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CHAPTER I

INTRODUCTION

The estimation of disease incidences in populations subject to

competing risks has been a recognized problem among statisticians for

many years. For example, in studies on cancer mortality individuals

may die from causes other than cancer. Disease incidence estimation

has been attacked in many ways usually yielding different results. It

is the writer's belief, however, that none of the previous authors have

approached this problem from the maximum likelihood point of view with

the aim of studying the sampling distributions of the estimates.

Statement of the problem. The general problem is illustrated

most easily by reference to a particular experiment. A group of animals

is exposed to a sublethal dose of radiation. The group is observed

until all animals have died. At the time of death each animal is

autopsied, and a cause of death is assigned. The experimenter wishes

to estimate the incidence of disease A. There is, however, a complicating

factor. Suppose disease B generally occurs earlier in life than does

disease A. Thus, there are animals which die of disease B before they

manifest disease A. The problem considered is twofold: (l) to estimate

what the incidence of disease A would be if disease B were eliminated as

a cause of death when the estimation is performed with a sample from a

population in which all diseases are operating and (2) to study the

properties of the sampling distributions of these estimates.

For the answer to the first part of the problem Kimball [7]

derived a distribution free estimation procedure and gave an approximate

formula for the variance of the estimate. It was felt that this



approximate variance formula was inadequate. A search for a better

variance formula and an answer to the second part of the above problem,

as related to Kimball's estimates, led to the results of this paper.

Importance of the study. For any estimation procedure it is

most desirable to know the small sample characteristics of the

estimates. Kimball's procedure is being used extensively at Oak Ridge

National Laboratory. Unfortunately, in this case the complexity of the

mathematics prohibited a complete analytical treatment. Thus, an

empirical method was used in an endeavor to learn more about the small

sample properties of the estimates.

Review of the related literature. Berkson and Gage [1]

developed methods for estimating the "cure rate" and the "death rate"

from cancer in human populations after treatment for cancer. Kimball

and Atta [8] derived a procedure for estimating disease incidence

probabilities in animal populations subject to multiple causes of death.

These procedures require the assumption of specific probability

distributions for the survival times in the populations considered.

Fix and Neyman [3] discussed a method for estimating "rates of

risks" in patients following treatment for cancer. Their method is

based on the stochastic process approach.

Harris, Meier, and Tukey [k] derived estimates of "event-rates"

on the basis of a sample of observations from a distribution of such

events. Kaplan and Meier [6] were concerned with the estimation of

"survival rates" in individuals. In these procedures no assumption is

made about the form of the distribution of survival times in the

populations considered.

Sampford [12] discussed methods for estimating the response-time



distributions. These methods may be adapted to the estimation of

disease incidences if certain assumptions are made about the

distributions of times of death in the population. Such information,

however, is usually lacking.

Organization of the study by chapters. As was indicated earlier

the major part of the study reported in this paper was concerned with

the small sample properties of the estimates obtained by Kimball's

distribution free estimation procedure. For completeness Kimball's

procedure is discussed in Chapter II.

A new asymptotic variance formula for the estimates is developed

in Chapter III. Included is a derivation of the asymptotic variance-

covariance matrix of the estimated conditional probabilities.

The small sample distribution and its important characteristics

for Kimball's estimates of disease incidence probabilities were

estimated by a random sampling (Monte Carlo) experiment performed on the

ORACLE (Oak Ridge Automatic Computer and Logical Engine). The description

and results of that experiment are reported in Chapter IV.

Chapter V contains general conclusions and a recommendation for

further research.
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CHAPTER II

ESTIMATION OF DISEASE INCIDENCES

Kimball [7] presents a method for the estimation of disease

incidence probabilities in populations subject to competing risks.

This chapter is virtually a copy of his paper. Many of the missing

algebraic details of Kimball's derivation are supplied here.

General description. Assume a random sample of N animals from

an infinite population of animals. When an animal dies, the cause of

death is recorded. After all N animals in the sample have died, the

observation period is divided into n intervals, not necessarily of

equal length; and the number dying of each disease is calculated for

each time interval.

Let a., (i = 1, 2, ..., mj j = 1, 2, ..., n) denote the number

of animals that died of cause i during the jth interval. Let the total

number of animals that died of cause i be specified by

j=l J

and the total number of deaths in the jth interval by

(2.2) r = I a .
J i=l 1J

Then

(2.3) N=2 A =X r, .
i=i x jti J

Define the conditional probability, p. . (i = 1, ..., m;

j =1, ..., n), to be the probability of death in the jth interval from

the ith cause, given survival through the first (j-l) intervals. Then



the probability of death in the jth interval given survival through the

first (j-l) intervals takes the form

(2.*0 s. = V. p., .

The model, by the selection of the intervals, imposes the conditions

(2.5) sQ = 0 and s = 1 .

As a consequence of the definition of the p.., the probability of

survival through the first (j-l) intervals is

(2.6) R =̂ d-si) •

Thus, one finds the unconditional probability of death in the jth

interval from the ith cause to be p., R..
id J

It will be shown that

(2.7) E £ p.. R. =1
i=lj=l 1J J

Write

(2-8) L t P±1 Ri = 1 Ri E Pn •1=1 j=1 ij J J=l J1=1 1J

Using (2.1+) and (2.6), one may write (2.8) in the form

2 t p^ rt = i Risi1=1 j=iij j j=ij j

= S1(l-BQ) +S2(l-S())(l-S1) +S5(l-S0)(l-Sl)(l-S2)
(2.9)

+ ... +Sn(l-S())(l-S1)(l-S2) ... (1-Bn-1)
Since s_ = 0,

(2.10) 2} .2 Pij Rj =Sl +s2^1-sl) +s5(l-s1)(l-s2)

+ ... + sn(l-s1)(l-s2) ... (1-s^-l)



Repeated factorization of (2.10) yields

m n

(2.11) ]] Tl Pn Ri =sl + t1-6!)
1=1 j^L iJ d

_sp + (l-sp) L s, + (l-s,)

s + (l-s ..) s
n-2 n"X n"i; nn-2 3 2 1

Now, s = 1. Consequently, the quantity in the (n-2) brackets reduces

to unity. It follows at once that the entire right-hand side of (2.11)

telescopes to unity.

Estimation of conditional probabilities. The a . represent a

random sample from a multinomial population. The likelihood function

for such a sample is

NJ

ft ft -JIA
a.

p. . R.
ij

1=1 j=l

The logarithm of the likelihood function is

(2.12) L = log N!

ft ft (*«««)
+ L L a- l0S P-t <

1=1 j=l
m, lj "w "ij

1=1 j=l
ij

Note that

m n n m

2 E aii loS Ri =Z l0S Ri E a-n >
1=1 j=l j=l

J ^ 10

=2 r log R ,
j=l J J

+2 2 aij io§ rj
i=i j=iij j



E E aij 1os Rj =ri loe i1-^) +r2 log (1-so^1"si^
i=l j

(2.13)

where

+ ... + rn log (l-sQ)(l-s1) ... (l-sn_1) ,

= r± log (l-sQ) +r2 log (l-sQ) +r2 log (l-s.^

+ ... +rn log (l-sQ) +rn log (l-s.^

+ ... + r log (l-s n) ,
n & v n-ly '

n n

=log (i-s) E rj+ los (1-si) E0rj
j=l J j=2 J

+ ... + log (l-s .) r ,
& v n-1' n '

S log (l-s ) ,
j=l J J

(2.11+) S = E r#
J i=j

Obviously, S is the number of animals that are surviving at the
J

beginning of the jth interval.

Substitution of (2.13) in (2.12) yields

(2.15) L=log - + E 2 an lQg Pn
ftft(aijO

i=lj=l 1J

tf, ij w -ij
1=1 j=l

j=l J J ^

The maximum likelihood estimates of p.. are found by setting the
ij
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first partial derivatives of the function L with respect to p.. equal

to zero and solving the resulting equations for the estimates, p...

To this end, rewrite (2.15) in the form

(2.16) L=log = + J E a-M l0S P-m
m n i=l j=l 1J 1J

11 ft
0

KjO
i=l j=l 1J

b:l+X SJ+1 log (l-s.) .
0= 0

Examination of (2.l6) shows clearly that the maximum likelihood

equations for the p.. of any one interval will not involve the p. . of

any other interval. Thus, for k < n, the partial derivatives of L with

respect to p.. for the kth interval are:
"^ "^10

<*•"> §..= ^r-fer ci-i.2 -)
ij IK it

Setting these partial derivatives equal to zero and using (2.1+), one

obtains the following system of equations for the P-k:

(2.18)

(alk +W Plk +alk ^2k +'••+alk Pmk =alk

a2k Plk + (a2k +Sk+1} P2k + ***+a2k ^mk = a2k

a . v-n + a , p~, + ... + (a , + S, ., ) p , = a ,
mk •H.k mk ^2k v mk k+ly ^mk mk

Addition of the system (2.18) renders



(2.19) (Sk+1 +J aik) $ik +(Sk+1 +J a.k) %^
i=l 1=1

+... +(S +J a J pmk =_E a ,k+1 ^"ik' ^mk ^ lk

or

(2.20) (Sk+1 +rk) £ik + (Sk+]_ +rk) £,
'2k

+•'• +<Sk+l+rk> pmk = Aaik
i=l

Applying (2.14), one has

(2.21) Sk plk +Sk p2k +... +Sk $mk = J a.k .
i=l

Hence,

a..

2.22) Pik+P2k +•'• +*mk =-S^-

Solving (2.22) and the ith equation of (2.18) simultaneously for p.. ,

one obtains

Sc^k+1' ~kv"k+l

(2.23)

aik (Sk "E aik^ a..(S. -r.)
1=1 ikv k k'

Pik " S.(Svo.i) MSv.i ) '

aik Sk+1 aik ,. . v
= s-Ts—r = 37 (k <n) .

kv k+1' k

When k=n, sn =E Pin =1- Therefore, the pin are parameters
of a multinomial distribution. It is well known [9, pp. 21+-216] that
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the maximum likelihood estimates of the p. are
in

(2.21+) % = !iS .
v ' •'in S

n

Thus, the maximum likelihood estimates of the p.. are

a. .

(2.25) Pjj = -^ (1 =1, ..., m; j=1, ..., n),
0

Estimation of disease incidences in the unrestricted population.

In the population in which all diseases are operating, the true

incidence, I., of the ith disease may be computed by

(2.26) I, = ?, p. .R. ,
i j=l 1J J

that is, by summing the unconditional probabilities over all time

intervals. An estimate of I. is given by

(2.27) t = gs a ,
j=iij j

A A
where R. is R. with p.. substituted for p... Since

o i io io

(2.28) l-s, = 1 - J

it follows that

(2.29)

0 " ^ij '

, , a. .
• LJ-i 10 r-l„£. = i . 1=1o = i . JL ,

j S. S. '
J J

S, - r. S. n
_j o_ = o+i

S. S.
0 0



Then

(2.30)

11

R. = (l-jya-s^) ... (1-s.^) ,

(l-s1)(l-s2) ... (l-sj_2)(l-sJ_1) ,

S2 S3
S2

S. .
J-l

> • Q «

j-2 SJ-1
f

Sj
Sl

Using (2.25) and (2.30), one finds that (2.27) takes the form

(2.51) i± - Z & . ^ -t £a.
j=l "j "1 "1 j=l 10

Now,

(2.32) S = 2 r, = N
1=1

It follows Immediately that

(2-33) I± = -£ ,

which is the classical result.

Estimation of disease incidences in the truncated population. It

is desired to use a sample from a population in which all diseases

considered are operating to estimate the disease incidences in a

restricted population from which one particular disease has been eliminated
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as a possible cause of death. This is equivalent to estimating the

properties of a truncated population from an untruncated sample.

Assume that the first disease is to be eliminated. Since the

indexing of the diseases may be permuted so that the ith disease becomes

the first, there is no loss in generality. Define a new set of

conditional probabilities by

P-M
(2.3*0 P,< = 7-r- (1 = 2, ..., m; j = 1, 2, ..., n) .•ij 1-Py

Let

(2.35) q, - E
& .

P-M >0 i^g i<5

(2.36) qQ = 0 ,

(2.37) r! = n (i -a.) •
3 1=0

Then, the incidence of the ith disease in the truncated population is

(2.38) I = E PlM R. (i =2, ..., m) .
j=l J J

It may be shown that

/ ai A A< a>
(2.39) I± = E P±i Ri (i = 2> -•> m) >i ^1 ^ J

where

(2.1+0)

a'

pio

A

- I#-

R.
0 • If CK

£=0
if d-tp =if (i - 2 p-p

i=0 1=2
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It will be advantageous to express I. in a different form. By

the use of (2.6), (2.28), (2.5*0, (2-35), and (2.37), one has

R

(2.1+1)

; =if d-qf),
J 1=0

= (i-q0)(i-q.1) ••• (i-ij-i) >

= (l-q1)(l-q2) ... (1-q^)

1 - AAl X" E Pi2
1=2 1=2

f V±1 1 Fl ? Pi2
A. 1-P, , A* 1"P, <-1=2 * P11J 1=2 •tl2

m

1=1
^11

1-p.
11 J

i - E p
1=1

12

1-p
12

l-s.. l"s?
1-Pll l-p12

R.
J

if ^-Pu)
1=1

l-s

teL

1 - // P- • i
1=2 X* J

1=2 X Pl, j-U

1 " h P
1=1

i> 0-1

1-p.
1, o-i

^1,0-1 '

On substituting (2.34) and (2.1+1) in (2.38), one may write (2.38) in the

form

(2.1+2)

piJLI..
1 A X-Plj

R.
0

1=1

A p.. R.

J=1 n d-Pi.)
1=1

-li'
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Also

a S. S. a

Therefore,

<2.*5) K 'it
a. .

3=1 iW.)
«. •"'

At

is another form for I. .

Approximate variances of the estimates. It has been pointed

b the a., represent a sample

is well known [10, pp. 3^-35] that

out that the a.. represent a sample from a multinomial population. It

Var (a±J) = N•(p,.R.) (l-p,.R.) ,

(2.1+1+)

Gov (a.., a.^,) = -N-(Pi. RJ)(P1,<j, RJt)

As a result of (2.25), (2.30), and (2.32), these variances and covariances

are estimated by

a (N - a )
Est Var (a. 0 = -^ ^~

lj' N

(2.1*5)

Est Gov (a.., a.,.,) =.!il^il .

Inspection of formula (2.1+3) shows that each term in the summation

is correlated with all preceding terms. This makes the calculation of

At

the variance of I. extremely laborious. In order to simplify the

computation, it will be assumed that (l) the p.. are small and (2) the
10

covariances between a.. and a... are also small. In other words, if the
10 10
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covariance terms are negligible, and if the denominators of the

successive terms in (2.1+3) are nearly constant, the variance may be

approximated by

(2.1+6) V- (£) ff 4 I
IT j=l

Var (a.0
ij

ft
1=1

(1-P\ .)11

Substitution of (2.1+5) in (2.1+6) yields

Var (I.)
v l N5 j=l£

a..(N - a.0
iQv iQ

dAP
l=.

Failure of the first assumption will deflate the variance

estimate. Failure of the second assumption will inflate the estimate

since the covariances are negative. If both assumptions fail, it is

expected that these two errors will counterbalance approximately.
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CHAPTER III

ASYMPTOTIC VARIANCES OF THE ESTIMATES

The results of the sampling experiment to be described in Chapter

IV indicate that the assumptions made in deriving the approximate

variance formula (2.1+7) of the last chapter may not be valid and that

the two errors introduced there often do not counterbalance each other.

Attention will be given next to one possibility for obtaining better

At

estimates for the variances of I. that do not depend upon the

questionable assumptions. An asymptotic variance formula, based on the

At

Taylor series expansion of I., will be derived in this chapter.

Asymptotic variance-covariance matrix of the conditional prob

abilities. The asymptotic variance-covariance matrix of the p.. may

be found by inverting the symmetric positive definite matrix

(3-D * -E
a2L

dpij dpi'o',
(j, j' < n) ,

where E is the operator of mathematical expectation.

Because of the particular nature of the likelihood function, S&

takes the form

(3.2) * =

'<i>1 0

0 * P •••

0

0

sP 0 ... ^
n-1.

where the \£, (k < n) are m x m block matrices with elements - E
dpik ^i'k
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The elements of ^, may be computed with the aid of

Theorem 3«1« Let iY.> R^* and S, be the quantities defined by

(2.2), (2.6), and (2.14) respectively. If E(a. .) = Np.. R., then
XJ XJ J

(3-3) E(Sk) = NRk .

Proof. By well-known rules of mathematical expectation

E(r )=E 2aik =.2 E(alk) >
1=1 1=1

(3-M

^k h Pik
1=1

Now, for k = 1, the proof of (3.3) is trivial. Write

(3-5) E(S ) = E I r = E(N) = N .
j=l J

Since R, = (l-s0) = 1, equation (3«5) will not be altered if the right-

hand side is multiplied by R.. . Therefore,

(3.6) E(S1) = m± .

To prove the theorem by induction, assume it to be valid for k, and

consider

(3.7) Sk+1 = Sk-rk .

Taking expected values of (3-7) and using (3«3) and (J>.h), one has

E<Sk+l) = E<Sk> "E<rk> =^"^ .£. Pik >
i=l
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E<sk+i> =^k U-Z pik = HRfcCi-Bk) ,
i=i

(3.8)

= H^.
+1

Thus, the theorem is proved for all k.

It was seen in (2.17) that for the kth period

(3.9)
ox

3p\-ik pik

k+1

l-s.

Consequently,

S2L a.,
ik

2

Pik

Sk+1

d-sk)2

(3.10)

a2L Sk+1

dpik dpi'k (l-s,)'

(i = 1, ..., m; k < n)

(1^1) .

Now, use equation (2.6) and theorem 3«1 to evaluate the negative of the

expected values of (3.10). To this end write

(3.11)

-E% =E^+E-Atl_ t
dp'

ik Jik d-sk)^

N
PikRk

'ik

NR.
k+1

a-skr

NPikRk NRk(l-sk)

Jik

= NR,
1

?ik

(1-Bv)'

+
l-s,
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E
a2L

dpik dPi«k

(3.H)

= E
k+1

a-=kr

NR,

l-s,

It follows that

Plk +l-8j

(3.12) *k = NI^
l-s.

l-s.

Rewrite (3*12) as

(3.13) N"1!^1^

l-s.

— +T1-
P2k ^l

0

1

P2k

l-s,

vmk

+

l-s.

l-s,

— +^~p . l-s.
•^mk k

l-s, $ ,

where $ is a k X k matrix whose elements are all unity.

Roy and Sarhan [11] have proved

Theorem 5*2. Let A be any m X m nonsingular square matrix and

A" its inverse. Let D be an m x m diagonal matrix with elements

(l/d,, ..., l/d ). Let (u/d), (v/d), (u), and (v) be m x 1 vectors
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with elements u./d., v./d., u., and v. respectively. Finally, let X

denote a scalar. If

(3.110 A = D
X

1+\k^i
(u/d)(v/d) ,

then

(3.15) A"1 = D"1 + X (u)(v)' .

r-1 T,"lSetting X= -1, (u) = (v) = (d), and A =N R^ *k, one may

write (3.1*0 in the form

(3.16) w"1 *± *k = D+ « * '
2 di
i=l

where $ is defined as above. Now if D is the diagonal matrix of

i

(3.13) and (d) = (p-,k, ..., p k), the result of theorem 3«2 enables

one to write

(3.17)

NRk *l

Therefore,

plk °

0 P,
2k

• •

0 0

0

0

*lk

PlkP2k

PlkP2k

2

*2k

pmk \plkPmk p2kpmk

PlkPmk

P2kPmk

Fmk



^.
-1

NR,

(3.18)

1

NR,

21

Plk"Plk •plkP2k

•plkP2k P2k"P2k

"PlkPmk "p2kPmk

Plk(l-Plk} -plkP2k

•plkP2k p2k(l-p2k) ' *

"^Ak "p2kPmk

•PlkPmk

•p2kPmk

pmk"pmk

•PlkPmk

*p2kpmk

Pmk^-Pmk5

Recall that when k = n, the p. are parameters of a multinomial

distribution. It is well known [9, pp. 2ll+-2l6] that the p. have an

asymptotic variance-covariance matrix that is equal to \& . Thus, the
n

variance-covariance matrix of the p.. is given by

fl,

(3.19) a = |

0

where

0 0

0

fl
n
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Plk(l"Plk) -PlkP2k

"PlkP2k P2k(l"p2k)

PlkPmk

"p2kPiok
(3.20) flk= ^

-plkPmk -p2kPmk • • • Wx-W

Asymptotic variances of the incidence estimates. It will be

convenient to let h = i and t = j in (2.39). Then

(3.21)
At A Al At

E Pht Rt
t=l

(h = 2, ..., m)

Expand (3«2l) into its Taylor series about the p.. (1=1, ..., mj
10

j =1, ..., n) retaining only the linear terms. Then,

(3.22)

where

(3.23)

Note that

(3.21+)

Therefore,

\ I ~ \ + .2 2 (Pu - Pij)
1=1 j=i

ij - ^ij^hij >

=.2. Ph'
Sr,

hij Jj^ -Pht 3p"

dpht

+

ij t=l
I s **^

= 0 (t ^ j)
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• aphj v ' SRt
ehij=RjBpTT +A^t3pTT *

(3.25)

, Sjx J, , 3R , dR n , dR
=Ri ^ + A Pht 3^7 + Ph. .1+1 o^ +. 2

t

^^J +t^ ^ + ^ J+1 ^y" +t=t+2 ^ ^

To calculate the first term on the right-hand side of (3.25), one

observes that

>-^plj

apij
i

x-pij
(3.26) ">> = _L_ (i=h) ,

ic

^ - ° <^h> •
iO

To calculate the last three terms of (3.25), note that

(1-q.) = 1- ;. p' = 1-=-i- /, P.. ,
0 i=2 ij 1"Plj 1=2 J

(3.27)

i -;_, p1=11J = ^_
^Ij " ^lj-

In calculating -$-— three cases may be distinguished:

^"iJ
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case (i). If t < j +1,

(3-28) R* = jf (1-q ) .
t 1=0 l

t

Obviously, all R (t < j + l) do not involve the j subscriptj and hence,

are not functions of the p... Thus,
10

BR*
(3.29) 3-2- = 0 (1 =1, 2, ..., m).

iO

(3-30)

case (ii). If t = j +1,

R'.., = J (l-q£) ,
j+1 1=0

= R. (1-q.) .
0 0

Substitution of (3-27) in (3-30) yields

(3-31) R, „ = R,
l-s.

0+1 0 U-Pjj

Differentiation of (3«3l) with respect to P.. gives

(3-32)

3H^ = -(l-PlJ)+(l.s.) _ p^
^r (i-p,/ 3 ~ (i-PlJ)2 j'

°J-pU R'
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Differentiation of (3.31) with respect top (l < j < n) gives
X J

Br.^ r!

*lj ij

case (iii). If t > j +1,

Rt = ^-^i) u C^O If C1"^) ,

(3.34)

= R* (1-q ) ]f (l-qf) .
J J' |=J+1

Substitution of (3.27) in (3.3^) yields

(3.35) \ =Rli^- If (1-qp •
3 X Plj 2=j+l z

Differentiating (3.35) with respect to p1. gives

<>•*> 5. . . toil ft (1.„,
^lj (X-Pij) i=J+1

On multiplying both the numerator and denominator by the quantity

(l-q.), equation (3«36) becomes
J

(3.37)

^R R (s -p )(l-q ) t-1
* = --i-i-lj L- Jf (l-n) ,
•id ^"Pij^ (^--^j) *=J+l

^(s.-p. .)tv j -tlp/

(l-^Jd-Py)2
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Differentiation of (3.35) with respect to p. . (l < i < j) and multipli-

cation of the numerator and denominator of the resulting differential

equation by the quantity (l-q.) gives
J

Thus, the calculation of 6... must also be divided into cases:
hij

(3.39)

case (i). If i = 1 and j < n,

hlJ (^ij)2 ^-pij)2

g *ht Rt(sj-plj)
t=j+2 (l-q^Kl-p^)2

Multiplying the numerator and denominator of the second term on the

right-hand side of (3.39) "by the quantity (l-s.) and using (2.3I+) ,
J

(2.1+1), and (3-27); one has

e - "1 ^ - *"• -hi R.1(1".1)('.1^1.1)
^ (i-PlJ)2 U-^Xi-Ji/

(3^0)

t=j+2 (l-Sj)(l-PlJ)2

1 r Ri^

.ft a-Pi,)
1=1

srpio
(l-s.)

j

n

z
t=j+l
j<n

^t 1
x-plj ft d-PiP

1=1 •LX J
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case (ii). If i = 1 and j = n,

R Pu
(3.in) a, n^n

hln (1-Pln) ^ft (1-P1£)
Sr'

is almost immediate. In this case t < n + 1 and by (3.29), -r = 0.
Pij

Indeed, the last three terms on the right-hand side of (3.25) vanish;

and (3.^1) follows at once.

case (iii). If i = h and j < n,

t t 1 1

Devices similar to those used in case (i) reduce this to the form

R- 1 a Pu4. rj.

A'^lP 1_SJ ^n JJ^-V
case (iv). If i = h and j = n,

(3M) eh±n =—A
ft (^PiP
1=1 z

is immediate. This case is analogous to case (ii).

case (v). If i / h and j < n,

t 1 1

j<n
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Devices used in case (i) reduce this form to

fc-1*) 9Mj = - it: 23j t=j+i h , )
j<n iiKX piri<u 1=1

case (vi). If i ^ h and j = n,

OM) eMn = o

is trivial. This follows at once from (3.25), (3-26), and (3.29).

Consider (3.22). Transposing 1 to the left-hand side and

squaring the resulting equation, one obtains

(3.^8)

,a» *s2 $ v ^ n2 02^ "V = iA1 ^ (plj "pij) 9hij

+

0

+£l fel^ "PU)( '̂J ' Pi'̂ V) 9M'j

+.^ Ex (Pij - Pij)(Pij' " Pij') ehij ehij'

X± t± (pij "pij)(pi'j' "pi'j') 0hij 9hi'j'

At

Now, the variance of L is defined as

(3-^9) Var (]£) = E(l^ - J^)2

Then



(3'.50)
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Var(<) =Jx Jx *V Pi/ *Mj-

+±L± J^^ij "pij)(pi.j "pi'j) 0hij 0hi'j
m n

+ y. /. E(p. . - p. .)(p. .. - p. .,) & . . & . .,£l Hi XJ 10 10 10 hio hij1

+i?i j4E(^ "*un*i'y "pifj,) ewo ehi.j. •

When j p j , the variance-covariance matrix (3.19) shows that

(3.5D E(^. - p. .)(^, - Pi.,) =E(£.. - V±^vy - Prjl) =0 .

Thus, the last two terms on the right-hand side of equation (3.50) vanish.

It follows that

Var (^) =Ji j>hijVar (pij)
(3.52)

+2 l^hij ehi'j COT(pij' pi-j)

It was thought that the asymptotic variance formula (3.52) would

be an improvement upon the approximate -variance formula (2.1+7). In

Chapter IV a comparison of these two variance formulas with the

population variances is made for a wide range of parameters.
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CHAPTER IV

RANDOM SAMPLING EXPERIMENT

Introduction. When statisticians are confronted with a difficult

problem in distribution theory, they sometimes resort to the Monte Carlo

method. The process consists of drawings from random sequences of

numbers, or at least pseudo-random sequences, in accordance with an

artificial model, whereby the statistic whose distribution is sought can

be observed over and over again and the distribution estimated empiri

cally.

A large scale random sampling (Monte Carlo) experiment was

conducted in order to study the small sample distributions of Kimball's

estimates of disease incidences as well as the small sample distributions

of the estimates for the variances of the estimated disease incidences,

At

I..
1

The general idea of the experiment was as follows. A set of

parameters N, m, and p.. were assigned, and with a synthetic model sample

approximations to the distribution of a.. were generated on the ORACLE.

A'
Large sample approximations to the distributions of I were then computed;

At

that is, large but finite populations of values of I. were generated

which approximate the corresponding true life infinite populations.

At
Since the generated populations of values of I. were finite, their

variances could be computed by means of statistical formulas. Values

for variance formulas (2.1+7) and (3.52) were computed from the sample of

a... These values were compared with the basic finite population

variances. The assumption that the synthetic model is a good approxi

mation to the infinite populations of samples then allows one to judge
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the accuracy of both -variance formulas by how closely they approximate

the true (pseudo-true) population variances.

Description of the study. The experiment was divided into the

following cases:

1. E(r )=E(r')
o o

a) n = 5

b) n = 10

c) n = 20
t

2. E(r.) /E(rj)

a) n = 5

b) n = 10

The cases were chosen to provide some information about the

effects of -variations in the number of time intervals and the number

of deaths per time interval on the estimation procedure. For each

case and for sample sizes of 50, 100, 200, 1+00, and 800, a thousand

random samples were generated from a random distribution with a pre

determined set of conditional probabilities, p... Each of the samples
10

was generated with m = k. An attempt to simulate an actual experiment

influenced the selection of the p... The p.. were specified for case
10 10

(lc). These are displayed in Table I. The unconditional probabilities,

p..R., are displayed in Table II. The p.. for case (lb) were derived
ij 0 10

from case (lc) by pooling the unconditional probabilities in the

adjacent time intervals of case (lc) by pairs. Similarly, the p. . for
ij

case (la) were derived from case (lb) by pooling the unconditional

probabilities in the adjacent time intervals of case (lb) by pairs. The

p.. for case (2a) and case (2b) were derived by pooling the unconditional
10

probabilities in the adjacent time intervals of case (lc) such that the
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TABLE I

THE CONDITIONAL PROBABILITIES, p.., FOR CASE (lc)

Time
Disease

Interval 1 2 3 1+

1 0.0200 0.021+5 0.0050 0.0005

2 .0216 .0253 .0053 .0005

3 .0233 .0261 .0056 .0006

1+ .0253 .0271 .0059 .0006

5 .0300 .0250 .0062 .0012

6 .0327 .0260 .0067 .0013

7 .0286 .0271 .011+3 .0011+

8 .0315 .0285 .015^ .0015

9 .0350 .0292 .0167 .0025

10 .0391 .0309 .0182 .0027

11 .01+70 .0300 .0200 .0030

12 .0533 .0322 .0222 .0033

13 .0638 .0250 .0312 .0050

li+ .07^3 .0271 .0357 .0057

15 .0800 .0300 .0500 .OO67

16 .0980 .031+0 .0600 .0080

17 .1175 .0325 .0875 .0125

18 .1600 .01+00 .1167 .0167

19 .21+50 .0550 .1750 .0250

20 0.5000 0.1000 0.3500 0.0500
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TABLE II

THE UNCONDITIONAL PROBABILITIES, p..R., FOR CASE (lc)

Time
Disease

Interval 1 2 3 1+

1 0.0200 0.021+5 0.0050 0.0005

2 .0205 .021+0 .0050 .0005

3 .0210 • 0235 .0050 .0005

1+ .0215 .0230 .0050 .0005

5 .021+0 .0200 .0050 .0010

6 .021+5 .0195 .0050 .0010

7 .0200 .0190 .0100 .0010

8 .0205 .0185 .0100 .0010

9 .0210 .0175 .0100 .0015

10 .0215 .0170 .0100 .0015

11 .0235 .0150 .0100 .0015

12 .021+0 .011+5 .0100 .0015

13 .0255 .0100 .0125 .0020

ik .0260 .0095 .0125 .0020

15 .021+0 .0090 .0150 .0020

16 .021+5 .0085 .0150 .0020

17 .0235 .0065 .0175 .0025

18 .021+0 .0060 .0175 .0025

19 .021+5 .0055 .0175 .0025

20 0.0250 0.0050 0.0175 0.0025
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number of time intervals that were combined formed the distributions

(1, 3, 7, 1, 2) and (l, 1, 1, 2, 2, 2, 5, 3, 2, l) respectively.

An examination of (2.1+3) shows clearly that the estimation

procedure is undefined if in the nth interval either no deaths occur or

all deaths are due to the first disease. In practice this difficulty

may be overcome by judicious choice of the time intervals. In the

empirical study, however, these situations were unavoidable in some

samples since the time intervals were specified in advance of the

experiment. When either anomaly developed in a sample, that sample was

rejected, and a new sample was generated to replace it. If the rejection

rate exceeded 10 per cent (100 in the present experiment) of the total

number of samples drawn, the corresponding sample size was eliminated

from the study. This expedient was used because of the excessive amount

of machine time required to generate 1000 admissible samples under these

conditions.

A general description of the computations is given in the form

of a flow diagram, Figure 1. The arrow "-»" inside a box means "is

replaced by", and C,, C?, and C, are merely counters. The computational

details in Figure 1 are discussed in the following sections.

Generation of the pseudo-random numbers. The procedure employed

to generate the pseudo-random numbers, p., was one based on methods

described by Taussky and Todd [13]. If pQ denotes any odd number and
15

p = 5 > then the recurrence relation

(^.1) pi+1 =p•pt (mod 239)

forms a pseudo-random sequence of numbers. The sequence is periodic
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Figure 1. Flow diagram of the sampling experiment
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37
with period 2r . These numbers have been submitted to various

statistical tests, and they satisfy the usual tests for randomness.

On a high-speed computing machine such as the ORACLE, this

method breaks down to the generation of sequences of random numbers

uniformly distributed on the interval (-1, l), the end points of the

interval as well as zero being excluded. Thus, the random numbers as

represented in the ORACLE satisfy the inequalities

(1+.2) 0< \pt\ <1 .

Generation of the sample elements. Let

(^•3) v = n(i-l) + j (i = 1, ..., mj j = 1, ..., n) .

It will be convenient to introduce the quantities

(^•M a, =a±J and ^ =p R (v =1, 2, ..., mn) .

The probability that an element belongs to one of the first v categories

of the population is given by

t=l *

The generation of a sample element may be described as follows:

Define G„ = 0. Let the sample element, z, be characterized by the set

of variables (z,, z2, ..., z ). If an element belongs to the vth

category of the population, z = z . Generate a random number by using
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(l+.l) with 1=0. If

(^•6) G n ^ p. ., < G ,
v ' V-l H£+l V '

set z = z . For a sample of size N repeat the process with

I = 1, 2, ..., N-l successively. The number of sample elements, a ,

in the vth category of the population is the number of times that z

assumes the value z . Thus,

mn

(*-.7) N = E a
— v
v=l

Computation of the sample moments. If x,, Xp, ..., x,, is an

independent randan sample from a population with probability density

f(x), the kth sample moment is defined to be

<*-8> < -1 j/t

Define m, = x. Then the kth moment about the sample mean (central

moment) is denoted by

k
{x+ - x)

t=l
(*.9) "k sIjS. (xt "x)

Using the binomial expansion, one may write (k.ty) in the form
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1 v V / •. \? k k-r —

k W t=lr=0 \rl *

(1+.10)

v « k~rk /, \ r N x.

- Z (-Dr
r=0

kl ; * t
lrj t^l N

The use of definition (It-.8) reduces this to the form

k k!
where ~

- Z (-Dr kl
r=0 1

r ~ r.'(k-r)i *

Many authors of statistics textbooks advocate using (l+.ll) to

compute the central moments of a sampling distribution. This method

should, indeed, be recommended for a desk calculator since it is less

tedious than computing individual deviations from the mean and summing

their powers. On the other hand, when a high-speed digital computer

is available, serious difficulties may arise, especially for large N.

The central moments of the distributions of the incidence and

variance estimates were first computed by utilizing (l+.ll). Some of

the fourth moments turned out to be negative and hence inadmissible.

Householder [5] distinguished three types of error in the result

of a computation: (l) propagated error, (2) generated error, and (3)

residual error. Propagated errors are those due to the original errors

in data representation. Generated errors are those that arise as a

result of round-off. Finally, residual errors are defined as those due

to truncation after the computation is terminated.

It was the accumulation of the generated errors which rendered
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the moment results incorrect. Hence, it was important to know how such

errors affected the computations.

The moment computations were performed by using floating-point

arithmetic. The number, |, in most floating-point systems is

represented by

(1+.12) |* =±(g^-1 +|2p'2 +... +i^)^ ,

where 0 is the base, usually 2 or 10; \ is a positive integer; and 77 is

any integer, possibly zero. The quantity in parentheses is usually

called the mantissa of | . The floating-point routine chosen to perform

the moment computations was designed to operate with numbers of the form

(1+.12) where

I<U^"1 +|2p"2 +... +|xp"^| <1 ,

(^•13)

M * 27

0 = 2,

X = 31

The floating-point operation of addition may be described as

el e2 e3follows. Assume N, =• d.,2 , N2 = d^2 , N, = d~2 , and e„ a e,.

Clearly, the d. are the mantissas of the N.. Consider N, = N, ± Np.

The plus sign will be used consistently, but the results obviously hold

for subtraction. Thus,

d3 = dx2 x +d2, e3 =e2 (Id^l < l) ,
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(*.H0
,#

.-id^ = \df\ ,e5 =e2 +1 (1 < 1(^1 <2) ,

where the asterisk superscript indicates truncation of the number of

magnitude digits at \. Thus, digits are dropped, and an error in the

result is generated. Given N numbers to be added together, these errors

can build up and render the result useless.

Suppose one is interested in summing a set of N numbers. Let n.

of these numbers be nonnegative, and N = n.. + n2. There are sequences

TL,

(1+.15) xk 1 and i

*k

of nonnegative and negative elements respectively for which

(1+.16) KI-IV' and Kl-'V' (k<k«) .

To keep the error in the sum as small as possible, the sequences (1+.15)

should be added separately and their respective sums combined. Indeed,

this ordering process was employed prior to computing the sample

moments. Moreover, the computation of the moments was carried out by

using (k.9) rather than (^.11) since fewer summations were involved.

Thus, greater accuracy was achieved in the results.

Error bounds may be placed on the results of (+.9). Let

(^.17) yt =y£ +et (t =l, 2, ..., n) ,

n2

where y, is the machine representation of y.. Then



(1+.18)

so that

(^.19)

If |et| < e, then

(1+.20)

l+l

t=l u t=l
(yt +et) *

2 yt - E y+ = 2 et >
t=i * t=iz t=i *

.2 yt - .2 y+ - .2>+!
t=i t=i t=i

2 yt" 2 yjt=i * t=i *
< Ne .

Thus given N numbers, each of which can be in error by as much as e,

their sum can be in error by as much as Ne.

Now,

ytyt, = (yt +et)(yt, +et,) (t ^ t') ,

(1+.21)

= ytyt' + etyt' + et'yt + etet<

so that

(1+.22)
* -x-

|ytyt' - ytyt'> - 'Vf I +|et-yti + >etet'i
i *i

If Iy+I — l-€, one may write

* *

(^.23) |ytyt, -ytyt,| =£ (l-e)(|et| + |et,|) + |etet,| .

Since |e.| ^ e (t = 1, 2, ..., N), it is easy to verify by induction that

(1+.21+) k *

yt "yt
ke .
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Define y =xt -xand e=2-51. Using (+.9), (^.20), and (^.2l+), one
finds that

(1+.25) iNn^ -(Nn^)*! ^Nke =Nk 2' •31

Distribution of the estimates. Altogether twenty-one sets of

parameters were used in the computation. It has already been pointed

out that one thousand samples were generated for each set of parameters.

When the first disease was eliminated as a cause of the death in the

A1 A1

population, I. and Var(l.) were computed for each sample. The variances

were computed by using both the approximate and asymptotic variance

A' , . .
formulas. The moment statistics of the distributions of I. (i = 2, 3, k)

are shown in Tables III - VII. The sample variance, the measure of

skewness, and the measure of kurtosis are denoted by

(k.26)

d = m2 ,

nT01 = m3

m25/2

?2 ^
ml+

2 >

m2

respectively. For the normal distribution it is well known that

(1+.27) n^ =0 and 02 =3 .

To further depict these distributions, the one thousand values

A'
of I. for each set of parameters were arranged in histograms. It would

not be feasible to present each of these histograms here, but those

arising from case (lb) with a sample size of four hundred are exhibited in
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TABLE III

MOMENT STATISTICS OF THE DISTRIBUTION OF l\, E(r )=E(r'), n=5

N i
t

I.
i

E(li) a2 4h± e2

2 0.1+1+761+ 0.1+1+930 0.011191+ 0.11+68 2.889

50 3 .I+838I+ .V7995 .012677 - .1121 3.027

1+ .06852 .O7O75 .003937 .0112 4.873

2 .1+1+761+ .1+1+880 .0051+68 .0516 2.898

100 3 .I+838I+ .1+8281 .006256 - .0106 3.123

1+ .06852 .06839 .001828 .7365 3.718

2 .1+1+761+ .1+1+800 .002539 - .0093 3.092

200 3 .I+838I+ .483I+5 .002916 - .0525 2.977

1+ .06852 .06855 . 000911+ .1+353 3.233

2 .1+1+761+ .1+1+631 .001263 - .0286 3.215

1+00 3 .I+838I+ .1+81+98 .001271+ - .0281+ 2.997

1+ .06852 .06871 .000+19 .2021 2.858

2 .1+1+76+ .1+1+805 .000621+ .0+52 3.116

800 3 .1+8381+ .1+81+32 .00061+5 - .0991 3.1+95

1+ O.06852 0.06763 0.000216 0.381+6 3.385
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TABLE IV

MOMENT STATISTICS OF THE DISTRIBUTION OF i!, E(r.) = E(rl), n = 10

N i
t

E(I±) a2
a S± p2

2 O.1+3899 0.1+1+031 O.OO6360 O.2097 3.160

100 3 .1+9155 .1+9095 .007141+ - .0561 3.020

1+ .0691+6 .06861+ .002320 .1045 4.393

2 .1+3899 .1+1+01+6 .002826 - .0233 2.964

200 3 .1+9155 .1+9061 .003080 - .1429 2.852

k .069I+6 .06893 .001075 .6729 3.837

2 .1+3899 .1+1+026 .001310 .1006 2.892

1+00 3 .49155 .1+9061 .001491 - .1157 2.805

1+ .0691+6 .06913 .000542 .5491 3.671

2 .1+3899 .1+3962 .000688 - .0314 3.048

800 3 .1+9155 .1+9180 .000743 .1110 2.860

1+ 0.0691+6 O.06858 0.000222 0.1865 2.821
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TABLE V

A»
MOMENT STATISTICS OF THE DISTRIBUTION OF I , E(r.) = E(r.), n = 20

N i
t

Edj) a2
a -Tp-l P2

2 0.43937 0.43640 0.003204 0.2981 3.421

200 3 .49303 .49282 .003788 - .1858 3.123

4 .06760 .07078 .OOII87 .6749 3.337

2 .43937 .43663 .OOI613 .2444 3.233

400 3 .49303 .49442 .001822 - .0861 3.257

4 .06760 .06895 .OOO589 .4860 3.271

2 .43937 .43521 .000748 .1115 2.746

800 3 .49303 .49563 .OOO879 - .2299 3.048

4 O.06760 0.06916 O.OOO299 0.2413 2.940
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TABLE VI

MOMENT STATISTICS OF THE DISTRIBUTION OF I*, E(r.) £ E(r!), n = 5
•** t J tl

N i
i

I.
i

Edj) e2 n/0]_ e2

2 0.45924 0.45749 0.0104i6 0.2879 3.094

50 3 .47365 .47271 .011338 -0.1954 3.102

4 .06711 .06980 .003450 1.1114 4.903

2 .45924 .45866 .005509 0.2946 3.376

100 3 .47365 .47609 .005837 -0.1816 3.085

4 .06711 .06525 .001780 0.8727 3.940

2 .45924 .45896 .002686 0.1538 2.924

200 3 .47365 .47199 .002927 -0.1031 2.887

4 .06711 .06905 .000910 0.5819 3.562

2 .45924 .46049 .001384 O.2008 2.880

400 3 .47365 .47189 .001527 -0.2220 3.028

4 .06711 .06762 .000427 0.3088 3.159

2 .45924 .45915 .000627 0.0803 3.170

800 3 .47365 .47454 .000665 0.0271 3.091

4 O.06711 O.06631 0.000200 0.2271 3.004
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TABLE VII

MOMENT STATISTICS OF THE DISTRIBUTION OF l!, E(r ) ^ E(r ), n = 10
1 J o

N i
i

I.
i

E(I.)
a2
a \ P2

2 0.44462 0.44614 O.OO5896 0.3345 3.192

100 3 .48664 .48671 .OO6362 -O.1887 2.822

4 .06874 .06715 .002216 1.1813 5.279

2 .44462 .44163 .002849 O.2527 3.O89

200 3 .48664 .48955 .003310 -O.2099 3.136

4 .06874 .06882 .OOII63 1.1002 6.548

2 .44462 .44367 .001389 0.1178 2.992

400 3 .48664 .48786 .001511 -O.OO76 2.857

4 .06874 .06847 .000512 0.4299 3.440

2 .44462 .44474 .000721 0.0823 3.212

800 3 .48664 .48730 .OOO830 -O.I26I 2.992

4 0.06874 0.06796 O.000254 0.4571 3.658



48

Figures 2 - 4 to illustrate the nature of the distributions. The

histograms were plotted on the ORACLE'S photographic curve plotter.

Examination of Tables III - VII and Figures 2-4 indicates that the

At At

sampling distributions of Ip and I, approximate the normal distribution.
At

The sampling distributions of 1^ appear to be positively skewed although

the amount of skewness is small.

Similar tables and histograms were constructed for the variance

estimates obtained from the two variance formulas. These distributions

resembled the chi-square distribution. Figures 5-10 represent typical

histograms of the variance estimates. Again, those histograms arising

from case (lb) with a sample size of four hundred were chosen for an

illustration of the distributions.

Bias of the estimates. Consider a sample of x_, x~, ..., xl.

independent random variables with a probability density function

f(x; 6,, Op, ..., 0 ), where the 0. are the parameters in the

distribution. If 0.(x1, x2, ..., x ) is an estimator of 0., the bias

i
of 0 is defined by

(4.28) •d1 =e(^) -6± .

A A
If b. =0, then 0. is said to be unbiased. If b > 0, 0. is said to

be positively biased; while if b. < 0, 0 is said to be negatively

biased. Unbiased estimates enjoy great popularity, but use of them is

not a crucial requirement. If an estimate differs but little from the

parameter value relative to the standard deviation of the estimate,

the estimate may be quite satisfactory.

At

The biases in I. together with their standard deviations,

s.d.(b.), are presented in Tables VIII - X. There is no evidence of
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Figure 2. Distribution of 1,000 ll, E(r.) = E(r.), n = 10,

N = 400.

ti itNote: The interval length is denoted by Ax while exp.
specifies the power of ten by which the abscissas were multiplied.
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At t

Figure 3« Distribution of 1,000 I,, E(r.) = E(r.), n = 10

N = 400.

"_„„ itNote: The Interval length is denoted by Ax while exp.
specifies the power of ten by which the abscissas were multiplied.
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At t

Figure 4. Distribution of 1,000 1^, E(r.) = E(rJ, n = 10,

N = 400.

»_.__ "Note: The interval length is denoted by Ax while exp.
specifies the power of ten by which the abscissas were multiplied.
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A'

Figure 5- Distribution of 1,000 approximate variances of Ip,

E(r.) = E(r.), n = 10, N = 400.
tj J

Note: The interval length is denoted by Ax while "exp."
specifies the power of ten by which the abscissas were multiplied.
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Figure 6. Distribution of 1,000 approximate variances of jL,

E(r.) =E(r'), n= 10, N=400.
J J

Note: The interval length is denoted by Ax while "exp."
specifies the power of ten by which the abscissas were multiplied.
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At

Figure 7« Distribution of 1,000 approximate variances of 1^,

E(r.) = E(r.), n = 10, N = 400.
J J

Note: The interval length is denoted by Ax while "exp."
specifies the power of ten by which the abscissas were multiplied.
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At

Figure 8. Distribution of 1,000 asymptotic variances of L,

E(r.) = E(r.), n = 10, N = 400.

M_ II
Note: The interval length is denoted by Ax while exp.

specifies the power of ten by which the abscissas were multiplied.
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A"
Figure 9. Distribution of 1,000 asymptotic variances of I,.

3

E(r.) = E(r.), n = 10, N = 400.

Note: The interval length is denoted by Ax while "exp."
specifies the power of ten by which the abscissas were multiplied.
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At

Figure 10. Distribution of 1,000 asymptotic variances of I. ,

E(r.) =E(r!), n=10, N=400.
J J

Note: The interval length is denoted by Ax while "exp."
specifies the power of ten by which the abscissas were multiplied.
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TABLE VIH

BIAS AND STANDARD DEVIATION OF THE BIAS OF I., n = 5
At

E(r )
u

= E(r|)
0

E(rd) ^E(rp

N i b.
l

s.d.(b.) \ s.d.(b.)

2 0.00166 0.00335 -0.00175 0.00323

50 3 - .00389 .00356 - .00094 •00337

4 .00223 .OOI98 .00268 .00186

2 .00116 .00234 - .00057 .00235

100 3 - .00102 .00250 .00244 .00242

4 - .00013 .00135 - .00186 .00133

2 .00036 .00159 - .00028 .00164

200 3 - .00038 .00171 .00165 .00171

4 .00002 .OOO96 .00193 .00095

2 - .00133 .00112 .00125 .00118

400 3 .00115 .00113 - .00176 .00124

4 .00018 .00065 .00050 .OOO65

2 .00041 .00079 - .00009 .00079

800 3 .00049 .00080 .00089 .00082

4 -0.00089 0.00046 -0.00080 0.00045
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TABLE LX

A.'
BIAS AND STANDARD DEVIATION OF THE BIAS OF I , n = 10

E(r.) =E(rj) E(rj) ^E(rJ)

N i bi s.d.(b.) b.
1

s.d.(b.)

2 0.00133 0.00252 0.00152 0.00243

100 3 - .00061 .00267 .00007 .00252

4 - .00072 .00152 - .00159 .00149

2 .00148 .00168 - .00299 .OOI69

200 3 - .00094 .00176 .00291 .00182

4 - .00053 .00104 .00008 .00108

2 .00128 .00114 - .00094 .00118

400 3 - .00094 .00122 .00121 .00123

4 - .00033 .00074 - .00027 .00072

2 .00063 .OOO83 .00012 .OOO85

800 3 .00025 .00086 .00066 .00091

4 -0.00088

»_^—_____

0.00047 -0.00077 0.00050
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TABLE X

At
BIAS AND STANDARD DEVIATION OF THE BIAS OF I., n = 20

N i b.
l

s.d.(t.)

2 -0.00297 0.00179

200 3 - .00021 .00195

4 .00318 .00109

2 - .00274 .00127

400 3 .00139 .00135

4 .00135 .00077

2 - .00416 .00086

800 3 .00260 .00094

4 0.00156 0.00055
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systematic behavior in the bias. No pronounced relationship could be

discerned between the bias and either the sample size or the number of

time intervals in the sample. The variations in the number of deaths

per time interval appear to have no noticeable effect on the bias.

Actually the indicated biases are all so small relative to the

distribution standard deviations that they may actually be zero in the

true infinite populations.

Similar tables were constructed for the bias in the estimate

.At

of Var(I ). Here the population variance was obtained by setting

/A'\ a2 a2 a1
Var(I ) = a., where a. is the sample variance of I.. These tables

indicate that the variances computed from the approximate variance

formula were positively biased while those obtained from the asymptotic

formula were predominantly negatively biased. In other words, the

asymptotic formula tended to overcorrect for the bias in the

approximate formula.

To compensate for the bias in estimating Var(I.), consider the

problem of deriving a correction factor for the variance estimator.

A A' A .A'
Let V, (I.) and V2(I.) be the expected values of the sample variances

based on the N variances computed from the approximate variance

formula and the asymptotic variance formula respectively. In any case,

the bias is given by

(**.29) \ =Var(l^) -V(I±) .
t

For each I. these biases and the reciprocals of their corresponding

sample sizes were plotted as points in a plane. These scatter diagrams

indicated a rather strong linear trend. Since E(b.) = 0 as N -> <», the
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function

(Mo) h = 1

was fitted to the data by the method of least squares. A scatter

diagram for the 7's and the incidences indicated that

(4.31) 7 = \1 +52I'2

would yield a satisfactory fit. Substituting (4.31) in (4.30), one

finds that

5r +Spl'2
(4.32) b = -1 2

N

This expresses the bias as a function of the incidence and sample size.

The function (4.32) may be fitted to the data by least squares.

On setting b = Var(l') - V(T) in (4.32), this function takes

the form

(4.33) Var(l') -V(I') =-± j^— ,

so that

2

(4.34) Var(i') =V(l') +i1* +^
N

The above technique was applied to the data obtained from both

variance formulas. As a result of these computations, the variances of

the incidence estimates were found to be

' _ '2At A Al 1.7151. - 6.2071,(^5) Var(^) *V^) + i- L.

if the approximate variance formula is used, and
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,2

a a- 0.37481 - 0.44141
(4.36) Var(l )^V2(I )+ ^ -

if the asymptotic variance formula is used. Thus, it appears that one

can remove most of the bias in estimating the sample variances by

adding a factor, which is a function of both the incidence and sample

size, to the variance estimate computed from either variance formula.

The least squares fit of (4.32) to the approximate variance

data was better than the corresponding fit to the asymptotic variance

data. Hence, one would prefer formula (4.35)> "both because it is more

reliable and because the variance estimate is easier to compute.
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CHAPTER V

SUMMARY AND CONCLUSIONS

A random sample of N animals from an infinite population is

observed until all animals in the sample have died. At the time of

death, the cause of death is recorded. The observation period is

divided into n intervals, not necessarily of equal length, and the

number of animals dying from each cause of death is calculated for

each time interval. It is desired to estimate the disease incidences

in a population in which one of the diseases has been eliminated as a

cause of death. The estimation is to be performed with a sample from

a population in which all causes of death are operating.

An estimation procedure developed by Kimball [7] is discussed

in Chapter II. This method is based on the maximum likelihood

estimates of the parameters of a distribution very similar to the

multinomial distribution. In an attempt to improve upon Kimball's

approximate formula for the variances of the estimates, a true

asymptotic variance formula is derived in Chapter III.

To provide some information on the small sample properties of

the estimates, a large-scale random sampling experiment was designed and

carried out on the ORACLE. This empirical study reflected favorably

upon the estimation procedure. The sampling distributions of Ip and
At A|
I, were approximately normal while the distributions of I, were

1 t

positively skewed. This is not surprising, for Ip and I, are nearly
1

equal to one-half while Ir is less than one-tenth. The biases in the

incidence estimates were negligible.

The distributions of the variance estimates approximated the
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chi-square distribution, as would be expected. One cannot infer from

this study that the asymptotic variance formula is an improvement on

the approximate formula. It turned out that the latter always over

estimated the actual variances whereas the former tended to under

estimate the actual variances. A correction factor for both variance

formulas was derived that, in practice, should provide sample variances

that have very little bias.

Unless a high-speed machine is available, it is impracticable

to use the asymptotic variance formula. Since the computation procedure

is elementary, the approximate variance formula has greater utility.

Furthermore, its correction factor seems to produce more accurate

solutions.

In the derivation of the correction factors for both variance

formulas, it was necessary to fit a curve of the form

(5.1) b = N"1(51I. +o2I'2)

to three clusters of points. This restriction was imposed by the design

of the sampling experiment. Improved correction factors may be obtained

by designing an experiment such that greater variation in the true

incidences results.
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