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CHAPTER I

INTRODUCTION

The estimation of disease incidences in populations subject to
competing risks has been a recognized problem among statisticians for
many years. For example, in studies on cancer mortality individuals
may die from causes other than cancer. Disease incidence estimation
has been attacked in many ways usually yielding different results. It
is the writer's belief, however, that none of the previous authors have
approached this problem from the maximum likelihood point of view with

the aim of studying the sampling distributions of the estimates.

Statement of the problem. The general problem is illustrated

most easily by reference to a particular experiment. A group of animals
is exposed to a sublethal dose of radiation. The group is observed
until all animals have died. At the time of death each animal is
autopsied, and a cause of death is assigned. The experimenter wishes
to estimate the incidence of disease A. There is, however, a complicating
factor. Suppose disease B generally occurs earlier in life than does
disease A. Thus, there are animals which die of disease B before they
manifest disease A. The problem considered is twofold: (1) to estimate
what the incidence of disease A would be if disease B were eliminated as
a cause of death when the estimation is performed with a sample fram a
population in which all diseases are operating and (2) to study the
properties of the sampling distributions of these estimates.

For the answer to the first part of the problem Kimball [T]
derived a distribution free estimation procedure and gave an approximate

formula for the variance of the estimate. It was felt that this




approximate variance formula was inadequate. A search for a better
variance formula and an answer to the second part of the above problem,

as related to Kimball's estimates, led to the results of this paper.

Importance of the study. For any estimation procedure it is

most desirable to know the small sample characteristics of the
estimates. Kimball's procedure is being used extensively at Oak Ridge
National Laboratory. Unfortunately, in this case the camplexity of the
mathematics prohibited a complete analytical treatment. Thus, an
empirical method was used in an endeavor to learn more about the small

sample properties of the estimates.

Review of the related literature. Berkson and Gage [1]

developed methods for estimating the "cure rate" and the "death rate"
from cancer in human populations after treatment for cancer. Kimball
and Atta [8] derived a procedure for estimating disease incidence
probabilities in animal populations subject to multiple causes of death.
These procedures require the assumption of specific probability
distributions for the survival times in the populations considered.

Fix and Neyman [3] discussed a method for estimating "rates of
risks" in patients following treatment for cancer. Their method is
based on the stochastic process approach.

Harris, Meier, and Tukey [4] derived estimates of "event-rates"
on the basis of a sample of observations from a distribution of such
events. Kaplan and Meier [6] were concerned with the estimation of
"survival rates" in individuals. 1In these procedures no assumption is

made about the form of the distribution of survival times in the

populations considered.

Sampford [12] discussed methods for estimating the response-time




distributions. These methods may be adapted to the estimation of
disease incidences if certain assumptions are made about the
distributions of times of death in the population. Such information,

however, is usually lacking.

Organization of the study by chapters. As was indicated earlier

the major part of the study reported in this paper was concerned with
the small sample properties of the estimates obtained by Kimball's
distribution free estimation procedure. For campleteness Kimball's
procedure is discussed in Chapter II.

A new asymptotic variance formula for the estimates is developed
in Chapter III. Included is a derivation of the asymptotic variance-
covariance matrix of the estimated conditional probabilities.

The small sample distribution and its important characteristics
for Kimball's estimates of disease incidence probabilities were
estimated by a random sampling (Monte Carlo) experiment performed on the
ORACIE (0Oak Ridge Automatic Computer and Logical Engine). The description
and results of that experiment are reported in Chapter IV.

Chapter V contains general conclusions and a recamendation for

further research.
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CHAPTER IT

ESTIMATION OF DISEASE INCIDENCES

Kimball [7] presents a method for the estimation of disease
incidence probabilities in populations subject to competing risks.
This chapter is virtually a copy of his paper. Many of the missing

algebraic details of Kimball's derivation are supplied here.

General description. Assume a random sample of N animals from

an infinite population of animals. When an animal dies, the cause of
death is recorded. After all N animals in the sample have died, the
observation period is divided into n intervals, not necessarily of
equal length; and the number dying of each disease is calculated for
each time interwval.

Let 253 (i=21,2, vee,m; J=1,2, ..., n) denote the number
of animals that died of cause i during the jth interval. Iet the total
number of animals that died of cause i be specified by
(2.1) A, = ii a

'y s ,
i iZ1 ij

and the total number of deaths in the jth interval by
(2.2) r, = 55 ., o
Iogm

Then

2. = = r. .
(2.3) N QSLAi jz; ;

Define the conditional probability, Ps 5 (=1, .u., m;
j=1, ..., n), to be the probability of death in the jth interval from

the ith cause, given survival through the first (j-1) intervals. Then




the probability of death in the jth interval given survival through the
first (j-1) intervals takes the form

(2.1) : =iiz_pij .

The model, by the selection of the intervals, imposes the conditions

(2.5) 5o =0 and s =1

As & consequence of the definition of the Pyss the probability of

survival through the first (j-1) intervals is

(2.6) R, = Jff (1-5,) -
£=0

Thus, one finds the unconditional probability of death in the jth

interval from the ith cause to be pij Rj'

It will be shown that

m
(2.7) ) Py By =1 .
i=1 j=1
Write
) )
(2.8) DI TS
o=t I = TR A S =t Y = R

Using (2.4) and (2.6), one may write (2.8) in the form

pis n
L Lms -

R.s,
J j=1 Jd d

il

sl(l-so) + sg(l-so)(l-sl) + 55(1-50)(1-51)(1-52)
(2.9)

+ oaee + sn(l-so)(l-sl)(l-sg) ces (l-sn_l) .
Since Sg = 0,

n
(2.10) P.. R. = s, + 5,(1-5,) + s,(1-s5,)(1~s,)
iZ;_jZ;_ ijJ 7 1 2 1 3 1 2

+oae. sn(l-sl)(l-se) eee (L-s

n-l) :




Repeated factorization of (2.10) yields

m n
(2.11) ;ZA ;leij Rj =5, + (1-s)) L s, + (1-s,) L 55 + (1-55) L ces
. L-2 st (l-sn_l) s, n]2 .o l l l

Now, s, = 1. Consequently, the quantity in the (n-2) brackets reduces
to unity. It follows at once that the entire right-hand side of (2.11)

telescopes to unity.

Estimation of conditional probabilities. The aij represent a
random sample from a multinomial population. The likelihood function

for such a sample is

ﬁ ﬁ'<a f=1 ﬁl[ J} )

i=1 j=1

The logarithm of the likelihood funection is

t
(2.12) L = log 2t " i i a,, log o,
ﬁ i=1 j=1 J
(a,.!
f=1 j= M

+ 55 5§ aij log Rj

i=1 j=1

Note that

IECER)
i Za.logR .Z,logRj._alJ,
Jj=1 i=1

i=l j=1




i Z 3y log Rj =1, log (l-so) +r, log (l-so)(l-sl)

i=1l j=1
|
‘ + ... +T log (l-so)(l-sl) eee (l-sn_l) ,
=1, log (l-so) + 1, log (l-so) + 1, log (l-sl)
] + ... +r log (l-so) +r log (l-sl)
(2.13)
. + oo +1 log (l—sn_l) ,
)
= log (1-s.) r. + log (1-s,) i T,
0 j:l J 1 =2 J
+ ... + log (l-sn_l) T
=i S, log (1-s. ,) ,
where
)
. (2.14) S, = r, .
J 1= 1
- Obviously, S, is the number of animals that are surviving at the

J
beginning of the jth interval.

Substitution of (2.13) in (2.12) yields

(2.15) L = log + i i 8y log Dy

ﬁ ﬁ (aij:) i=1 j=1

n
s, log (l-s,
+ j;1 5 log (L-s, ;)

The maximum likelihood estimates of pi,j are found by setting the




first partial derivatives of the function L with respect to Pij equal
to zero and solving the resulting equations for the estimates, ﬁi..
To this end, rewrite (2.15) in the form

(2.16) L = log

+ 55 a,. log p,.
{1 =1 1 1

N!
ﬁ ﬁ(aij!)

i=1 j=1

-1
+ %E S. ., log (1-s,) .
20 97t J

Examination of (2.16) shows clearly that the maximum likelihood

equations for the pij of any one interval will not involve the Pij of

any other interval. Thus, for k < n, the partial derivatives of L with

respect to pij for the kth interval are:

(2.17) AL _ %3k Skl

Eiij Pix 1-sy

(i=l, 2, ...,m).

Setting these partial derivatives equal to zero and using (2.4), one

obtains the following system of equations for the ﬁik:
A A A _
(Byy + 8ypq) Pry + gy Pog + oor +agy By = agy

8o, Dyy + (Bop +S. ) Doy + eee 2., D, =8
2k *1lk 2k k+1 2k ot 2k “mk 2k
(2.18)

8 1 Py +8 1 Dar + +{(a ., +S )D. =a
mk P1x " %mk Pox T - mk * “k+1’ Pmk T %k ¢

Addition of the system (2.18) renders




m
oS N
(2.19) (Sk+l +.Z; aik) Py + (Sk+l + 53 aik) Poy

+ ... + (8 + 55 a..) b, = 8.q
k+1 =1 ik’ *nmk 124 ik
or
o) A
(2.20) (Spaa +7p) Pyge + (Sypn + 1) Py

+oees (Sk+l + rk) Py = ig;Laik .

Applying (2.14), one has

A A~ A
(2.21) 8, Py * S, Doy + +er + 8 P, = ig;Laik .

Hence,

A
(2.22) f D= B

A +/\
Py * Poy k S

Solving (2.22) and the ith equation of (2.18) simultaneously for ﬁik’

one obtains

s - 1=1 A
1k Sy (S 5Byn) 7
(2.23)
2% Sk _ ik (k < n)
S (S Sy '

When X = n, s_ = 35 p,. = 1. Therefore, the p, are parameters
f=1 *" in
of a multinomial distribution. It is well known [9, pp. 214-216] that

n




10
the maximum likelihood estimates of the p;, are
(2.24) R
. pin = 'S:- B

Thus, the maximum likelihood estimates of the pij are

(2.25) B, = (i=1, ...,m; =1, .c., n).

Estimation of disease incidences in the unrestricted population.

In the population in which all diseases are operating, the true

incidence, Ii’ of the ith disease may be camputed by

(2.26) I, = ip..R. ,
i 5= ij 7J

that is, by suming the unconditional probabilities over all time

intervals. An estimate of Ii is given by

-\ N
(2.27) I, = 55 ﬁij R. ,
j=1 ™ 7
A
where R, is R, with /ﬁ . substituted for p... Since
J J i ij
2.28 l-s, = 1 - i .
(2.28) 3 Lo Py
it follows that
813 r
~ i=1 _ J
-5, = 1-—3 = 1l-35
J J
(2.29)
S, = r, S
- oJ 4 _ _JdH
S. S )
J J




Then
Ry = (1-8,)(1-8)) ... (3-8, )) ,
= (1-@1)(1-2:‘2) (1-93_2)(1-%_1) ’
(2.30)
= f.g. . 53- PRI Sj-l . S'j )
Sl 82 Sj-2 Sj-l
S
= A .
Sl

Using (2.25) and (2.30), one finds that (2.27) takes the form

A n a,, S.
(2.31) I, = ), 22 . & = &= o,
J=1 "3 1 1 j=1 %
Now,
(2.32) S, = 2 r, = N .
1 5
It follows immediately that
A
A\ i
(2.33) I, = =5

which is the classical result.

Estimation of disease incidences in the truncated population. It

is desired to use a sample fram a population in which all diseases
considered are operating to estimate the disease Iincidences in a

restricted population fram which one particular disease has been eliminated
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as a possible cause of death. This is equivalent to estimating the
properties of a truncated population fram an untruncated sample.

Assume that the first disease is to be eliminated. ©Since the
indexing of the diseases may be permuted so that the ith disease becomes
the first, there is no loss in generality. Define a new set of

conditional probabilities by

(2.34) R (1 =2 my =1, 2 n) ”
. pij l_plj T ey eee, My J =L, €5 0ee,
Let -
b} 1]
2. —
(2.36) q_o = 0 »
(2.37) SR
o 4=0 g

Then, the incidence of the ith disease in the truncated population is

1 b4} 1 1 -
(2.38) I, = 32%- P; 5 Rj (i=2, ..., m) .
It may be shown that
At /\' Al
(2.39) I = 1P13 R, (i=2, .o.,m) ,
J:
where
P
| Uy
i
/ﬁij = l_ 2
ij
(2.4%0)
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1
It will be advantageous to express fi in a different form. By

the use of (2.6), (2.28), (2.34), (2.35), and (2.37), one has

(1-95) (1~qp) -vr (=g, ),

1l

Il

(1-9) (1) +oe (1)

SNSRI

i=o 1=2 =2
(2.41)
P11 Pio Pi, j-1
= - l- l- - l" l_ )
i=2 ~"P11 i=2 “"P12 f=o ~7P1, j-1
)
1-Y p 1 - 5% P 1-) p, .
_ { i=1 il] { i=1 12] [ =1 1s -1
—_— = - LI I - ’
1-p4 1-P1p L 1-py jo1
~ l-sl l-s2 l-—s.__l
— L L ’
1-pyy 1-Pip 1Py 5-1
R,
= e
(1-p,,)
A 11

On substituting (2.34) and (2.41) in (2.38), one may write (2.38) in the

form

(2.42)

1l
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Also
S, a
R, = L = T% and ﬁi. = §ii .
J 1 J j
Therefore,
t a,.
(2.43) t =% P -
P1y
=1
Al
is another form for Ii' -
Approximate variances of the estimates. It has been pointed .

out that the aij represent a sample from a multinomial population. It

is well known [10, pp. 34-35] that

Var (ai,j) = N (Pi,j R,j)(l-Pi,j R,j) H

(2.44)

Cov (ai,j’ ailjl) = = N'(pij Rj)(pivjl R.j') .

As a result of (2.25), (2.30), and (2.32), these variances and covariances

are estimated by )
a,.(N-a,.)
& 1] )
Est Var (aij) = T ’
(2.45)
aij ail'l
Est Cov (ai,j’ aiyjl) = = N *

Inspection of formule (2.43) shows that each term in the summation
is correlated with all preceding terms. This makes the calculation of
At
the variance of Ii extremely laborious. In order to simplify the

camputation, it will be assumed that (1) the P,y are small and (2) the

covariances between aij and aij' are also small. In other words, if the
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covariance terms are negligible, and if the denominators of the
successive terms in (2.43) are nearly constant, the variance may be

approximated by

, Var (a,.)
(2.46) Var (fi) z f;'é' 321 : 7 Py 5
l]jl(l-ﬁu)

Substitution of (2.45) in (2.46) yields

, a,.(N -a,,)
Var (fl) ~ L 1] 132

¥ i1 [ :
[T a5,
= 11

Failure of the first assumption will deflate the variance

R

estimate. Failure of the second assumption will inflate the estimate
since the covariances are negative. If both assumptions fail, it is

expected that these two errors will counterbalance approximately.




16

CHAPTER ITII
ASYMPTOTIC VARIANCES OF THE ESTIMATES

The results of the sampling experiment to be described in Chapter
IV indicate that the assumptions made 1in deriving the approximate
variance formula (2.47) of the last chapter may not be valid and that
the two errors introduced there often do not counterbalance each other.
Attention will be given next to one possibility for obtaining better
estimates for the variances of fi that do not depend upon the
questionable assumptions. An asymptotic vaeriance formula, based on the

At
Taylor series expansion of Ii , will be derived in this chapter.

Asymptotic variance-covariance matrix of the conditional prob-

abilities. The asymptotic variance-covariance matrix of the pij may
be found by inverting the symmetric positive definite matrix

2

oL .
(3.1) v = |-E (J, ' <n),

0P, . OB, 4.1
pij pi'j'

where E is the operator of mathematical expectation.
Because of the particular nature of the likelihood function, ¥

takes the form

0] coo 0
(3.2) v = ¥, .. 0
. . ,
\f
O L 2 \.l!n-l

2
oL
where the ¥. (k < n) are m X m block matrices with elements - E .
k SP31c Py
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The elements of \I'k may be camputed with the aid of

Theorem %.l. Let Ty Rk’ and S, be the quantities defined by

k

(2.2), (2.6), and (2.14) respectively. If E(aij) = Npij Rj’ then

(3.3) E(S,) = MW, .

Proof. By well-known rules of mathematical expectation

Il

E(rk) E 121aik = iE(aik) ’

i=1
(3.4)

NR P. .
k 121 ik

Now, for k = 1, the proof of (3.3) is trivial. Write

(3.5) E(Sl) = E jil ry = E(N) = N

Since R, = (1-50) =1, equation (3.5) will not be altered if the right-

hand side is multiplied by Rl’ Therefore,
(3.6) E(Sl) = NR, .

1

To prove the theorem by induction, assume it to te wvalid for k, and

consider
(3.7) Sk+l = Sk-rk .

Taking expected values of (3.7) and using (3.3) and (3.4), one has

E(Sgq) = E(5)) - BE(ry) = WR - MRy 12;1 Pig



E(S,y) = MR |1-) Py | = WR(l-s) ,

(3.8)

1l
g

Thus, the theorem is proved for all k.

Tt was seen in (2.17) that for the kth period

S
JL &ix k+1 . .
(3'9) % = 5}-‘ - l_s (l=l’ ce ey m; k<n)-
ik ik k
Consequently,
°L | ik Se41
2T "3 z
OPik Pix (1-s))
(3.10)
o S
d°L k+1 .oyt
3w 0Py 12 (i#1) .
1k “Pirx (1-s,)

Now, use equation (2.6) and theorem 3.1 to evaluate the negative of the

expected values of (3.10). To this end write

2 a. S
o°L I ik | @ k+1

- B 5

2 2




3°L Syl
-5 = kK o) ’
9P,y OP; 1y (1~s,)
(3.11)
l-sk
It follows that
1 + 1 1 1
Plx l--sk l--sk c ot l-sk
1 1 1 1
(3.12) . = N e . e .
k Rk l--sk Py l-sk l--sk
1 1 1 + 1
l-sk l-sk Pk l-sk
Rewrite (3.12) as |
\
|
L 0 . . 0
P1x
0 i%;— . 0
| 2k
-1 _-1 1
Gax TRty =| S
O O e & & -—]:_-
Bmk

where ¢ is a k X k matrix whose elements are all unity.

Roy and Sarhan [11] have proved

Theorem 3.2, Let A be any m X m nonsingular square matrix and
A'l its inverse. Iet D be anm X m diagonal matrix with elements

(l/dl, cee, l/dm). Let (u/d), (v/d), (u), and (v) be m X 1 vectors
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with elements ui/di’ vi/di’ u;, and v, respectively. Fimally, let A

denote a scalar. If

(3.14) A = D- A— /),
1 +A Sb ui Ei
i=1 i
then
(3.15) At = ot A () .

Setting A = =1, (u)

i

(v) = (d), and A = Nt R;l'wk, one may

write (3.14) in the form

(3.16) Nt R];l\lfk - Dt —E2 B,

where & is defined as above. Now if D is the diagonal matrix of
1
(3.13) and (d) = (plk’ cee pmk)’ the result of theorem 3.2 enables

one to write

2
O o e O p p e p
(3.17) 1k 1k 1xP2k 13Pmk
0 P 0] P 2 cea D
wr ol o ok ) 1xPox  Peg 21Pmk
Ry ¥y ) ] . i . .
0 0 P P P soe p2
mk 1xPmk  PoxPmk mk

Therefore,




. . . —Pllcpmk

. . . -Pglcpmk
J)
2
. » . Pmk mk
. (3.18)
] Py (1-P1y)  ~PpyPoy S “P11Pnk
|
|
N P11 Pok Py (1-pyy) - - - ~PorPrk
NR,
“P11cPmk “PoyPrx coe e Pt 1P

Recall that when k = n, the p;, are parameters of a multinomial
distribution. It is well known [9, pp. 21k-216] that the ﬁin have an
asymptotic variance-covariance matrix that is equal to @;l. Thus, the

. . o Pa .
variance-covariance matrix of the Pij is given by

Ql 0 .« . e 0

0
(3.19) o =

==

where
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Py (1-pyy ) =P 1Pox P ~P11cPmk
1 ~P1Pok Pop(l-Pp) o o o Py By
(5.20) Qk= q . . .
~P1 1Pmk “PoicPnk <. By (1=Pry)

Asymptotic variances of the incidence estimates. It will be

convenient to let h =1 and t = j in (2.39). Then

(3.21) ?1_1 = 21’5}1,0 R (h=2, eoo,m) .

Expand (3.21) into its Taylor series about the Pyj (1=1, ..., m;

j =1, eesy, n) retaining only the linear terms. Then,

Al ~ ? A
where
., R, a . Op
(3.23) 6 .. = oy R t o,
hij tzl Fnt P 5 tzz"l t Opy,
Note that
n,
t
(3.24) 5. = © (t #£3)
ij
Therefore,




(3.25)

W S
®hiy = By E + ) Pot 3p..

o, 3R 3R, 3R,

L 1 t L +l 1 t

= R, 3——i + + . + .
J °Py ézlpht ;5 Th, §+ Sp, tggae *ht 9P 5

To calculate the first term on the right-hand side of (3.25), one

observes that

(3.26)

aphj _ _™hy
P15 (1epy)”
o8,
J 1 ]
=y (1=m) ,

I

(i #n) .

To calculate the last three terms of (3.25), note that

(3.27)

(1-q.) D,
J 2

I
|_.l
1
=}
3
[EPAg
e
|_.l
I
|_.l
w3 |
|_.l
.,
gt =}

In calculating TN three cases may be distinguished:
iJ
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case (i). Ift<j +1,

(5.28) o< Il (g,
=0

1

t

are not functions of the Pij’ Thus,

Obviously, all R, (t < j + 1) do not involve the j subscript; and hence,

(3.29) 35%- - 0 (1=1,2, coo, m).

R = I (-q,),
J+1 =0 £

(3.30)

1
= R, (1l-q.
5 ( qu)
Substitution of (3.27) in (3.30) yields

(3.31) Rig = R,

l-s,
1
-Plj

Differentiation of (3.31) with respect to Plj gives

d (1= - -
z;ﬂ _-a plj)+<: ) Py CH
- J - J
13 (1-py 5) (1-p, 5)
(3.32)
S.~DP- . '
_ J T1j . Rj .
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Differentiation of (3.31) with respect to Py (L < j=n) gives

8Rt+l Rf
(3.33) gmL = -ﬁl%;

cagse (iii). I t>J +1,

g = (1-a) il (1-q,) T (1-q,)

=0 I=3+L

R (l-q) tHl (1-q,)

2=j+1

=
1l

(3.34)

il

Substitution of (3.27) in (3.34) yields

1 1 1-s,
(3.35) R, = R, 7=

. (1-q,)
J 1Py g=ga !

Differentiating (3.35) with respect to Py 5 gives

3R, R, (s -
= = - -q
Py 3 (1 _le 2=541 2

On multiplying both the numerator and denominator by the quantity

(l-qj), equation (3.36) becomes

3R, ( -, .)(1- -9 )
t - . lJ (1-q ,
%y 5 (l le) (1-a,) zj]tl

(3.37) '
_ o Bbymy)

(1-q,) (1=p, 5 )
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Differentiation of (3.35) with respect to Py (L <i=j) and multipli-
cation of the numerator and denaminator of the resulting differential

equation by the quantity (l-qj) gives

(3.38) aRt Ry
343 35— < - .

Thus, the calculation of ehij must also be divided into cases:

case (1). If i =1and j<n,

1 4

o= SaPhy B, ga Ry(5ymyy)

(3.39) Vo
Py Ry(syPry) |
t=342 (1-q,)(1-p, ;)"

Multiplying the numerator and dencminator of the second term on the
right-hand side of (3.39) by the quantity (l—sj) and using (2.34) ,

(2.41), and (3.27); one has

S5 Py B, ga Byesy)(symry)

0, .. =
(1-py ) (1-8,)(1-p, ,)°

hlj

Py Re(5;-Py;) (L-pp )
e (-s)(1p)°

(3.40)

1 85 Png  55P1y B Pht R

1-p; . Iﬁ (1-s.) ~
J (1-p, ,) b =4 (1-p,,)
P2y 11 j<n ;ﬂi 12
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case (ii). If i =1and j = n,

R Pon

1- 1-
(1-p,,) l]jl( Py,)

(3.41) Op1n =

is almost immediate. In this case t <n + 1 and by (3.29),

oR
r-t = 0.

Indeed, the last three terms on the right-hand side of (3.25) vanish;

and (3.41) follows at once.

case (iii). If i =h and j < n,

R. B R. ' Rt

. 6, .. = J - -

Tg,)

Devices similar to those used in case (i) reduce this to the form

R, 1 a P By

(3.43) 6, .. = = - —
o ﬁ (1-p,,) % tf‘jzzrl ﬁ (1-p,,)
=1 1! J<n =1 12

case (iv). If i =hand j =n,

R
n

(5.144) ehin =
i 1-

is inmmediate. This case is analogous to case (ii).

case (v). If i;éhandj<n,

t

Pn J+L R, ! R
(3.15) 6, ., = - — -
hij (1-plj) t§j+2 Pht (T,

Jj<n

)(l-qj) ’
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Devices used in case (i) reduce this form to

1 Ppt B
(3.46) 1y T " IS, 2 <

j t=j+l ﬁ(l
-D, )
Jj<n =1 12
case (vi). If i £h and j = n,

(3.47) 6.. = 0

is trivial. This follows at once fram (3.25), (3.26), and (3.29).
)
Consider (3.22). Transposing Ih to the left-hand side and

squaring the resulting equation, one obtains

CAEE NI I PR

i=1 j=1

+ i i (’I‘) - p; )(P 1y = Pyrg) %nij ®niry

i=1 j=1
(3.48)
+ i i (B = 2. )(Bsse = Pesy) Ope O oy
i=1 =1 ij ij ij ij hij “hij
N A A
+ = le (piJ = piJ)(pi'j' - piljl) ehi,j ehi'J'

Now, the variance of /'I_i is defined as
(3.49) var (1) = (T - 1)° -

Then




var (1) ¥ iir:(pij 2, )% 6,

A

(3.50)
+ 121 JilE(P - P )(P Pijl) ehij ehij'

)
A A
+ i;lj_—_lE(Pij = Pij)(Piljl - Piljl) ehij ehi'j' .

t
When j £ j , the variance-covariance matrix (3.19) shows that

A
J -Pij)(Piljl -Pi',j')_o .

Thus, the last two terms on the right-hand side of equation (3.50) vanish.

It follows that

Al ~ 2 A
Var (Ih) = 121 J'Zlehij Var (Pij)
(3.52)

+E§:6>6,.Cw(§,/ﬁ.,.).
=1 =1 hij "hi'j ij i'j
Tt was thought that the asymptotic variance formula (3.52) would
be an improvement upon the approximate variance formula (2.47). In
Chapter IV a camparison of these two variance formulas with the

population variances is made for a wide range of parameters.
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CHAPTER IV

RANDOM SAMPLING EXPERIMENT

Introduction. When statisticians are confronted with a difficult

problem in distribution theory, they sometimes resort to the Monte Carlo
method. The process consists of drawings fram randam sequences of
numbers, or at least pseudo-random sequences, in accordance with an
artificial model, whereby the statistic whose distribution is sought can
be observed over and over again and the distribution estimated empiri-
cally.

A large scale randam sampling (Monte Carlo) experiment was
conducted in order to study the small sample distributions of Kimball's
estimates of disease incidences as well as the small sample distributions
of the estimates for the variances of the estimated disease incidences,
o

The general idea of the experiment was as follows. A set of
parameters N, m, and pij were assigned, and with a synthetic model sample
approximations to the distribution of aij were generated on the ORACIE.
Large sample approximations to the distributions of f;

]
that is, large but finite populations of values of fi were generated

were then computed;

vwhich approximate the corresponding true life infinite populations.
Since the generated populations of values of fi were finite, their
variances could be computed by means of statistical formulas. Values
for variance formulas (2.47) and (3.52) were camputed fram the sample of
aij' These values were compared with the basic finite population
variances. The assumption that the synthetic model is a good approxi-

mation to the infinite populations of samples then allows one to judge
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the accuracy of both variance formulas by how closely they approximate

the true (pseudo-true) population variances.

Description of the study. The experiment was divided into the

following cases:

1. E(rj) = E(r;)

a) n=5
b) n =10
¢) n=20

2. E(rj) £ E(rj)
a) n=5

b) n =10

The cases were chosen to provide some information about the
effects of variations in the number of time intervals and the number
of deaths per time interval on the estimation procedure. For each
case and for sample sizes of 50, 100, 200, 400, and 800, a thousand
random samples were generated fram a random distribution with a pre-
determined set of conditional probabilities, pij' Each of the samples
was generated with m = 4. An attempt to simulate an actual experiment

influenced the selection of the pij' The p,. were specified for case

1J
(1c). These are displayed in Table I. The unconditional probabilities,
Pinj’ are displayed in Table II. The pij for case (1b) were derived
from case (lc) by pooling the unconditional probabilities in the
adjacent time intervals of case (lc) by pairs. Similarly, the pij for
case (la) were derived from case (1b) by pooling the unconditional
probabilities in the adjacent time intervals of case (1b) by pairs. The
P; 5 for case (2a) and case (2b) were derived by pooling the unconditional

probabilities in the adjacent time intervals of case (lc) such that the
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TABLE I

THE CONDITIONAL PROBABILITIES, D, ,, FOR CASE (1c)

Time Disease
Interval 1 2 3 L
1 0.0200 0.0245 0.0050 0.0005
2 .0216 .0253 . 0053 . 0005 -
3 .0233 L0261 .0056 .0006
4 0253 L0271 .0059 .0006 )
5 .0300 .0250 . 0062 .0012
6 . 0327 . 0260 .0067 .0013
7 . 0286 L0271 .0143 .00LL
8 .0315 .0285 .0154 .0015
9 .0350 .0292 L0167 .0025
10 .0391 .0309 .0182 . 0027
11 .0k70 .0300 .0200 .0030
12 0533 .0322 .0222 .0033
13 .0638 .0250 .0312 .0050 -
14 LO7h3 .0271 .0357 L0057
15 . 0800 .0300 .0500 . 0067
16 .0980 L0340 . 0600 .0080
17 L1175 .0325 L0875 .0125
18 .1600 .0k00 L1167 .0167
19 2450 .0550 .1750 .0250
20 0.5000 0.1000 0.3500 0.0500




THE UNCONDITIONAL PROBABILITIES, Pin,j , FOR CASE (1e)

p———— e — ———— ]

TABIE II

Time Disease
Interval 1 2 3
1 0.0200 0.02L45
2 .0205 0240
b .0210 .0235
L .0215 .0230
5 .02ko .0200
6 .0245 .0195
T .0200 .0190
8 .0205 .0185
9 .0210 0175
10 0215 .0170
11 0235 .0150
12 0240 .01k5
13 0255 .0100
1k 0260 .0095
15 0240 .0090
16 0245 .0085
17 0235 . 0065
18 0240 . 0060
19 02k5 .0055
20 0.0250 0.0050 0.0L75
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number of time intervals that were combined formed the distributions
(1, 3,7, 7, 2) and (1, 1, 1, 2, 2, 2, 5, 3, 2, 1) respectively.

An examination of (2.43) shows clearly that the estimation
procedure is undefined if in the nth interval either no deaths occur or
a2ll deaths are due to the first disease. 1In practice this difficulty
may be overcame by judicious choice of the time intervals. In the
empirical study, however, these situations were unavoidable in some
samples since the time intervals were specified in advance of the
experiment. When either anomaly developed in a sample, that sample was
rejected, and a new sample was generated to replace it. If the rejection
rate exceeded 10 per cent (100 in the present experiment) of the total
number of samples drawn, the corresponding sample size was eliminated
from the study. This expedient was used because of the excessive amount
of machine time required to generate 1000 admissible samples under these
conditions.

A general description of the camputations is given in the form
of a flow diagram, Figure 1. The arrow '-" inside a box means 'is

replaced by", and C C2, and C5 are merely counters. The computational

l)

details in Figure 1 are discussed in the following sections.

Generation of the pseudo-randam numbers. The procedure employed

to generate the pseudo-random numbers, P,» Was one based on methods
described by Taussky and Todd [13]. If Po denotes any odd number and
p = 515, then the recurrence relation

(4.1)

Ppg =P * Py (mod 299

forms a pseudo-randam sequence of numbers. The sequence is periodic
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Read Campute
Start > . 152 2 0L 0C
N, n, m, Pi,j &, GV’ Ii 0-Cq / 2
O—)C3
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lovy
Generate pl
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oo Gv-]_slpz I<GV ?

yes
ozv +l->ozv
no 14152
C2+l—>C2
no Cl = 1000% Cl+l—>Cl <
yes
Compute Plot the
m,, “[51152: b histograms of
for the the estimates
estimates

Figure 1. Flow dilagram of the sampling experiment
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with period 237. These numbers have been submitted to various
statistical tests, and they satisfy the usual tests for randamness.
On a high-speed camputing machine such as the ORACLE, this
method breaks down to the generation of sequences of randam numbers
uniformly distributed on the interval (-1, 1), the end points of the
interval as well as Zero being excluded. Thus, the randam numbers as

represented in the ORACLE satisfy the inequalities

(%.2) o<|%l<1.

Generation of the sample elements. ILet

(4.3) v = n(i-1) + j (i=1, eee,my J=1, «o., n)

It will be convenient to introduce the quantities

(4.4) o, = a8y, and g, = pinj (v=1,2, ..., mn) .
The probability that an element belongs to one of the first v categories

of the population is given by

(4.5) G, = g, -

The generation of a sample element may be described as follows:
Define GO = 0. ILet the sample element, z, be characterized by the set
of variables (zl, Zpy ey zv). If an element belongs to the vth

category of the population, z = Z,, Generate a randam number by using
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(4.1) with £ = 0. If

(+.6) G

v-1 = °z+1 < Gv ’

set z = Zv' For a sample of size N repeat the process with
L =1, 2, ..., N-1 successively. The number of sample elements, a,,
in the vth category of the population is the number of times that z

assumes the value Z,, Thus,

(4.7) N = ng Q

Camputation of the sample maments. If X)5 Xpy eeey Xy is an

independent randam sample fram a population with probability density

f(x), the kth sample mament is defined to be

20

(+.8)

lIl
Zl H
d- =

' —
Define m, = X. Then the kth moment about the sample mean (central

moment) is denoted by

III

(4.9) m =3 i (%, - 0

Using the binomial expansion, one may write (4.9) in the form




N k
1 23 23 r |k Ker —
k N +=h 5o T t
(+.10)
ker
k rlx _r xt
r=0 t=1

The use of definition (4.8) reduces this to the form

r
(k.11) m,k=r20(-l)r NEE
where k) = - Lt T .
r r!(k-1)!

Many authors of statistics textbooks advocate using (4.11) to
caompute the central moments of a sampling distribution. This method
should, indeed, be recommended for a desk calculator since it is less
tedious than computing individual deviations from the mean and summing
their powers. On the other hand, when a high-speed digital computer
is available, serious difficulties may arise, especially for large N.

The central moments of the distributions of the incidence and
variance estimates were first camputed by utilizing (4.11). Same of
the fourth moments turned out to be negative and hence inadmissible.

Householder [5] distinguished three types of error in the result
of a computation: (1) propagated error, (2) generated error, and (3)
residual error. Propagated errors are those due to the original errors
in data representation. Generated errors are those that arise as a
result of round~-off. Finally, residual errors are defined as those due
to truncation after the camputation is terminated.

It was the accumulation of the generated errors which rendered
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the moment results incorrect. Hence, it was important to know how such
errors affected the camputations.

The moment camputations were performed by using floating-point
arithmetic. The number, &, in most floating-point systems is

represented by

(4.12) £ =t (8,870 4687 + ..+ p7ET

where B is the base, usually 2 or 10; A\ is a positive integer; and 7n is
any integer, possibly zero. The quantity in parentheses is usually
called the mantissa of g*. The floating-point routine chosen to perform
the moment computations was designed to operate with numbers of the form

(4.12) where

S=le Tt e v <L,

Inl = 2",
(4.13)
p=2 ’
A=31 .
The floating~point operation of addition may be described as
ey e, ey
follows. Assume Ni = dlz s N2 = d22 ’ N5 = d52 , and e, a.el.
Clearly, the di are the mantissas of the Ni' Consider N5 = Nl * Nz.

The plus sign will be used consistently, but the results obviously hold

for subtraction. Thus,
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(4.14%)

ye3 =ey +1 (1= |d3| <2),

d; = (d52‘l

where the asterisk superscript indicates truncation of the number of
magnitude digits at N. Thus, digits are dropped, and an error in the
result is generated. Given N numbers to be added together, these errors
can build up and render the result useless.

Suppose one is interested in summing a set of N numbers. Iet ny

of these numbers be nonnegative, and N = n; + n,. There are sequences

(4.15) {xk

of nonnegative and negative elements respectively for which

(.16) 5 = lxgel ena [xgl = x| (k <k .

To keep the error in the sum as small as possible, the sequences (4.15)
should be added separately and their respective sums combined. Indeed,
this ordering process was employed prior to computing the sample
moments. Moreover, the computation of the maments was carried out by
using (4.9) rather than (4.11) since fewer summations were involved.
Thus, greater accuracy was achieved in the results.

Error bounds may be placed on the results of (4.9). ILet

*
(4.17) Vg = Vg * € (t=1,2, ..., N) ,

*
where T is the machine representation of V- Then
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i (v, +€,)
Vi = v, + € ’
=1t g2t
(%.18)
Pt 3 e
Vyp - Y. = ’
=170 (2t F
so that
(4.19) i = i e, ]
. y - y — 3
21t (2Lt gZ1 ¢
If letl = €, then
*
(4.20) § Yy - ﬁ Y| =TNe
t=1 t=1

Thus given N numbers, each of which can be in error by as much as €,

their sum can be in error by as much as Ne.

Now,
* *
YV = (v + €)(rp, + €) (t £t ,

(b.21)

* ¥ * *

SV YV Y SV Y Sy
so that
* * * *

(k.22) lyevee = vyed = legp ] + legrgl + legegl

*
If Iytl < l-€, one may write

* ¥
(4.23) 1y e = vy | = @-e)(leg| + Je, ) + legesl

Since let| <€ (t=1, 2, ..., N), it is easy to verify by induction that

k
k *
(k.24) Ve - ¥y | S ke
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Define Ve =% - X and € = 2-31- Using (4.9), (4.20), and (4.24), one
finds that
(4.25) M, - (Mm)*| = ke = Wk 2%

Distribution of the estimates. Altogether twenty-one sets of

pareameters were used in the caomputation. It has already been pointed
out that one thousand samples were generated for each set of parameters.
When the first disease was eliminated as a cause of the death in the
population, f; and Var(f;) were camputed for each sample. The variances
were computed by using both the approximate and asymptotic variance
formulas. The mament statistics of the distributions of f; (1 =2, 3, L4)
are shown in Tables III - VII. The sample variance, the measure of

skewness, and the measure of kurtosis are denoted by

62

H
=]

NI
(L4.26) £

B

i
[\V)

Bo

n?nﬂ#g

respectively. For the normal distribution it is well known that
(4.27) VB, =0 and B, =3

To further depict these distributions, the one thousand values
t
of fi for each set of parameters were arranged in histograms. It would
not be feasible to present each of these histograms here, but those

arising fram case (1b) with a sample size of four hundred are exhibited in




TABLE III

1 ]
MOMENT STATISTICS OF THE DISTRIBUTION OF fi, E(rj) = E(Rj), n=>5

T —— —
v | o1 I, £(3,) 8° B, | By

2 0.4h76k4 0.44930 0.011194 0.1468 2.889

50 3 L4838\ L7995 012677 | - .l121 3.027

- L 06852 .07075 .003937 .0112 L4.873
2 LL76k 44880 . 005468 L0516 2.898

. 100 | 3 L4838k 18281 .006256 | - .0LO6 3.123
L 06852 .06839 .001828 L7365 3.718

2 Lh76h 44800 .002539 - .0093 3.092

200 3 48384 48345 .002916 - .0525 2.977

L 06852 . 06855 .00091L 4353 3.233

2 LL 76k Lk631 .001263 - .0286 3.215

Loo 3 48384 48498 .00127h - .0284 2.997

i 06852 .06871 . 000419 .2021 2.858

) 2 Li76h 44805 . 000624 L0552 3.116
800 3 4838k L8432 .000645 - .0991 3.495

L 0.06852 0.06763 0.000216 0.3846 3.385
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TAELE IV

t 1
MOMENT STATISTICS OF THE DISTRIBUTION OF i&, E(rj) = E(rj), n =10

N i I; E(fi) 8° B, By
2 0.43899 0.44031 0.006360 0.2097 3.160

100 3 49155 .49095 .00T1h4L - 0561 3.020
L . 06946 .06864 .002320 L1045 4,393

2 143899 Lhok6 . 002826 - .0233 2.964

200 3 49155 49061 .003080 - .1k29 2.852
L . 06946 . 06893 .001075 .6729 3.837

2 43899 Llho26 .001310 .1006 2.892

Loo | 3 49155 49061 . 001491 - L1157 2.805
L . 06946 .06913 .000542 5491 3.671

2 13899 43962 .000688 - .03k 3.048

800 3 49155 .19180 . 000743 .1110 2.860
L 0.06946 0.06858 0.000222 0.1865 2.821

| I




TABLE V

1 1
MOMENT STATISTICS OF THE DISTRIBUTION OF i;, E(rj) = E(rj), n =20

vo| o I, £(%)) & B, By
2 0.43937 0.43640 0. 00320k 0.2981 3.h21
200 | 3 19303 L9282 .003788 | - .1858 3.123
L . 06760 07078 .001187 .67h9 3.337
2 L43937 L3663 .001613 bkl 3,233
Loo | 3 19303 Lolk2 .001822 | - .0861 3.257
L .06760 06895 .000589 1860 3.271
2 L3937 Lz521 . 000748 1115 2.746
800 3 49303 kg563 .000879 - .2299 3.048
L 0.06760 0.06916 0.000299 0.2413 2.940
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TABLE VI

1 1
MOMENT STATISTICS OF THE DISTRIBUTION OF ii, E(r;) # E(r;), n=5

U I, £(;) 8° JB By
2 0.4592k4 0.45749 0.010416 0.2879 3.004
50 3 L7365 L7271 .01133%8 -0.1954 3.102
L L06711 .06980 . 003450 1.111k4 I, 903
2 45924 45866 .005509 0.2946 3.376
100 3 L7365 L7609 . 005837 -0.1816 3.085
L L06711 .06525 .001780 0.8727 3.940
2 L5924 145896 . 002686 0.1538 2.924
200 3 L7365 L7199 . 002927 -0.1031 2.887
L L06711 .06905 . 000910 0.5819 3.562
2 L5924 L4609 .001384 0.2008 2.880
Loo 3 L7365 L7189 .001527 -0.2220 3.028
L .06711 .06762 .000k27 0.3088 3.159
2 L5924 15915 . 000627 0.0803 3.170
800 3 L7365 LThsh . 000665 0.0271 3.091
L 0.06711 0.06631 0.000200 0.2271 3.00k




TABLE VIT

1 ?
MOMENT STATISTICS OF THE DISTRIBUTION OF fi, E(rj) £ E(rj), n =10

No| o4 I, m(f)) 6° Je By
2 0.44462 0.4L614 0.005896 0.3345 3.192
100 3 18664 48671 . 006362 -0.1887 2.822
.0687L .06715 .002216 1.1813 5.279
2 JAhhe2 L4163 .002849 0.2527 3.089
200 | 3 48664 48955 .003310 -0.2099 3.136
L . 0687k .06882 . 001163 1.1002 6.548
2 RIS Lbz67 .001389 0.1178 2.992
koo | 3 48664 L8786 .001511 -0.0076 2.857
L L0687k . 06847 .000512 0.4299 3.440
2 LLh62 RIS .000721 0.0823 3.212
800 3 18664 48730 .000830 -0.1261 2.992
L 0.068Tk 0.06796 0.000254 0.4571 3.658
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Figures 2 - 4 to illustrate the nature of the distributions. The
histograms were plotted on the ORACIE's photographic curve plotter.
Examination of Tables III - VII and Figures 2 - 4 indicates that the

sampling distributions of fe and f; approximate the normal distribution.
The sampling distributions of fﬁ appear ta be positively skewed although
the amount of skewness is small.

Similar tables and histograms were constructed for the variance
estimates obtained fram the two variance formulas. These distributions
resembled the chi-square distribution. Figures 5 - 10 represent typical
histograms of the variance estimates. Again, those histograms arising

from case (1b) with a sample size of four hundred were chosen for an

illustration of the distributions.

Bias of the estimates. Consider a sample of Xps Koy eeey Xy

independent randam variables with a probability density function

£(x; 615 By ee) am), where the 6, are the parameters in the

i
A
distribution. If ei(xl’ Xpy sees xm) is an estimator of 6,, the bias

of 6, is defined by

i
A
(4.28) b, = E(Gi) -6, -
If b, = 0, then 8; is said to be unbiased. If b, > O, 6; 1s said to
A
be positively bilased; while if b, < 0, 6, is said to be negatively

i i
biased. Unbiased estimates enjoy great popularity, but use of them is

not a crucial requirement. If an estimate differs but little fram the
rarameter value relative to the standard deviation of the estimate,

the estimate may be quite satisfactory.

Al

The biases in Ii together with their standard deviationms,

s.d.(bi), are presented in Tables VIII - X. There 1s no evidence of
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George Rtta 07 20 S9

Distribution of Incidences
Disease 2

Frequency

100

Incidence

\x - 0.008 Exp. -0

Al 1
Figure 2. Distribution of 1,000 I, E(rj) = E(rj), n = 10,
N = 400.

Note: The interval length 1s denoted by Ax while 'exp."
specifies the power of ten by which the abscissas were multiplied.




Distribution of Incidences
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Frequency
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Georqge Atta 07 20 53
200
\

Incidence

A\x = 0.009 Exp. =0

1 1
Figure 3. Distribution of 1,000 I,, E(r,) = E(r,), n = 10
N = 400.

Note: The interval length is denoted by Ax while "exp."
specifies the power of ten by which the abscissas were multiplied.
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heorqge Atta nr 20 59

Distribution of Incidences
Disease 4

Frequency

200

Incidence

Ax -~ 0.006 Exp. -0

Al 1
Figure 4. Distribution of 1,000 L, E(rj) = E(rj), n = 10,
N = Loo.

Note: The interval length is denoted by &x while "exp."
specifies the power of ten by which the abscissas were multiplied.
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George Atta 07 20 S3

Distribution of Approximate Variances
Disease 2

Frequency

300

Variance

Ax = 0.017 Exp. -2

At
Figure 5. Distribution of 1,000 approximate variances of 12,
]
E(rj) = E(rj), n = 10, N = 400.

Note: The interval length is denoted by Ax while "exp."
specifies the power of ten by which the abscissas were multiplied.
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heorge Rtta 07 20 S3

Distribution of Approximate Variances
Disease 3

Frequency

200

Variance

\x =0.022 Exp. -2

Al
Figure 6. Distribution of 1,000 approximate variances of Iss

E(rj) = E(ré), n = 10, N = 400.

Note: The interval length is denoted by Ax while "exp."
specifies the power of ten by which the abscissas were multiplied.
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heorqge Atta 07 20 59

Distribution of Approximate Variances
Disease 4

Frequency

200

Variance

Ax - 0.007 Exp. =2

]
Figure 7. Distribution of 1,000 approximate variances of i\h s
!
E(rj) = E(rj), n = 10, N = 400,

Note: The interval length is denoted by Ax while "exp."
specifies the power of ten by which the abscissas were multiplied.
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Georqge RAtta n? 20 59

Distribution of Asymptotic Variances

Disease 2

Frequency

200

Variance

Ax - 0.007 Exp. -2

Al
Figure 8. Distribution of 1,000 asymptotic variances of I2 s
)
E(rj) = E(rj), n =10, N = 400.

Note: The interval length is denoted by Ax while "exp."
specifies the power of ten by which the abscissas were multiplied.
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George Rtta 07 20 59

Distribution of Asymptotic Variances
Disease 3

Frequency

200

Variance

Ax = 0.005 Exp. =2

A
Figure 9. Distribution of 1,000 asymptotic variances of I
1
E(r.) =E(rj), n =10, N = 4o0.

Note: The interval length is denoted by &x while "exp."
specifies the power of ten by which the abscissas were multiplied.

5)
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Hheorge Atta 07 20 59

Distribution of Asymptotic Variances
Disease 4

Frequency

200

Variance

\x - 0.005 Exp. -2

At
Figure 10. Distribution of 1,000 asymptotic variances of Ih’
1
E(rj) = E(rj), n = 10, N = Loo.

Note: The interval length is denoted by Ax while "exp."
specifies the power of ten by which the abscissas were multiplied.
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TABLE VIII

1
BIAS AND STANDARD DEVIATION OF THE BIAS OF fi s, n=>5

B(r,) = E(r,) E(r;) # E(r;)
i by s.d.(bi) by s.d.(bi)
2 | 0.00166 | 0.00335 -0.00175 0.00323
3 | - .00389 . 00356 - .0009k4 .00337
4 .00223 .00198 . 00268 .00186
2 .00116 .00234 - 00057 .00235
3 | - .00102 .00250 00244 .00242
4 | - .00013 .00135 - .00186 .00133
2 .00036 .00159 - .00028 . 0016k
3 | - .00038 .00171 . 00165 .00171
L4 . 00002 .00096 .00193 . 00095
2 |- .00133 .00112 .00125 .00118
3 .00115 .00113 - .00176 .00124
L .00018 . 00065 .00050 . 00065
2 . 00041 .00079 - .00009 .00079
3 00049 . 00080 .00089 .00082
4 | -0.00089 0. 00046 -0.00080 0.00045
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TABLE IX

1
BIAS AND STANDARD DEVIATION OF THE BIAS COF ’f

i,n=lO

E(rj) = E(r‘;)

E(ry) # E(r;)

N b, s.d.(bi) by s.d.(bi)
0.00133 | 0.00252 | 0.00152 0.00243

100 - 00061 . 00267 .00007 .00252
- .00072 .00152 |- .00159 .001k9

.00148 .00168 |- .00299 . 00169

200 - .0009k4 00176 . 00291 .00182
- .00053 . 00104 .00008 .00108

.00128 L0011k | - .00094 .00118

koo - 0009k .00122 .00121 .00123
- .00033 L0007k | - 00027 .00072

.00063 .00083 .00012 .00085

800 .00025 .00086 . 00066 .00091
-0.00088 | 0.00047 | -0.00077 0.00050
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TABLE X

1
BIAS AND STANDARD DEVIATION OF THE BIAS OF /I\i’ n = 20

N 'bi s.d.('bi)
-0.00297 | 0.00179

200 - .00021 .00195
.00318 .00109

- .0027k .00127

400 . 00139 .00135
.00135 00077

- .00k16 . 00086

800 .00260 . 0009k
0.00156 0.00055




61

systematic behavior in the bias. No pronounced relationship could be
discerned between the bias and either the sample size or the number of
time intervals in the sample. The variations in the number of deaths
per time interval appear to have no noticeable effect on the bias.
Actually the indicated biases are all so small relative to the
distribution standard deviations that they may actually be zero in the
true infinite populations.

Similar tables were constructed for the bias in the estimate

At
of Var(Ii). Here the population variance was obtained by setting

Var(fi) Gi, where @? is the sample variance of f;. These tables
indicate that the variances computed from the approximate variance
formula were positively biased while those obtained from the asymptotic
formula were predaminantly negatively biased. In other words, the
asymptotic formula tended to overcorrect for the bias in the
approximate formula.

To compensate for the bias in estimating Var(fé), consider the
problem of deriving a correction factor for the variance estimator.
Let <f\l( fi) and \/f\g( /I\;) be the expected values of the sample variances
based on the N variances camputed from the approximate variance

formula and the asymptotic variance formula respectively. In any case,

the bias is given by

AYTAY

(4.29) b, = Var(fi) - V(Ii)

i

1
For each Ii these biases and the reciprocals of their corresponding
sample sizes were plotted as points in a plane. These scatter diagrams

indicated a rather strong linear trend. Since E(bi) = 0 as N —» o, the
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function
= X
(4.30) b = N

was fitted to the data by the method of least squares. A scatter

diagram for the y's and the incidences indicated that
4 ' 2
(.31) y = 8T +38,I

would yield a satisfactory fit. Substituting (4.31) in (4.30), one
finds that

2
1 '
811 + 621

(4.32) b = = .

This expresses the blas as a function of the incidence and sample size.
The function (4.32) may be fitted to the data by least squares.

On setting b = Var(f') - G(f‘) in (4.32), this function takes

the form
2
5, I' + B3, I'
(4.53) Var(T') - ¥(I') = et
so that
R AN 5, I' + 821'2
(4.34) Var(I') = V(I') + = .

The above technique was applied to the data obtained fram both
variance formulas. As a result of these computations, the variances of

the incidence estimates were found to be

t !2
1.T15I; - 6.207L,

N

(4.35) var(T,) 2 ¢ (1)) +

if the approximate variance formula is used, and



t |2
0.571;81i - o.uuluxi

N

(k.36) var(T,) = G,(L)) +

if the asymptotic variance formula is used. Thus, it appears that one
can remove most of the bias in estimating the sample variances by
adding a factor, which is a function of both the incidence and sample
size, to the variance estimate camputed fram either variance formula.
The least squares fit of (4.32) to the approximate variance
data was better than the corresponding fit to the asymptotic variance
data. Hence, one would prefer formula (4.35), both because it is more

reliable and because the variance estimate is easier to campute.
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CHAPTER V
SUMMARY AND CONCLUSIONS

A randam sample of N animals fram an infinite population is
observed until all animals in the sample have died. At the time of
death, the cause of death is recorded. The observation period is
divided into n intervals, not necessarily of equal length, and the
nunber of animals dying from each cause of death is calculated for
each time interval. It is desired to estimate the disease incidences
in a population in which one of the diseases has been eliminated as a
cause of death. The estimation is to be performed with a sample from
a population in which all causes of death are operating.

An estimation procedure developed by Kimbell [7] is discussed
in Chapter II. This method is based on the maximum likelihood
estimates of the parameters of a distribution very similar to the
multinomial distribution. In an attempt to improve upon Kimball's
approximate formula for the variances of the estimates, a true
asymptotic variance formula is derived in Chapter III.

To provide some information on the small sample properties of
the estimates, a large-scale random sampling experiment was designed and
carried out on the ORACLE. This empirical study reflected favorably

Al

upon the estimation procedure. The sampling distributions of Ié and

1 1
fj were approximately normal while the distributions of fh were

t ]
positively skewed. This is not surprising, for 12 and I5 are nearly
1
equal to one-half while Ih is less than one-tenth. The biases in the
incidence estimates were negligible.

The distributions of the variance estimates approximated the
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chi-square distribution, as would be expected. One cannot infer from
this study that the asymptotic variance formula is an improvement on
the approximate formula. It turned out that the latter always over-
estimated the actual varilances vhereas the former tended to under-
estimate the actual variances. A correction factor for both variance
formulas was derived that, in practice, should provide sample variances
that have very little bias.

Unless a high-speed machine is available, it is impracticable
to use the asymptotic variance formula. Since the camputation procedure
is elementary, the approximate variance formula has greater utility.
Furthermore, its correction factor seems to produce more accurate
solutions.

In the derivation of the correction factors for both variance

formulas, it was necessary to fit a curve of the form

-1 1 12
(5.1) b = N (511: + 8,1 )

to three clusters of points. This restriction was imposed by the design
of the sampling experiment. Improved correction factors may be obtained
by designing an experiment such that greater variation in the true

incidences results.
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