentally.58’59’ho Graham et al”~ set up an upper limit
for the pseudoscalar interaction using the Rose and Osborn formula2 with the
axial vector and the pseudoscalar mixture. To investigate the existence of
the pseudoscalar interaction one must consider all the experimental data in
any particular B transition, and the best transition as pointed out earlier,
is 0 =0 (yes). Apart from the B spectrum, we have additional information

sbout the B longitudinal polarization. A number of ‘trea‘tmen‘tshl’ 42,3 of

55W. B. Hermannsfeldt, R. L. Burman, P. Stahelin, J. S. Allen and
T. H. Bird, Phys. Rev. Letters 1, 61 (1958) and J. S. Allen, Rev. Mod.
Phys. 31, 791 (1959). Also see F. Pleasonton, C. H. Johnson and A. H.
Snell, Bull. Am. Phys. Soc. k4, 78 (1959).

563, B. Gerhart, Phys. Rev. 109, 897 (1958).

57W. B. Hermannsfeldt, J. S. Allen and P. Stahlein, Phys. Rev. 107,
641 (1957). .

58R. L. Graham, J. S. Geiger, and T. E, Eastwood, Can. J. Phys. 36,
1084 (1958 ).
59 . D. Porter and P. P. Day, Phys. Rev. 114, 1286 (1959).

0y, J. Freeman, Proc. Phys. Soc. 73, 600 (1959).

hlG. E. Lee-Whiting, Can. J. Phys. 36, 1199 (1958).

%20, Kotani and M. Ross, Prog. Theor. Phys. 20, 643 (1958).

hBV. B. Berestetsky, B. L. Ioffe, A. P. Rudik, and K. A. Ter-
Martirosyan, Nuclear Phys. 5, 464 (1958).
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the B longitudinal polarization in first forbidden transitions appear in
the literature. In all of these treatments, the “conventional" form of
the pseudoscalar interaction has been used instead of the correct formu-
lation of the pseudoscalar interaction. Geshk.en'beinm+ gives the longi-
tudinal polarization in 0 - O (yes) transition, still not using the
correct form of the pseudoscalar interaction. T:a.dic)+5 has anslyzed the
earlier less accurate (22%) measurement of the B longitudinal polari-
zationh6 in 0 = O (yes) of Prlhh. His treatment, though it introduces
parameters depending on the nuclear forces, is not rigorous and his
anslysis is inadequate because of the approximations used therein. Re-
cently B‘{zhring)+7 measured the longitudinal polarization of B particles in
the 0—0 (yes) transition of Hol66. His analysis of the longitudinal
polarization measurement is not correct because he uses the formulas of

Lee-Whiting. Cupermanh8 has analyzed his measurement of the longitudinal polar-

jzation of B particles in the (3*— 1) transition of m20T, Apart from

th. V. Geshkenbein, Zhur. Eksptl'i Teoret Fiz. 34, 1349 (1958).
h5D. Tadic (Private communication to Dr. M. E. Rose).

LL6J’. S. Geiger, G. T. Ewan, R. L. Graham and D. R. Mackenzie, Phys.
Rev. 112, 1684 (1958).

4Ty, Bihring, Z. Phys. 155, 566 (1959).

h8S. Cuperman (to be published in Phys. Rev.)
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the fact that there are more parameters occurring, it appears that the
correct formulation of the pseudoscalar interaction has not been used.
Recently Mehlhoph9 reported the measurement on the longitudinal polari-

Ly

zation in the O'~—>Cﬁ'transition of Prl In his analysis, very crude

approximations were used, along with the incorrect formulas of Lee-

Whiting.hl The effects of the finite deBroglie wavelengthso

and the
finite size of the nucleus’’”° are important in 0 =0 (yes) beta tran-
sitions, and have not been properly considered.

Thus, until now, no consistent treatment for the search of the
pseudoscalar interaction existed in which the correct formulation of the
pseudoscalar interaction was used. This dissertation presents such a

treatment in which all the relevant experimental data are analyzed with

large scale computing programs using the accurate electronic functions.

ltiw' A. W. Mehlhop, "A Measurement of the Longitudinal Polarization
of Pr Beta Particles" (unpublished Ph.D. dissertation. Washington
University, Saint Louis 1959).

M. E. Rose and C. L. Perry, Phys. Rev. 90, 479 (1953).
LM, E. Rose, Phys. Rev. 82, 389 (1951).

52M. E. Rose and D. K. Holmes, Oak Ridge National Laboratory Report
No. 1022 (unpublished ).




CHAPTER IT
BETA DECAY INTERACTION IN NONRELATIVISTIC FORM AND NOTATION USED

In this chapter, we start with a brief discussion of the diffi-
culties which arise in obtaining the nonrelativistic limit of the nuclear
matrix elements involving odd operators. The prescriptions of removing
the odd operators in the hamiltonian by the Foldy-Woutluyéeh?{canbnical)
transformation for a free Dirac particle and for nuclear beta decay are
given in Section I and IT respectively. Section III contains the sppli-
cation of the results of Section ITI to the axial vector, vector and
pseudoscalar interactions and it is explained, why the conventional
treatment of the pseudoscalar interaction is not correct. For clarity,
the notation and the representation, used in later chapters, is explained
in Section IV.

The relativistic dynamics of a nucleon in a nucleus are not presently
known and as such we are ignorant about the details of relativistic
nucleon wavefunctions. In nuclear beta decay, the transition probability
between the initial and final nuclear states depends upon the matrix
elements of operators (4 x 4 matrices) in nucleon's space. Due to the
above reason, these nuclear matrix elements are very hard to evaluate.
However, there are some nuclear models like K the shell model, the Wigner
model, the optical model and the unified model, which have some success

in explaining some qualitative properties of nuclear structure. These
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models are nonrelativistic in nature and it appears that the relativistic
corrections are not very important. Thus, at least there is a possibility
of evaluating the nuclear matrix elements, provided the nonrelativistic

1imits of these matrix elements are known. We represent the nuclear wave

v

where v and u have two components. In the nonrelativistic limit:
0
Y —
u

then v and u are called the small and the large components of q) . In

function

the following the subscripts i and f refer to the initial and final

nuclear states.
Consider a matrix element of an even operator in nucleon space,

e.g., & .L(2)Q (in the axial vector interaction)
-> * 1
(&)= (Y & [CptCprs] W)

SL]/;‘ T L&)\, - Ju’; 2 L(&) u, +gv;§ L(3) v, (2.1a)
In the above equation, u's and v's are two component functions and & is
a Pauli matrix (in the nucleon space) on the right-hand side of (2.1a).
Also the first and second term in (2.1a) involve only the large and small
components of the nuclear wavefunctions. To obtain the nonrelativistic

limit, we can neglect the second term as compared to the first one
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S\y’; & L(S)Y, ——>fu;f § -L(& )u, (2.1v)

In the pseudoscalar interaction, we are interested in the matrix elements

of an odd operator (which anticommutes with B) 675L(B75).

X% * *
j\yf By LBy = fvf L(By5 )y -5uf L(Bys)vy (2.2a)
where we have used the representation
1 O© 0 1
B = i V5= (2.2v)
0 -1 1 O

and *
the lepton covariant L(Bys)Ei(\ye BYs5 [CP+C;75]\4ﬂ ). In (2.2a), both

the terms involve the large component and the smsll components of the
nuclear wavefunctions, as such these terms are of the same order of mag-
nitude. There is no simple prescription, as in the case of even operators,
to obtain the nonrelativistic 1imit.

There are two methods, which, in principle, can be utilized for
obtaining the nonrelativistic limit of the matrix elements of an odd
operator in the nucleon space:

(1) By eliminating the small components by making use of the re-
lation between the small and the large components of the nuclear wave
function. As an illustration: if we take the wave equation for stationary

states of a nucleon (in units“h = m, = c = 1) as

-@p+BM- VY =WV

- -dy
\’J =(v3; then v = - (W-V+M) 1 € puy - T 62'~pu (2.2¢)
“\u
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if we take W - V - M << 2M

Substituting (2.2¢c) in (2.2a) gives

*

Sqf; BYL(BYs) Yy = - 5y j(?r B up)” L(BYs )y + By S up & B L(Brg )y

Sqf; BYL(BYs)\Y; = - 5w ju; KR RICANEN (2.24)

In (2.2d).3 operates only on L(675) and if L(Bys) is considered as a
constant (as done in the conventional theory); then 3 L(B75) = 0, and
hence there is no contribution from tke pseudoscalar interaction. The above

procedure may not be quite correct when the fields are present and is

very cumbersome in many body problems.

(2) By applying a Foldy-Wouthuysen (canonical) transformation to
the total hamiltonian of the system comprised of the decaying nucleon,
the lepton (e-)» ) field and the lepton, so as to remove the odd operators.
The odd operators can be eliminated up to any order in %. This procedure

is theoretically more sound and we shall follow this prescription.
I. FOLDY-WOUTHUYSEN TRANSFORMATION (NO FIELDS)l’2

The equation of motion of a Dirac particle of mass M, with no

L. 1. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950).

2M. E. Rose, Relativistic Electron Theory (to be published by
John Wiley and Sons, New York) Sections 18 and 22.
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fields present is

H‘;B:iEb—% (2.3)

where in the standard notation’ (usingh = ¢ = 1)

H=-pM-ap » (2.4)

In the equation (2.4)d is an odd operator and we want to eliminate, for

the time being, '5;5 terms up to an order % + Consider a unitary trans-
formation generated by S and —-g-% = 0
} S
Y =Y | (2.5a)
then the equation of motion (2.3) can be written as
SunedeSy =i > eSEE
ot
¥
H! \i)-' =1 _B_i_ (2.5b)
Dt

where the new hamiltonian H' is given by

H' = e> ge™d (2.5¢)

5%. I. Schiff, Quantum Mechanics (McGraw-Hill Book Compeny, New
York 1955) Sec. 43.
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2 2

H'=[l+S+S+...JH[1-S+§-!—-... ]

51
H' = H + (S, H)+%’-(S, (s, B)) + . . .

where the commutator of S and H is written as

(s, H)= SH - HS

We choose
.- o0=8_3aro
S=-54%%= maP
- -
where qlg - a-p is the odd part in the hamiltonian (2.4).
H' in equation (2.6a) up to order %
B 1l B
'- - ow—— — - ou—— - L]
H _H+( 2Mol,H>+2=( =T ap) e
Using
BO, = - 0,8
> - - -
Ba'p = - Q-
%P ap = B
% = 1
= (- P 122
(EM 1’ ‘('2M°1"'3M'°‘P>='°1‘M'3P

1/ B 2> B a2
E!‘('e_Mol’ "”’)" P

Substituting (2.7) in (2.6b)

B2 B
- -
H*' = H Ol MP *on p + 0.

(2.6a)

(2.7)

We evaluate

(2.6b)

(2.7a)

(2.70)
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= - = - 1 »2
‘—- - L] (] - w—
H' = BM - a:p + Q+p 5N Bp + . . .
B =2
LI - 2
H' = - BM - S5 B + . . - (2.6¢)
We get the correct nonrelativistic hamiltonian by substituting p— -1
2 2
in (2.6c) as %ﬁ'+ M. To remove odd operators in H' up to order (%) )
this transformation is applied taking S = - gﬁ (0dd part in H'). By

successive application of the Foldy-Wouthuysen transformation, odd
operators in the hamiltonian can be removed to any order in (%'). For
large M (say for a nucleon), the terms containing( %§ or of higher orders
are very small. A similar prescription can be applied when the fields

are present by considering
- - B
S = - 5y [Ol + odd operator involving fields J

In the following, this procedure is applied to remove the odd operators
in nucleon space for a system of nucleon “source" coupled to the lepton

(e-p ) field.

II. FOLDY-WOUTHUYSEN TRANSFORMATION FOR NUCLEAR BETA DECAYLL’5

The total hamiltonain is then composed of three parts (1) the
nuclear hamiltonian (HN), (2) B interaction hamiltonian (HB), and (3) the

lepton hamiltonian.

“M. E. Rose and R. K. Osborn, Phys. Rev. 93, 1315 (1954).

°G. Alaga and B. Jaksic, Glasnik Mat-Fiz. i Astr. Tom 12, No. 1-2,
(1957).



H=H.N+HB+H3 (2.8a)
In the space of the decaying nucleon, considering the nucleon obeying

the Dirac equation, we have

iy

1]

- B[Mn7+ + Mpf(_] -ap+ V

- ~>
- - - . - 1 -
Hy = - BM - ap —21‘3(Mn Mp)‘Tz +V (2.8b)
In the above Mn and Mp are the neutron mass and proton mass. The ration-
M + M
alized relativistic units (A = c = m - 1) are used. M= ———R |
electron 2

and V represents the nuclear potential. In the following, B~ emission

is considered.

By = g DL (MaLEL) (2.8¢)
)= (et (5] ) (2.82)

-fl.x in the nucleon space, for clarity is written as.J‘Lx(N). B* emission

is obtained by hermitian conjugating Hg- in (2.8¢c). We write (2.8b) and

(2.8c) as
Hy = HN(even) + 0y (2.9a)
HB.. = HB-(even) + 0, (2.9b)
where the odd part of Hy: 0= - G (2.9¢)

and the odd part of HB_ is 02.

HN(even) and HB_(even) in (2.9) represent the even parts of Hy and HB_.
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Taking

[ 2]
i

B
- -5 (°1+°2) (2.10a)
S = - gﬁ (- ap + 02) , (2.10b)

the calculation of H', the transformed hamiltonian, can be easily

done by using:

H' = H+ (S, H) +3(8, (5, H)) + . . . . (2.11a)
H' = Hy + Hé + H' (2.11b)
To remove odd operators in (2.11) up to order % in a consistent menner,

the following are used:

(1) The terms containing ié or higher orders are neglected.

(2) The terms of second order in the coupling constants are ignored.

(3) The term - %(Mh-MP)B 7, does not contribute to Hé.

(4) There is no contribution to Hé arising from HL .

(5) The odd part of the nuclear force operator does not contribu.te.6’7
Making use of the above:
l - - -
(S, HN)=--2—M(-BG.P+BOQ’ -BM-QP+Ve)
— - B_)Q B - - - =
(s, HN) =ap-0,-55P + EM(OQG P+C p02) (2.12a)
In the commutator (S, (S, HN) we take up to order %

6Z. V. Chraplyvy, Phys. Rev. 91, 388 (1953).

5. v. Chraplyvy, Phys. Rev. 92, 1310 (1953).



(s, 23 - 0.) BE” Bo.a-p + &0 ) (2.12b)
» @B - 0,) = 5 - £(0,3-B + &0, .

(s, HB- (even)) is an 0dd operator because S is odd operator and it is of

order ﬁ - The only contributing terms from this commutator are of the

order (&)2 and so are neglected.

1 > =
(s, 02) = = §ﬁ(- Ba:p + 602, 02)
1 o, 1
(S; 02) = Eﬁ(ﬁa°P; 02) - .2_1\71(&02’ 02)
(s, 0,) = g-N-I(ar"po2 + 0-B). (2.12¢)

Substituting (2.12) in (2.11),

.2
> = B =2 B =2y L BB _B >
| - . - PR i — ° s - . o
B = H+op -0y - 5537 + 530 @), + 55 - 55(0 @°P),
B - 1 :
+ §ﬁ(02’ a-p)+ + terms 64;5) or higher
H = [- BM+ V. - B_3°74 (even) + (0., &) +H, (2.11c)
= e " M ] Hy oM Vo2 +] e
v B =2
iy s - BM+ Ve -5y P (2:132)
v B au_.
HB = HB(even) + §ﬁ(02, o p)+ (2.13b)
H = Hy (2.13c)

1]

The anticommutator (02,'355)+ = 023°§ +'a;502 and O, = odd part of the

Hﬁ" Using (2.13b) the odd operators in the vector, axial vector, and

the pseudoscalar interactions will now be transformed into even operators.
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III. BETA-DECAY OPERATORS IN THE NONRELATIVISTIC FORM

For B~ emission, the interaction hamiltonian for the vector, axial

vector and pseudoscalar interactions is HB' = HV + HA + HP

H, = 1Q-L(1) - o L&) (2.1k4a)
Hy = SQL(T) - 7,8L(75) (2.1k)
Hp = B75QL(B75) (2.1ke)

* 1
where the lepton covariant LGflx)‘; (\ye_fo {Qx+Cx75] LHJ) . In the
following, (as usually is done), we suppress the operator Q which con-

verts a neutron into a proton. (2.13b) gives

Hé-: HB_(even) + %ﬁ(oe, 333)+

For the vector interaction O, = - aL(@)

(- L(d), &),

- LQL(G’) 3+ BL@) + 183 x L(a)]

- ey

B (- 3-1(@), &3), - - By (2L@ 3 + DL@ + 15 % L@)]  (2.15)

For the axial vector O, = - L
xial v o 75 (75)

(- 75L(75), ap), = - L2L(75)8 B+ & BL(75) J

E5 (- 7L(rg), &3, = - %ﬁ[%(@) 6-p + & TL(rg) ] (2.15b)

For the pseudoscalar interaction: O2 = 575L(575)
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(B75L(B75), @-B), = - B3 L(By,)

53 L(B7,) (2.15¢)

1
l\)ll—'
=

o5 (B7:L(87,),38), = -

1

Up to order (-]1\ , H, is from (2.14) and (2.15)

M B
et
where
H) = 1L(1) - Z—M[ex,(a)-ﬁ + {3L(E) + 185 x L@} ] (2.16a)
By = 8 L(F) - 5] 20r.)s 5 +{F 7 L(r,) b ) (2.160)
H]; = - ;—M [ 0 + 152-3 L(B75) i ] (2.16¢c)

In (2.16), the even operators are the same as in Hy-. There are two
types of terms which arise in Hé_ by removing the odd operators up to
order ( %Z) : (1) the operator B = - iV acting on the nuclear wavefunction,
e.g., the first terms in the square brackets of (2.16). (2) The operator
—ﬁ = - 1Y acting on the lepton covariant--the terms in the curly brackets
of (2.16).

From the above considerations, the following major points come to
light:

() For the allowed beta transition; the results of using (2.16) and of
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the conventional theory8 are the same.
(b) The second type of terms, (involving the gradient on the lepton co-
variant), are generally very small compared. to the leading terms in
transitions, where the even operators (in HB) contribute. In the vector
and the axial vector interactions, essentially Hg gives the same results
as the conventional treatment8 (HB)’ provided the second type of terms
are neglected. Only the nuclear matrix elements have different forms.
To illustrate this, consider the contribution of the axial vector inter-
action to 0 —> O (yes) transitions. In the new formulation (Hé), there
will be the contribution of three matrix elements due to interaction
operators: (1) g;’, (2) 'b];/I & D, (3) %4 g.7. (3) is the contri-
bution to the matrix elements owing to a gradient operator on the lepton

-

covariant. In such a case, one can neglect the contribution of % S .r
: : - l = >
compared to the contribution of (1) G °r and (2) % © -p. In the con-
ventional theory, the contribution to 0 — O (yes) transitionsis due to
G -7 and 75 (e.g., see Tables T and II). By doing an explicit calculation,
one sees that the contribution of 75 is the same as of % 3255. Thus in

the presently considered case of O — 0 (yes) transitions the conventional

*
treatment and the new formulation give the same results for the axial

85, 4. Konopinski and G. E. Uhlenbeck, Phys. Rev. 60, 308 (1941).
Also D. L. Pursey, Phil. Mag. 42, 1193 (1951).

*
See M. E. Rose and R. K. Osborn, Reference 1, Section III.
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vector interaction.
(¢) 1In the pseudoscalar interaction, the only operator in Hé is

- l;-E?ié L(By.), in which a gradient appears on the lepton covariant.
5

2
If the contribution of this interaction operator is neglected, then there
is no contribution from the pseudoscalar interaction. In the conventional
treatment of the pseudoscalar interaction, the lepton covariant L(B75)
is considered as a constant, i.e., independent of the parameters de-
scribing the nucleon. In the nonrelativistic 1limit, the contribution
of the conventional treatment of the pseudoscalar interaction vanishes.
Thus, in the nonrelativistic limit, whereas very small correction terms
appear to the conventional treatment of the vector and axial vector ihter-
actions, completely different contributions of the pseudoscalar interaction
arise in the two treatments. Hence, these considerations point out why
the conventional treatment of the pseudoscalar interaction is wrong.9
Therefore, to study the existence and the contribution of the pseudoscalar

interaction, the correct form of the interaction operator :Zﬁ SL-S’L(B75)

must be employed. In this work, this has been done.

IV. NOTATION AND REPRESENTATION

9M. Deutsch and O. Kofoed-Hénsen, Experimental Nuclear Physics
III (John Wiley and Sons, Inc. New York, 1959) p. 51b.
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A. Representation of Dirac Equation

The rationalized reletivistic units are used“h = ¢ = m, = 1

(me - mass of an electron). The Dirac equation for a B~ particle in a

central field Vc is

(- ap-B«n-V)Y —-——y- (2.17)
Ot
0o 2 0
d-|_ 6—> ( ) (2.188)
g 0

1l 0
In (2.18a); 1 = < >

The commutation relations are

o8 + Ba, =0 (2.19a)
Q oy + Q0 = 2 513 (2.19b)
-0z 1
Vc = for the Coulomb field: a"'TET the fine structure constant .

Z Z the number of protons in the daughter nucleus. The solution of (2.17),

for stationary states, can be c¢btained by separating the equation in

polar co-ordinateslo’ll

10M. E. Rose, Elementary Theory of Angular Momentum (John Wiley
and Sons, Inc., New York, 1957) p. 152.

Ly, E. Rose, Phys. Rev. 51, 484 (1937).
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AA
~ ~in, () Xy
qJ = (2.20a)
n e
g, (r) X,
where
jo= Pa -3
¢ = if X>0 (2.200)
£ =-(n +1) if %<0
AN _/r 'r
KJ = ZC(Z%J; M-'T,'Y) Yeu X_é_ (2.200)
1
¥,""" 1is a spherical harmonic. X3 - ( | and )( =(3 )

*
c(¢ 13; M-T,7) is a Clebsch-Gordon coefficient

C(é%-jiﬂk"\(,q):—-_‘ (£ %J:Mle %,M—'T,’T).

Also in the representation (2.20a).
AN A
P X = 3(31) Xy

_1':2 X = en (Fn +1) X‘)t

Rl Y (2.21)
J, 7(“= w Xow
K Y288 L) ¥, = P

We follow the conventions and notation of the Clebsch-Gordon co-
efficients of M. E. Rose, Elementary Theory of Angular Momentum (John
Wiley and Sons, Inc., New York, 1957).
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£, (r) and g, (r) obey the following coupled equations

d n -1
&= b= 1f - (W-l-Vc)g” (2.22a)
a 1

T og. = (W-v ), - EH g (2.220)
dr c r

In this work, we take

v, = - %—Z 5 r > R (nuclear radius)
2
oz r
Vc=-'2_§(5';2'>’ r<R

The computation of f, and g, , which are required for the analysis
of B spectrum and longitudinal polarization, was done on the ORACLE.

f, and g, are real.

For the Coulomb field Vc = - %Z‘_ and the normalization correspond-

ing to one particle in a sphere of radius R, f and g are given by

] as W2 (opr)” &2 TGy + 1y) |
2(wr)Z (27 + 1)

g)l

- ~ipr+im, _
x% e (y+iy) F(y+1l+iy, 27+1, 2ipr) + complex con,jugate:']

(2.22¢)
o) L
W= (p° + 1) (2.23a)
_ OZW
yE 7 (2.23b)
1
7, = ( - of7f)° (2.23c)
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P - i0mfp (2.234)

y + i0ZW/p

F(a, b, x) (2.23e)

U'|W
~
f\)le
+

X + a+ 1
b+ 1

i

=

+
ol

1
For the neutrino Vc = 0, we represent the radial functions of the

*
neutrino as F, and G,

F Sy a J@(_x ) (ar) (2.2ha)

G

X q Jg(x ) (ar) (2.24%)

q is the momentum of the neutrino and S, represents the sign of x .

The spherical Bessel function j, (x) = lg; Jé.-l-é— (x)

b 0= ey, 2 (on g S
L\X)= T =
2t+L)ir T, (2n!!)(22 +2n+l)! !
For x << 1;
¢ , .
P
Jy (x) e B (2.25)
B. Irreducible Tensors and The Wigner-Eckart Theorem
-—
First we describe the spherical representation of a vector V.
The three components V_ (for m = 1, 0, -1) are
V. = - = (V. + iVv.) (2.26a)
1 b4 y

2

%

We tpke theDirac wavefunction for the neutrino in our calculations
and we discuss the relation to the two-component neutrino in Section C of
Chapter III.
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v, =V, (2.26p)
V. =2 (Vv -1v) (2.26¢c)
-1 5 x ¥y : '

The advantage of the spherical representation is that Vm transforms under g
three-dimensional rotation as the three components of the spherical
harmonic of order 1 or as an irreducible tensor of rank 1.

Also

AB =D (-)° A_B_ (2.264)

An irreducible tensor operator of rank L is defined as a set of (2L+1)

functions Tg, (M=-1L, -L+1, ..., L) which transform under the

*
(2L + 1)-dimensional representation of the rotation group

-1 L M!
RE T2 my () T (2.27)

Thus an operator is an irreducible tensor of rank L, if it transforms
like the spherical harmonic of order L.
The most important advantage that accrues from the introduction
of these irreducible tensors is that one can make use of the Wigner-Eckart
theorem, which is:
(3t | T | gm) = C(3Ld smMm ) (N Ty |1 9) (2.28)
The quantity (J'l| T | J) is called the reduced matrix element of the tensor

operator Tg and it is independent of M, m and m', as the notation implies.

*
M. E. Rose, Reference 10, p. 76-106.
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The conservation of angular momentum is contained in the Clebsch-Gordon
coefficient C(JLj',mMm'), i.e., |J - L| £ J'< (J + L) in steps of
unity. Generally this fact is expressed as A (JLJj') and this notation
will be frequently used throughout this work.

Throughout, the rationalized relativistic units ¢h = m,=c = 1)

are used. In the following chapters, M represents the nucleon mass
C 1)
(~1836) in units of the electron mass, %. =2 ang A= 22,
MCy fe2
We introduce also the following notation:

(1) ¢ - éx and ¢ = (__ for the electron.

(2) £, =¢(

and 7»» ={ for the neutrino.
1%

%, =3
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CHAPTER III
FORMULATION OF THE PROBLEM

In Section I, the first order time-dependent perturbation theory
is outlined and the probability amplitude of the electron, due to B~
interaction, is given at large distences from the decaying nucleon.
This asymptotic form of the probability amplitude (outgoing wave) is
used in the calculations of the B longitudinal polarization end B spectrum

in 0 — O (yes) transitions, (Section II).
I. FIRST ORDER TIME-DEPENDENT PERTURBATION THEORY

We follow Rose, Biedenharn and Arfkenl and use’h = c =m_ = 1.

e
- * i
For the time-dependent perturbation Hle ikt + Hl elkt, the wave equation
is
-ikt * ikt - DY (F,t)
= ] ——a2r .
(Ho +H e +H e YY (r,t) = 1 S (3.1a)

Ho - is the unperturbed hamiltonian.

Introduce the Fourier transform of P (F, t) as

V@@, s &= JY(E‘, t) eV at (3.28)
- et

then

1M, E. Rose, L. C. Biedenharn and G. B. Arfken, FPhys. Rev. 85, 5
(1952).
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Y (#,t) = J‘f(r,w) e W aw (3.2b)
-0
) o 1 iWt
Multiplying (3.1a) with 5= € and integrating over t,
) o o
%; J‘Hoeiw'b Y(F,t)at + %; fH 1(W-k)t W (F,t)at + 5= J’ Heleei(m-k)t Y (F,t)dt
-0 -0 -
= )
i D > iWt
= -é-; J[—b——t\lp(r,t)‘]e dt (B'lb)
-0
Using (3.2) and
fBE{}(th) We gy L B f%r £) ol
(3.1b) becomes
B Y @,w) + Hy Y (z,w-k) + Hl*\i’(f-‘,mk) =W Y(F,W) (3.1c)

W i1s the final state energy. Energy conservation dictates that
either the second or the third term in (3.1c) contributes to any transi-
tion caused by the perturbation. Therefore considering the second term
as contributing, (3.1c) becomes

(H, -0 Y @W) = - 8 V(@ k) (3.14)

(3.14) is an exact equation., In the first approximation,
-
VY (Z, wx) = Y, (=, W)

where the initial energy of the system Wi =W - k. yfi is the wave
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function describing the initial system, before the perturbation is "switched"

on.
(B, - WY (F W) = - B Y, (& W) (3.38)
Tor an electron in a Coulomb field Vc = - :-—Z
@p+8 -V, + WY, W =8 Y W) (3.3b)

*
we have taken

H0=-a'p-B+Vc

The equation (3.3b) can be solved by finding the Green function o(r, T')

@5 +8 -V, +WGF 1) = OF - (5.42)

1is a 4 x 4 unit matrix. Then

Y, W) = jdi”' 6(F,21) B (&) Y, (W) (3.3¢)
*% 2
Tt has been shown, in detail, ’ that
‘———M’-) M—* -
G(r,r') = - n i 2 @ (r) (J) (r') forr yr! (3.40)
Y. i
2

where

*
For notation, see Chapter II, Section IV, of this dissertation.

*%
Rose et al., loc.cit.

2M. E. Rose, Relativistic Electron Theory (to be published by
John Wiley and Sons, New York), Section k.




S
I — N

?M - 115 7(-%
" = —_ A
€y ,X’M

r—

3,k

spherical wave
1
— N [W-l}z oipr+ S
r T -
W rooy P i

1
2 N
* TS Y

where

gx-:a—gllogzpr-arg r'(7+i%) +7). -1'[%-

1
[ 1—.1.}2 x“
EPM 1y ipr P -

r

1
[W+l 2 XM
w) A
and

" -if

A

4) b ’X-M
ps

g A

3
E. Greuling and M. L. Meeks, Phys. Rev. 82, 531 (1951).

fy, and g, are such that ?T represents asymptotically an outgoing
‘ p]

(3.k4e)

(3.5a)

(2.208)

For the radial current only, the outgoing wave contributes.

l"For the nonrelativistic case, H. A. Bethe, Ann. Physik 4, L43

(1930).
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> o2 217y X -iaZ/p
%, = (%% - (a2) ) ;e = -
y + 10ZW/p

Substituting (3.4b) in (3.3c)

P @i --nt (@S 0@ P nEn g6
W oom
P, E0 =-S5 PO EE | nE) |PED) 63

N oIp

Substituting (3.5a) in (3.34)
1
2
Wale ~M
(FIA,
1
X, 2, M
8 [ngJ /Yw

(3.3e)

AN
),

(& X
[y x

- = g
Dirsc hamiltonian - a+p - B, with eigenvelue W. This can be easily

The spinor t is an eigenfunction of the free particle

checked by taking B along_yr and using (A.2)
AN AA
o X% = X

In nuclesr B~ decay, & neutron transforms into a proton with the

emission of B~ and » (antineutrino).

n->p+e +v (3.6)
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The electron is in the Coulomb field of the daughter nucleus. According

to the Dirac "hole" theory, the creation of LU is equivalent to the
destruction of a neutrino in negative energy state. The nuclear B~ decay
problem (3.6), therefore, can be considered as one in which) in a negative
energy state (representing the initial state kf i) is absorbed by a
neutron, due to B interaction, making it a proton, and an electron appears

" -
in the final state (as @)( ). In (3.3e), therefore for nuclear B~ decay

A ~>
<@,&(r')|H1I\Jui(r')>_><\ff\}lﬁ’\\!i> (3.7)
EP P and EPi represent the nuclear final and initial states respectively.

Substituting (3.7) in (3.3e),

wW-1 2 MA

S 1 Glpr i8S, LTJ /X,_)gr)

Lfjg(r,W) = - 1% = Zie <kff \HB" \:lJi> N
L 2 AA

- (2] X )

(3.8a)
After a brief discussion of the polarization operators, this
asymptotic form of \f (f?,W) is used, in the next section, for calculating

the B longitudinal polarization and spectrum in O - O (yes) transitions.
IT. BETA LONGITUDINAL POLARIZATION IN NUCLEAR BETA DECAY

The breakdown of parity and charge conjugation symmetry laws are
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5

now well established in nuclear beta decay. This implies” the existence

of the pseudoscalar quantities6’7’8 in the processes of nuclear P decay.

One such pseudoscalar quantity is the longitudinal polarization (§T§) of
9,10

B particles from unoriented nuclei.

A. Polarization Operator for Electrons

The covariant description of the spin of an electron has been given

by Michel and Wightman'l end also by Tolhoek.'Z
An operator Q(n) = 1 75T B is considered for the description

of the spin. (qjq(n)q/) transforms like a pseudoscalar quantity. n,, is

5C. S. Wu, E, Ambler, R. Hayward, D. D. Hoppes and R. P. Hudson, _
Phys. Rev. 105, 1413 (1957go In this experiment, the angular symetry“of B
particles from oriented Co°" mucleus (5% -» 4+) was observed. (¢ J ) ‘P
is a pseudoscalar guantity because <:?> - the average value of nucleer
spin is an axial vector and §~- the momentum is a polar vector. The ex-
perimental observetion of <(J) D proved the nonconservation of parity

in nuclear P decay.
6p. D. Lee and C. N. Yeng, Phys. Rev. 10k, 254 (1956).

7T. D. Lee, Conservation Laws in Weak Interactions (Unpublished).
Lecture Notes at Harvard University, March 1957.

8T. D. Lee and C. N. Yang, Elementary Particles and Weak Inter-
sctions (Brookhaven National Laboratory 1957) B.N.L. kL3 (T-91).

93. D. Jackson, The Physics of Elementary Particles (Princeton
University Press, New Jersey, 1950) p. 91

103 D. Jackson, S. B. Treiman, and H. W. Wyld, Jr., Phys. Rev.
106, 517 (1957).

11 Michel and A. S. Wightman, Phys. Rev. 98, 1190 (1955). Also
see C. Bouchiet and L. Michel, Nuclear Physics 5, ¥16 (1958).

12y A, Tolhoek, Revs. Mod. Phys. 28, 277 (1956).
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a Y-vector and is (ﬁ, 0) in the rest system of the electron. One defines

another 4-vector P which is (0O, i) in the rest system of the electronm.
Clearly in the rest frame of the electron Dy By = 0. Since it

is a scalar product of two 4-vectors, therefore n,p, = O in any Lorentz

reference frame, therefore only three parameters are required.

-
Using 7, = - iB&; 3 7,=-Pf and 70 = &

n) = 1 77um, =BT - 17pm, (3.9)

In the rest frame of the electron, f - - 1 and n), = 0

Q(n) — s n

Thus Q(n) gives the polarization operator in the rest system of the
electron, if we take n along the spin direction. However, for the pur-

* -
pose of calculations Rose introduced the polarization operator & as
—_—
8 = %-/e\ /é -a%-g /\e -ﬁ-%-,e\

151 2 %2 (3.10a)

°
373

wherelél, e, and 33 form an orthogonal right-handed set of unit vectors

2)
and Ql; @ (unit vector in the direction of momentum). First we show that
—%

& ; indeed, reduces to the correct polarization operator in the rest

frame of the electron and then we list its important properties.

—
() can be written as

*
M. E. Rose, Reference 2, Sections 19 and 20. We usqhﬁye repre-
sentation in which Dirac hamiltonian for free particle is - ¢:p-p and

W . ( v )Which in the nonrelativistic limit goes to ( 8) . The results,

in the representation used in this book (y ='&55+B), can be converted
in our representation by changing d —» - & and B> -B.
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1€ 2 % 3 %3
or
-2 - A A = A A -~ A A
O = (i [y .
B B elel+B e2e2+B¢“e3e5
Substituting for Ba‘--’ée 32 +BS &5 85 in (3.10a),
- -~
& - Ce; ’él -B& + B&‘-.’él (5 (3.100)
In the rest system g — - 1,
= >
e —> o (3.10¢)

—_
The following are listed some useful rela.‘t:ionr:'.13 involving ® :
-
(1) For positive energy states; (1757/% n, - & 4) acts as a null
operator and as such they are equivalent.

—-b
(2) Each component of © on the unit vectors Iél, %2 and é‘3 commutes with

the hamiltonian of the free particle.

- iy

<é~8J,-a-p-B)=o ;5 3=1,2,3

(3) (© 'ek’ G g ) =21 €ronOn (k, ¢ and m cyclic permutation)
() (5-8)% -1

(5) The polarization "vector" is given bylh

N S (Y, B o)
T ST, )

(3.12)

Lg. 1. Good, Jr. and M. E. Rose, Nuovo Cimento 1k, 872 (1959).

thee for the application to the polarization of conversion electrons
following beta decay, R. L. Becker and M. E. Rose, Nuovo Cimento 13, 1182

(1959).
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where é; implies summation over all the observables not observed. For
-y

longitudinal polarization, we need only consider < ?) For Woo ’ $ is

A
in the same direction r.

B. Beta Longitudinal Polarization in O —> O (yes) Transitions

The longitudinal polarization (P, ) of B particles is given by

L, 8 Wo) D
V(e W) )

(3.12a)

where the unit vector T is in the direction of the momentum of the B particle.
The round brackets indicate the scalar product with respect to the spinor
indices only. The angular brackets in (3.12a) denote (1) the summation

over all observables ( 3, , A1, ) of the neutrino (not observed) and (2)

the average over the magnetic substates of the initial and final nuclear
states. In 0 = O (yes) beta transitions, M, = M_ = O, so the averaging

i f
is trivial and it gives unity. The differential energy B spectrum is

given by % r2<( % 5 k'),o )>
3 M
1 Jipr 18 (-E;@i] fX"‘(?)
q)oo = -1 x° = i e <\;|’}f|HB-|\P1> - (588.)
‘ 2] Xxd

-
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The vector intefaction does not contribute* to 0 —=> 0 (yes) transitions.
<L\)f \ HB-\ L]Ji> is worked out in (B.2.7) of Appendix B for the axial
vector and pseudoscalar interaction. We have used the conventional form
of the axial vector and the correct formulation of the pseudoscalar
15

interaction. For 0 = 0 (yes) transitions, (Appendix B, equation

(B.27))

{ Prl -l Vi)
-1 Lyl é/;u'M» (16,80 S NET

% L(_e(z‘é +1)]% cC 12;00) W(€ 15%;221)(¢, G, +g, F, )Jé’ F + (£, F, -8, G,L)iJ;SJ

c C
P P d 3 A
+ (1 ¥ X Sx B — ) = (£ F, + 846G, )js T 1}

(3.13a)

SM_ is the sign of # and M is the nucleon mass in units of the electron mass.

= A
é and g are Kronecker deltas. _(G'-r and g'y are re-
n,n, Ay = Ay p)
duced matrix elements and are independent of magnetic quantum numbers

and in the theory of nuclear B decay, are considered as parameters. Since

*This is an exact statement. In the nucleon space, _’ghe even operator
of the vector interaction 1is 1 and for the parity change, r must occur at
least once (or an odd number of times). But ?, being an irreducible tensor
of rank 1, cannot make a A (010). Similarly T - the odd operator of
the vector interaction cannot meke a A (0 1 0) and there is no combination
of 4 and T which can contribute to O >0 (yes) transition. Also this can
be seen from Tables I and II.

15, E. Rose and R. K. Osborn, Phys. Rev. 93, 1315 (1954). Also
see Chapter II.
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< L:\)f\ H,.| Kyi> depends on % ,m (of the electron) and %, , M, (of
the neutrino) quantum numbers, it is convenient, for calculations, to

defineJ (x, x,) as

<k:t)f| HB‘ILV1> = llr,; ('Y‘HZ”J(M ) S M ay (3.13b)

where

1 - 1 re
J(*: n, )= (iC, Sx . =5 Cy gu i ) [[6(24 +1)]2 ¢(€ 12 ;00)
PR L
w(l 135:€3)(5, Gy + g, F, ) |G T+ (£, F, - g, C) ijys ]

1
CP CP

d - A
+ (1 55 o, ° Se BH On, -y, ) 37 (F B + 8,0 Gy )Jc-r (3.13¢)

Substituting (3.13b) in (3.8a)

[E=) X

P

ﬂ%. ién ¢
L-‘Poo =-1 Her ;%e (-)M+ * éM,-#uJ("’: )

1 A

wille X (%)
|22 A

(3.8p)
s . 1.2
ubstituting (3.8b) in (3.12a) end cancelling the common factor = T, we

get for the B longitudinal polarization in 0 5 0 (yes) transitions

N
Ph =9 (3.12b)

where




o7

Z z i(S 'Su') /U" M= J'( )l"‘ ¢’

)(.)n))t MV/MM

X 3 (n', n,) j(x, x,) éM’ My%',-/&, (X:',)’:) (3.1kDb)

ron ' Mys s A

M
j(u,%y)éj(n, %, ) é ('7(M.,7(>4 ) (3.15Db)

AA e M' AL
@ ("X X 00

and the fact that AA' + j' 1s an integer.
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The differential energy spectrum N(W) is, then, given by

N = 2, W) (3-112)
MW= 25 p (3.11b)
Y x

The B longitudinal polarization (P, ) in 0— 0 (yes) transitionms,
is given by

N
Pn=ﬁ_

Thus we wish to calculate N and D as given in (3.14b) and (3.15b) respectively.
In the following pages, we show the details of these calculations and the
resulting expressions for N and D are given in (3.14f) and (3.15f) on pages
66 and 67 respectively.

These results are simplified by using the assumptions of time-
reversal invariance in the week (B decay) inmteraction and in the strong
(nuclear) interaction. N.and D are given on pages 83 and 84 respectively.

The formulas of the B longitudinal polarization and the B spectrum
in 0 50 (yes) beta transitions are, then, given on pages 89 and 90 re-
spectively; we assume the validity of the two-component theory of the

neutrino.
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and

Making use of P

SM.':" My’

' i( - 1) t 1 A%
N=-2H _S_ e O~ S (3 () SO, ) Ty, )

P vt
My?‘-n

Uy A, - My
X E (X o X . )
My
Changing the summation letter M, to AA

1( Sw - ' 1 1
N=-gy- e( SX)(')J-J-FK-I-Q 3*( ')(') ’MV)J(W: xy)
P My n 't
D ’X:,L, 1) (3.1kc)
AA
Similarly
i( Su - (S r) ’ 1
p- & > e I G e, ) T (o )
n,o Mo N
N Z ( 'X:,,"Xr) (3.15¢)

In (A.7) of Appendix A:

~ 1 t ' % ,
(X5, X = 2 (- [LAMGLREmIE |7 o(gens00)
A

X C(3 3=, p) TH(T) WSS L1 L 5HE)
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Substituting for ( 'X o ')( ) in (3.1ke), we get

5 - )u t ! ¥ t
E 2 a 5 (-)3d+ e+ TR, w0 )T, %)

>( sH s n'

¥ C( £ 4 \;00) [(2 f;;i()%fl;u)(z‘ﬁl)(z‘d '+1)J’5 ()

— 1
LW 0T 2 (R (-, ) (3.1k4)
AN
. Y
Now noting that C(J'jO;-ar,m) = (.)J i L23+l:] .

E (-)MJ’% C(I'IMs-mym) = i (-)%'J' [_2J+l]§ C(§'305~pa ) CLI'IN; -1, 1)
AN

AN

Z(-)M"% (3 s-mom) = (273 (23407 S, (3.168)

Substituting the above in (3.14d), and summing over A\

— Z_ 1(Su - Sy ()JJ+1+€ (-)2d" (2J+l)%<ﬂ)

P 'Xy; N, )t

N]b-

[(2 241)(2 €;+l)(2j+l)(23'+1)_f c(,{fZO;OO) g*( s, H, ) J (n s Ny )

X W(J'3 £' 2 ;0%)

Using (A.1b) and (A.8f), we get
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c(¢'€0s00) = S _. ., ¢(Z 7 0;00)

z - 3
c(Lreo;00) = & . (=) [2€+1]

1.j-¢
(-2 gldi Se,7

w(3ry ¢'2;0%) =

[(23+1)(2€ +1))?
Substituting the above relations and simplifying, we obtain
i( 51 'é_ ) * ~
N=§¥r5 e * (23+1)J(~,.:=-n,>«y)J(n,M,)
XP JM’
or
1(Sx-S_..)
N = -2-% e x 7S (23+41) J*(-x, W, )3(7'-, Ay ) (3.1ke)
M,

M AA
Now substituting ( fxx,, x)t ) in (3.15¢)

20 Z— ei( gn' 811) (_)J‘J""Q"'e' J*( W Ay ) J('}t, Mp)

D= —
XVJXJ)‘L'

1
« o 21 rs00) [ {ELUEL (2 (B v2(8) w(yg 74 M)
A

hu(2A+l)

¢ 2 () (3 s mom)
AN

Using

> (4 o3t psomy o) = (7' SMO [23+2)° (3.16a)
An
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and summing over A, we get

1(5 '
D=§H 2 " o) ()‘”‘“e+£ by M QUCRIPYID ty [ S

7‘,)7&; v

i
2

4 C( 41 20;500) L(e e+1)(21ﬁ(-+1)(2;1+1)(23:+1J?(%E) W(3'3 210 ;0%)

X (-)’21“3' [_23+1]% (3.154)

Using in (3.154)

c( ¢'¢0;00) = 5)0 ! c(€4€ 0;00) = (-)é 5%’ ! [2e+1j%

(-3~ ¢

W33 el s 0—)—5'jj S £,
[(23+1)(2£+1J

For = n'; J = J'; and sumning over ~(' gives

ol

g g -
> F EF 0 F e, ) T e, 160)

7‘,:’1= n'

(2£+i3)[(2j+l) [(2"]-!-1)(2 €+l) ’“’%— Lee_l_l:)'él— [2J+]J%

A Z (23+1) g*(Vs; Ay, )J(X:Mu) (3.15e)

Mp)}t

PII =

o=

(3.12b)

where
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N and D are given in (3.1lke) and (3.15e) respectively, Now we define

Ji00 =25 Fewn 1T 60w (3.178)
R

:Jl(x) - 2 (-1 CxS e e, +9,0C" Syt o, )[{_6(2“1)]% c( £17 ;00)

Ry

X W(L2 13%32%)(f-x(}-x+g-x F_. ) S%-'f-)* + (f_x F . & 0., )(ij75)*J

*

*
C C. )
+ (' i '2%‘5 IRV +Sn§'§— AN, ) %&: (f'ﬁF"'&*.g-)( G-n )( Sc_ -?')* }I
1 - 1 -
X i(i Cp O . ~5x Cp O >y )[(_6(22 +1)])2 c(¢ 12 ;00)
» Ay »

TS0 D (0 G 185 ) [ 4 (50T -8 60 [75) ]

+ (1 ;E éx,n, Sx ;é éu,-u, )%r— (£, By +8, G ) SE\‘;‘) }
(3.170)

We have for the radial functions of the neutrino,
P = - Sy @dp (@) = -8y Oy (3.188)
G_,= 9p (ar) = Sy F,, : (3.180)

Using (3.18a) and (3.18b), we get

£ G_, *+8&_, F_, = S,,_(f_’t F, -8_, Ox ) (3.18¢)
Ty mBy Gy = S, (£ Gy + 85 B ) (3.184)



f_lF_x +8_,0_, = Sy (- £, G, + €_, Fue ) (;.18e)
Also from (A.lc) and (A.8d)
. 7o
c(€14 ;00) = - (g—g%) c(€1¢ ;00) (3.16b)
WL 1355 73) = - w(€ 1345 €3) (3.16c)

Since ¢ +1€ is odd integer.

Substituting (3.18) and (3.16b) and (3.16c) in (3.17b), we get

* * - 1
Jl(x) =Z {Sn(-i Cy g_t,xy +8, Cp gxmy )[- [_6(2€+1[|’=‘
Ny

xC(€ 18 ;00) W(Z13%;23)(-£ - F, +8_ )(jc: 2y G +8_, FM )(if75)j
*
C o a
+ 8y (-1 E{I_g-xpuy Sn 25{ Sx w, ) aF (£, 0. +8_, Fx ) 56';)* 3

X 3 (i cAgn,Mv A S. o % )[[_6(2@1[) o(Z142;00) w(€1sk;23)

(2.6, +8, B ) [32)+ (g, 7, -ngK)(if75)J

c ca .
+ (iue-Pﬁgx,xy - s, 5% V. )%r—(g F, +8g, G, ) gtr-?») }
where
o) =207 ) ) (5.178)

Carrying out the multiplication, we get
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Jl(n) = i(CZCA+CACA*) i- 6(27+1) LC(Z 1( ;00) W(Zl,j%-; Q%)]Q |

2 Al2
X (-f_an +8_, Gy My G + 8, Fy ) \ge-r|

- (f_MG.,L +8_, Fu M(fw Fy - 8, Gy ) \S75\2

)‘_Fﬂ. + g-nG)( )

- £6(2 E+1)J% c(é-ll ;00) W(zl,j—é-; 2%)(-1‘_

X (£ F - 8,6, ) jé" '?)*(ij75)

- 1 _ -
- 6(22+1) 2 c(L 12 300) Wl 1345 83)(5 G, + &, F, )

X (6, +8_ F) (1 fr)* ([3:9) j

. * * \a d 212
¥ jf?_ (Cpcf>+cf>cp) za-r- ('f_x G, +8_, Fu ) dr (£, Fy + 8, Gu) lS‘é‘-rl }

- i - Y
Ly Copeyey) | 6T ) * o(T12500) R 13k €1, B, + e, )

P AP
d = Al2
ir (£, F, +8, Gy )3 |.§€ -rl

- B (0,082} Cp) i(f_nan s E_ B ) T (T By + 8,0, ) J RICHERY
i * *, Cpv = i = = (
+ 5% (CAC1'> +C;Cp) i[_é(eeu)]? c(? 1€;00) w(l133;¢ %)
> A |2
WG +E_ B, ) \S@-% }

d
XK (fy Gy + 8, Fp ) = (-f_

+ %—ﬁ (CACI"*"'CAC;) i(& Fa - €n Gx. ) g_.r" (-f-nGn +g-7t P X S&?‘)* (1575).}

(3.17¢)



We had

N = é':% Z ei(é" “oun) (23+1) Jl(») (3.14e)
where n = -1, 1, -2, 2 . .
and
= %l -3

We introduce

Jy )z 1A 00) + A\ () (5.198)

Then we get

1S, S )
N = — 2 e =7 (23+1) Li/\l(x)+/\2(n)] (3.14f)

2np
"W
where from (3.17c), rearranging some terms and introducing the notationj

Re and Im as meaning the real and the imaginary parts, we have

N\ (n)s - (2Re cAcA*)ie(e —2_+;) LC(Elﬁ ;00) w(?lj%;l—é-)f (£ F, +8_, Gy )
X (£, Gp + &¢ B ) \ SG- .’1‘~|2 + (£, 0, 48 Fo NI, E, -8, Gy ), (75|2
N Cen

+ [_6(2Z+1)]% c(L 10 ;00) W(Z 135;¢ -;—)[(-f_ F +g : G, )

A
D AN
X (£, Fop -8, Gy )(j@'or (1575) + (T, Gy +8, Fo NE_, G 48_ Ty )

x Sé-?)(iij)*J}+
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2
+ fM-é (Re CPCI':*) i%.r— (-fx Gy +8_, Fy ) %}' (£ Fy +8y Gu ) l F}' j

| . }
- 5% [Re (C\Ch +CiCp)] { [6(22+1)]2 c(Z 1€ ;00) W(2 1333 € 3)

' a a
x[(-f_)"F"_ +e_ G, ); = (£, B, +8, G, )-(£,, G, +8, F, ) = (-f_nG,,_+g_nFn ﬂ

-y 2 d - oA *
X \yS‘ -?‘I + (f_)tG“ +g_, F, ) i (f'71 F, +g, G, ) |6.r (1j75)

- (£, Py -8, Gy ) T (-£_ G 48  F, )(j’e‘ &) (1575)} (3.190)
- 1 - -
Nyne oL [z (c,cp™vescp) ] i (6(2L+1)]% c(€ 1£;00) W(£ 1335 21)
x (-f F +g_)LGM) g'—r- (£, F, +g, G, (£, G, +8,F, ) %}- ('f-n G +g_, F, )

- M

x\gglx\'lz + (f_nGn+g F ) g—r- (fx F, +8, G, )(j@ -'x\')(i S75)*

—,n
b (5,7, -8, 60) 52 (£ Gre, B ([ D (o) 1} (3.19¢)
-We had
D= 'é% 2(2J+1) ZJ*(M, ", )J(n, 7, ) (3.15€)
We define ” *

Jp() = > Fn, n, ) (s %) ; (3.208)
", ‘
then, we get

D=7 (es) Jy(m) (3.15¢)
n



7
IS

JE(K) = Z{('i CX éx,ny -5, CA*S)t,-x, )

Moy

* [@(2 Z+1)]? o(Z 14 300) W T133:€3) (5, 0,48, 7, ) (3 D)

+ (f-,( Fn ’gnG)«,)(iJ'fS)* J

a5 ALK¥

1 ¥ a _
+ 5y (-1 CPSx,np -5, C} gx,-)\p ) 55 (5 Fo +8, G, ) j&°T

X (i C, Sn W Sn CAdn . )[[6(22 +1)_7% C(£ 10;00) W(& 153;2 %)
Ry Y
Ko v, B JED) 3+ (5,7, 8, 000 7))

* %Td (1 Cp Sx,np -5 Cp S”:—M» ) %; (£, F, +g, 6,)( J§ T) § (3.200)
There are two points to be noticed in the above equation.

(1) There will be no terms containing the primed and the unprimed coupling
constants because of Kronecker deltas. This leads to a well known result
that the measurement of the B spectrum does not show the effects of

parity breakdown.

(2) :] 2( A) is a positive definite quantity, as the intensity term

should be

J.00
= (iCA\2 + [cA|2) 6(2?7.+1)[c([1( 500) W(E 153 Q—;-)Jz (£, G, +8y T )z\gg_./} |2

+ (£, Fy -g, Oy )2 )57512 + [6(2?+1)]% c(f 1€ ;00) W(Z13%; 43)

x (£, 6, +8, B)(5, F e, 0,0 [([3 D (0 + (837 @[r)]h -
n 5 >

S
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+ o (10 + 1615 i[%r— (5, % +e, 0 )% | B3P ]

+ %\71 [Re (CAC;+CA01'>*?] i [6(2 Q'+1)J% C(Zlﬁ 500) W(le—é—; Z%)(ﬂ't G, 48, Ty )

X %}— (£, F. 48, Gy ) \ g% '}'\2 }

s L [(cAc;cAcl;*)( 2N 1) + (Eeproyep((8 N (1fr0)]

d
X { (£5 Fyy -8, G, ) = (f)l F,, +g,, Gy ) } (3.20c)
Now we assume tlet time-reversal invariance is valid in nuclear B

deceLyl5 and in strong interactions. If time reversal invariance holds

in strong interactions then (1) all the conbination of nuclear matrix

elements (in the cross terms) are real.l6’ 17

15M. A. Clark, J. M. Robson, and R. Nethan, Phys. Rev. Letters 1,
0Q E]_;’9582_; The measurement involved the detection of a term like
J (P, x?, )
< Y where for the vector and axial vector interactions in the
* *
1 1

2 Im (CVCA + CyCh ) .

2 2 2 —5.3 Pe 81
. 1C =+ |Cy|” + 3(1C,1 © + IC4l )_)
p,, - the momenta of the electron and antineutrino respectively and J being
the spin direction of the ;l_leutrons. Under time reversal this quantity
changes sign. D = - 0,02 = 0.28, by experiment.

decay of polarized neutron D = -

16, 1. Longmire and A. M, L. Messiah, Phys. Rev. 83, 46k (1951).

17For special case, see L. C. Biedenharn and M. E. Rose, Revs.
Mod. Phys. 25, 729 (1953).



* %
Therefore, (iJ75)( fé" ‘)" is real and for weak interactions(p
%
decay) (2) the coupling constants are real. Making use of the sbove,

A (71.) in (3.16c) vanishes because of the factor Im (C C' + C CP)

From (3.19b), we get
N\, O0)
=-2¢,C {6(2( +1) [c(t 12 300) w( Q:Lj—l-o? 1)_'}2 Wt G )

= A2 2
x (£, Gr +8,, Fyy )' SG °r| * (f-x G +8_\ Fu e Fy -8, ) I 575\

+ L6(22+1)]% (@ 12 ;00) W(2 133 %—)[( -f MI*;t +8_y
X (£, B, -8, G, ) + (£, 6, +g F, )N ¢, )(jc ) (1 f75)

M2 CpCa t e (£, Gy 48_ B ) &= (T, Py 48, Cy) ‘_(?s T |? ]]
- 1 - -
- 3 (c,op0ic,) ) [6(28 41))% o218 500) W( T 15k 3)
x[(-f-xe +e_ Gn) T (B P, +8, 0y ) - (£, 6,48, Fy)

d D A2
X g (-f_ G, +8_ F, )J ,‘(6 rl + [(f_)LGn%-ggK F, )

d d
g (£, 7, +€,,Gy ) - (£, F, -g G, ) T (-, Gy +8_, Ty )

& 0% afr } (5.19)

* S ALK
(iS'ys)( S-G‘ ) is real,as proved in Appendix C.

*%
T. D. Lee and C. N. Yang, Reference 8, p. 23. Also see Appendix
C for proof.
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And from (3.20c), we get, using these assumptions,

Jz(x)
= (c5sc)] ){6(2@&) [o(Z 12 ;00) W(Z 1333 €3)]7 (£, G 48, Ty )° \f& 22

(1, F )2 IS75| +2) 6(2¢ +1)]2 c(Z 12 ;00) W(2 1535 ¢ %)

"By Ox
X (£ Gy +8,, Fy N T -gKGK)(_\'g 3y (1575) }
IWP (C + C} )Idr (£, Fu +8, Gy )] U& }

+ 'lM (C,Co¥CiCE) {[6(2?)1)]? c(f 1¢;500) W(€ 135 €3)(£, G, +8, Fy )

d - 42
X a?(fx Fu "'gnG)t)\jG 'rl

+ (£, F, -8,,G, ) g—r- (£, F, +8, Gy )(fé’ )" (1_{75)?] (3.20d)
We have, J = IMl -3 or 2+ 1 =21l
Pu "’%
where
1(5 -
N = -2-3’1‘-5 i %S 2 1n) 1 1) (3.14F)
n
D - o S 2w o ,01) (3.15¢)
N
/\l(n) and 32( are given in (3.19d) and (3.204)

=1, 1, 2,2, ..
We introduce

I

il
-



T2

Then
1(5,-8.,) 18 - &)
N.—.I—%Zk ke ¥ K iAl()tzk)-i-ke k 1/ (. =-k)
1(S$.-5 ) 48 ,-8 )
N = %’5 % ik Le K S Al(x=k) +e k 5'k/\ e =-k)J

Similarly, we obtain

D= :fiﬁ Zk k [Je(vt:k) +J2(x =-k)]

For/\l()t= - k), we replace, in (3.19d), % by - k

we see that

(3.1kg)

(3.15g)

(2£41)% c(€17 ;00) W(L133:T 3) = (22 +1) C(F 1€ 500) W( T 153;2 1)

For the neutrino radial functions,we have

F_, = - 5y G,

G_‘)L = S Fy
where S, is the sign of % .

It is very easy to see, by substituting the sbove that

Aot =-k) = -A (o =)

Substituting (3.19e) in (3.1kg), we get

N =" Z ik [ei(é k™ Ou) - e-i(g k-g'k)_') 74\ 1(t=X)

npk

(3.18a)

(3.180)

(3.18¢c)

(3.19e)




75
N- - %Zk kstn(§, - §_y A (% = k) (3.197)

N\ l(x,) is given in (3.194).
Now we simplify the expression for/\ll(>t) for X =k
(-2 e O ) (O Gty )

2 2
= - f_gF + g_, 50k - (fkf_k-gkg_k)Fka (3.21a)

(f_,Gyt8 1 Fi ) (£ -8, Cy)

Fe £ G2

KBl ~ Bl * (O &8 )i (3.21b)

= f
(-f_kafg_ka)(kok-ngk) + (kak+ngk)(f_ka+g_ka)

2 2
= - (fkf_k-gkg_k)Fk + (fkf_k-gkg_k)Gk + 2(fkg_k+gkf_k)Fka (3.21c)
Now

a_ _ ' '
5 (O F 480y ) = P+ F 4 GGy

The prime in the above equations means differentiation with respect to
r. To evaluate this, we use the coupled equationsl8 where V is the
potential energy.

k-1
¥ o — - -y
=0 Ty (W-v 1)gk (3.22a)

By, g. Rose, Elementary Theory of Angular Momentum, (John Wiley
and Sons, New York 1957) p. 155. Also see M. E. Rose, reference 2,
Section 26.




Th
g = (W-vl)r, - g (3.22)

For the neutrino: q = the momentum of the neutrino (in m.c units)

k-1
L it -
Fl = == F - q G (3.22¢)
k+l
L. - —
Gl = qFy = Gy (3.224)
We define
u=W-V-gq (3.22e)

Using (3.22), and rearranging térms,

d d '
& (O F e l) & (£ G +e  F)

2
k-1 (k-1) 2 2
2[ T { (T f 88 ) + (fkf-k"'gkg-k)} *+ b 2 T8 - (u -l)f-kgk:) Tk

2
k+l (k+1) 2 2
2[ T {u(fkf-k-gkg-k) + (0 F @ ) §- b 2 £ _&y-(u -l)fkg-k]Gk

-+

. 2
(k°-1) 2
+ [h 2 (fkf_k-gkg_k) + (u -l)(fkf_k-gkg_k) + 2u(fkf_k+gkg_k)

sy (E1) g y {ed)

- u f_kgk] F\ Gy (3.214)
Similarly
d a
(-fFe b)) & (5 F e 6) - (£G4 F) 5= (-f_ G +8_F,)

(k-1) 2 (k+1) .-
= - 2[f_kgk + 2 = (fkf-k"'gkg-k)]Fk + 2 [fkg-k - (fkf_k+gkg_k)JGk

-2 [ u(fkf_k+gkg_k) + (fkf_k-gkg_k)] F\ Gy (3.21e)




(208 F) & (0 F486) - (6F-66) &

2
=[‘ ulfy 8 ) - (fkf-k'gkg-k) ]Fk + Lu(fkf-k"'gkg-k)

2 L )
+ (fkf_k-gkg_k);}Gk + [- = (fkf_k+gkg_k) + 2 fkg-k+2f-kgk} F G

>

(3.21f)

In nuclear B decay, the lepton functions are evaluated at the nuclear

redius. In this work, we shall denote the radius of the nucleus as R.

In the relativistic units, the nuclear radius is given by

T_

me

R = 0.1504\1/5 (
1
where (o QE_'?

*
We define the following:

2 -1 ,2-2k
A =@F) TR fig, Sin(S - 6 )

B, ;= (1>2Fo)'l r-2k T k8 sin(& - S_x)
Ck1= (PaFo) TR (e ) (S - )
D, = (BF) TR (o0 gE ) SIn(S - &)

Fo is the Fermi function

2(7-1) oo l [Ty, + s0mi/o) |P

F_= 4 (2pR)
° T [ (27,41)

[+ - ]

[}

*
See Appendix D for analytical expression up to order R.

(3.23a)

(3.23b)

(3.23c)

(3.234)

(3.23%e)



p—

e

Now we define
N )= A (x) (%)™ B2 sin(g -5 ) (3.2ka)

So that
- 2 (957 ) ZE k REE 2N (k) (3.19g)
p (o}
k

Substituting (3.21) in (3.19d4) and using (3.23), we get

2\ (x)
= - 2,0 %- 6(27 +1) [c(?1€ ;00) W(£€ 133;¢ %)]2

Y AR
x (B, , B°F- - A, Gi +D,_, KF,G,) l56 =y

k-1
+ (A Ty - By KO + Dy ) FRG) \575\
+ [6(26—+1)]% c(Z 14 ;00) W(l 133; 1) [- 2 RFi
+D,_, RGi + (A, + REB )T Gk] (56‘ 2" (1575)}
[2(k -1)(uwD, , + € 1)+ B(x-1)? R Ak_l

o |

- (u® -1)B, Re_J Fi + [2(k+1)(uDk_l +Cp )

- 4(k+1)%B, o + (u2-l)Ak_lJ G‘i + [h(ke-l)R"le_l

2 -1
+ (u -1)RDk_l + 2uRC, , + 4(k-1)R A qu

. h(k+l)RuBk_lijGk}l J% 22 -




7
— 1 _ _
- %ﬁ (CACI'>+CACP){2 [6(24+1))% c(€ 10 ;00) W( 21352 )

x[- (8%, , + (x-1)C, J)F2 + (A - (k)0 )G

- A2
- (uRC, ; + BD, , )F, Gy ] ”"_'r,

2 2
+ [- (uRCk_l + RDk_l)Fk + (u.RCk_l + RDk_l) Gy

+ (- kc ; + eazak_l + 2Ak_1)Fka] (f&" )" 1f75} (3.2lp)
where
u s W-V-q (3.22¢)
In (3.158)
D= %Z k[JQ(K-: k) + JQ(K = - k)]
k

JQ(X) is given in (3.204)

Now, as before, the following are to be evaluated at the nuclear radius.

2 2.2, 2.2
(£, Gy +8, Fy )7 = T3 Gy + & B + 26, 8y Fy Gy (3.25a)
2 2.2 . 2.2
(f, F, -8, Gy )" = £ F, + &, G, - 2%, g,F, G, (3.25b)

(fl G, +&8, Fy )(fn F, -8, G, )

2 2 2 2
= (1:;L -gx)Fn G, = T, 8y Gy + T 8y Fiy (3.25¢c)



[‘%IT (fa. F, +g,, Gy )}2
=§ [?—(:—:L)- f,, - (u-l)gX] Fo + [__(u"'l)f)t - _2_(__7_";"'_1_2 gn] Gﬂ}?

v 2
= Lh Q;él-)— 1_“,2L + (u-1 )egi - L -(Lt;-—l—)- (u-1)f, 8,] Fi

2 ‘
+ [(u+l)2fi + 1 "*2) ge - b SL;—l-)- (utl)f, gaGEK

r

2
+ 2[ 2 -—-———(";‘1) (usl el + 2 (—";—“i)- (u-1)gf - (b Q{—;H 108, € ) Be ©
r

(3.254)
(f)(, G, +8n F){ ) g:‘}' (fx Fn +g)( Gy; )
= [2 Q-L}:—l—)- Ty 8, - (u-l)g?1 J er
- 2 w+l) 2
+ L(u+l)f)L -2 K—r—— x g,(_] G,,
s A2 or g, 2 L) o 6, (3.25¢)
| .
(fy F, -8, G ) 3= (£ B +8, G )
—[ o {-1) c2 - (u-1)f Fe (ut+l ) 2(“1) e G
el e - [ s -2l 2]
+ [(u+l)f§ -4 :— Ty 8y + (u-l)g%] F, G, (3.25f).

Using (3.18a) and noting from (3.18b) and (3.18¢)
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and with the following definitionsl9
L, = (20°F ) 7h BB (22 4 &2 (3.26a)
o (2p° Fo I Sl C Si) (3.26b)
N, = (20fF )R (£e - i) (3.26¢)

2. y-1 _2-2k , 2 2
Gyq = (20F) R (gf - 7)) (3.26¢)
R, = (2077 )T R (28 4 fym) (5.26¢)

[ ot =100+ Dyt = )] (epr) ™ w22
- (c§+cf)is(ez+1) [c(7 1¢;00) (£ 1334 1)) [Mk_l RF-
+ L, 6 - 2n ) BRG] [Sé" 2P
2
[Lk_l 2 oM BG4 N RFka] 1575,
+ 2 L6(2€+1)]2 c(P1e; oo) w(? 15%;¢ ;)[ RF2

N R + (L ; - M ROIF,G (J ) (i 75)3I

195, Greuling, Phys. Rev. 61, 568 (1942); D. L. Pursey, Phil.
Mag. 42, 1193 (1951). Also see M. E. Rose and R. K. Osborn, reference 15,

eqpation 59.
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=5 (G 2ecs?) i[h(k )2 RPL L+ (PR - 2wq
" u(k-l)umk_l + h(k—l)Rk_l] Fo 4 [(u2+l)Lk_l
- 2uP, o+ B(kHl)P ML+ M(kel)uN, | - h(k+1)Rk_1] ¢;
+2 [2(k-l)uR-lLk_l - 2(1<-1)R']'Pk_l + 2(k+1)uRM
- (61 )RQy  + B(E-RTN, |+ (u2-1)RNk_l:] Fka}' S? Ik
+ 3 (c,cpepcd) y [6(2 E+1)J% c(T10;00) W 15%;2%) {{?(k-l)Rk_l
- wPa_, + ReMk_l] P+ [- WPy + Ty - 2(5r1)Ry ;) ¢

[ 2(k-1)R" ]? - 2(k+1)RQ _ 1] FkaB‘l jo ’})
i{- 2(k—l)R-lPk_l - WRR,_, - Rl\Tk_l:l Fk

2
- [uRRk-l - RN, - 2(k+l)RQk_l]Gk

['“P ’L*kRkl"“Rle’RMkl]F E(

&) (1J‘75 } (3.27a)

From (3.15g)

D- 5 EE) 2 B R A I C e i

(3.15p)
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where the expression in the curly brackets in (3.15b) is given by (3.27a)

W, 2 2k-2
We -2 F°>Zk x BPE 2N\ () (3.19)

vhere /\ (x) is given by (3.24b)

and
P =g
Now
¢ =n .
e = - ()\+ 1) H n < O
L, =7
Also
P = a4 Jy_g(aR) = a(aR)*™ [(2k-1)1:1)
G = @ Ji(aR) ~ alar)™ [(ewsr)ez )74

In (3.19¢) we evaluate the first term of the series, corresponding

to k = 1.

[N
i}
Nl

Then, for k = 1 -0, £-1,
6(27 +1) 2 o(T 10 ;00) W(Z 133; ¢ 3)
= (6)% c(011;00) W(013};13)
- (6)‘5‘ (-)* c(101;00) (—)%'1'% W(1133;03)

1 1

=62 (6)2 =1 (3.28a)
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Also
Gi - a'R%/9 (3.28¢)
F.G) = oF /3 (3.284)

Substituting (3.28) in (3.24b) for k = 1

N(k=1) = - 2 (F ) (k= 1)

using (3.24b)

N (x=1)

2 2
2 2 - oA
= 2q° C,C} }V(B0 - %— A+ % D )R \SG r]

2
- (A, --9—-RB +—RD) |S75\
2
Q< 2 2 2 2 Ak
-(-Do+-§——RDo+-.5qu+3qR%O)R(_(6‘ T) (1&75)}
. 2
' 2 q 2
CoCh f(u -1)13.0 + 9—[- 1+(UD0+CO) + 1613.0 - (u -l)Ao]

MQ

+ (- (%10, - 2, + 8] } R ﬂ%,?lg

2 2
g q q 2 a A
+§M(C c. + C;C ){2[Bo+§—(- Ao+200) + 3 (uCo+Do)]R Ud

9

x R (& ij75j (3.2kc)
RfEF e B

| 2
' a (. - 2.4 - 2R°B -
+ Luc0 +#D_+ & (-uC, - DR +3 (4, - 2RB_ - 24 )

Define
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‘Since’' R €< 1 for A = 144, R = 0.016(3%5) units, we neglect all terms of
order R2 or higher orders. In this approximation, the second term of
the series in (3.19g), namely, 2 RoA (k = 2) gives only

2°R 2M2 CpCy - WR7OA, - ;q“Rz | §82|2

8 2 S‘-‘ -t
1 —— v
Mchcp[qul] Ve
However, this term compared with the leading term in (3.19g) is small

and as such is neglected. Therefore substituting (3.24c) in (3.19g), we

get

) o
W o, 202 q q = |2
IR F)[CACAi(Bo‘TA +§5,) |18 7|

=
]

7P o

" %o ,f75|2 + (D, - 5 qu)(\SE' ) iS75 ‘3

2 i(u -1)B +—-—[16B - b(up_+C ) - (u -l)A]

TP T

Wo

[8ws, - (wP+1)p - 2uC°]j \j% *|?
1 e o S
+ 25 (C,CHCCp) { (B, + -— (2C,-A,) + 3 (uC+D J11)e
+ %— [_“Co““Do + %3 (2C ) (jcsﬂ ) (1J75)j J (3.298)

Similarly we take the term for k = 1 in (3.15b) using (B.27a), (3.28)

and neglecting terms of order R2 or higher orders.
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oW (22 2 .2 12 .2 S»->2
D= = (»°a°F ) [(CA+CA)§(MO t5ak T3 aN ) \ O‘-r\

+ LO\f@ﬁ+2FNO+§@J(S%3ﬁ({S%)j

L ,2 2§, 2 21,2
+ ;;E (Cp+Cp ) ? (u+1) M - 2uQ,+ %; ‘Su-rl) L

[ R 2 - 2 A - 2
2uPo +16Mo +8uNO-8R(J +-3-‘l Lh(uMo Qo) + (u -l)NOJ}\ S .r

e [ o, o [, - 0 - 2 1] | 3P

AP A
@ 2
) [uRd+No'+ 9 R (uRo-No-th)
2 - -
+ 3 (WP, LR -R (qu-Mo)ﬂ}( S@ D (1 J75) (3.30a)

where Lo’ M

o9 No, Po’ QO, and RO, AO, Bo, Co, and DO are defined on pages

T9 and 75 respectively.
The longitudinal polarization of B particles in O =0 (yes) transitions

assuming time reversal invariance in strong and weak interactions is

- N
P'l =3
where N and D are given in (3.29a) and (3.30a) respectively and from (3.11)
the differential energy B spectrum N(W) is given by

N(w) = £ D
hnz

Now we specialize these results assuming the validity of the two-component

theory of neutrino.
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C. The Two-Component Theory of Neutrino

*
After the experimental confirmation of parity breakdown in nuclear

B decay, it was proposed2o’2l’22

that & neutrino can exist either in a
positive helicity or a negative helicity state but not in both. Whether
a neutrino is left-handed or right-handed, is to be decided by experiment.
Goldhaber, Grodzins and Sunyar23 measured the neutrino helicity to be

negative.

The wave equation of neutrino, with negative helicity, is

I
[

i -1 2%

H=- 6D
We have taken the mass of neutrino to zero and use”h = ¢ = 1. Then for the
stationary state of energy W = q and &)v = q‘) e'iqt; - ?ld? = ¢ .
Clearly the helicity operator o «q commutes with the hamiltonian (- e -’c‘;)
and as such helicity is a good quantum nurber. (In fact, in our case

it is -1).

»*
C. S. Wu et al, reference 5.
200 . Lee and C. N. Yang, Phys. Rev. 105, 1671 (1957).

21). Salam, Nuovo Cimento 5, 299 (1957).

221, Landau, Nuclear Physics 3, 127 (1957).

23\, Goldhsber, L. Grodzins, and A. W. Sunyar, Phys. Rev. 109,
1015 (1958). Also these results have been confirmed by I. Marklund and
L. A. Page, Nuclear Physics 9, 88 (1958).



Since, in our calculations, the Dirac wave function for the neutrino
was taken, we show the connection of the two-component theory and the Dirac
theory of the neutrino.

*
For stationary states of W = q, the Dinac equation gives

~aa Y, = Y, (5.32)

0o &

-
a

-2
G 0

then

gl)v _ 4)\/
= 3,

Since 75 comnutes with 5L therefore from (5.52a), 75\+L is also s

solution. If we impose the condition
+ .
sW,=e® 5 e -t (5.32b)

Then we show, below, that l+¢ represents a two-component neutrino of

negative helicity for € =1

From (3.32b)

%(l+75)‘ﬂ, =-é—(l+6 Y,

*
We consider here positive energy states.
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Consider € =1
-]; (1- .E:-'/(\l) deu
L\)))‘ = % (1+75) LPV = N (5.55)
5 (-6 a) @,

In (5.55) , the upper and the lower components of Ll}v are the same. The
*
helicity of ¥ , for é=1, is negative.
In nuclear B decay, the interaction hemiltonian for an interaction

can be written as

i

H
X

\n‘x(N)Q.(LY: ‘n‘x [.Cx+c;c75] % )

1]

* 1 1l
N e (g, |5 (Cpe)(erg) + 5 (c -c)1-75)] 4, )
(3.34)
Thus to find the condition so that neutrino has negative helicity (eigen-

A *%
value of & +-q is -1) for positive energy states, from (3.34), we observe

*
In fact —é—(l+75) and %(1-75) ere the projection operators for spin

of the neutrino and these projections operators acting on % select
states of negative and positive helicity respectively. Thus taking € = 1
(or -1) in (3.32b) gives for the neutrino a negative (or positive ) helicity.

**
In fact W = t q in (3.52&% corresgonding to pgsitive a._r‘_ld negative
energy states of neutrino. Then @ Q3= 75) Y, =+ 8w i1 = 75) Y,
where Sw is the sign of W. From this it is clear that —é—(l t 75) ‘-V,_, are

the. _t‘e_igenfunctions of the helicity operator G ?1 For Sw positive:
(1 - 75) ), representsstates of (%) helicity of » . TFor Sv negative:

(1 + 75) LVy represent states of- (t) helicity of V. For an entinuetrino
in positive energy state: (1 t 75) W; represent (f) helicity of D .
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that (Cx+C£) and (Cx-Ci) are the amplitudes for positive (negative) and
negative (positive) helicity of antineutrino (neutrino). Therefore the

longitudinal polarization of » is

p— - (Intensity spins %) - (Intensity spins antiparallely)
v
(Intensity spins ') + (Intensity spins antiparallel 3)

| G +C | -\c, ¢, 12

|c +c |2+ |c_-cr|®
X X X X

*
Assuming time reversal invariance in nuclear beta decay, (Cx = Cy; c; = c:)
we get
2c ¢!
Po = XX __
v - 2 ol
Cx +Cx

From the above equation, we see that

(1) Py = 1 for Cx = Cx

= -1 -C!
and (2) E; = -l.for C_ Cy
The choice Ce = C; is the correct choice, consistent with the experimental
determination of the negative helicity of the neutrino. Thus the results

derived in using Dirac wave functions for the neutrino in nuclear gdecay,

can be converted into those using the two-component theory by substituting

Cx== Ci for all the interactions. In our case of the 0-> 0 (yes) transition,
we get

CA== c!'
and

C = 2¢'
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*
D. Formulas for Longitudinal Polarization and B Spectrum in O — 0 (yes)

Transitions, Using the Validity of the Two-Component Theory of Neutrino

Cancelling common factors
W -
W (Per,) 2 |$2 2% in (3.290) ana (3.308)

after setting

CA = CA H CP = CI" ;3 We get,
Nl
where Py = D7 . S
2 | {7 Y
. - a 4p . 5 2 5
N= B, - 5= A, + 3D A°T—|5-;|2+(D 5 a4A) I 7}

-

% ﬁ g
_\) i Bo + ( ECC‘-Ao )+ = ( uC°+D° )

+ MCA 9 J-
%[uco+no+ (2 -A )] j_—i 3 ] (3.36a)
fr.12 1)y
D'5M+J9'-q2Lo--§-qNo+Lo—;\<—§_—f-\—é-+2(N +3<1L)j-é§'—§—+

*

To check these formulas in the 1imit Z — O, it is necessary to

takeX = T 2; in those terms which vanish for |x| = 1, for example to N'
2

C
we should add - ]II( M—g—) .8 q2A1 and for D'; we should consider
2 A ?

C ) )
1 P 8 2
E(Mc_\! g 91y-



Qb
C

2
2
1/ 7P 2 a\ (.2 -
+ E(WA\) {(u +1)Mo_2qu *3 \-(u +l)Lo 211.Po+l6Mo

+ 8uNo—8Ro] + %ﬂ Lu(uMo-Qo) + (u2—l)No] j}

+ EB— § M -uQ + ﬂi (- vP +L -4R ) - 2 a(N_+2q )
MCA 2 o] o] 9 00 0 3 0 0
2,2
qQ R a9 _ -
- [uRo+N + 5 (uR -N_-4Q ) - 51 WP+ LR

+ Rz(qu"M )ﬂ i (75 } (3.36b)

The differential energy B spectrum

N(W) = -55 D
bx
PHQ°F _
N(W) = 5 CB
2n
* l+7l
CB is called the Shape factor. For allowed transitiomsit is Lon 5
2 2 2|2
Cqy = Cp D! [fc 2| (3.37)

D' is given, above, in (3.36b).

In (3.3%6)
uz W-V-gqg
R = onu3(157)’l Al/5
For B” emission, V = - @Z/R and for B emission, V = QZ/R

¥
This shape factor was derived by M. E. Rose and R. K. Osborn,
Phys. Rev. 93, 1315 (1954).
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The functions AO, Bo’ Co’ DO and Lo’ M,N,P

o’ Yo o’ QO, RO are defined in

equations (3.23) and (3.26). Units are such that (h = mg = ¢ = 1).

i S 75 —

2 &
W={(p + l)2 and in these formulas 7= = 1s a real number, because
o.r

of the assumption of the validity of time reversal invariance in strong

interactions.

The neutrino energy represented by q is equal to WO - W,

where Wo is the end-point beta energy.



CHAPTER IV

EXPERIMENTAL DATA ON O— O (YES) BETA TRANSITIONS
ITS ANALYSIS WITH THE DEVELOPED THEORY
AND THE RESULTS

In the previous chapter, we developed the theoretical formulas for
the B longitudinal polarization ard the shape factor for 0—>0 (yes)
transitions using the axial vector interaction and the correct form of
the pseudoscalar interaction. In this chapter, Section I gives the pres-
ently available experimental data on the B longitudinal polarization and
the B spectrum of O >0 (yes) transitions. Section II starts with a
short discussion of the finite nuclear size corrections and the finite
deBroglie wavelength effects; then the numerical coefficients for the
formulas of the B longitudinal polarization and the B shape factor are
given in Teble IV for Pri** (07 5 G7) and in Table V for Holf6 (0" —s 0V).
In Section III, the methods employed for the analysis of the experimental
data are described and the results of the extensive computations are
graphically presented. The main results are given in Section IV.

In the final chapter, we give the conclusions and a discussion of
these conclusions.

I. EXPERIMENTAL DATA ON O — 0O (YES) TRANSITIONS

The 0 =0 (yes) beta transitions have been established;in the decays

166, 152 144.

of Prluu, Ho Eu and Ce A 0—0 (yes) transition has been re-

1
D. Strominger, J. M. Hollander and G. T. Seaborg, Revs. Modern
Phys. 30, 585 (1958). See pages T2k, 743, 732 and 723.




93
ported2 in T1206.

The relevant experimental data for our purpose of investigating
the existence of the pseudoscalar interaction are (1) the p longitudinal
polarization* and (2) the g shape factor in 0 >0 (yes) transitions.

(1) prtt > nal** (57)

The decay scheme of Porter and Day3 is given in Figure 1. The
meximum B~ kinetic energy is 3 Mev in the 0= O' branch. Prll‘d‘L has a
half-life time of 17 minutes. The advantage of the study of Prlhh (0™ 0+)
is that this transition is very intense (~98%). The log ft value is
6.6.

A nunber of groups3’ by 5 have studied the B'- spectrum and the
general conclusion is that the B = shape factor of the 0—» O' branch is

independent of the B~ energy within 6%. For our analysis we take the
shape factor as given by Porter and Day?
Table IIT summerizes the B~ longitudinal polarization measurements

of the 0 —> 0" branch.

21, zyrianovae, Bull. Acad. Sciences U.S.S.R. 20, 1280 (1956). (Trans-
lated by Columbia Technical Translation,-New York).

*
For a recent review article, see L. A, Page, Revs. Mod. Phys. 31,
759 (1959) .

3p. T. Porter and P. P. Day, Phys. Rev. 11k, 1286 (1959).

hR. L. Grahem, J. S. Geiger and T. A. Eastwood, Can. J Phys. 36,
1084 (1958). This paper contains the references to the previous work.

°N. J. Freeman, Proc. Phys. Soc. 73, 600 (1959).
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UNCLASSIFIED

124 _ ORNL — LR— DWG 48106
Pr (17min)

807 * 5kev
(1.0 20.1%)

2299 X 15kev

(1.2 £ 0.1%) _
1 2.19 Mev
2996 *3kev
(97.8%)
2t 0.697
O+

Figure 1. Decay Scheme of Pr'4* of Porter and Day, Phys. Rev. 114, 1286 (1959).

The numbers in the parenthesis refer to intensity,
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EXPERIMENTA DATA ON BETA LONGITUDINAL POLARIZATION

OF Prllm o"— o

Iongitudinal
Polarization
in units of (v/c)

Energy Range
of B particles

Method of
Measurement

(0.986 + 0.030)

(1. %93

(0.96 + 0.0k)

(0.90 + 0.22)

(0.77 + 0.21)

(1.08 + -.26)

1 Mev to 3 Mev

0.3 Mev to 3 Mev

0.3 Mev to 3 Mev
0.3.Mev to 3 Mev
0.4 Mev to 1.1 Mev

1.2 Mev to 3 Mev

Mfller Scatter ingl

Circulation Polar ivzation2
of Bremsstrahlung

Multiple - Mott Scart‘tering3

M¢ller Scatter inglL

Wller Scatter ing5

Mgller Scatter ing5

1y, A, W Mehlhop, Ph.D. dissertation (Unpublished) Washington
University, Saint Louis (1959).

2

3. Heintze, Z. Physik 150, 134 (1958).

S. G. Cohen and R. Wiener, MNuclear Physics 15, 79 (1960).

LLGeiger, et. al., Phys. Rev. 112, 1684 (1958).

5F.r'a,uenfelder, et. al., Phys. Rev, 107, 643 (1957).
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The most accurate measurement of the B~ longitudinal polarization
of the (0 — 0') branch is due to M‘ehlh0p6 et al, In this experiment a

relative measurement of the B~ longitudineal polarization was made with

respect to the p ~ particles of the 2" — ot (unique) transition of P,

The B longitudinal polarization in Y9O ("= O+) was assumed to be - %?.
- 1hh - +
Mehlhop found the average of over the B = spectrum of Pr (07> 0"),

v/c
for the kinetic energy of the p ~ particles from 1 Mev to the end point

(~3 Mev), to be

<

v/c is the ratio of the B~ particle velocity to the vacuum velocity of

Fu 7>.=_ - (0.98 x0.030)
v/c

light.

166 -
(2) B B (87)
166

The decay scheme7 of Ho is shown in Figure 7. Its half-life time

is 27 hours and its log ft value is 8.2, The B ~ spectrum of the 0 — ot
*

branch (~ 47% intense) has not been very carefully studied experimentally.

We do not, therefore, make a detailed analysis of the shape factor.

6w. A. W. Mehlhop, E. D. Lanbe and T. Pond, Bull. Am. Phys. Society 5
9 (1960). Also W. A. W. Mehlhop, Ph.D. dissertation, (Unpublished), Washington
University, Saint Louis, 1959.

7J. M. Cork, M. K. Brice, R. G. Helmer and R. W. Woods, Jr., Phys. Rev.
110, 526 (1958). Also see Strominger et al., op. cit. p. Th3.

*
Private Communication from Dr. R. I. Grsham.
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Blhring® measured the p- longitudinal polarization in the 0"—> 0"

branch and the results are:

v P P,
< (- WNE )Hol66\/ = (0.99 +0.02) <( - W‘g )P32\/

The range of the B~ energy was from 0.18 Mev to 1.8 Mev and the angulaer
brackets mean the averaging over this range of the B~ energy. P32 (l+-a 0+)
is an allowed B~ transition and we assume, for our analysis, B = - v/c

in this case.

(3) P ™™ (p7)

The decay scheme9 is given in the tables of isotopes by Strominger
et al. The intensity of the 0 — 0 transition is ~ T0% and the half-life
time is 9.2 hours. No accurate measurement of the g~ spectrum is avail-
able. Also the g~ longitudinal polarization has not been measured. We
do not carry out any analysis of such cases where the accurate measurements
of these are not available.

) ces et (59

Stromingerlo et al. give the decay scheme. The half-life time is
about 285 days. N& detailed study of the beta spectrum has been made of

the (76%) intense ot— 0~ transition and also no measurement of the beta

longitudinal polarization has been reported.

8. Blihring, Z. Physik 155, 566 (1959).

9Strominger et al., op. cit., p. T732.

10
Strominger et al., op. cit., p. T23.
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206 206 -
(5) TL. — Pb (B7)

The decay scheme is given by Zyrianova.* The half life time is
4.2 minutes and the log £t value is 5.2. The beta end point energy is
1.5 Mev and the B~ spectrum is a simple one. The beta energy differ-
ential spectrum is of the allowed shape within 5%. But a careful analysis
is desirable to establish the decay scheme. Accurate measurements
of the B~ longitudinal polarization and B~ spectrum are required.

Now we describe the method of computation and the nuclear finite
size and the finite deBroglie wavelength effects.

IT. METHOD OF COMPUTATION

The formulas of the B longitudinal polarization and the B shape
factor, as developed in this work, are given for 0 —0 (yes) beta tran-
sitions on pages 89 and 90. 1In these expressions, we have A,, B, Co»s
Dos Lgs My, Ng, Py, Qg @nd Ry, which depend on the electronic radial

1hh

functions evaluated at the nuclear radius. For the B decays of Pr

66

and Hol » these electronic radial function fl, 81> f_l, and g_1, evalu-

ated at the nuclear radius 0.43 a.Aé (g%», were computed taking into
consideration (1) the finite nuclear size effect, by considering the
nucleus as & sphere with & uniform charge distribution and (2) the finite
deBroglie wavelength effects. Sin ( 31 - éLl) was computed, only con-
sidering the Coulomb effects. In the following, we briefly describe these

two effects and then give the numerical coefficients of the formulas.

*
Zyrianova, loc. cit.
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A. Nuclear Finite Size Effects

In our calculations, we have taken for the electron

b SECD i

*

1]

8y (x) A

where £, (r) and g, (r) are real and are the radial functions. It has

11

been shown by Rose —that the indicial behavior of the radial wavefunctions

for any central field V(r) is given by the following:

(a) For N = k; k is a positive integer,
using the notation x = —%—
and w(x) = (2) +2) XEj + l,
i+s
fk ~ C:L R
1l
2 &) "% V(x) wix) ax (k.1a)
gk ~ m 2 X wixX .18
0
(v) and for X = -k
1
C
2 J+2 f
fy ~ 35573 B ¢ ) v(x) w(x) ax
~ ¢, ROTz
&x 2 (4.1p)

11y, E. Rose, Phys. Rev. 82, 389 (1951).
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From (4.1) it is clear that g, and f-k are "field sensitive" and for
large angular momentum, the weighting function approaches a delta
function. However, for small values of angular moﬁentum, this effect
becomes important. In O —0 (yes) transitions, the finite nuclear size
corrections are therefore important.
1
We take R the nuclear radius as 0.43 ah> (;—%— units) and a uni-

form charge distribution in the nucleus, which gives:

V = - arZ 5 Ir 7 R (}4'92)
2
a Z r
V= - = (3 - "55— ); r<¢R

a X 1%7 and Z is the number of protons of the daughter nucleus. The
details of the computation of the radial functions, using the potential
in (4.2) are given elsewhere 12

B. Finite deBroglie Wavelength Effects.

Usually, the analytic expressions are given.lB’lLL

for Lo, Mo, No,
*
Po, Qo, Ro and also Ao, Bo, Co, and Do by considering the first term in

the power series expansion of these combinations of the radial functions.

’ 120, P. Bhalla and M. E. Rose, Oak Ridge National Laboratory Report
{ORNL~-2954) .

13E. Greuling, Phys. Rev. 61, 568 (i9h2)e
]
D, L. Pursey, Pnil. Mag. b2, 1193 (1951).

*
Appendix D. of this dissertation.
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The validity of this procedure rests on the fact that the beta particle
deBroglie wavelength is very large compared to the nuclear radius or
to be more exact PR << 1. However, where we have either large P mo-
mentum,or for small momentum but &Z not small, these approximate
expressions are not quite valid. The desirable procedure is, therefore,
not to terminate the power series expansion by considering the first
term only, but to take into account a large number of the terms in this
expansion. The correction arising from this procedure has been called
the finite deBroglie wavelength effect l >
In our analysis, these corrections have been properly considered
by computing all the required functions on the ORACLE of the Oak Ridge

National Laboratory.

C. P Longitudinal Polarization and Spectrum Formulas of

166

Prlb'b'(o'—» 0%) and Ho (0" —» 0") with Mumerical Coefficients

We write the formulas for the P longitudinal polarization and

spectrum, as developed in this work as:

2 2
a, +a A +tay: - aq + (a), + 85 M )€

--AP“ = 2 = 2 ()'l"3)
b, + by A+, A +b3?{, +(bl++b5>")$
and the shape factor CB- as
C.=b_ +b x2+b A +D 2+(b +b. A) (b.4)
B~ ~ o 1 2 35 L 5 % ’

154, E. Rose and C. L. Perry, Phys. Rev. 90, 479 (1953).
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<

where we have introduced

and

- = (k.5a)
T T
C
= P (k.5v)
qf MCA
. 2 .
8o = By + —%_ Dy - —g'— Ay (h.62)
a; = -AO (4.6v)
2
a2 = DO - —3—— q AO (4“60)
a; = —it—i (u2 -1) B + %q[Bu B, - (u‘g + l)Do - 2u CO]
. 2 2
" —%— {_16 B, - MuD, +0C)) - (u -1)a ]j (k.64)
2

8, = B, + —%—(u C, + DO) + ——%—- (2 C, - Ao) (4.6e)
ag = -;—[uCO+DO+%q(2 CO-AO)J . (Lk.61)
by = M - -%—q N+ —;- ¢© L (k.72)
bz L (%.70)
b, T -2 (N --2q1L) (4.7¢)
2 = o 3 o :
b3 = %g(ug + l)Mo -2u Q) + —%—-q [hu M- 1+Qo + (u2 'l)No]

2
+ —3— l_(u2 +1)L, - 2u P +16 M) +8unN - 8Ro] (4.74)
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2
M, - uQ, -%— q (N, +2 Q) + g-— (-uP + Ly - 4R))

o 2 (4.7e)

b5 z - [uRo + N, - —%—q % - uP  + L, - MRO + R2(uQo - Mo)}

+ -%— 2g2 (uB, - N - qu)] (sae)”
L, M), N, B, Qs Ry, and A, B,, C,, and D, are defined in (3.26)

and (3.23) on pages 79 and 75 respectively.

These coefficients, as defined in (4.6) and (L.7) are given in
Table IV for Prllm (0" 0%), taking W, = 6.85h (mc2 units), and in Teble V
for Hbl66 (0" = O+), taking W = 4,51k (m.c2 units). The B momentum p is
in mc units. These coefficients are given for various values of D, assuming a
uniform charge distribution in the nucleus, with radius 0.428c A; (%%g)
and taking into account the finite deBroglie wavelength effects.

III. METHOD OF ANALYSIS OF DATA AND RESULTS

In (4.3) and (4.4) we have two unknown quantities (1) ¢ - —;g; ,
the ratio of the coupling constants of the pseudoscalar interaction and
the axial vector interaction divided by the nucleon mass in (~ 1836) units
of m, and (2) A, the ratio of the nuclear matrix elements. Our
motivation is to investigate the existence of the pseudoscalar interaction.
Therefore, first we investigate whether or not the axial vector interaction

alone can explain the experimental data (? - 0); then we want to find an

upper limit of the value of 6 which is consistent with the experimental

*In (4.7f), the terms containing R2 can be neglected.



TABLE IV

nuclear radius to be 0.428&a'
(3) the finite deBroglie wavelength effects.

el 07 0". NUMERICAL COEFFICIENTS FOR BETA LONGTTUDINAL
POLARIZATION AND SHAPE FACTOR FORMULAS
P a5 a as aq a) a v, by b, by b, b
1.0 112.3 0.6400 16.97 14290 91,54 1.922 153.4 0.9026 23.53 20780 2260 175.7
1.5 131.5 0.7487 19.85 17740 108.5 2.182 153.9 0.8976 23,50 21830 1768 141.1
2.0 140.7 0.7992 21.21 20250 117.7 2.261  153.8 0.8917 23,43 23050 14k5  116.7
2.5 145.1  0.8234 21.86 22390 123.3 2.248 153.6 0.8854k 23,32 24480 1217 99.48
2.783 146.6  0.8310 22.08 23520 125.7 2.229 153.3 0.8816 23,25 25320 1116  91.95
3.0 147.3  0.8348 22.19 24370 127.3 2.203 153.1 0.8787 23.18 26010 1050 &7.00
3.5 148.5 0.8395 22.33 26380 130.5 2.128 152.5 0.8720 23,05 ; 27680 923.5 T77.60
4.0 148.9 0.8402 22.37 28410 133.2 2.047 151.8 0.8651 22,92 29490 825.4 70.33
k.5 148.9 0.8385 22.35 30510 135.8 1.96k4 151.1 0.8582 22.76 31400 746.6 6h.52
5.0 148.7 0.8354 22,29 32730 138.2 1.870 150.3 0.8512 22.62 33480 681.8 59.83
5.5 148.2  0.8312 22.20 35020 140.6 1.770 149.5 0.84k2 22.45 35670 627.9 55.94
6.0 147.6 0.8264 22.09 37h30 1k2.9 1.690 148.7 0.8372 22431 37990 582.0 52.67
6.5 147.0 0.8211 21.97 39960 145.3 1.595 14k7.8 0.8302 22.15 4ob6Q 5426 L49.89
e
"Bquations (k.3) and (b.lk). These coefficients have been calculeted considering (1) the

>@/mc), (2) the corrections due to the finite nuclear size and

70T



TABLE V

1020 07> 0*. NUMERICAL COEFFICIENTS FOR BETA LONGITUDINAL

*
POLARIZATION AND SHAPE FACTOR FORMULAS

P a9 ay a, a.3 a), a5 bo bl b2 b3 bh b5

0.76 95.95 0.5323 14.30 16800 84.k6 1.k 152.6 0.8758 23.12 28130 2809 217.9

1.0 111.8 0.6200 16.66 20050 99.02 1.661 152.8

O

B734h 23.10 28670 2505 195.1
1.5 130.8 0.7239 19.47 24820 117.5 1.882 153.1

(@]

8673 23.05 30080 1983 156.2
2.0 139.6  0.7713 20.76 28220 127.4  1.936 152,9 0.8602 22.93 .31750 1615  128.7
2.5 143.9 0.7932 21.37 31080 133.7 1.919 152.% 0.8525 22.80 33620 1354 109.3
3.0 145.9  0.8026 21.65 33700 138.1  1.869 151.6 0.8446 22.62 35620 1163 95.15
3.5 146.8  0.8055 21.76 36290 14l.6  1.801 150.9

(@]

.8364  22.47 37820 1018 8L.52
4.0 147.0 0.8046 21.76 38910 1hk.7 1.72% 149.9 0.8282 22.28 L0120 905.6 76.26

om——
—

*

Equations (4.3) andv(h.h). These coefficients have been calculated considering (1) the
nuclear radius to be 0.428XA>(h/mc), (2) the corrections due to the finite nuclear size and
(3) the finite deBroglie wavelength effects.

S0t
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data. However, there is one difficulty: ) has also to be treated as

a parameter.

Nuclear Matrix Elements

No reliable calculations of A\ , the ratio of the nuclear matrix
elements have been done because not enough is known about the nuclear
forces. However, several attempts have been made to calculate the value

of A\, using certain assumptions. Equations (4.9) and (4.10) give these

results. We write (
i)y
ME —=22 - LA (o Z
JE 2\ (49 (4.8)

Then, on the basis of the single particle (j - j coupling scheme) model,

Rose and Osbornl6 give: (“h = m, = c = 1)

7,
AN [_( R 57—) + dT%Z (W, - &) (4.9a)
(R f’% ) ~ 1 to 4/3. W, is the maximum g total energy.
§

A is the mass difference of neutron and proton and R is the

nuclear radius in units of (:%. ).
m
Using a semi-empirical energy formula, Ahrens and Fec—mbergl7 obtain:
7 R
AN 2 [1,2 t 5y (WO -A)] (4.9v)

Pursey, using an explicit form of the nuclear hamiltonian and single

16M, E. Rose and R. K. Osborn, Phys. Rev. 93, 1326 (1954).

17T. Ahrens and E Feenberg, Phys. Reév. 86, 64 (1952).

8. 1. pursey, Pbil. Mag. 42, 1193 (1951).
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particle wavefunctions, gives
N R
=2{l+——W-A ] 4.9
—= (i, - A) (-9¢)
14h - + 19
For Pr (0—> 0%), Pearson~” has calculated ) , assuming the
single particle potential to be an infinitely deep square well. With

this assumption:
i )ql - 2.5 (k.108)
_Ssur
And using the harmonic oscillator potential of equal strengths for the
parent and the daughter nucleus, he obtains: A
A =8 (4.10b)
But from the equations (4.9) one gets for P:rllm (0" 0%
A ~ =30 to =37 (4.10¢)
and for Hol66 (07— o+)
A ~ =31 to =37 (k.11)
The Coulomb contribution provides the dominant term in the expressions
of ) a&s given in equations (4.9). This fact favors a value of A from

1hh and Hol66.

-30 to =40 for Pr
But it must be remembered that these calculated values of A cannot
be accepted with much confidence, because of the lack of the knowledge

concerning the nuclear forces; therefore, we shall consider ) as a para-

19J. M. Pearson, Can. J. Physics 38, 148 (1960).
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meter in the following analysis, rather than relying on certain calculated

values.

A. Analysis of Data on Prlhh (0= o)

1. B~ longitudinal polarization

(a) Pure Axisl Vector Interaction. (i.e. 2 = Q)

The calculated B~ longitudinal polarization (P, ) in units of
- v/c, is plotted (Figure 2) versus B~ momentum in mc units for
A =10, 30, 110, -30, =50 and -150. The region of B~ kinetic energy
for the measurement of MehlhoP* et al. is from 1 Mev to ~ 3 Mev, and this
is shown in the Figure. From Figure 2, we observe that in the B
energy range of Mehlhop's data, the calculated - ;;% deviates less than
0.25% from 1.000 for large values of | M| ( »100). The upper and the
lower limits of <— ‘-5%>of this data are 1.016 and 0.956 respectively.
A large nunber of the values of A , the ratio of the nuclear matrix ele-
ments, can be found, for which the calculated values of <:- g%g>lie well
within these limits (of Mehlhop's data). Therefore, the pure axial vector

¥*
interaction can easily explain his data.

(b) Axial Vector and Pseudoscalsr Interactions. ( % # 0)
Using both the axial vector and the pseudoscalar interactions, we
now investigate the regions of the values of i, and ) , for which the

calculated <<- _§u ies within the experimental limits. Figure 3 shows
v/ec

*
Mehlhop et al., op. cit. And also Mehlhop, op. cit.
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UNCLASSIFIED
ORNL—LR— DWG 48107

1.04 \ \ 1

—
P -30
0.99 / |

REGION OF M@LLER SCATTERING DATA OF MEHLHOP
0.98 /

0.97

1 2 3 4 5 6 7
MOMENTUM (mc UNITS)
pri44 0—>0 (YES)

Figure 2. Calculated Longitudinal Polarization in Units of ~v/c versus 3 Momentum for A
Interaction Only, The numbers attached to the curves give the ratio of the nuclear matrix
elements (A).
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UNCLASSIFIED
ORNL~LR-DWG 48195

0.10
! 1 l { | i 1
UZZ7Z] PERMISSIBLE REGIONS OF ¢ AND A FOR THE DATUM OF MEHLHOP
CXN] PERMISSIBLE REGIONS OF € AND A FOR THE DATUM OF PORTER ef o/
FXEH] OVERLAP OF THE TWO PERMISSIBLE REGIONS
008 L LOWER LIMIT OF 7777 I
UPPER LIMIT OF [77 ‘
0.06 _— j’H+¥
U,———’ ! «L ’ ’
0.04 L 7
U
0.02
P=4
S|e
i
L
0
-0.02
L
REGION OF LARGE \l\
-0.04 ——— DESTRUCTIVE  __\ \U : >
INTERFERENCE ) U\
\L ] >
-0.06 *Jr —— ~~~#—~~ - —
-0.08 ’ I
-200 -150 -100 -50 0 50 100 150 200
i
NAL
for

Figure 3, Pr'*4 0~ — 0", The permissible values of the parameters & the ratio of the coupling constants, and
A, the ratio of the nuclear matrix elements for the polarization ond shape factor data of Mehthop and Porter e al.,
respectively,
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these permissible regions. In this Figure, the curves designated by
L and U represent the loci of the points in the (? , M) plane, for the

lower and upper limits (O.§56 and 1.016 respectively) of 41- P“\>. The
v/e
lightly shaded regions, in between the curves designated by L and U,
give the permissible values of ?. and A for the longitudinal polarization
measurement of Mehlhop.
Figures 4, 5, and 6 respectively, give the typical curves of the
calculated - ;93 versus B~ momentum for the following:
(1) 1} = 0.05; A =90, 100, -65, -150 and -190
(2) §.=: - 0.05; » = 150, 175, 190, =~110, =150 and -190
and (3) €}== 0.002, 0.004, 0.006, 0.008, -0.002, -0.004, -0.006, and
-0.008 for A = =35
It is interesting to notice that for the pure pseudoscalar inter-
action, our calculated value of B, is (0.97) %}-at p = 1.0; however,

*
using plane waves for the electron we get Pll = 0.8 v/c at p = 1.0.

2. B shape factor

We compare the calculated shape factor curve indirectly with the
’ experimental data. The comparison is made between the calculated shape
factor and a cubic (in p) fit through the experimental data. The cubic
fit to the data on the shape factor data of Porter and Day is as follows:

Cy- = 9459.32 - 375.752 p + 89.840 p° - 8.4994 p3 (4.12)

*
This implies neglecting the Coulomb effect and other corrections,
used in our analysis.
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144
Pr
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Figure 4. Calculated Longitudinal Polarization in Units of =v/c versus B Momentum for C,,/MCA = 0.05. The
numbers attached to the curves give A,
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-~
N

Figure 5. Calculated Longitudinal Polarization in Units of =v/c versus 3 Momentum for CP/MCA = -0,05,
The numbers attached to the curves give A.
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Figure 6. Calculated Longitudinal Polarization in Units of —=v/c versus B Momentum for A = =35, The numbers
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The mean sum squared of the residuals* of this fit from the experimental
data is 1.217.
For our analysis, we arbitrarily normalize the shape factor (k.12)
and the calculated shape factor (from Table IV) to unity at p = 5.0.

Thus we get from (4 12): CB’ normalized to unity at p = 5.0.

1 2 '
Co- = BB 1B [ gh59.32 - 375.752p + 89.840p° - 8.hogkp> | ) (h2-13)
For p = 1.0 to p = 6.5 in the steps of 0.5, we calculate (A 1)7,

Xj

where L&)ﬁ_is the deviation of the calculated shape factor (from our

formulas) from the value (Xi) given by the cubic fit. Then we compute
p=6.5

L (LX0)®

11 = Xi

PN
for the cases of interest. We consider the calculated shape factor a

"reasonable” fit if & < 0.005; this generally corresponds to the maximum

X.
deviation A; 1 being less W%.
i
C
(a) Pure A. Interaction ( i'a ﬁ%‘ -0)
We find, for the pure axial vector interaction, that for A)0,

we always get a reasonable fit and for = -50, we also get such a fit to

the shape factor.

*
The mean sum squared of the residuals 1s defined as (h6 Yy

where n, and n are the computed values and the experimental values of the

g shape factor. There were 46 experimental points in this experimental
shape factor.
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This implies that the pure axial vector interaction can explain
the experimental shape factor of Porter and Day.

It is interesting to observe that it appears in the literature
that there is no fit to the shape factor for A< 0, contrary to our
finding ( A¢-50). 1In the previous works, -\ was only considered in the
region of a large destructive interference (~10 to 30), where there is
no fit. We have investigated taking -\ to be as large as 200 and find
that for {-50, there is a reasonable fit.

(b) A and P Interactions (% % 0)

We now consider the axial vector and the pseudoscalar interactions.
The results of the computations are summarized in Figure 3, page 110. In
this Figure, we show by the shaded regions, the permissible values of
and ) for a reasonable fit to the data of Porter and Day.

The overlapping regions of the B shape factor fit and a fit to
the polarization data  of Mehlhop, is shown as a crosshatched region. The
values of g in this crosshatched region depend on )A. It is interesting to
notice that we can find values of f' for A = -35 which are consistent*

with the experimental data. In the previous works, no such value of g

(= Cp_ ) was reported.
MCp

*
See Figure 6 for a plot of - Pﬁ'— versus B~ momentum for )\ = -35
&nd a number of values of § . v/e
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B. Analysis of Data on Ho'®® (07—> O%)
166

*
The decay scheme of Ho of Cork et al. is given in Figure 7.

g~ Longitudinal Polarization

(2) Pure A. Interaction (& =0)

The calculated B~ longitudinal polarization in units of - v/c
is plotted (Fig. 8) versus B momentum in mc units for A =10, 30, 130,
-30, -50 and 130. The range of the B~ kinetic energy for the B~ longi-
tudinal polarization data of Buhring is 0.18 Mev to 1.8 Mev. A large
number of the values of A , the ratio of the nuclear matrix elements,
can be found for which the calculated values of <- ;;.’7'3> lies within the
experimental limits. Therefore, as before for Prll*l* (0" O+) , the pure
axial vector interaction can easily explain Buhring's data.**

(b) A and P Interactions (@,# Q)

Using both the axial vector and the pseudoscalar interaction, the
regions of % and A , for which the calculated value of<-%—c-> lies within
the experimental limits, are shown (Fig. 9) by the shaded region. The
curves denoted by L and U give the loci of the points in the (Ef , M) plane
for the lower and the upper limit (0.97 and 1.0l respectively) of the B~
longitudinal polarization data of Eﬁhring.

In Figure 9, the region of large destructive interference, (-25{ A {-5)

*
Cork et al., loc. cit. Modified by Strominger, op. cit. Th3.

*H .
Buhring, loc. cit.
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Figure 7, Decay Scheme of Ho'¢% of Cork et al.,

numbers in the parenthesis refer to intensity.

Phys. Rev. 110, 526 (1958). The
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Figure 8. Calculated Longitudinal Polarization In Units of —v/c versus 3 Momentum for A Interaction Only. The numbers attached to the curves
give the ratio of the nuclear matrix elements (}).
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Figure 9. Ho'% 0= — 0*, The permissible values of the parameters &, the ratio of the coupling constants, and A,
the ratio of the nuclear matrix elements for the plarization datum of Buhring,




is so indicated.
We do not analyze any shape factor for Hol66 (0"> 0t), because
so far no accurate measurement exists.
IV. RESULTS
(1) We find that the pure axial vector interaction can explain the
existing data on prlih (0= 0% and Hol66 (0"— ot).
(2) Ve find the upper limit of l%%; , which is consistent with the ex-

perimental data.

For Prl21Ll+ (0" oY

C
a £ = = 0.05 for A as large as 200
MC
A
%
(v) o = 0.045 for -, as large as 200
A
For Hol66 (0> oh)
(&) CP_ _ 0.048 for 1 as large as 200
MCp
(v) I%CL = - 0.0k for -» <& 200
A
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CHAPTER V
SUMMARY AND CONCLUSIONS

In Section I, we summarize what has been covered in the previous
chapters. Then in Section II, we list the main points of this work in-
cluding the assumptions used in this investigation of the existence of
the pseudoscalar interaction. The conclusions of this work are given
in Section III, followed by a brief discussion of these conclusions.

I. SUMMARY

In Chapter I, the statement of the problem considered in this
dissertation is given: the investigation of the existence of the pseudo-~
scalar interaction by the formulation of the theoretical expressions for
the B longitudinal polarization and the B spectrum in 0 — O (yes) beta
transitions and by a comparison of the existing experimental data with
the developed theory.

In Chapter II, we explain the reasons for the incorrectness of
the conventional treatment of the pseudoscalar interaction, and then
give the correct form of the operator for this interaction.

In Chapter III, using the correct form of the pseudoscalar inter-
action and the conventional form of the axial vector interaction, we
develop the B longitudinal polarization and the B shape factor formulas

for 0 - 0 (yes) beta transitions.
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In Chepter IV, we analyze the experimental data on Prluh (0= o)
and Ho166 (0" — 0%) with the formulas of Chapter III, which in these cases
are tabulated on pages 104 and 105 respectively.

II. MAIN POINTS OF THE PROCEDURE

1. We have used the conventional form of the axial vector inter-
action and the correctl operator for the pseudoscalar interaction. The
derived formulas of the B longitudinal polarization and the B spectrum
are given in (3.35) end (3.37), on pages 89 and 0 respectively, for the
0 —»0 (yes) beta transition. These developed formulas are expressed in
terms of (l)ii , the ratio of the coupling constants of the pseudoscelar
interaction and the axial vector interaction, divided by the nucleon mess
(~1836) in units of electron mass, (2) A, the ratio of the nuclear
matrix elements and (3) certain functions, which are defined in (3.23)
and (3.26), depending on the electronic radial functionms, evaluated at
the nuclear radius.

2, All the electronic radial functions,2 used in the numerical
analysis, were computed on the ORACLE of the Oak Ridge National Lebora-
tory; taking into account the following:

(a) the nucleus was considered to be a sphere with & uniform

3

charge distribution - the nuclear finite size effect

1. E. Rose and R. K. Osborn, Phys. Rev. 93, 1315 (1954).

2rhe details of the actual computations are given by C. P. Bhalla
and M. E. Rose, Osk Ridge National Laboratory Report (to be issued).

3M. E. Rose and D. K. Holmes, Oak Ridge National Laboratory Report
1022 (unpublished).



(b) the nuclear radius was taken to be 0.428 o A> (g%)
and (c) the finite deBroglie wavelength eff‘ec‘u:,s)+ were properly
considered.
3. A comparison of the developed theory was made with the
following experimental data:
(a) pri** (0"—>o0h
(1) The B longitudinal polarization datum of Mehlhop et al.”
(2) The B™ shape factor of Porter and Day.6
(b) Ho'®® (0" 0 )
Only the B~ longitudinal polarization measurement of Buhring.
L. Time reversal invariance is valid in strong interactions.
This implies that the ratio of the nuclear matrix elements is real.
5. Time reversal invariance holds in the nuclear beta decay.
This assumption gives the reality condition on the coupling constants.
6. The two component theory of the neutrino is used. This

assumption gave Cp = CA and CP = Cé in the theoretical formulas,

“M. E. Rose and C. L. Perry, Phys. Rev. 90, 479 (1953).

W. A. W. Mehlhop, E. D. Lambe, and T. Pond, Bull. Am. Phys.
Soc. 5, 9 (1960). And also W. A. W. Mehlhop, dissertation, Washington
University, Saint Louis, 1959.

6F. T. Porter and P. P. Day, Phys. Rev. 11k, 1286 (1959).

. Buhring, Z. Physik 155, 566 (1959).




developed using the 4-component Dirac neutrino.
Now we present the conclusions of this investigation.
III. CONCLUSIONS

1. We have developed the theoretical formulas for the B
longitudinal polarization and the P shape factor in 0 = 0 (yes)
transitions, without any known significant approximations, using the
correct form of the operator for the pseudoscalar interaction and the
conventional form of the axial vector interaction.

2. By the application of these formulas to the most accurate
existing experimental data on O— 0 (yes) beta transitions, we have
been able to conclude that:

(A) The absence of the pseudoscalar interaction in nuclear beta decay
is consistent with the existing experimental data. This data does not
contradict the V-1.2 A law, which is well established by the experiments
on the allowed beta transitions.

(B) A new upper limit on the ratio of the coupling constants of the
pseudoscalar interaction and the axial vector interaction can be set

and this is
C
- \
90
\CA <

which is about half the previous extimates, as reported in the litera-

*
ture; then the contribution of the pseudoscalar interaction is < .002.

¥The ratio of the shape factor for the pure pseudoscalar inter-
action to the shape factor for the purﬁ axial vector interaction at
the B kinetic energy of 1 Mev for Prl L (07— 0t).
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3. Within the framework of the developed formulas, it is
possible to decide the question of the existence of the pseudoscalar
interaction in puclear beta decay, provided that
(A) The B longitudinal polarization in O -0 (yes) beta transitions
is measured with an accuracy* of ~1% at four or five different values
of the B momentum, throughout the beta spectrum.
(B) The accurate B spectrum measurements are performed, as in Prlhu(o'-a 0"y,
for the other 0 - 0 (yes) beta transitions.

Discussion of the Conclusions

This work represents a consistent detailed analysis of the pseudo-
scalar interaction in nuclear beta decay. The essential limitations
which influence the results of this analysis are the following:

1. The ratio of the nuclear matrix element has to be treated as
a parameter.

2. The tﬁo accurate (2 to 3%) measurements of the B~ longitudinal

166

polarization in Prlm‘L (0°— 0% and Ho (0°—=>0™" give the average of

P
vl7\6 over the beta kinetic energies from 1 Mev to 3 Mev and from 0.18 to
1.8 Mev respectively. These measurements do not provide a sensitive

test of the existence of the pseudoscalar interaction, because a wide

C
range of the values of —EEL-and the ratio of the nuclear matrix elements
A

*
The Osk Ridge group has achieved an accgracy of ~ 1.2% in the
B longitudinal polarization measurement for P3°(1*_, 0%) at v/c= 0.8912,by
Mott Scattering.
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PN\
can be found which give the calculated 7e/ consistent with the
measurements. However, if the B longitudinal polarization is measured
at about four different beta momenta, (say by Mott Scattering), then
these parameters cannot take on a wide range of values and still give
a fit to the experimental data. This can be readily understood, because
the pure pseudoscalar interaction and the pure axial vector interaction,
taken separately, give the opposite signs for the beta longitudinal
polarization.

Also the accurate B shape factor measurements of the 0—> O (yes)
beta transitions are extremely useful to investigate the possible con-
tribution of the pseudoscalar interaction, provided that the beta
longitudinal polarization measurements are available for these cases,
(as explained above).

Finally, we wish to point out that the necessary accuracy of the
measurements in O = O (yes) transitions required to settle the question

of the existence of the pseudoscalar interaction in nuclear B decay,

is withih reach of experimental measurement.
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APPENDIX A

The following relations, which have been useful in this work, are

listed. The proofs and discussions appear in the literature!

Clebsch-Gordon Coefficients or C-Coefficients

Throughout this work, notation of C-Coefficients as given by Rosel
is used; and for reference, it is compared with that of Condon and Shor'tlttay,2

Since m) +m, =m; for brevity C(jljzg;mlmem) is also written as

c(3; 3 dsmm-n, ).
The following* are the symmetry coefficients of C-Coefficients.
o & Hprds .
C(313233Jml m3) = (') C(vjlvjeJ3’-ml’-m2)-m3) (A'la’)
«jl +32 "wj3

(-)

L

3; -'-ml ‘233 +1 3 e

Meking use of (A.la) through (‘%"lc.) , additional relations can be derived

o lM. E. Rose, Elementary Theory of ingular Momentum -(John Wiley
and Sons, Inc., New York 1957) p. 37.

2E. U. Condon and G. H. Shortley, Theory of Atomic Spectra (Cambridge
University Press, 1935) '

¥*
M. E. Rose, op. cit. p. 38-39.




13 L
C(J3J2315-m3: -m ) (A.ld)

jl-ml 2,j3 + 1 )
= (-) (5-2'—_,;7 C(J331J23m3:’-mlim2) (A.le)

,j2 + M, 2;]3 + 1
(-) (53';—;—1') C(J2 3Jl;-m1: 3’m1) (A.1f)

In (A.1l) the phases are real and the parity C-Coefficient

C(P]_/Ef3 000) = O unless ¢; +f2 +,é'3 is even.

/lA.

6r X, = ?(_,, (A.2)

(Reference 1. p. 15k4)

L
(3'm' |3, | o) =Sj;«3 Sn'im 4+ (<) L3 +_1)ch(qla‘;m +1,-n) (A.5)

(Reference 1. p. 85)

VES (6,¢ )Y[ n, @,Y¥)

(2¢, +l)(2€ +1)
=z[hﬂ (2¢ +1) ]C((l(C mm2)C((l(2( 00 )Y ¢ a mQ(e,\F’) (A.6)

(Reference 1. p. 61)

N\f

Xk X )= - HEESECIER NCER IR

g (2) +1)

h ') ¥ Yo W(CAY) | (8

(Proof given on page 158 of Reference 1)
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wo(33'CE 50 t) is a Racah Coefficient and is deflned. as
C(abe; aB) Clede; a+ B,®) = Z(_(ze +1)(af + 1)] c(baf;ps )
x Clafc; @, B +§ )W (abcd;ef); (A.8a)

W (abcd;ef) = o unless Afabe), A(ede), A(bdf), 4 (afc) (A.8b)

*¥
Symmetry Relations of Racah-Coefficients

In W (abcd;ef) the following permutations of (a,b,c,d;ef) are per-
missable without any phase change.

(badc;ef), (cdabjef), (dcbajef), (acbd;fe)

(cadb;fe), (bdac;fe), (dbca;fe) (A.8c)
The Racah coefficients of the following argument permutations give

(-)b te e -fW(abcd;ef)

(aefd;bd), (eadf;be), (fdae;be), (dfea;be)

(afed;cb), (fadejscb), (edaf;c‘b), (defa;chb) (A.84)
The Racah coefficients of the following argument permutations give

(-2 d -e -fw(abcd;ef)

(ebef;ad), (befc;ad), (cfebjzad), (febe;ad)

(ecbf;da), (cefbzda), (bfec;da), (fbce;da) (A.8e)

Also,

()T 2% Sap e (a.82)
[(2b +1)(2a + 1)] H

(Reference 1. p. 113) L

W (abed;of) =

¥*
. See M, E. Rose, op..cit., p. 110.

¥
See M. E. Rose, op. cit., p. 226.
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We give, below, the gradient form.ula3

NAIORY @ - %I%)(dr o1 on Lyt 10

) g} "; ) cre-Lm)y R G (a.9a)

%éé—l
. *
Definition of X-Coefficient
X = X (ls)3y3ys,355187)
s .
= (-) Z (2t + 1)w(s1e231L;tpl) W (82slj28;ts2)w(leSj2;tJ) (A.10a)

t
G = Ql +8) +J +-é2 +8, + it L+85+J (AolOb)

If the nine arguments are arranged in a square array:

£y 8 43
0> 85 Jp
L s J

then the entries in any column or any row form a triangle. Any pair of

TOws or columns can be interchanged, introducing a phase (-)

As a special case

"(_)C T8 -ew (?'blde;cg) (A‘lOC)
[(2c +1)(2g +2)] %
(Reference 1. p. 192)

X (abc;dec;ge0) =

3M. E. Rose and R. K. Osborn, Phys. Rev. 93, 1315 (1954) equation 47.
Also M. E. Rose Reference 1. p. 120

Me E. Rose, Reference 1. p. 191-192.
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APPENDIX B

In the process n—Sp + e+ , & neutron transforms into a proton,
with the emission of an electron and an antineutrino. By the Dirac "hole"
theory, the creation of the antiparticle (antineutrino) is equivalent to
the destruction of the particle (neutrino) in a negative energy state. By
the charge conjugation operator, the wave function of a neutrino in nega-
tive energy state is obtained in Section 1 (B.1c). Using the Dirac wave-
function of the electron in a Coulomb field, and the neutrino wavefunction
(B.1lc), the general matrix elements for the axial vector and pseudoscalar
interactions are set up (B.23). In Section 3, the HB' matrix elements of
0 =0 (yes) transitions are obtained from (B.23).

1. NEUTRINO WAVEFUNCTION IN NEGATIVE ENERGY STATE

The charge conjugation operator 1s iﬁa2 KO where Ko is a complex

conjugating operator.

1000 ° 000-1i
/ \
0100 001io
B‘—‘ 052=
0040 0-1 00
00044 i000
Yoo Kk Y - g, Y (B.1a)
v 2 o vy 2 1,
AA
'iF,L(I‘)x-M

<
(o

x

P
2
>
X ¥



-

P~

M he T
X = Z C(ex“%_ j)(. 5 B =T )"7') Y, X
. o~ L

dx

Fy (r) and G, (r) are real functions:

Fe = 8¢ adg ., (ar)
Gy = aldp,, (o)
(]
f, =iy, X
q}c 1(1 o> 0 o 1Fx7(ﬁ>c
V) = X
o-1/\g o Gu A
c G, &5 K
L,U - w2 Xx,
v M
-i F, G
X
T N G -7
Usin 1 = 1 (-
g G 7(; (=) ;(,2
X
M M -M
and Y L = (—) YL
X ' N
% K S o, ) AT T
’T

Changing the summation letter T — - 7T, we get

4

u % u-T T e
G XY =i (-) zc(éx 1 dm e, =7) Xy Ye:i
v

(B.1b)

(B.2a)

(B.2b)

(B.3a)
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Using the symmetry property of C-coefficient (A.la ), we obtain

.X
W -4 €. L1 _s v —u=r
N D IO R I TP IR P Sy
Ir
H X utl, -3 T -u- 7
Gy Xy =1 (-)FFTw™d 2 (€, & JE-H-T,'T)X.';_ Y.
i
X u&en-.j -i
S X, =1 (M X% (B.30)
Also . X )
G Ay =1 (- o . (B.ba)
b 0 s -1
oo (-G ma-l
Gg 'X_% =1 (-) * X - (B.ko)
We have used éu"’ (-u+ 1 =2 |x] = even integer.
6—~ /Xu X =1 (_).j'fi‘ €x+ 1 -t X “H (Bn)‘l'c)
2 A_,, =
(B.3b) can be written considering that ¢ » 1s an integer, therefore
m irl -t
IR X A
S A, =1 ()7 K (B.3c)
Substituting (B.3c) and (B.lc) in (B.1lb)
¢ g
c J, + “uy +1 Gy
Bo= > Sy (B.1c)
iF, - Y%y
¥4 _wp

We have introduced the subscript » for clarity.
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2, GENERAL NUCLEAR MATRIX ELEMENTS FOR A AND P INTERACTIONS

For the axial vector interaction

- * = ¢ * '
Bo=0. (W E[e+G 75y e-rs(y 75 [Ch+ G 7s)We

(B.5a)
For the pseudoscalar interaction, the hamiltonian is
-1 ol Tl ' c
Hp=z3 © -V (Yl Brs[Cp+Cp 75]Y,)Q (B.5b)
In the above Q is an operator which transforms a neutron state into a
proton state.
For the axial vector and pseudoscalar interactions,
Ho. = Hy +Hp (B.6a)
We introduce the following notation:
— - * c
A, W= ¢ T.(Q & Ya (B.72)
1 - ¥ C
a,fA(e) = CA 6-" (L*Je 6- 75 LVV)Q (B°8a)
o, 3) = ¢, 7. . (W 7. ¥)a (B.9a)
A - A ‘5 ° e 5 v °
oA, ) = = (4. °) (B.10a)
A = -0 75 - (Y 75 75 Y, ) Q M
- i - * ]
i, ) = zm %p 0 W (W, Brs w)e (B.1la)
— i 1 - * c

In the following, Q{A (1),.3{A (2)’:H;A (3), >€A.(h)">CP (1) and

D{P (2) are evaluated and the results are given in (B.7d), (B.8d),
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(B.9b), (B.10c), (B.llc) and (B.12d) respectively.

First we evaluate }C A (1) and show the details of the calculations.

X (W= ¢ 5.(Y & ¥Y)a A (B.7a)
We shall suppress Q in the following:

Using spherical basis, we write (B.7a) as

M W=c, T P (V¥ g ) (B.7)
m' .
(V' o W) -
-1 f)LXu * < O ( )jy +e*u-“v wl Gy, X'::
g"-,xu"‘ ° a4 1 F"u X:L::/
(Y7o W) -
)y e)’ - 1 - -
(—)J oy, Hy [i fx G, (xu) o X: ) + 1 g)LF'?‘y (Xi’ amX.ukv)]
(B.132a)

Now we evaluate
1

(X:, Cna 7(1') =

X
. - '_ L ' 1 w=v _ pt- o'
Zz'c(eé.],u-/,’i’)c(e,'_J,u-'r,T)YQ_ YL'
'r

T 7!
X (Xl ’ C‘J—m yL ) (B.14a)
l ‘



Lok
Using (A.5).which gives

/

v r
((XF‘.’ b‘mxi)=

érr,v’+m(-)mf3— C(iz l.';r('+m, -m)

2

Substituting the above in (B.lka)

(rX:: CD—mXL;I)’-

1
S S o m (P () (€ g3, TIO( LS s s p)
Y o’ A

u-'rx u'=- 7"
x C(31L;5 4" +m-m) Yy Yy

Summing over #', (making use of ng, 4" +m) and using (A.6)

(%;,6;1 X::’):

1
. 2
F 2[R ] et n

t

-u-l-m_

(B.14b)

- ’J"(r
* g( ) C(Q! X -p,p'=T+m)Cc(€ § Jsu =7 ,7)C( €4 § 50" -V, 7 -n)

KC( Jﬁ '7 '|2 ;{T} "m)
Using (C.lc) for the summation over T’

(X

v
2
"

(B olhc)

o« Xi’) _ (_)p.-p.'+l+e+m 2_ [6{2 [N 1)(2£L'm+ 1)(2 3' + 1)]\/’-)<
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TRV i}
X C(€ £} ;00) YA f

(s +1)" C(Qsdm -u' - myu' +m)
S

X C(3' 1 ssmu', m)W(Q €545 €W L 5" § 15 4s) (B.1k4)
From (B.7b) and (B.1l3a)

J +0 -u,, +l
H, @) =)™

f 24

cAé iILG,(y(-)mG:m(x&l»G'm'X;t )

" -
rig R () e (X 6 Xse) (B.Te)

Using (B.14d) changing A- -X; %' - My, s B'o o,

S ("

7!
6o ( )
m m X-x’ Q51':1 ’X"v

_ 2 (_)m <, (m)pmy +1+ Q, +n i 6(20 + 1)(2 ?;{H: 1){(23y + 1) o(? @,) 500)
m
A

)
T2
Y?\

3
(25 + 1) C(Asizuae by “mympy, + w)C(Jy, | S50, ,-m)
S

X WAl 34:€sW(Ly 54 154s)

(B.15a)
We have introduced the following notation
Z = Q..,n ; 'e = e)L
¢,z g_xu; £, - <y, (B.16a)
Also ¢ + @ + 1 = even integer

(B.16b)



-
S

Now, in general, the definition of an irreducible tensor is

w @) = 2, c(diLMnt ) Yt (@) qo

and
2 (@) @ =2 cOriMnm) T, @,F)
) I LA
L is the rank of the irreducible tensor and the parity of
A - *
‘I‘I\LII N (?, ) is (-) , since & is an even operator.
J)

In (B.15a) we combine

o Y‘;*“’“u =S c( A 1L;mep-p,,-m) T.L“;““ (B.16c)
i .
Ti“;““ = Z C() 1L;m-p-p, ,-m) Ym;“'“” 6oy (B.16d)
m

Therefore, (B.l5a) becomes

Z P (R X)) < TG (et
n e o

(d

\
6(2 C+1) 2y +1)(24,+1) T\ *
[ SEERRDELD Vo a2 500 mppne

4
e
x Z (25+1)C( A 1L;m-p-pp ,-m)C( A 53;uHy, -m, -p,,+m)
S

*
O: commutes with B. (i =1, 2, 3)




b7
2 Clipy ssuy ,-m) wAly 335 €s) wllo o i 54s) (B.15b)
Again we use (A.8a) on the three C-coefficient in the summation over s,

C(ANLm - p =y, ~m)C(Asd;n +py-m)C(Jjy 1 s;u, - m)

v - -
= (<)M (VIS ( Lim - -y, - m)C(Ju 85 -y ,m)
xC(sAJ; - py +mpu +puy -m)

A
“J+ Ay +1 S
=TT e Lmeney S om) 2[(2s 1) (2841)) C(LR 8" 5y oy, )
Sl

X C(Iys'ds-ny uy ) Wiy 1 JA;s's)

Substituting the above in (B.15b) and making use of

Z C(™ I Lim-p-p, ,-m) c{A Is';m-p-p, ,-m) = gls
m §

-u

2— (-)" Gm (7(:8 % X)'-y )

v
LS T (gt 0y, S [6@2 1) (24 +1) (24, +1)(2L+1)J‘T-u~uu
B L 7 Ly L o

x CLeL2uA ;00)C (JyLis~ny,pn +up )

x 2 (2s41)W( X €y 345 Ta)W(Ly 341s4e)W(3u 13 ;1S) (B.15¢)
S

By definition of X-coefficient (A.10); and using (A.8c)

S (es+L)W( ALy 3 %5 Tl €y 51154 8)W(3, 13 ) 518)
S



LtA+dy i+l +& ~
= () (LIl 4w 3ILE)

Substituting the above in (B.15c) end using (Al.s)

T P G X, )=%2 (i iy + E

6(2 1)(24, +1)(23 1)(2L1)
x | - £ ”;: T g4 ) s00)

* Cldy Wsmy pmumuy ) IHH X (L1250, 4 6,50 & €) (B.154)

From (B,15d)} X% <X, Ny - X,

" a9, +04
2 P gX -2 3 @

n
Y.

\'6(2&1)(2 T a)(23, +l)(2L+l)]— e(( T 300)
X Ly e

% C(Jy Ldsuy s=u-p, ) T;“):“u X (233, § €, i §¢) (B.15¢)

Substituting (B.15d4) and (B.15e) in (B,7c) and using 2J, +1 = even

J+ ¢ 6{2J,, +1)(2L4) 3
o, (1) =c, 1 (-) e Z ZLL "’f,m Jc<a, Lok, »Hohy )

-u-uy i( A [(2€a)2d, +1)] c( £ €,3:00)1, 6, x(11);3, 16534 0)
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g
[(2 ¢ +1)(2Z'1,+1)] c(£ 2, % ;00)g,F, X(129 53, 4 & 53 ie)} (B.7d)

Next we calculate

o, @) =c &. (\ye 5w ) (B.8a)

X, () =¢c; Zm (-)" ey ( L\J:G;n 75 klf,c) (B.8b)

Using K,)e. and \Iic; (B.8b) becomes

: Jp+ly =n, 1 -
X, @) =c, 2 (g, () i L-le,,»(x‘_‘,d ng”x_‘:(y)

i

" o
+8, Gy (Xhr e A )_‘) (B.8c)
Using (B.14d) and proceeding exactly as befcre, we get

N, @)= ¢ & (Y, F%E)

_ol (o) £, 14 ?_Z L6(2.jy+l)(2L+l)J (50 L5y mimi) T

3
X i(—)z + [(2Ca)(2e, )] c(@ T 500)5F,, X{11) 55, £ & 59y €)
4
(—)e [ )24, )] c(£843;00)8,8, , X(L1X 55 4 4 3350) } (B.8d)

Now we consider D{A (3) = -Cy 75(L¥:‘175 Wj)

. e sl [ g, XM 701\ [ o6, At
We 75 W) = () ] ( »un ( > “‘V -Tl
8. XL 10 1 )(_,::



B, 0 AT + 8,68, (X Xwr)  (Bal7a)

Jy+6,mu +l
WS g - (> j -

Using (Xi, Xi:) Le. (A6):

Ip+d, - mu+ (23+1)(23,.+41)7 2 P
9‘( (3 = "C (") g 2[ 1{-1\:(2) +l) J C(JJVA 3=H, Hy>75Y}u I-*)(r
_ s o
x [ 5B [ER)GA)]T o(€8 5005, TEAY)

iR
2
+ 8, G, ((2011)(20,) ]  c( L, ) 500)0(35, 04, 53 4 )J
Again, we introduce the irreducible tensor
“H=hy _ mHeHy, (A
rYy P(R) = T (E,75) (B.17b)

The rank of the irreducible tensor is and its parity is (‘--)M:L because 75

is a tensor of rank zero and is an odd operator (in the Dirac sense).

* 4,
Writing the Dirac equation in Co-variant form (7. -%——- + L)Y =

it is easily seen that under the Parity operator P: P\f(?) =y \P(-r)
An operator <L in the Dirac space , then, transforms as 7y,JL under the
parity transformation. Since 75 anticommutes with 7), therefore, 7 757
= =Y. : and hence the parity of“y. is odd and is odd operator (in the
Dirag sense ). 2
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Substituting (B.17b) we get

X, (3) =

I+, ~u+ 3 r(23+1)(25 1))z -
o ()7 7 2[ ) S AT @)

Y

X [-an,(y (€ +)(2 2, +1)j%‘ C(Z T, 25000035 € &ys 1z )

4 :
+ &G, L(gm)(eé, +1)]3 c(LLp ;00)W(33 € 6 5 A1) J (B.9Db)

Ay )= ¢y 75(Yores )

"C.;x75(\¥: ¥)) (B.10a)

, Jy“*‘év"“y'*l - s B
XA (k) = -C, (-) {ifiG"u(XE?’X:u) ¥ lngx"(xi,Xmi” )} (B.10b)

Using (A.7) in (B.10b)
Jptly-ny,=n+d _(23+13(25w+1)

%
ZL_ k{22 +1) ] C(IIp hs=ts=my)
P

A () = -ic, (-)

“HHp

— 1 — = '
T2,2(3,75) [f“GwKe 2+1)(2 €y+12]2 c( £ ¢,);00)W(35¢ ¢, 5 32)

— i _- —-
+ 8, L(eé+1)(2 e, +1)]2 c(e €, A ;00)W(33,00,;5 13 )] (B.10c)
For the axial vector interaction W€ have

Hy = 0 (1) + g (@) + ¢, (3) +2¢, (8) (B.5a)



where, explicit expressions for )(5\ (1), XA (2), X, (3) and XA (&)
are given in (B.7d), (B.84), (B.9b) and {B.10c) respectively.

In the following, the pseudoscalar interaction is treated.
i * 1
By = o5 O V(YL e7(Cp + Corg) ) (.5b)
By = X, (1) + X, (2)
i - *
K M)z 256 & UYL er ) (B.11a)

XP (2) 2 élﬁ' Cl': E?-V(\V: B ‘-}i) (B.12a)

" . -if, ) 01 4l -n 4l /Gy X, “Ha
(q)e675 q),,) "< gn X)E’)( 04 )( 1 O) (") lF” Z -HVB
Yy - Ay

% v+l
2 el - ()" e, () < we, KL el

Substituting the above in (B.lla), we get

C Jy “Hy -
A, (1) =15 () 7 [?\7 EENaya ) B, (A }:ﬂi’)}l

.11b)
Using (A.7) and S+ V= i (=)™ 62V
m
C o Gty —u-l (2J+l)(2J +1)72
X, (1) =1 ()" . - ]Z( v, [ic(aa,,x,-u,«m
o (2¢ A} 1)y _
qu “V{(. 25 1 JZC(e LW As00)5 K, Wi, (450 E ) 4
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L
(2e+1)(2€),+1)]z
+ 55 11 7 C(€8,) 500)g,Gy, w(ij, €4, ;2% )Z(J (B.11c)
We introduce _ _ L
(2¢ v1)(2¢4 v1)T _ _ _—
Ry = [ AT c(ee, ) ;oo)fo,(y w(j,j,uy;’,\I') (B.18a)
(2€ +1)(24, +1)
Ry, = [ ST Tc(N» A ;oo)ng w(ii, et ; 21{) (B.18b)
then

Jp+l -uzu- (2j+l)(2,] +1)
X, @) =1 TR fZ( Pe(33p »-itr i)

x G Yn Y3 (8) (8, + Ry) (8.110)

Using the gradient formula (A.9a) and

6o YA ™ (@) = 2 c(AHL, 1, Lsmpmpm, )T ) ()

L
and
6- Y-u IJ-p'Hn (I"\) = Z C()-l,l,L;-p-py-l-m,,-m)T-u—uV (?’?) (B'l8c)
Caiadi] L, -1
AR
Jp+ympy-u- (2541)(245+1)) %
How=-10) "7 ‘21;4 o } i im (=) cadyhs -ty -1)

*i[gﬁﬂ Z C(A L, 7#L; -1miaym)C(A +1,1L5mmp im, m)TL o % By (M) (R +R,)

[2 - 1] Z.c(n1 A=1; ==y, ,m)C( A -1,1,L; ~p-p,4m, m)TL ;ul D+(A)(R1+R2)j



where

D, M)z &-2 (B.184)
D, (A)= -d-rdi- + )r"'l (B.18e)
pHTHY o TR (22 (B.18f)
Lasl = Laxl

Using (A.1d) and (A.la)

4
dy+l,-u,mu-t Cp T(2541)(25,41) ] &
A, (1) =1 (-) vy 2_»1;{_ = ] %? C(IIuN 3-Hr-kp)

)

2 l-m
] (=) () +1 1 A-pep#m,-m)C( A+L 1L;-p-p, 4, -m)

) (_)mi A+l , 2M3

2043 2a+1
4
“Hek A, 2)-17*, \l-m ]
T P ) Rysey) s ) ORIV RV FREWLELY
~p =

X C(Q =1 1L;=p-p,#m,-n) T )_1‘ Dy (2) (By+R;) } (B.11e)

Using
i_ C(A+1 1) 5-p-py+m,-m)C( A+l 1L;-p-p,+m,-m) = 5q L

m ’

and

Z C(2-1 1) ;-p=p #m,-m)C(A -1 1L;-p-p,+m,-m) = S\ L (B.18g)
m. N

We get

il
Jy+du-pu+t 1iCo T(25+1)(25,+1)7%
}GP (l) = (-) g * 2MP L )'HI z J Zc(jj»}\;-u)-u)’) X
A
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[[Qm T )_l (?,&)D-(2) (R, 4R, ) - [M] TL“ :‘_‘ (7, D4 »(almei)

where Ry, Ry, D.()), D3()) and T Ly :| are defined in (B.18a), (B.18b),
(B.18d), (B.18e) and (B.18c) respectively.

Now we calculate
My (@)= e, &Y ) (.12a)
% j+¢=yﬂ. _
(Yow) = (7 i, 1, ) - tmm (X1 )
Using (A.T7) / ( ¥ ) '\i
dyt &y -u,~ut+i [ (241 )(25, +1
(LP:BL)US) =1 (-) i ‘[__ )_my J ZC(JJy;\ s-’u,-u,)Y e Hy

(ee+1)(2f,an >+ _ _
[ 24+ ] C(f@,);OO) f-,tGun(jjvl?yi 2“-“_)

(o) d +
AR AT SR W ATYS }

Substituting the above in (B.12a) and using
-

Ty = % (-)" 65,V

1

(2¢+1){2¢,+1)
3 :[ e J C(2 €% 500)5,Gy W(33, €8, 5% ¢ ) (B.192)

1
(2¢s1)(2 2, +1)2 _ _
R e e B RSN ST E ALY (3.190)
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J TR TE (25+1)(23,, +1)
Hp (2) = - () S dede EM)LJ > Ji_( RCENY SETRETHY)

G VU Y ¥ (RywRy) (B.12b)

Applying the gradient formula (A.9a)

~H=H, +m

“H=H 2+ 1
vm Y) V(R3+R)+) C(A 12+1;-p- Hyym)Yk_'_l

2A 43

iR
- L??TIJQ— c(al )-l;-u-uy;m)Y;u:; " D, (A(R3Ry,)
D_ () and Dy (}) are given in (B.18d) and (B.18e)

Substituting the above in (B. 12'b) and using (B. 18c)

5 0, -t (2 1)(23,, 1)
e - T 2M>[ Ay S S (Felssnsmrmin)

L Al
|
2+l
X3[2A13 C() 1 \+l =p= Hy:m)c(}\*‘l lL “H- p-y+m} m)T ? D_('/\ )(R3+R)+)
L
.._...__(’\ - K=ty
- [_2»-»1] (AL N-l;p=p,,m)C( N =1 1L;-p-p +m ,-m)T Lo D, ()R *'Rh)% (B.12¢)

As before in .Bc% (1), using (B.18g), (A.la) and (A.1d)

jy+£— - +.L c! 25+1)(23,+1) +
}CP (2) = (-) v —E L : Ly = JZC(JJ»> ;'U-;'U-y)
2
1t ATy
i[z;m] o HH : D-(M)(RgR,) ’[éﬁi]z T>,-*'1 D+(A)(R3+R4)j (B.124)

R3 and R, are defined in (B.19a) and {(B.19b).




For the axilal vector and pseudoscslar interactions, the B~ hamiltonian

B = R (Y2 [0,0h7s) W7 (Wi Cehra] W)

. - * .
+ éj:'M_ 6." V( We675 [CP+CP75] LVVC)

becomes from (B.7d), (B.8d), (B.9b), (B.lOc), (B.llc) and (B.124)
3+, 48 6(24,41)(21+1) T -
HB- ={‘ch (") %%L—{_ﬂz_r}[i_——-lj C(ijsj;“y}"“'“p)TLx v

— 1 —
X [&2(+1)(2€,,+1)_‘[2 C(Z4300)5,G, X(LLX 35,38, 534 2)

- [22s2) (20, 1) 7 UT, 230008, P,, KA 53,4 5,5030)) }

— 1
' J+0,+2 +u-1 6(25,,+L)(2L+1) 2 el
+ {CA (_) iL i{_ )4_“ C(ijJ;uy} 'U'H;,)TL)‘ Y

x[[(2?+1)(27v+1)]% c(e ¢, 2 300)£,F, X (L1 33,1€,5530)

+\'_(2€+1)(2 ey+1)f2" c(€¢,2;00)g,G,, X(112;J, L 45342) ] }

5,40, -ned o (2341)(23,41) )2 -
- iCA (-) i[ Tn(2 3 +1) J C(JJy)?"H;‘Uy)T),: (?,75)'

A

x[- Ke Z+1)(2¢, +1)]% c(t ¢, % ;00)8,F, W33, €452 %)
B 4A) JE G0 6500085, (33, ey 3) ] }

23+1)(25 +1)
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1
Sl 5 S
-fiCA (-) 22_{(_ ll-:[(2 +l) J C(JJ»)E'U:"Uy)T)‘,}‘ (1',75) X
A
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i
N { (_(2? +1)(2 dl,+1)_)L c(26, ;oo)fxc;lyw(jj,“ézy 3A L)
+[(2e+1)(2?,,+1)f ciee, ;OO)gquvW(,jjyl’_é,;; i) ]}

1

. Cp J»+ey”u-u,+2l_ (23+l)(2jy+1) P
+ 711 (=) Z
)

lm(2}\ +l) C(ij2;=uy-uy)

- \

§ o Hoy Y ‘\
X i - A { j
[(Aﬂ) T DM - 2 T aal D+())] (Ry R, ) }

! : - . v _ L
CP Jy+ly"u“up+ 'zL‘ (2J+‘L)(23y+l) 1 3 .
+ ) ] c(J

M (=-= E-st(2 Nrl) Jp;\ S‘HJ'U-V)
y,
[(Xﬂ‘{ 7 D () -’)‘*l" T ™y (A)| (RyR )}
S T BT ] E
where _ i
(22 +1)(2f,+1) )% -
R, = L 5T ] C{€ ¢, ) 5000, F, W(3d, 24,5 2 3)
L
(2€41)(28,41) 2
R, T [ S _} c{¢ £,);oo)nguyw(jijy; At

AN
(27 «1)(2¢, «1)y* _ _
R, = L AT Jc(z QVA;OO)foun(jjyléy; A3

s
[(2£+1,)(-27, a£))1% _
_a  Ada
D, (’)) = 5ty
_ 4 A
b.MNF -7

(B.6L)

(B.18a})

(B.18b)

(B.19a)

(B.19b)

(B.18Be)

(B.18a)
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T;“;“”(F,G)-: S c(mL;m-u-u,,-m)yn;'“'““(?) & (B.16d)
m

jod S ¥ “H=Hp A

Tia B75) = ¥, X8 7 (B.170)

Thus far, no retardation expansion has been made and the results
given above are the most general for the interaction hamiltonian for the
axial vector and pseudoscalar interactions.

Now to get a matrix element between nuclear states specified by

M, and J

i’ f’M

J £

; we shall use the following notation:

Al MX  u My MX o oM M
7 k_[)J N (x) afx) YJi a7,47, = (fJf My LJ/Ji
X f
Where in the above, L(k) is an operator acting in the space of the kth
nucleon. Q(k) is the operator which converts the kth nucleon from one
charge state to the other. There is a summation over all the nucleons.
In (B.6b), we have the following:
L - rank of the irreducible tensor
% - order of spherical harmonic for the axial vector interaction.
4 ) L » - refers to the orbital angular monentum of the electron and
neutrino for j -and %,
e ,e, a.reQ_x and é_wvrespectively,
By Wigner-Eckart theorem,

(3¢ Mfl Tbe }Ji M) = C(I,L TN MM) (3| Tp(|dy)
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and also since nuclear states have definite parity:

L 7{T) = Tp
Ty Tes #(T) are the parities of the initial, and final nuclear states
and the irreducible tensor respectively.

We shall use also the standard notation

Gl

To find the matrix elements of HB“ as given in (B.6t), we are
interested in the following:

i S e 2 7
() e M| T Y#,&) )3y W) = Iy LopsM, mumnys M) JTL;\ ()

{(B.20a)
and .
mowe = (=Y 5 A(3 1I,) (B.20b )
(@) (Tp M| TRy 0, M) = 03, % T M e M) | T )
PO T ST ) RS i A Y Rl
(B.21a)
and
w1, = (=) 2 s ad a3, {B.21b)
1 T 3ANd; M dp -21b

“H = 2o - N 7 N . A \
(3) (Jf Mf ‘T)’ '/\+:]_&r’ 6)' Ji Mi) = C(&Ji A Jf’Mi)"H“uyny) ST}, 7\+l(r’9?)

(B.22a )
and
A+Ll -
m; e = (=) DA(% Y (B.22b)
() (g MITDHQH”(Q?\TMmc(J}\ M, - )| T (FL &)
* f f ) 2=l 2 / b,l, :L) @f’ iy umuyynf 23) “'l 96‘)
(B.23a)
and
g m. o= (=)t AL, A L) (B.23b)
1 f 9 Y i uf o
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In (B.20), (B.21), (B.22) and (B.23),M, = M; + (-p=py). Using
(B.20a), (B.21a), (B.22a), (B.23a) and (B.6b), the matrix elements of
H.. for the axial vector and the pseudoscalar interaction involving a

B
nuclear transition from a state (Ji,J ni) to (Jf, :n:f) is ¢ 8

<Jf M| Ho-| 9y Mi>

1
340+ o 6(23 +l)(2L+l)j2'
=tic, (-7 :iLii{_ - I Cl 3,15 s =ity YO (T TT o5 My 5 =impy M )

A

% _S'.I‘L’?\ (#, & )[{(2&1)(21“1))% C(T L5008, Gy, X(LIN 335 405 5 3 2)

- [(2€+1)(2I,+1)]%c(£ 2,2 500)g,F, X(L12As3, 12,5350 )]}

6(23,+1)(2L+1) B
&_ I C(jyldsuuy“uwuy)C(JiIJf;Mi;wu=u,,Mf)

4 {C;\ (n)j+e,+?ﬂ_t=l
% i

-» — 1 —_— _
X KTIIL,) (?3 6-) [[(2£+l)(2zy+l)}? c({ 0» ) ;OO)f*ny X(L 1 );jy%"eﬁj%e )

1
+K22+1)(29u+l)_FC(Q 1,2 ;OO)ngxy X(L12s53,24, 53 —%—Q)J}

L (2341)(23,41) ¢
) ECA (_)Jy-'b“ey Hopy, +5 21“(2“1; Tc(gg,; 3=p, =1y JC(T; A T o5 My 5 =pioys Mp)

A
xjmm(i),rs) [ - {(ee ) (22,1 )_‘)%»: (T Z)2 500)£, By W33, £ 432 3)

+[(2£+1)(2£,+1)J% c(€ €, 1;00)g,G, W3, €6 32 3 )] }

gl el < [(2341)(25,41) 93
- ?iCA (-) »hy TS Z_L Ix(2 A _:_-:) c(JJy?\;“‘l-ls“Hy)C(JikazMiﬁ"U”uyst)

J-TA,) (#75) [[(22'+1 )(20,41)F CT &) 500186, (33,8403

[(eesa) (27, )] e(tB 2 50006, B, 733,08, 52 3) ] WJ +
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(23+1)(24,41) 3
be(2 ) +1) CLIdy D 51y =uy)

: f_ a,+€,-u “Hytd Z

[( l>\+l 3- C(Ji’>\ Jf;Mi’auﬂu”’Mf)S\TA)>+l (ﬁyg,)Dg(k)

- (x)%c(Ji) Jf;Mi,-u-py,Mf)fT)’%l(z'v‘,?-)D+(}\)]x (leg)}

. il'i ( )jy+'e»wp.-=p.»+%-' (23+1)(23,+1) & S0 5ot mpi)
aM ‘" 2 Lhe(22 +1) S 5oHs
1
o[ O ey a s i (2 @20 0
i
- (7\)1 C(Ji) Jf;Mi;"H"H 5Mf) T),)-l (9,?)D+ (X)j (33 R)_'_)}
(B.6c)
3. MATRIX ELEMENTS OF gﬁ_ FOR 0— 0 (YES) TRANSITIONS
Now we specialize the equation (Boéc) for Ji = Jf = 0 and
T[i ﬂf = "lo

Two types of irreducible tensors occur for the axial vector inter-

action, Namely, T “7\“” (, &) and Tk N (rﬂ )o

\ A
(1 g \2f" @ 80| o, W) - c(Jimf;Mi,nu-uy,Mf)STL,\(ryé‘) (B.20a)
In this case n; =, = (.,))" and A(J,LJ,) {B.20b)
i~ f
A = 1 so that L8 xrf—-ul

L —» 0 (since Ji = Jf = 0) and the Projection of a zerc rank tensor is
also zero; therefore, p + Hy = 0.
By definition:
0 A = .
Toy (T &) = im c{it O3m,-m) 1(‘; ) &
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2L chonmolE &

m

& Z2 Py =

m

o &= FF

n

0]
Matrix elements of Tyq (¥, &) for J; =Jp =0 are

(00 \Tgl (, &) oo) = -gu,_uy hl; g .5 (B.20c)

Similarly for the case

(Jf Mf\ T k- uy(r.75)l Ji Mi) = C(Ji’>‘ Jf;Mi’-u—uV’Mf)ST))(;’75) (B°2la)
and as pointed out earlier:
g, = (- ))+1 ; and A (3,0 J,) (B.21b)

In 0 =0 (yes), %; W, = -1; therefore, A=0

and also p = -pu

y o

0 /A 1

Too (Ts75) = Yg ) 75 —j-;;

0 1 |

(oo\'r00 (1’-‘,75)loo) zjm Su,-u, J;S (B.21c)

In the pseudoscalar interaction, there are two irreducible tensors
m oY (, &) aT. (2, ¢); wher = ( ))"'l Thus we con-
>“’7\4_]_1*'&" an ,\)‘l H ere 1y Mo = (- o c

sider \= 0, and as before p =% -u,,

0 ]l - A
T01=-H G-I‘

(o0 \ 1%1(9:?” 00) = -E; S u,-uyféz 7 | (B.22¢c)
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"l-l-p'y"'m

“H-H, A
But T r,e )= C(AL x-1,-p-p+m,-m) Y r) G
),)-l(’ ) % ( s Ky, 2 -1 (A) -m
~i =,
For A=0 ; Y/\“_TV (r) = 0 and as such there is no contribution of
S el & A = L.
T (F,) to 0> 0 (yes) transitions.
)) ) "l

The coefficient C( (l (2('3500) is called the parity C-coefficient,
if fl, 22, and €3 are integers.
Using (A.la)

¢4y €,4,,00) = (-

For the equation to be true, ¢, +Q2 - [3 = even.

e Ll
1 lgts
)* E3e0,0,0,,00)

1l

Pl I
and s0 i, + U, + ( even.
80t * o 3

Also C(J10J3,°m10m3) = é (B.23c)

I3 S my ;0
Consider in (B.6c) for 0-» 0 (yes)ibeta transition

[

L
)
1€ 4F 6(25,+1)(2L+1)
,—‘-_ii c, (-)J+ ”+€+MEL%[ z I JC(J,Ljsuy,-u-uu)C(JiLJf;Mi,-u-up,Mf)

- 1
L )(f‘, &) * LKEE+1)(2€y+lﬂL c(? fyﬁ;oo)f,G,(yx(Ll A3, L053L0)

({3

i

Y _ . T .
-[(2n)(@%41)]" cTy 5008, 5, X(TLA 53, 4 B33 4€) (B.2ka)

Since in the above >\ = 1, the parity C-coefficients gives

c(¢¢,1;00) = c(eei ;00) (B.25a)

C(¢L,) ;00)

g)(.,)(y
S c(t? ;00) (B.25b)

2,00,




and C(J OJ3p ,-p-u,) = gwyg -

then X-coefficientsbecome ,
X(011;33€55 4 €) = X(€1 35 € £35110)

J-Cry W(@LelL;a1)

HEmake

J-C+ % W(Peis;13)

[ElC kg

X(011;54¢534 € ) = (-)
Using (A.8¢)
x(011;5 445342 ) = (-)

Similarly,

— '—e J 2 ;
X(011;31 ;34 €)= (-)°7 %%%ﬁy"

Also C(j03;u,,0) = 1

Substituting (B.25) and L = O in (B.24a), we get

ya{A (l) - CA (-);H'Q.Q-m @ gHJ‘Hy ("‘)F

Uy w(T s

X [ L(z@l)(zh;)]i C(Zél;oo)fnGx(-)'J

- Eze +1)(22¢ +1)]2' C((-e-l;OO)ngn (-)j“L“i

Using (A.1b)

c(? 1,00) = (-)Q"é—‘l c(f €1,00) = c(Z4 1,00)

0+8+u+3-0+4
J";g (1) = -1c, (-)I e +zgu,

_“'y N“y

I 7 . 2-¢
x c(ee l’OO)W(eriji’lj)[_fon' (-)

25+l JL

[(2 Z+l)(22 +1) ]
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(B.25¢)

(b.254)

(B.25¢e)

(B.25F)

5,

Wwlt$3;15)
3 i
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Using £ + £ + 1 = even and 2j + 1 = even integer

_ 2+l (28+1)(2F +1)
S\XA (1) =1 CA (-) wr gp,,-p. éxm.y[ 81{2

— — -
% c(eél,OO)W(éQ%%;lj)(fox+ 8,5 ) Jcr e

Similarly we consider

(B.24p)

JXA 2)= ¢, (-)‘j"“keﬁ_éw;l 2 z;\ [6(23)};?(21‘@]%0(3@3;%,-u-uu)

A - — i —
X c(Ji o3My s iny  Me )J ?\(r, &) [(_(22+1)(2Z,+1):]2 c(¢ e X ,00)f,Fp,,

1
x o X(L1%;35,48,3382) +[(2£+1)(2€,,+1)]2 c(¥ ?»'A;OO)g'.GnyX(I.J};j-% ey;j—é—e)]

Again for 0-> 0 (yes) transitions,
A=1; L=20
The parity C-coefficients give
c(Z & 1;00) = § o, c(? € 1,00)

b )

c(e ¢, 1,00) = S c(¢ 7 1,00) =gn, _xuc( 7 ¢ 1,00)

X,-)(y
C(J0J, My;'M‘My)":éjv 3 'éM,—»u,
X(011, 5% €;3% ?) and X(011,33 ¢;J5¢) are given in (B.25d) and

(B.25e).

(3043 M, 0) =

Substituting these relations and (B.20c) in (B.2kc)

, o Opt s 7
fD{A (2) = ¢, (-) 2 SN Mu . [(26-3-1)(2 +1)

C(Z ¢ 1,00)W(00 £4;15) (£ F_ €, G_ )S, A

(B.2kc)

(B.24d)
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J’}(A (3) = -C4 (-)J"'BV-M"’“H"'%Z[(QJ+1)(23 +1) %

Tr(ea+ D) C30uds-4m)
P}

X C(I3A JgsMy,-pn —/Ap,Mf)JTA,h(’r\, %) [-[(2Z+1)(2'é; +1J]%¢(T , 2 500)

L
< T By W33 2850 8) +[(2L+1)(24 +1)]°C(2 4,1} 500)8,Gy, W(33, € 4,5 %ﬂ

(B.2ke)
From (B.21): )==O; after simplification, as shown above,
we get
f?f (3) = XA (-)J+€+M§ S (£,F, - g G, ) (B.2Lf)
A Il-_n_ M XA, iy n 7’5 o

Similarly, we evaluate

' .y ‘ey' . % %
J}(A (4) = ~1Cy () i Z[ (ij:r-;;)ﬁ(e-ff; 2 C(3dL A ;-4 -My)

2 C(Ji) Jf;MiJ-‘L.My)Mf) JT?‘,)(?J75)

1
x [@2 Z +1)(24, +1)] *c( Z4,);00)z, Gy, W(J3d, 24 ;23)
1

- 2 — -
+ L(e ¢+1)(2 2, +1)] ¢(£ 2,2 ;00)g,, F,, W(33, 0% ;)%)J
Substituting the values of Racah Coefficients and simplifying,

T
]

J)g ()4-) = -1 L 5 (-)j+£+M &A’—’U‘U gm-)ty (fx_ G-)(+gn F-X. ) ‘J-7 5

(B.2hg)
Now we consider the terms due to the pseudoscalar interaction.

For the general case we have:

1

-C f _l‘ s 2. »é-
Jot e Bt IR Ty
A
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x.;{,-..(j AVZC(TLD TpiMy, ==y .Mf)gg, 9 LB SID(R) - (3)%e(3,2 T MLy A=y M)

j Ty, 5 -1 (7,¢) o, (7\)] (R1+R2) (B.268)
Rys Rygs D ()) and D. ()) are defined in (B.18a), (B.18b), (B.18e), and

(B.184) .

Using (B.22c) and simplifying, we get £@¢ 0—>0 (yes) beta trensitlons

f}f (1)=i§9,§§ ()J+£+Mé éa."Mu H—[f,j’,ﬁgu ,‘] f@’ .r

(B.26b)
8imilarly we consider S‘)(P (2) end we get in 0 =0 (yes) transitiong,
'
Cp Jrl+ptl
2) = —._.... - -
,(.}(P @ 8= (-) : S)La"‘ll éﬂ-:vﬂu dr[—" ox & F 7‘]{
: (B.264)

For 0 -0 (yes) beta transitiong we get

(e 18- - Pﬁ W+ o @+ [, ﬁeA (1)+p6(2) +56p(2)

where the terms on the righthand side are given by (B.24b), (B.2kd), (B.2kt),

(B.24g), (B.26b) and (B.264) respectively.

Now

Fy =5,adp (av)

G, =qJd, (ar)
therefore, F_, = -8,4a Jp (ar) = -6,0C,
and G, =4 J2 (ar) = 8, F,

Meking use of the sbove and using (A.lc) and (A.8d), we obtain the nuclear

B matrix elements for 0 >0 (yes) tra.nsition@»’,
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S AR

1 +0+) \ 1
= = (-f‘ SM)_M»%(iCAgxmy - 5,C, (5&, n) [[@(2 7+ 1)]2 c( 7 1¢ ;00)
W(C ) 335 € 2) (£, Gt 8. Fy ) J€-% + (£, F, -g,tc,()ijr5

C ]
. (i P Cp d =
+ (i =X g £ 2, F.2
o v Sw o 5;:,-x, )dr(fx F +g, G, )|o.r

(B.27)
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APPENDIX C

1., Evaluation ofAK,

We show the details of some Racah recoupling, which have been
used. ,
4 ST ens T - T+ R B35, IO st T4, 7 o)
i x C(Z1%57,-n) (C.1a)

C0 0 25T, =T m)CUS J5u -7, )

\

J CQGbuu-mu-Tmmw—Lu -7 7)
\

= (_)@' + ' - 7+-m[;29 + 22325 +1)(2¢ + ll] C(Rsla,p - p'-m,p' +m)

- ? +p' =T+m[22+1
T 2¢ + 1

22 + l

X C(f' 5 sp5u' -T+m, 7 ) WO g 53 0s;)  (c.2a)

In arriving at (C.2a) we have used (A.ld) and(A.8a).

Similarly,

~ l l él -m' fT 2 Tt l
(3 i T +mT-nlElzT, =) = ()7 T *if:i;Z:
X c(e jv = =T+ ' +m,- o' )c( 1 ~T+m, - m)

, * il
= ()L T 12&23' +1)(2s, +1)]%C(3'1 sp5 -u', - m)
xC(Q'sy 35 ~T+w +m, -ut =m) W (L& 3 515 5sp) (c.2v)

Svbstituting (C.2) in (C.la) |

A - 2 (- L [(2k +1)(23'+ 1)(2s) + 1)(2s, + 1ﬂzc(2slj;u-u'-m,u' +m)
£,8
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X €(J'1 s55-n', -m) W()Z‘éi 3451) w(e j'% 13 %82)

g (-)-?C(e'% ssp =T+m, ) C(L's, 92'-;-='T+ W' +m, -u' -m) (C.1b)
Using (A.lc)
7 1 l . 1 lu 1 1
Z(-) c(e §sl,u-T+m,’(“)C(Q52§-, =T+ p' +m, - p -n)
T
=z(_)( (_)én +T - ' - m_é_s___%___ c(Q %sl;“' “C+m, )
v 2 +1

C(Z' 'QJ:SQ: u' “"T“'m»zﬂr)
.

0 -y - %.
= () W' -em [__ 2
2s Sss
2 +1 152

Substituting the above in (C.lb) and summing over s, N

A - p il [(2 2+ 132y +2)(es + 1)2fc(2sj;u-u'-m,u' +m)
S |
% C(3' 1 s; -u', -m) W( L35 s) W’(fl'j% 1; %S) (C.1c)

2. Time Reversal Invariance in Strong IRteractions

The present evidence is that time reversal invariance holds in

. . . 1

strong (nuclear) interactions to a high degree of accuracy.
The time reversal operator, for a Dirac wave function, is a non-

linear operator and is 1 GéK, where K means complex conjugation.

/ X
Wit = -¢) =1P) = 16 Y(t)

l'[‘:‘ D. lee and C. N. Yang, Elementary Particles and Weak Inter-

actions, Brookhaven National Laboratery, B.N.L. 443 (T-91) 119577 p. 16.
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Therefore, if we consider a nuclear matrix element of an operator _f).

between initial (Q{) and final (LP_‘ ) nuclear states, then under time

reversal it goes to
fklj*ﬂ‘ii-——v (THNL Y
J(l \VJNI gq’
Jymaey;
(f% Gﬂ_" \P)X
(fu o, ¥)*

i

fl

R
where\r).,.p= 62' JL 0—2' .

implies complex conjugation. In our problem 5 We have

In the above * means hermitian conjugate and X

(c.2)

i J‘ 5@6? j(y )p) ( :;“)T)
X VN X O
= -1 ( Sﬁ75) SCT-r = (i‘J 7s) _S G .r)
We have used
= 9 =
( 75)T 575 © 75
and
(vr) - gaig --53
X
From (C 2) we get ( j? )(fG‘ r ) = its complex conjugate and, there-

fore 1J V4 (J .r) is real.

3. Time Reversal Invariance in Weak Interactions

We prove, that under the assumption of time-reversal invariance
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being valid in nuclear P decay, all the coupling constants are real.

The B interaction hamiitonian density is

X% *
1y = 2 (W, W) o (W oy 0+ c,7)¥,)
* n ) - ( % o ¥ %

+ (Wy < Yp vy, Y_cx+cx 7s] i Ye ) (C.3)
In (C.3) the first term represents B_ emission and the second term
(which in hermitian conjugate of the first) represents p* emission.
In the above, we have taken le to he hermitian.

Under time reversal, the Dirac wave function transforms as

follows:
1 , X R
W ot = -t) = THe) =1 3 P ()
Iet us now consider a matrix element

*x o
(p )= (Y SN

% %
(Y G- Yo

[

X
(W 6 63 Yy ) (C.ka)
x
Now ( Wi G J{g@ q)g) is a 1 ¥ 1 matrix: therefore, complex

conjugation is equivalent to hermitian conjugation.
. b
Introducing ~n-T = 6'2"\{)_ 6"2
*
*
= (Yo Ly Wy

In (C.4b) we note that \.,J 1 and WQ have reversed their positiomns.
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it

* * *
NI-(5,N"6)
* X
X
In general 65 either commutes withV)l; in which case J).T =-ﬂ._rz f)-;
X * ~
or 6, anticommutes with Y1, in which case Y1l =g - L.
Also,\fl is either real or pure imaginary. In the former case
AR A
<L ={land in the latter,JyLl = -<L . But in any case, at the most
*
\n"b‘ = ﬂ_r; + L (C.5a)
Similarly,
o - » b
(Jl/5)_, 75 N (c.5b)
Substituting (C.4b), (C.5a), and (C.5b)} in (C.3), the + signs cancel
out, as they occur twice (once in the lepton covariant and alsc in the

nuclear space).
*v

* % *
R DRSS CA RN NS
- ¥
L) (Y Loy 1Y) (c.6)
Comparing (C.3) and (C.6), they are exactly the same, provided:
¥*
CX = CX

H*
and C' = C_'
£
Hence the coupling constants c, and c,' (for all interacticns) are

real, provided HB is invariant under time reversal operation.
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APPENDIX D

We introduced Ao ’Bo 3 Co and Do in the expression of longitudinal
polarization. We give, below, their analytical expressions up to order

R (the nuclear radius).

A g = (° F) -1 ge-ek £l 8.y sin(S, -8, )

,.P [ 2 (py2ke (L) >2 k1 "}
W 21/ T, .
2 -1 -2k .
By = (PFO)T R £ g Sinl4-5,)

2

5 p[ k-7 +%W(27+l-2k)+7§7+l-k22
W 2 R 2y +1 1+ 2y

2R

(O!Z)2 W2 (by + 3)(7 +1 - k)_]a 221{ ng_2 (.(k-l)f,)g Fk-l

(1 + 27) (y +1) ks Fy

-1 1-2k ,
Ck—l = ( F ) (fkf_k + gkg-k) Sin(aK - (?‘_k)
, . D 2k o2k 2k-2 gk-l2>
7 w2y +1 2k! ‘ Fo
2_ -1 _1-2k
D, = (p°Fo) T R 2 (fy £z -8 gk) sm(é -5 k)
p foz 2.2 2k—2(k - 13§ Pl
—E W+ Sy (207 )}L oK Fo]

In the above, |

2 2213
Y =\:k -aZ J
1
oy =
137
Z corresponds to the daughter nucleus.
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0.43 1/3
R = =—"A
137
< = i 2i%, _ % -z /
éx S-k = 7)1( Y .y vhere e T T Y ¥ iazW/p
For
Qz K1
2
7yl - 2 @z)
and Flfx Fo
then,
-2
Ao"> W

. . 1
Lk—l’ N‘&(-l and Nk-l are given by Greuling. Pkc-l’Q K~1? and

Rk-l are given by E‘Ursey2 and these have been tabulated for Coulomb
3

functions by Rose, Perry and Dismuke. The nuclear finite size

g, Greuling, Phys. Rev. 61, 568 (19Lk2).

°D, L. Pursey, Phil. Mag. b2, 1193 (1951).

3M. E. Rose, C. L. Perry and N, Dismuke, Oak Ridge Na*tional
Iaboratory Report No. 1459 (Unpublished).
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corrections have also been given by Rose and Holmes. ’

L
M. E. Rose and D. K Holmes, Phys. Rev. 83, 190 (1951) and
Osk Ridge National Laboratory Report No. 1022 (Unpublished).

¢ P. Bhalla and M. E. Rose (Oak Ridge National Laboratory
Report to be issued); containing tables of functions, with finite
nuclear size corrections, for polarization and ﬁ spectrum.
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