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ABSTRACT

The basic technique for solving multiregion
diffusion problems is the finite difference method.

Implicit in this method is the assumption that if
the grid size were allowed to shrink 'to zero the
finite difference solutions would converge to a solu
tion of the differential problem. This report is an
investigation into the justification of this assump
tion. Previous work has demonstrated convergence only
for the one-region Dirichlet problem.

A new formulation of the finite difference

problem is described which admits an additive analog
of Green's identity. With this tool it is shown that
the grid solutions converge at interior points to a
function satisfying the diffusion equation. The be
havior at interfaces is also studied, and it appears
that suitable convergence properties can be established
there, although one step in the proof has not yet been
justified.
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INTRODUCTION

The steady-state diffusion equation arises in the mathematical

treatment of diverse physical phenomena, such as heat transfer, nuclear

reactors, and chemical processes. Present-day design of devices based

on these phenomena demands that proper account be taken of the fact

that the diffusion takes place in several distinct media or regions.

Within any one region the concentration of the diffusing substance

satisfies an elliptic partial differential equation. Across each inter

face separating two distinct regions or media, the concentration and its

gradient will not both be continuous, but must satisfy prescribed

differential conditions, known as interface conditions. Such problems

are known as multiregion diffusion problems.

Since the arrival of high-speed stored-program computers,

enormous amounts of scientific manpower and money have been spent in

obtaining approximate solutions of multiregion diffusion problems.

The basic technique employed is to replace the differential problem by

a finite difference problem obtained by superimposing upon the several

regions a rectangular lattice or mesh and to solve for values of the

unknown function at the nodes of the lattice. Implicit in this technique

is the assumption that if the lattice spacing were allowed to shrink to

zero the corresponding finite difference solutions would converge to the

solution of the differential problem.

This report is primarily concerned with an investigation of the

mathematical justification of this assumption. The classical paper of



Courant, Friedrichs, and Lewy in 1928 includes a proof for the special

case of the Dirichlet problem for a single region. They assert that

their method is applicable to other elliptic differential equations and

other boundary conditions, and they indicate an awareness of the

difficulties that will arise in demonstrating the necessary bounds for

more general differential equations. Later, in 194l, Petrovskii produced

another convergence proof for the one-region Dirichlet problem, but his

method makes strong use of the properties of superharmonic functions and

hence does not appear too useful with other equations. Some additional

history is given by Rosenbloom (1952). With the exception of Petrovskii's

work, the problem has been virtually untouched for 31 years.

The question of convergence at interfaces has never been raised

in the literature.

Recently a related question has been answered for the multigroup

multiregion reactor calculation. Habetler and Martino (1958) showed that

if the equations for the separate groups are solved cyclically -» the so-

called "outer" iteration - then the process converges to a solution of the

multiregion problem. But this assumes an exact solution for a partial

differential problem for each group, not just a solution of the correspond

ing finite difference problem. The solution of the latter problem is

obtained usually by a relaxation procedure which is referred to as the

"inner" iteration. The study reported here was concerned with the

convergence of this inner iteration.

Clearly, convergence cannot be demonstrated for every formulation

of the finite difference problem. So the first effort was to find a

formulation for which convergence might be demonstrated, and attention has
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been fixed upon a method for treating interfaces which admits an

additive analog of Green's first identity. A fundamental obstacle to

the analysis of the properties of finite difference multiregion problems

has been the lack of a suitable analog of this identity. Such identities

are easily obtained for a single region, but they fail to be additive for

regions sharing a common interface, at least with the customary approach

for specifying the geometrical location of surfaces. This report

introduces an alternate approach which admits a Green's identity with

the desired additive property. Beyond this theoretical advantage, the

finite difference formulation used here eliminates the ambiguous

situations which arise in the customary formulation of multiregion

problems. Moreover, the matrix of the system of finite difference

equations is positive definite. Hence, it is well suited to numerical

solution.

For this particular formulation it has been possible to show

that the finite difference solutions will converge to a function satis

fying the diffusion equation in the interior of each region and, moreover,

with the usual interface conditions, to show that the solution of the

differential problem is unique. The behavior at the interfaces has also

been studied, and it appears that suitable convergence properties can be

established there, although one step in the proof has not yet been

justified. This is discussed in Chapter 4, page Jh. It does not seem

likely that the failure to obtain this result indicates a basic difficulty

in the approach.

The general method of proof follows that of Courant, Freidrichs,

and Lewy very closely. But, whereas they proved only convergence in the
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mean at a boundary, it appears that actual pointwise convergence on

the interfaces and boundaries can be demonstrated almost everywhere.

All results obtained are valid for N-dimensions.

Chapters 6 and 7 are not part of the convergence proof. They

contain some new and possibly interesting results which were obtained

in an abortive attempt to extend the convergence proof to more general

finite difference formulations.

This investigation began in 1954 with an idea for avoiding

ambiguous points in the finite difference formulation of multiregion

reactor problems. I am grateful to Dr. Ward C. Sangren for his

encouragement in developing this idea. To two men I am particularly

indebted. Without their patience, confidence, and skilled direction

this study could not have been completed. They are Dr. Alston S.

Householder of Oak Ridge National Laboratory and Professor Robert C. F.

Bartels of the University of Michigan. And finally I wish to express

my gratitude to Wilma Campbell and Caila Cox for their painstaking care

in typing the manuscript for reproduction.



Chapter 1

PRELIMINARY REMARKS

Definitions

The regions to be considered are regular regions in N-dimensional

space. Thus a region is closed, bounded, and has a surface which is a

closed, bounded regular surface of dimension N - 1. A region may be

triangulated and, hence, may be represented as the union of a finite

number of N-dimensional (sub)regions, each with exactly N + 1 curved

faces. The triangulation may be made sufficiently small that each face

of any (sub)region is a regular surface element; that is, for some

orientation of the axes, the face may be represented in the form

Sl = F(l2' H> •••' SN} '

where F is a continuously differentiable function. Two subregions may

intersect in one or more vertices or edges, but in at most one (N-l)-

dimensional face. In the latter case, the entire face is common to

both subregions (by the definition of triangulation) and is known as

an interface.

Explicit use will be made of the fact that for any particular

choice of the coordinate axes, any interface may be further subdivided

into a finite number of surface elements, each of which has the property

that the angle between the normal to the surface and at least one of

the coordinate directions is uniformly bounded away from 90 . Explicit

use will also be made of Green's integral theorem, which is valid for

a union of regular regions.

Let x denote a point in N-dimensional space whose coordinates

5



are (| , §_, ..., £ ). Let m be any N-tuple whose elements are

integers with mQ the zero N-tuple. If xfi is any arbitrary vector,

then the union of all points with coordinates of the form x^ + m h,
0 s

where h is any positive number, is an infinite lattice of points,

usually called a grid. The constant h is referred to as the grid size

or grid spacing. Each point of the lattice is known as a grid point.

The neighbors of any grid point x = x + m h are all those points which
s u s

may be represented in the form x ± e h, where e. is a unit coordinate
si l

vector; that is, e. is the N-tuple whose ith element has the value unity

and all other elements are zero. The intersection of a region and a grid

is a finite collection of points which constitute a grid region. In

general, the notation for a region will be R and that of the corresponding

grid region G or G, . A grid function or grid solution is defined over

some grid region G.

Frequent use will be made of functions which possess continuous

partial derivatives over a region. The precise interpretation of this

concept is the following: A partial derivative is said to be continuous

over a region R provided the partial derivative exists at every interior

point of R and coincides there with a function which is continuous over

R. Moreover, the value of the partial derivative at a point on the

boundary will be taken to be the value of the continuous function at

that point. A function is said to be of class C^m' over a region R if

it is continuous over R and all its partial derivatives of order not

greater than m exist and are continuous over R.

Particular attention is called to two novel definitions. A

(r)function f will be said to be of class Mv ' over R if f, together with



each of its partial derivatives of order not exceeding r, exists and is

2 (t)bounded over R. A function p will be said to be of class L [M^ , R]

2
if p , together with the square of each of its partial derivatives of

order not exceeding r, has a bounded integral over R.

The Multiregion Diffusion Problem

Consider a connected region which is the union of n regions,

R„, .... R ,. Let the exterior be denoted by R . The interface
0' n-1 n

between two neighboring regions

R and R. is denoted by S and
i j ij

the exterior boundary by S. or

S .. In each region R., let
nj 5 i'

u = u. be a function which
i

satisfies an equation of the form

(1.1) -V u + D, u
l i

(N+l)
where D. 2 0 and of class M

l
over

Pi in Ri(i =0, ..., n-l)

R, and where p. is L2[M^N+1^, R.].

At each interface S.., let the functions u. and u. satisfy a pair of
ij' i j

differential conditions of the type

(1.2)

u. = a., u. + p. .(Vu. • n.)
i ij J iJ J J

•(Vu. • n.) = 7. . u. + 5. .(Vu. • n.) ,
i i ij J ij J J

where (Vu. • n.) is the normal derivative in the direction of the exterior
i l

normal n. of R. and where
i i



(1-3) alj8lJ -P±J 7.^0 (i,j=0, ..., n-l) .

At the outer boundary S a single condition is imposed. It has the form

f = a .u. + P .(Vu. • n.) ,
n ni i niv i x '

where fe Cv on each S (but not necessarily on the union of all

Snl). The problem of determining a function u such that u = u. in each

R. is a multiregion diffusion problem.

The finite difference analog of this problem may be solved by a

relaxation procedure. In a multicomponent problem (i.e., several

diffusing substances) the problem just described is solved for each

component in succession. The relaxation calculation for any one

component is referred to as an inner iteration as opposed to the outer

iteration, where the distinct components are treated in cyclic order.

The outer iteration arises from the fact that the source p is a function

of all the components. This study is only concerned with the inner

iteration.

Restrictions

Two types of nonhomogeneous terms are present in the multiregion

diffusion problem. One type is the source function p. in the diffusion
l

equation; the other type is the function f in the boundary condition.

*

The multicomponent problem for nuclear reactors is known as a
multigroup problem, since the neutrons are treated in groups according
to their energy ranges. For further discussion of multigroup problems
see Bilodeau and Hageman (1957).



Since the problem is linear, the solution may be expressed as the sum of

the solution of two problems. In one problem p. is identically zero in

every R., and in the other, f is identically zero on all of the surfaces

S .. For convenience, the latter problem will be called the nuclear
m

reactor problem to distinguish it from the former problem which is a

typical heat conduction problem.

The initial motivation for this study was the reactor problem.

However, since most of the theorems are also valid for the heat conduction

problem, the theory in this report is developed, as far as possible, for

the general multiregion diffusion problem. In fact, if nonhomogeneous

boundary conditions are restricted to be of mixed type, then the

convergence proof for the general diffusion problem is as complete as

the proof for the reactor problem.

Specifically, it is assumed that the boundary conditions satisfy

the following restrictions: Let a .(x) ^ 0 and B .(x) s 0 and let
t> ni ni

a s , B ., and f be of class C^ ' on S .. The boundary condition at
ni' ni' n ni

any point x e S . must either have the form

(l.4a) 0 = a .u. + S .(Vu, • n.) , (0 ^ i < n)
v ' m l niv i x '

or have the form

(l.4b) f (x) = u. + p .(Vu. • n.) , (0 =£ i < n)
\ i n i ni 11

with the additional constraint that

(1.5) |fn(x)/Pni(x)l < %

is uniformly bounded. The latter restriction is used only in Theorem
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4.8, a theorem which is not valid when nonhomogeneous Dirichlet

conditions are admitted. Since a . = 1 in condition (l.4b), nonhomo-
ni \ / j

geneous Neumann conditions are ruled out. These restrictions permit

concentration on the interface problems by avoiding digressions to

handle special cases at the boundary.

To complete the proof of Theorem 4.2, it is assumed that the

absorption coefficients D. are positive and bounded away from zero.

Thus the existence of a D . is assumed such that D, 2 D . > 0 in each
min i min

region R . This condition is always satisfied in nuclear reactor

calculations. However, for the heat conduction problem, where p(x) is

identically zero in every region, this restriction on the D.'s is not

required.

The interface coefficients a. ., B , y and 6 . are assumed to
-LJ 1J XJ lj

be constants over the interface S . A situation where these coefficients
1J

are only piecewise constant over S.. can be reduced to the case considered

here by further triangulation of the region. Furthermore, because of a

conflict between sufficient conditions for uniqueness and sufficient

conditions for real characteristic values, there is the added restriction

that

Pij 7ij =° (0 ^ i,j < n) .

In any diffusion process, however, 7 = 0 unless the mathematical model

assumes that some of the diffusing particles are absorbed by the inter

face.

Other restrictions on the interface conditions are discussed in

the next section.
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Interface Conditions

To carry through the convergence proof, certain natural

restrictions must be placed upon the coefficients of the interface

conditions. These restrictions arise from two separate considerations,

one of which is deferred to the next chapter where a set of restrictions

sufficient to guarantee the uniqueness of the solution of a multiregion

problem is obtained. Closely related to uniqueness is the property of

the homogeneous diffusion equation that an extreme value never occurs

at an interior point of a region in which the equation is satisfied.

To insure that maxima or minima do not occur at an interface in the

multiregion problem, it will be assumed that at each interface, the

coefficients in equation (l.2) satisfy the restrictions

(1.6)

1 < a. ., 0 =£ B. ., 0 =S 7. . ,
10 10 iJ

0 < a . 6. . - p. . 7. . - 5. .ij ij Kij ij ij

The nature of these restrictions is made clearer by noting that they

imply

1< a < 1 + p. . 7. .S. .~1 •
ij ij 10 10

These restrictions, and those given in the next chapter, do not

constitute real qualifications on the convergence proof which follows

because all of the familiar physical applications of diffusion theory

have interface conditions satisfying these restrictions.

Although conditions (1.6) arise naturally in a later chapter, a

brief heuristic justification will be given here. Consider the one-
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dimensional behavior of the solution along the normal to the interface.

For convenience here, let u denote the dependent variable to the left

of the interface, let v denote it on the right, and let the independent

variable in the normal direction be |. The interface equations may

be written

(1.7)
u

u.
\vi

Suppose first that 5 < 0. If it happens that

u = 0 and u, < 0

at the interface, then v > 0 and no matter what value v has, there will

be a minimum (see figures 1.1 and 1.2). Hence it is reasonable to require

u

Figure 1.1 Figure 1.2

that 5 be nonnegative. That it must not vanish is justified below.

Assume next that p < 0. Again if u < 0 and u = 0, then v > 0 and there

is a minimum (as in figure l.l). Hence p 2 0. Suppose that 7 < 0. For

any u. > 0 there are sufficiently large values of u > 0 such that v.
5 s

will be negative. This implies a maximum as in figure 1.3. Finally,

consider the effect of allowing a < 1. If u > 0 and u = 0, then
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u u

Figure 1.3 Figure 1.4

v < u while vp = 7u > 0, as shown in figure 1.4. (With a slight

modification, the case 7=0 can yield a similar difficulty.)

But the interface conditions can also be written with u and u,

as functions of v and v,. Care must be exercised at this point because

the interface coefficients are defined in terms of exterior normal

derivatives. See equations (l.2). The form equivalent to equation

(1.7) is

(1.8)
/ u \

ruu
a& - P7

0

a \ -v»

since 5v/d(-£) is -v.. Clearly the conditions already obtained must

apply to these coefficients. In particular it follows that

!< 5
a5 - P7

But if 5 2 0, then a5 - p7 cannot be negative, and in fact must be

positive since by hypothesis the interface conditions are linearly

independent (condition (1.3))- Thus

0 < OS - P7 ^ 5 .

This is the last of the inequalities in (l.6).



Chapter 2

A UNIQUENESS THEOREM

The literature on steady state, multiregion diffusion problems

contains no theorems on the existence or the uniqueness of solutions. It

is a corollary of the convergence proof in Chapter 4 that solutions do

exist which satisfy the partial differential equation at every interior

point. The extent to which such solutions satisfy the interface and

boundary conditions is discussed in Chapter 5- The convergence proof,

however, provides no information on the uniqueness of these solutions.

Consequently, in this chapter a set of conditions upon the interface

coefficients is obtained which is sufficient to guarantee the uniqueness

of any solution for which Green's first integral identity is applicable.

Necessary conditions are not known.

The conditions obtained are weak enough to allow the usual

physical applications of diffusion theory.

Green's First Identity; and Two Lemmas

The principal analytical tool used in this chapter is one of the

well-known identities due to Green. For later reference, the usual form

of the identity is stated here, even though the conditions on the

functions u and w may be relaxed in several respects (Kellogg, 1929;

Courant and Hilbert, 1953).

Theorem. Let u and w be two functions defined and continuous

vith continuous first derivatives in a (closed, regular) region R..

Moreover, let u have continuous second derivatives in R.. Then

14
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(2.1) J/J* ^ u dv + /JJ(Vw • Vu)dv = J/w (Vu • n. )dcr ,
R. R. S. 1
1 i l

where n. is_ the outward normal to the surface S. which bounds R..

The surface S. is the union of all the interfaces S.. such that
i ij

the region R. is a neighbor of R.; that is, R. C\ R. = S.. has dimension

N - 1. The symmetric relation "R, is a neighbor of R." will be written

as jNi. Note that this relation is neither reflexive nor transitive.

Hence, the surface integral may be expanded and Green's identity written

in the form

(2.2) fff(v ^u +^w •Vu)dv = J // w- (^ 'n-)da •
R. jNi S.. X X
i J 10

It will be necessary to sum such expressions over all R , and then

combine terms. The following lemma is useful in carrying this out.

Lemma 2.1. For any collection of functions n (0 ^ i,j ^ n) for

which it is true that rj. • = 0 for all i, then

L L n±1 = £ L Ki +in)
1=0 j=0 J 1=0 j=0 XJ d

Rewrite the sum on the left as follows:

1=0 j=0 J 1=0 J=i J

The second double sum may be transformed by interchanging the order of

summation and then relabeling the indices, replacing i by j and j by i.

Thus
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1=0 j=i d J=0 1=0 J 1=0 j=0 J

Define

n±i (f,g) - fff±S± da .
sij

From equation (2.2) and this lemma, the following results:

2 2
Lemma 2.2 Let k. , ..., k be arbitrary, positive constants

p

and, associated with the exterior R , let k = 0. If w and u satisfy

the conditions of Green's theorem for each R. (i = 0, ..., n-l), then
l

(2.3)

Li ki III (w ^u+^ *^)<lv
i=0 * R

l

i=o j=o L J

o

VU • n) + rj..(k w, Vu • n)
j=0 L *0 J1
jNi

In Chapter 4 a strictly analogous result is obtained for grid

functions.

Uniqueness Conditions

If the multiregion diffusion problem does not have a unique

solution, then the difference of any two distinct solutions will be a

nontrivial solution of the homogeneous problem. Therefore, any set of

conditions which are sufficient to guarantee that the homogeneous problem

can have only the trivial solution will automatically be sufficient

conditions for the uniqueness of the nonhomogeneous problem.

To obtain the homogeneous problem, replace p in equation (l.l)

and f in equation (l.4b) by zero. Let w = u, and suppose that the solution
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u has sufficiently strong properties that Green's identity applies to

each region R.. Then Lemma 2.2 may be applied. Solve equation (l.l)

for vu. and substitute into identity (2.3). Similarly, replace u. and

Vu. • n. by their representations in terms of u. and Vu. • n as given
11 J J J

by the interface conditions (l.2). The result, after expanding and

rearranging terms, is

X \2 ///(Vi2 +̂ i ' wi)dv
1=0 R.

1

(2.4)

+ X Li \ \ayr]„ (u>u) +PSr] (Vu • n, Vu • n)
1=0 j=0 X L J1 J1

jNi

-1

fj L K2 " (a5 +̂ K2 1^i(u> Vu • n) ,
-t—n ^_n L J 1 j jx1=0 j=0

jNi

where the subscripts i, j have been suppressed on the coefficients

a.., P.., 7.., 5... Conditions on these coefficients which ensure that
10' 10 10 iJ

only u = 0 will satisfy equation (2.4) are easily obtained by noticing

that the first summation is nonnegative and that for any u, rj (u, u)
J1

is nonnegative.

Theorem 2.1. The n-region diffusion problem — excluding the

Neumann problem — has at most a unique solution if there exists an

ordering of the regions R. by_ index, and a set of n positive constants

2 2
k« ..... k ., such that coefficients of the interface conditions
0 ' n-1

between neighboring regions R. and R. satisfy
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(i) ^ =Kj 5ij +Pij h^i2 f-2L 0*j<i<n,

(ii) a. p. ., 7. ., and 6. . == 0 for 0 ^ j < i < n ,
ij' ij' 'io 10 — '

and the coefficients of the boundary conditions satisfy

(iii) a p 2 0 for 0 s j < n .

This theorem follows directly from equation (2.4), since the

left-hand side must be positive whenever u is not identically zero,

while the right-hand side, because of condition (i), reduces to

L k.2 V.U, Vu •n)
j=0 J jn
jNn

which cannot be positive by virtue of condition (iii). Indeed, the n
On

are integrals over the boundary surfaces S .. But applying the boundary

condition (l.4a) or (l.4b) with f = 0, it is clear that

-(a ./p .)n. (u.u) , if p . I o;
no' no' 'on ' pnj r '

n. (u,VU • n) = \
On ' ' >

\ 0 if p . = o.
no

Remark 1. The conditions imposed upon the set of constants k
i

in Theorem 2.1 are homogeneous in the constants. Moreover, condition

(1.6) ensures that a 5 + B 7.. > 0. Hence, if one set exists, then
-*-0 J-0 10 10

2
another can always be found in which no k. is less than unity. This

fact will be useful in Chapter 4.
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Remark 2. Furthermore, condition (i) is imposed only if j < 1

and if R. is a neighbor of R.. Therefore, there is one and only one

condition for each interface. For the familiar problems with "slab

geometry" or "spherical geometry," there are only n - 1 interfaces.

2
Hence, there will always exist n constants k. which satisfy these

n - 1 conditions.

Remark 3- When the Neumann condition, i.e., du/dn = 0, is

prescribed everywhere around the boundary, the n-region problem, never

theless, has a unique solution if there is at least one interface S.
10

at which 7.. > 0 or one subregion R. in which D. > 0. Otherwise,
10 11

equation (2.4) only implies that the gradient of u must be zero in

each R..



Chapter 3

A PARTICULAR FINITE DIFFERENCE FORMULATION

The customary way for setting up a relaxation procedure is to cover

the region under consideration with a rectangular net in such a way that

the boundary of the region is adequately approximated by segments of the

net lines. Since nodes of the net lie on the boundary, Dirichlet conditions

are readily imposed upon the solution.

When this procedure is extended to multiregion problems by allowing

interfaces to coincide with segments of the net, difficulties arise in the

treatment of interior corner points.

Consider the Dirichlet problem

depicted in figure 3.1. The simple

five-point difference approximation

for Laplace's equation may be used.

Interface conditions such as continuity

of u and a derivative condition of the type

R,

R2

Figure 3*1

51 3n (reSion l) = 52 Si (reSion 2)

might be imposed upon the solution. The simplest and the crudest

difference approximation for this condition would be to take one-sided

difference quotients to approximate the derivatives. This avoids the

complication of introducing fictitious points.

There are then five points in region 2 and one point in region 1

20
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at which the partial difference equation applies. Excluding the corner

point, the interface condition on the derivatives yields two more con

ditions, a total of eight conditions involving the nine unknown values

of u. Since all other information has been used, the corner point must

furnish the ninth condition. But, unfortunately, three relations are

available there: the interface condition in two directions and the

partial difference equation, if one pretends that the corner is an

interior point of region 2. One might well question the applicability

of any of these conditions at a corner. Certainly no one of them is an

indisputable choice over the other two!

Very likely the difference scheme just described is the crudest

possible approximation to the differential problem. By introducing

fictitious points of each region which are geometrically located outside

the region but adjacent to the interface, a symmetric difference scheme

can be used for approximating the derivatives in the interface condition.

This increases the number of unknowns, and it also yields some additional

relations, since the interface points may then be treated as interior

points of both regions. However, the dilemma is unchanged. The problem

is still underdetermined without conditions at the corner point, and it

is overdetermined if all the conditions available there are used.

The general corner point problem in two dimensions has up to four

contiguous regions. Varga (1957) has shown how to obtain, at such a corner,

a single integral relation which takes into account the several interface

conditions and the differential equation for each region. By simple

approximations for the integrals in this relation, he then obtains a single

finite difference equation involving the values of u at the corner and at

its four neighbors. The only restrictive feature of this method is that it
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cannot be used when u is discontinuous across an interface. This is not

a restriction in reactor calculations but it is a serious restriction in

heat conduction problems (Carslaw and Jaeger, 1959, p. 23).

Another method for overcoming the difficulties of the corner

point problem is to locate the grid points so that they are not coincident

with interfaces and corners. How this may be accomplished is described

in the following sections.

Description of the Center Point Grid

Consider an orthogonal lattice in Euclidean N-space which is

uniform in each direction and has equal lattice spacings in each direction.

Let h be the lattice spacing. Each grid point may be thought of as being

imbedded at the center of an N-cube with edges of length h. A closed N-cube

is a region, which will be denoted by r., and the common face of two

adjacent cubes r and r is an interface, s... In this chapter attention
10 10

is restricted to regions, R, which are the union of a finite number of such

lattice cubes.

There are 2N+1 points associated with any cube r.. They are the

imbedded point and its images in the 2N faces of the cube. The latter are

called virtual points of r. as opposed to the imbedded or real point. The

virtual points of r coincide geometrically with the real points of the

cubes which are neighbors of r.. If one or more sides of r. coincide with

the boundary of R, then the corresponding virtual points lie in the exterior

of R. It should be stressed, perhaps, that each virtual point is affixed

The requirements of "uniform" and "equal" are not essential for
the method.

*
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to a single cube. Thus in the interior several virtual points will

possess the same geometrical location. This will also occur in the

exterior whenever R is not convex.

For the two-region problem discussed in the introduction, the

grid scheme based upon center points of grid cubes looks as follows:

2

The lattice lines remain unchanged, but the grid points are relocated

and virtual ones have been added in the exterior. Each real grid point

is an interior point of R or R at which the partial difference

equation may be applied. The interface and the boundary conditions are

not applied "at" grid points but on the faces of the grid cubes at points

midway between two grid points. It is easily verified that the number of

conditions is always exactly equal to the total number of real and virtual

points.

This finite difference scheme is not entirely novel. The use of

fictitious points at irregular boundaries is a commonplace technique in

the relaxation methods of R. V. Southwell and his coworkers. And the

possibility of centering a boundary midway between two rows of grid points

was observed by Fox (1950) and, undoubtedly, by others. The proposal to

formulate the entire finite difference problem by treating every grid point

as an interior point of a grid cube is nevertheless new.

In addition to eliminating the ambiguity at corners where two or

more regions intersect, the center point grid plan admits a finite difference
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analog of Green's first integral identity which is an exact identity;

that is, not just an identity to within terms which vanish as the grid

size tends to zero.

Simple Properties

Let v be a grid function defined over the real and virtual points

of R. The value of this function at the real point of r will be denoted

by v , while the value at the virtual point of r, which lies in r will
11 i j

be denoted by v .
i J

Theorem 3.1. Let v be a function with continuous first partial

derivatives in R. For anv_ e > 0, there exists a mesh size h sufficiently

srrB.ll that, if v assumes the values v. and v . at the real and virtual

points of r., v and its exterior normal derivative evaluated at the center

of the interface s.. satisfy

|v-2"1(vij+vii>'<e '

|cV/dn -h_1(v. .-v..) |<e .
10 ii

Theorem 3.2. Let v have continuous second partial derivatives in

R- E°L anv. e > 0 there exists an h > 0 such that the Laplacian evaluated

at the center of any r. in R satisfies

l^v -h"2 I (v.. -v..) | < e.
jNi 1J 1X

These theorems are consequences of Taylor's remainder theorem ar

uniform continuity. Virtual points which lie outside R do not cause troi
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since they may be assigned suitable values by extrapolating with the aid

of the values of v and its derivatives evaluated on the boundary.

For the purpose of error analysis, however, it should be observed

that when v possesses sufficiently many derivatives the expressions for v,

cV/dn and V v given above are in error by at most terms of the order 0(h ),

at the points specified.

Theorem 3-3- If the function v possesses bounded fourth partial

derivatives in R, then for any cube r. contained in R the value of v and

its exterior normal derivative at the centroid of the interface s. satisfy
J. J

v = 2_1(v.. + v..) + 0(h2)
10 11

cV/dn = h_1(v. .-v..) + 0(h2) .
' io ii

Furthermore, the Laplac ian of v at the center of r. has the representation

V^v =h"2 £ (v -v ) + 0(h2) .
JNi 1J

Thus the partial differential equation (l.l) may be replaced by

(3-1) -h"2 X (v.. -v..) + D. v.. = p.
.V. 10 11 1 11 1jNi "^

which can be regrouped into the form

(2N + D.h2) v.. - T, v. . = h2p. .
v l ii .V- 10 ijNi ^J

Here, and in the following, grid functions defined only at real points are
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given only a single subscript.

Interface Conditions

Corresponding to the pair of differential interface conditions

given by equations (l.2), the following conditions may be imposed at the

centroid of the face between r. and r.:
i 0

(3.2)

2-1 2_1\AiA /«•• e-A/2-1 2_1\/--\ij \ 10 10 01 \

v-1 WW U ^A-'1 -WvJ
This pair of equations may be solved for the values v., and v at the

ij 0i

virtual points in terms of the values v.. and v.. at the real points.
ii 33

This is true for each face of r.. If the resulting expressions for each

of the v are substituted into the expression for the Laplacian at r.,
i J i

as given in equation (3-l), there results a partial difference equation

relating v±± with the values v.. at the real points of the neighboring

cubes. In this manner the virtual points may be eliminated in formulating

the finite difference problem for numerical solution.

Solving equation (3-2) for the virtual values, one obtains

v. .U\ /"IJ \A/VJj\
(3.3)

W \v aJi/Vii/



where

r

(3-M

V
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ij"

a,
Oi

b..
01

10

4h

Aio

ij

4p., - 2(a. . - 5. .)h
Klj JQ 1Q

A.
10

7., h
_jj

4p^ . + 2(a. . + 5, .)h + 7.. hc
lj 10 iJ iJ

The symmetry present in this solution is a consequence of the fact that the

interface conditions (1.2) may also be written with u and Vu -n as
J J J

functions of u . (Compare equations (1.7) and (1.8).) Note that the

coefficients in (3.4) are well-behaved when p.. = 0. In fact, when

a = 5. . =1 and 3 = y =0, then equation (3-3) reduces to

(3-5) v.. = v.. and v.. = v..
10 33 01 ii

Theorem 3.4. When the differential interface conditions (l.2)

merely require that v and cV/dn be_ continuous at the interface, then

a.. = a.. =1 and b.. = b.. =0
10 Oi 10 0i

and hence the corresponding finite difference conditions are given by

equations (3-5).
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The Boundary Condition

Let R be any region which is the union of a finite number of

elementary lattice cubes r , ..., r . Lattice cubes lying in the

complement of R shall have index i ^ m. Let r. belong to R and let one

of its neighbors r. belong to the complement of R. The approximation to
J

the boundary condition (l.4) which applies to the face between r. and r.
i 0

is

V + V V. . - V

Qji '* 2 +Pji " h " fJ (OSK.-J) .

Solving for the virtual value,

(3-6) v.. = a.. f. + b.. v.. ,
10 ij 0 10 ii

where

2h 2B„ - ha.

oi oi oi oi

To verify that the a.. and b.. obtained here are in agreement with those
i j i J

given in (3-4), use the expressions for a and b given in (3.4) and then

interchange the roles of i and j. If it is agreed that values of v will
33

be defined in the exterior of R such that

(3.8) v.. = f. (m<j)

then, with this substitution, equation (3.6) has the same form as (3.3).

The Finite Difference Problem

In the partial difference equation (3-l) the virtual values may be

eliminated in favor of real values by substitutions from equation (3.3).
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The result is

or

(2N + D.h2 - Y. b. ,)v. .- 7, a. .v. . = p.h2
JNi 1J X1 jNi XJ "

(3.9) v±i = E ^v + P±\ (0^i<m)

where

Tt = 2N + Dxh - I b.
kNi ik

(3.10) t.. = a../a.
v ' 10 10 i

pi = pih /ax '

and where a . and b. . are defined in (3>i+). Only the expression for v. .
10 10 10

in equation (3-3) has been used. The expression for v.. must be used, of

course, to eliminate this virtual value in the finite difference equation

expressed for the cube r..

The complete finite difference problem is formulated by the m

equations in (3-9) plus the boundary conditions given in (3.8). By

eliminating the virtual values, the interface conditions have been absorbed

into the weights T.. assigned to the neighbors of any point.
10

Green's Identity for the Center Point Grid

Again, let R be any region which is the union of a finite number of

elementary lattice cubes tq, ..., r _ . Lattice cubes lying in the

complement of R shall have index i s m. Let v and w be arbitrary grid
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functions defined over the real and virtual points of R and consider the

bilinear form B(v, w) defined by the following summation over R:

(v.. - v..)w..
10 ii ii

(3.11) B(v, w) =^ nr + Yj
i=0|j = 0 jam

JNi jNi/

By applying Lemma 2.1, B(v, w) may be rewritten in the form

L=l i^l
b( , ;

i=0 j=0
jNi

(3-12)
m-1

+ T, Y, (y-. - v.jw.. .
1=0 o—Bl

jNi

This is a finite difference identity which, with some imagination, resembles

Green's first integral identity.

In identity (3.12), no assumption has been made about the behavior

of v and its first difference across the interfaces between the lattice

cubes. Imposing conditions analogous to continuity of v and its normal

derivative, as given in Theorem 3.4, a more easily recognizable result is

obtained, namely

ifcl i-1 m-1

(3.13) B(v, w) =- E I (v - v )(w - v ) -f E E (v±1 " v..)w .
1=0 o=0 JJ 1X JJ 1X i=o jam 1J 1X ±x

jNi jNi

An alternate form, which explicitly displays the approximate values of w on

the exterior boundary, may be obtained from (3.13). It is

in-1 i-1 r
3(v, w) = / Y (v. . - v. . )w. . - (v. . - v. .)w. .1£±Q A' \} 10 XX' 11 KJJ J3/ ooj
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B(v, v) = -J, J (v -v.. )(w -w.t)
i=0 J=0

•JNi

(3-14)

+ o /i (V- • - V..)(w.. " W )2 j^m' 10 ii 33 ii
JNi

1=0 o—in
JNi

Since it has been assumed that v satisfies condition (3-5), the

first double summation in (3-1*0 may "be rewritten as

-it? K
i=0 j=o L l

v..)(w.. - w..) + (v.. - v.,)(w.. - w..)
n/v 33 xx' oi 0J ii 33

JNi

The use of Lemma 2.1 then produces the identity

B(v, w)

(3.15)

m-1

\ E E K, -\i)l"AA ' wii>
i=0 jNi JJ

+Y l (v.. -v..)
•rs M 10 11i=0 j^m

JNi

w.. + w.

-JJ I1

The remarkable property of this identity is that no assumption has

to be made about the grid function w, except that it be defined over the

real points of R and of those exterior lattice cubes adjoining R. There is

no apparent purpose to be served, however, by exploring this property

further. For symmetry, therefore, let it be assumed, henceforth, that w

also satisfies condition (3-5). Then, after multiplying equation (3.15) "by

N-2h , a very transparent finite difference analog of Green's identity is

obtained. It is
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i=0

(3.16)

h-2 E (v..-v..)
&T. 10 11JNi
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+h"Tz
IV. - V. .\ / w. - w..
jj ii ij ix

2" &>& l h ll h

w , mrl _, /v.. - V..1 /W. + W.,

i=0 jsm \ n /\ d /
JNi

Theorem 3.5. Let v and w be grid functions defined over

R ~ Ui=o ri and satisfying condition (3-5) across interfaces in R. Then

equation (3-l6) is_ an identity.

By combining Theorems 3.1 and 3.2 with this result, it is easy to

prove Green's first integral identity for the region R.

There is one other member of this family of identities which will

be needed in the next chapter. Subtract

, T.J m-1 _ /v. . - v. .\ / w. . - wJ.
I hN y y uj ii _ij ii
2 kn k \ h h1=0 0—m \ / \ J

JNi

from both sides of equation (3.16), to obtain

2 rs 11
i=0

^ I (•
JNi ij

(3-17)

v..)
11 •i'SilMMJNi

i=0 j>m
JNi

v.. - v..
ij 11

w. .
11

The Divergence Theorem for the Center Point Grid

From the last theorem a finite difference analog of the

divergence theorem can be obtained. Let f be a vector-valued function

defined over the grid points of R, and let the components f (u = 1, ..., N)
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of f satisfy the conditions of Theorem J>.h across the interface between any

two cubes of R. Thus f behaves over R as an approximation of a vector-

valued function which is continuous and has continuous normal derivatives

in R. In equation (3-l6) set

and set

w., = f ..
ij mj

v. . - v. . = (e • n. .)h ,
ij 11 H 10

where n. . is the exterior unit normal vector of the cube r. directed into
10 1

r., and e is a unit vector in the uth coordinate direction. Since
0 M-

e • n.. = 1, 0, or -1, the resulting expression is
u 10

h„ £ 5. 1^ [% . , . „.-! g Li ( +w)(% . nij)
1=0 JNi v ^ ° 1=0 j^m

JNi

N

Now sum over all u (u = 1, ..., N). Since Y.._, f,, e =f the result is

(3-18) \ »S t I i^M •»„ -̂ T I \ itu ♦ fu) •n±3 .
2 1=0 JNi \ h / lj 1=0 j^m d XJ X1 10

JNi

Theorem 3.6. If f is a vector-valued function which is defined

over the real and virtual points of R =U ™~0 t± S£^L ii fsatisfies the

condition

f = f
ij JJ

for each i = 0, ..., m-1 and for all j = 0, ..., m-1 such that JNi,
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then equation (3-l8) is_ exact, where n. . i£ the exterior unit normal
10 ———-«-___ _____ ________

vector of r. directed into r,.
i j

The Characteristic Value Problem

The finite difference problem formulated in this chapter is

nonhomogeneous. The motivation for studying it has already been mentioned.

It is the problem "solved" for each group in the inner iterations of a

multigroup, multiregion, nuclear diffusion problem. This larger problem

is a characteristic value problem. In this section, brief consideration

is given to the one group, multiregion characteristic value problem. It

may be described in the following manner:

In each subregion R., the function u = u. satisfies the equation

(3.19) -V2 u. + D. u. = \ 9. u. ,
1 11 1 i '

where the fi.'s are real constants satisfying the auxiliary conditions

6. s 0 and 7 6. > 0 ,
1 V 1 '

1

and where the required characteristic value \ is the same for all R .
i

This replaces equation (l.l). The interface conditions are exactly those

given in (l.2). Around the boundary, a homogeneous condition is prescribed

which has the form of (l.4a).

A definition of self-adjointness for such problems was given by

Sangren (1953), and, for the case when the interfaces are topologically

equivalent to concentric spheres, he obtained conditions on the coefficients

of the interface conditions sufficient to ensure self-adjointness.



35

Hildebrandt (1956) showed that these conditions also are sufficient for

the general multiregion problem. One of the consequences of self-

adjointness is that the characteristic values are all real.

Such problems, in general, must be "solved" by finite difference

methods. But it is not evident that the characteristic values remain

real in the transition from differential problem to difference problem.

Hopefully, the characteristic values will converge to real values as h

approaches zero, but the choice of method for solving the finite

difference problem is restricted if realness cannot be guaranteed for

h 7= 0. For example, among the iterative techniques, the power method

and the extrapolation method both require that the characteristic values

are real.

For the particular finite difference formulation described in

this chapter, it will be shown that the characteristic values are real

if the coefficients of the interface conditions satisfy the conditions

given by Sangren and by Hildebrandt for the differential problem.

The finite difference approximation for (3.19) is

(3-20) u.. - 7 t.. u., = X 6, u., .11 Jj^ 10 OJ i ii

(Compare equation (3>9).) In order to examine the possibility that \ may

be real, proceed as follows: Multiply (3-20) by u.., the complex conjugate

of u.., and multiply the complex conjugate of equation (3-20) by u...

Then subtract and multiply both sides of the result by a positive, but as

2
yet undetermined constant k. . The result applies to any grid cube r. in

R. Summing over all i, the resulting equation is
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E E K<2 Tii (utl u -u u ) = (\ -\) E K.2 9. u.. u .1=0 JNi J OJ ii JO I^q i i ii n

Since the condition on the exterior boundary is homogeneous it follows

from (3*8) that the inner summation vanishes for all j-m. Hence Lemma

2.1 may be applied directly to the left-hand side yielding

E E K2 ^4 "k2 T«J(un u "un-, u )=(X. -I) E K2 9. |u..|2.i=0 j^o i iJ 0 Ji 33 ii ii 33 H_q i l ii'
JNi

It is evident that X - X will vanish - hence \ is real - if k t

2 * ij
*J Tji whenever JNi- using the definition of f in (3.10) and in (3.4),

it is easily shown that this relation is equivalent to the relation

(5-21) "t2 (aij su - pij V ="/ <j«> •

Thus a sufficient condition for the realness of the characteristic values

X is the existence of a set of positive constants k. (0 ^ i < n)

satisfying (3-2l).

This is precisely the condition obtained by Hildebrandt. Although

there is a condition in (3-2l) for each face of each grid cube, the system

of conditions (3«2l) actually reduces to conditions across interfaces.

For if two neighboring cubes r. and r. belong to the same diffusing region
J

then, by Theorem 3.4, a 6 -p 7.. =1and hence the same k.2 applies
iJ 10 ij 10 1

to both cubes.
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Interfaces and Boundaries Not Parallel to Coordinate Planes

The preceding discussion applies to any collection of regions

each of which is a union of grid cubes. But this is often not the

situation of interest. Instead a general region R. is merely

approximated by a collection R.^ 'of grid cubes, and a surface S.. of
l 10

R. is approximated by a surface S..^ ' consisting of faces of grid

cubes. One must then ask the question: What interface or boundary

conditions are appropriate to apply on S. ^ '1 That is, how should a
10

•#

condition imposed upon S.. be modified — if at all — when it is

imposed upon S. / '? The answer given in this section is one that stays

within the framework already discussed in this chapter. In fact, the

coefficients of the modified conditions have the same form and the same

properties as those discussed in the previous sections.

Basically, an interface or boundary condition imposed at a

particular point on a surface is not as important as the integrated

effect of the conditions imposed over all points of the surface.

Otherwise, replacing a smooth surface S.. by a surface with discontinuous

normal derivatives would not be feasible. Thus the following discussion

is concerned with integral properties of S. and S ^ .

Consider, for example, the one-region Neumann problem for

(2)
Laplace's equation. If u is a harmonic function of class Cv ' over some

region with surface SQ, then it is a corollary of Green's identity that

the integral of du/dn over the closed surface S_ must vanish;

dure du

V 3n"
S0

da = 0 .

Shaw (1953, p. 114) suggests making no modifications,
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Thus, for the Neumann problem where the condition

(3.22) XT = *
on on S

is specified on the boundary Sn, there is the additional condition

i

0

that

"fdc = 0 .

J0

Hence it is reasonable to require that

(3.23) lim ff ^ da = 0.
bo

Can this be accomplished by setting (du/dn) = f on S ?

For any portion S of a surface, the total area of S is a

positive quantity denoted by

c(S) = //da ;
S

and if n is a unit normal on one side of S, then the directed area of

S is the vector quantity

a(S) = //nda .
S

In general, the total area of S^ ' is not the same as the total area of

S, but the directed area is the same, at least in the limit as h tends

to zero; i.e.,

(3-24) l±ra a(S(h)) = a(S) .
h-»0

The validity of this relation is obvious if one considers the projections

of Sand S^ onto each of the coordinate planes. Similarly, it is clear
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that for all sufficiently small values of h,

a(S) < a(s<h)) ,

and equality can occur only if S is parallel to a coordinate plane.

If there exists a constant M0 independent of h such that

(3.25) *(S(h)) =£ MQ c(S)

then S^ ' will be said to be a reasonable approximation of S.

Consider a constant vector p„. By virtue of (3.24)

lim //pn •nda = p •film a(S(h))) = p •a(S) = //pQ •
h->0_#) \h-»0 / S

A similar result is true when p = p(x) is a continuous vector-valued

function.

The particular vectors p that are of interest here are

functions of the normal direction on S — but never of the normal

direction on S^ '. The distinction between the two will henceforth

be made by consistently using a bar to denote normals on S; e.g.,

n, n., and n..
1 0

Lemma 3.1. Let S be a portion of S.. contained in an open

subset Q, of R. U R.. If the vector-valued function p(x) is continuous
"™-———~— 1 j ———

nda .

over Q, then

lim ffp • n.da = ff p • n.da ,

where n. and n. are the exterior normals of R. ' and R., respectively.

A proof is given at the end of this section.
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Returning to the Neumann problem, consider the vector

p = Vu - fn .

By Lemma 3-l> if (du/dn) - f can be extended continuously over a compact

region containing S, which is an element of S , then

// (-£ -f)da = // [(Vu •n) - (fn •n)]da = lim ff (Vu -fn) -nda
S S h->0 Jh)

Since the left-hand side vanishes for any S, then the choice

(Vu - fn) • n = 0 on Sl is certainly appropriate and, hence, the

Neumann condition corresponding to (3.22) is

It is easily verified that this choice satisfies (3.23).

Reasoning in this same manner one obtains from Lemma 3.1 the

following;

Rule. If an interface or boundary condition imposed across

S can be written in the form

p • n = 0 = - p • n on S. .
J 1J

then an appropriate choice for the corresponding condition to be imposed

across S. . ' is
ij —

p . n. = 0 = - p • n. .
i * 3

For the first interface condition in (1.2), the vector p may be

chosen to be

P = (a±. u. -u.)n. +h. Vu..
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Thus the corresponding interface condition on S..1 is
J.J

(a., u. - u.)(n. • n.) + P.. Vu. • n. = 0
v ij 0 i 0 0 iO 0 0

on S., .
iO

Similarly, corresponding to the second condition in (1.2) one has

(h)

7..(n. • n.) + (5.. Vu. - Vu.) • n. = 0
'-.v o ,r io o iy o

on S.
(h)

iO J 10

These conditions may be rewritten in the form

(3.26)

where

(3-27)

\ \
=

iO %\ f »i \
on S. .

10

-Vu.• n.
l l

7.'.
iO

pij = Pij/(nJ,nJ) and 7io = (no ' nJ)7io

(h)

And for the general boundary condition

a . u. + p . Vu. • n. = f
ni l ni 1 l n

the corresponding condition may be written in the form

(3.28) a . u. + p\ Vu. • n, = f
ni l ni l i n

where P'. is defined in (3.27).
ni

on S .,

GOon S .
ni

Note that difficulty in (3.27) because of the division by

(n. • n.) can be avoided since S.r ' may always be chosen such that
v 0 J x0

(n. * n.) > 0.
v 0 3'

Not only does (3.26) have the same form as the interface

conditions (1.2), but also

Pi, 7U = P<< 7<<
iJ 'U ij 'ij
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because of (3-27). Hence, if the coefficients in (1.2) satisfy the

conditions of the uniqueness theorem, then the modified coefficients in

(3.26) also satisfy these conditions. Similarly, it is easily seen

that the modified coefficients satisfy the conditions (1.6) if the

original coefficients satisfy them. And the same applies to the

coefficients of the boundary condition (3.28).

It should be observed that the conditions of Lemma 3.1 do not

have to be satisfied to make the rule given above useful. Rather, the

justification for the rule is simply this: If interface and boundary

conditions on S..' ' are determined according to the rule given, then
1J

Lemma 3-1 implies the following theorem.

Theorem 3-7. If u. and Vu. are continuous on S and can be

continued into a compact region Q containing S in its interior in such

a manner that u and Vu. are continuous over Q, then the linear

differential forms

^(u.) = oca. + pVu. • n.
1 111

i£> '(up = (n± •z^) aa± + pV^ •n±

haye the property that

lim//^(h)(u )da = //^(u)da ,
h-»Os(h)

where n is the normal on S and n. is the normal on s' '.

Proof of Lemma 3.1. — Since Q is closed and bounded it is

compact and hence p is uniformly continuous over Q. Therefore, for any

e > 0 there exists a finite set of spherical neighborhoods a covering
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Q such that, if x and x0 belong to 0. then

||p(x) -p(x0)|| < e ;

that is, there exists a vector-valued function q(x) such that

p(x) = p(xQ) + eq(x) ,

with

lk(x)|| < 1 .

If S. =SA0 and S. ^h^ =S^ ^ QL , then it follows
X X \> that

//p(x) •n.da -p(x0) •a(Sx(h))
q(h)
^X

= e

I4'ni
x

da < €MQa(Sx) ,

making use of the condition of reasonable approximation in (3.25),

Similarly,

//p(x) •n.da -p(x0) •a(Sx) //q •nda < e a(Sx)

Moreover, for this same e one may determine an h(e) such that if

0 < h < h(e) then

l|a.(Sx^>) -a(Sx)|| < ea(Sx) .

Compare equation (3.24). The factor a(S ) on the right-hand side is

justified because there is exact equality except when the (N-2)-

dimensional curves bounding S^ and S. ^ 'do not coincide. Thus the

difference is proportional to eh[a(S )p ''^ ~ ' and this is less
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than ecr(S^) whenever h^ "'<a(S ). Combining these three estimates
yields

jfTp(x) •n±6a - //p(x) •n±da

ffp(x) •njLto -p(x0) •a(Sx(h))

+ llp(*0)lllla(sx(h)) -a(\)l

p(xQ) •a(Sx) -//p(x) •n±da

< e[MQ + 2] a(Sx) .

Since this inequality is true for each X and since there are only a

finite number of the covering sets Ql, it follows immediately that

ff p(x) •n±da -//p(x) •n.da < e% a(S) ,

where M^ is independent of h as h tends to zero. This completes the

proof of Lemma 3.1.

It is a corollary of this proof that

^o ^T tt? ' nida = cW //p ' \d* •h-»0 W
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Moreover, since S is a portion of the surface of a regular region,

S itself is regular. Consequently, (p • n.) is continuous over S,

and as S shrinks to the point x'

lim

a(S)-»0 oTsJ^P ' nida p(x') • n^x*)



Chapter 4

CONVERGENCE IN THE INTERIOR

This chapter contains the proof that the family of finite

difference solutions converges, in the limit as h approaches zero, to a

function which satisfies the diffusion equation at every interior point.

The convergence proofs of Weiner and Phillips (1923), of Courant,

Friedrichs, and Lewy (1928), and of Petrovskii (I94l and 1954) all depend

upon showing that the solutions of the finite difference problem form a

family of equicontinuous, bounded functions, and that any limit of this

family satisfies the partial differential equation.

Each of the papers cited is concerned with Laplace's equation

with a Dirichlet condition on the boundary. Weiner and Phillips obtain

certain specialized results. Petrovskii gives a proof of the existence

of a solution using properties of superharmonic functions. It is not

evident, however, that his boundary treatment can be generalized to

include interfaces. The method of proof adopted for this multiregion

study is that of Courant, Friedrichs, and Lewy.

The Method

In outline, their plan for proving equicontinuity is as follows:

Let v = vh belong to the family of grid solutions. First show that there

exist bounds, M, and Mp, independent of h, such that

(A) h X v < M-_

46



and

(B) __:
Ax

/

47

Av

Ay

\ /

< M,
2 *

Second, let w be any finite difference quotient of v; e.g., w = v,

(Av/Ax), (Av/Ay), (A v/(Ax Ay)), etc. If R is any interior subset of

R (R C R), show that, if there exists an M,, independent of h, such that

h2 e w2 < M ,
R

•*#

then this implies that, for any R d R , there is an M^, also independent

of h, such that

(c)

R

Aw

Ax

/

Aw

Ay
\

< M,
4

With these results it is then shown that not only v, but all its partial

difference quotients, are equicontinuous in any fixed interior region.

Moreover, equicontinuity together with a bound such as (C) implies uniform

boundedness over R . The convergence in any R of some subsequence of

grid solutions then follows from Ascoli's theorem.

For Laplace's equation in a single region with Dirichlet conditions

imposed on the boundary, the bound in (A) is a consequence of the theorem

that maximum and minimum values can only be assumed on the boundary.

Property (B) follows from the Dirichlet principle. The proof of (c) given

in this paper is that of Courant, et al. extended to N-dimensions.

Similarly, the equicontinuity demonstration is unchanged except for the

complications of substituting N-dimensions for 2-dimensions.

The burden of the chapter is the obtaining of bounds for the grid
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solutions and their partial difference quotients —bounds which are

independent of h as h tends to zero. Same of the bounds developed are

stronger than required to show convergence in the interior, but these

stronger results are used in Chapter 5 in discussing the extent to which

the limiting solution satisfies the interface and boundary conditions.

In particular, some of the bounds will include values of the grid functions

in the neighborhood of the interfaces and of the boundary.

The Finite Difference Solutions Are Square Integrable

Consider the multiregion problem defined over R. For a particular

choice of the grid, let v be a grid function which is a solution of the

corresponding finite difference problem. It will be shown that the

summation

N V 2
L vii

r. e R
i

over all grid cubes r in R is uniformly bounded with respect to grid size.

Two nonhomogeneous terms are present in the diffusion problem under

consideration. One is the function p in the partial differential equation

(1.1); the other is the function f in the boundary condition (1.4). Since

the problem is linear, the solution may be expressed as the sum of the

solutions of the following two problems:

( -v u. + D u. =0 in each R.
ill i

Problem I /

a u + P .(Vu. . n.) = f on boundaries S .
. ni i niv i i' ni



Problem II
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-V u. + D. u. =
1 111

in each R.
1

a .u. + P .(Vu. > n.) = 0 on boundaries S .
ni l niv l l ni

The interface conditions (1.2) and (1.3) are to be satisfied in each of

these problems. Both are homogeneous conditions.

For a particular grid, let v^ ' and v^ 'be finite difference

solutions corresponding to Problems I and II, respectively. If it can be

shown that both

h" E
r.eR

i

(I)'
v..
ii

< B and hN E
r.eR

i

(II)
v. .
ii

< B.
II

are bounded then by applying Cauchy's inequality, it follows that their

sum is similarly bounded. Indeed,

v,2

>" I
r.eR

l

r (i), (h)V. . ' + v..
XX XX

2 . „ 2 . _ V i, N/2 „ (I) | |.N/2 „ (II) |< B-+Bl/+2 E l^^ll*'
r.eR

l

v. .
ii

< B_2 +B1T2 +2Bl B^ .

Thus, it is sufficient to consider the two problems separately. (The

inequality derived here is known as Minkowski's inequality.)

1. Problem I has the property that maximum values of |v..| can

only occur on the exterior boundary. This result depends upon a theorem

which is due to Motzkin and Wasow (1953). This theorem makes use of the

notion of effective linking between points. Consider an equation of the
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form (3-9). If t.. / 0, then the point x. is said to be an effective

neighbor of x relative to this equation. If a finite sequence of grid

points exists such that each point after the first is an effective

neighbor of its predecessor, then each point in the sequence is said to

be effectively linked to all subsequent points. It is clear from equations

(3.1) and (3-5) that, for the diffusion equation, any two interior points

not separated by an interface are effectively linked. Moreover, it will

be shown that even along an interface, each neighbor is an effective

neighbor and, hence, any two points are effectively linked.

Theorem 4.1. Let x. be restricted to the points of a uniform

orthogonal lattice of length h, and let f(x.) be a known, bounded function

defined over the complement C(R) of R. Let v(x.) satisfy the equations

E T.,(h) v(x ) if x eR,

(^•1) v(x.) = /

f(x±) if x e C(R),

where

(^•2) t (h) ^ 0 for all jNi,

and

(^•3) E Tn(h) - 1 for all x. eR.
JNi 1J x

If the extreme values of v(x.) in R are assumed at points which can be

effectively linked to a point in C(R), then for all x.

(4.4) |v(x.)| < maximum |f(xk)| .
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Motzkin and Wasow actually prove a more general result in which

the notion of neighbor is not as restrictive as the one used here. Thus,

the method of this section also can be used for higher order difference

approximations. The proof of Theorem 4.1 is simple enough to be sketched

briefly. Let v = max |v(x.)|, f = max |f(x.)|, and suppose there exists

a point x. in R such that |v(x.)| = v. Then

v = |v(x )| =s E ^ii Iv(xj| + E, Jii lf(xi)l

and hence

x.eR 1J J x.eC(R)
0

(4.5) v = |v(x )| <v E ^ii + f E, ,Tii •
1 x.eR J x.eC(R) d

0 0

JNi JNi

If the second sum does not vanish, then the conjecture f < v leads to the

contradiction

v < v /, t . . ^ v

because of hypothesis (4.3). Hence, the inequality in (4.4) applies. If

the second sum in (4.5) does vanish, then every neighbor x of x belongs

to R and, again because of hypothesis (4.3), they all must have the value

v(x.) = v(x.). In this case inequality (4.5) may be applied to the

successor of x. and to each point in a sequence of grid points effectively

linked to C(R), until a point is reached where the second sum in (4.5) is

not zero.

The partial difference equation for Problem I is expressed by

•X-

(3.9) with p. = 0. Since the virtual values have been eliminated, this
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is the form specified in Theorem 4.1. The demonstration that the

coefficients t in (3-9) possess the properties (4.2) and (4.3) depends
X J

upon the following almost trivial lemma.

Lemma 4.1. For any fixed i the coefficients t.. defined in (3.10)

will satisfy conditions (4.2) and (4.3) provided that for each j such that

JNi, it is true that

a. . S 0 and a. . + b. . < 1 .
10 10 10

By way of proof, it will only be remarked that every N-cube has

2N faces and neighbors.

Any face of the cube r. must either be in the interior of a region,

or be part of one of the prescribed interfaces, or else belong to the

exterior boundary. In each case it will be shown that the inequalities

of Lemma 4.1 are satisfied. The proof for the first case is contained in

Theorem 3-4. For the second case, the following lemma will be proved.

Lemma 4.2. If the prescribed interface conditions satisfy the

restrictions (1.6), then the coefficients a.. and b.. defined in (3.4)

will satisfy the inequalities of Lemma 4.1.

For A. . is positive and
10

2(a.. + b. .)A. . < 45..h + 4p.. + 2(a.. - 5. .)h - y. . h
10 10 10 10 10 V 10 10 'ij

= A. .- 27. .h2 < A. . .
iJ 'lj 10

Finally, consider the case when some face of r. belongs to the

exterior boundary. It was observed in Chapter 3 that if one sets

v.. = f , when r. is an exterior cube, then the boundary condition (3.6)
J 0 0 J
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has precisely the form of equation (3«3)> which relates the value at a

virtual point to values at real points. Two boundary conditions have

to be considered, equations (l.4a) and (l.4b). In the latter, a . = 1

and the coefficients a.. and b.., as given in (3»7)> clearly satisfy
X J X J

Lemma 4.1. Moreover, f = 0 in condition (l.4a) so that equation (3-6)

reduces to v.. = b. .v... Hence, in effect, a.. = 0 and a.. + b.. =
10 10 ii 10 10 10

b.. < 1.
10

*
Thus it has been shown that equation (3«9) with p. set equal

to zero applies to any cube r. not belonging to C(R), the complement of

R, and that the coefficients i.., by virtue of Lemma 4.1, satisfy

conditions (4.2) and (4.3) of Theorem 4.1. Moreover, if j is replaced

by i, then the definition of equation (3-8) has precisely the form of

the second equality in (4.1). To complete the demonstration that

Problem I satisfies the hypotheses of Theorem 4.1, it must be shown that

any point in R can be effectively linked to C(R). But it is trivial to

verify that t.. / 0 in all cases and therefore, by definition, each
J-J

neighbor is an effective neighbor. Hence, all points are effectively

linked to points in C(R).

Since the extremum property expressed by inequality (4.4)

applies to the solutions of the finite difference version of Problem I,

one has

N

(4.6)

h" E -u s <-*iH)a E "'
r.eR r.eR
i i

< 2 (max |f|) (volume R) .

The factor 2 is included since an approximation of R by cubes may have
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a volume slightly larger than that of R. The bound, however, is

independent of h as h tends to zero.

Taken together, Lemmas 4.1 and 4.2 show that the restrictions

upon the interface conditions expressed by the inequalities (1.6) are

sufficient to guarantee that extreme values will not occur at an

interface. These restrictions can also be shown to be necessary if the

hypotheses of Theorem 4.1 are to be satisfied whenever the geometry is

such that there exists at least one grid cube on each side of an interface

which has 2N-1 faces across which u and du/dn are continuous.

2. In many of the preceding arguments, implicit use was made of

the fact that a finite difference solution is a solution of a system of

simultaneous, linear, algebraic equations. To obtain the desired bound

for Problem II, explicit use will be made of the form of the system of

equations.

For any particular choice of lattice, let the desired values

v(xi) = vii of the grid solution be formed into a column vector. This

vector has as many components as there are grid points in the interior of

R. Let the vector be denoted simply by v. Thus, if x , x^, ... are grid

points, then

v =

v(xj_)

v(x.)

Similarly, let p denote the vector whose components are p. = p(x.). Let
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equations (3<9) "be written in the form

2(4.7) a. v.. - y a.. v.. = h p. . (0 < i, j < m)
v ' i ii M 10 33 i

This system may be written in the form

u2
A v = h p ,

where A is the square matrix whose coefficients are given in (4.7). The

solution, of course, is

(4.8) v = h2 A"1 p .

The use of vector and matrix norms is not uncommon in numerical

analysis. Although there have been substantial advances in the theory of

matrix norms in recent years, the part of the theory to be used here is

elementary (Householder, 1956a).

The vector norm which is particularly suited to the immediate

2
discussion is the L norm. If the vector v has m components, v., the

2
L norm is defined by

|v|| p
L

lim

h->0

m h

\ t

/1 y 2W2
m I Vx

\

That this is a valid vector norm follows immediately the fact that it is

a constant multiple of the more familiar Euclidean norm. Since the lattice

is uniform,

N) = vol. R ,
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and certainly for all values of h sufficiently small,

(^•9) § m"1 (vol. R) <hW <2m"1 (vol. R) .

Hence, the desired bound can be obtained from the square of the L norm

of v:

2

(^.10) hW J vi < 2(vol. R) ||v|
L2

For any square matrix A, the matrix norm consistent with this

vector norm is the spectral norm ||A||S . Consistent means ||Av|| < ||a|| ||v||.

The spectral norm of A is the square root of the largest characteristic

T
value of the matrix A A. Henceforth, since only these two norms are

2
used, the subscripts designating L and spectral will be omitted.

Since these norms are consistent, they may be applied to equation

(4.8) yielding

(*.u) llvll < h2 HA"1!! IPI

By inequality (4.9)

(^•12)

Im1£pij'

2 ll/2Uy 2W2
voiTTi h If pi

\ 1

2 ll/2f/p2a^V2
Ivol. R, ,R

Hence ||p|| is bounded, independent of h as h tends to zero, if p is square
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integrable over R.

An estimate for the spectral norm of A~ — or more precisely, an

upper bound —may be obtained by studying the form of A in some detail.

In the ith row, the diagonal element is a. and the off-diagonal element

in the jth column is -a., if iNJ; otherwise, it is zero. Similarly, the
XJ

element in the jth row and ith column is -a. Since the expressions for

a . and a... given in (3-4), are not the same, the matrix A is nonsymmetric.
10 Oi

But, it is symmetrlzableI This, in effect, was shown in Chapter 3 in the

proof that the characteristic values are all real. Indeed, the symmetrizing

matrix is the diagonal matrix K= (kq, k^, ..., Km__) where

Kt = ^ij'iJ "PiJ7iJ)Ki2 ' (JM)

That is,

s = kak"1

is symmetric. The K.'s are equal to the k 's of the Uniqueness Theorem

2.1 because of the assumption that P±a7±a = 0 on every interface. Clearly,

the diagonal of S is the same as the diagonal of A. If a. ^ 0, then
XJ

-1
S.. — /C • 3«• • K • •

10 i 10 0

But from (3^), a±J = (a. .5.. - P^)*^. Hence

p O _")
s.. = k.(k. k" a )k. = s . .

10 i 0 1 Ji 0 Oi

Since A is symmetrlzable, all its characteristic values are real. In fact,

the characteristic values of S and of A are identical. Gerschgorin's

theorem, moreover, provides the information that all the characteristic



58

roots are positive (Gerschgorin, 1931). For by Gerschgorin's theorem,

all the characteristic values lie in the union of circles in the complex

plane, with centers at a. and radii given by 2_! |a. .|, with summation
X X J

over j for all jNi. The ith circle intersects the real axis nearest the

origin at the point o. - J^a. .. By (3.10) and Lemma 4.2
X X J

ai - 2.aij = 2N +Dih2 - E (ai3+ v s d-i2.jNi 1J x jNi 1J 1J x

p

Thus, a lower bound for the characteristic values of S is h D , and
mm'

hence

Since A"1 = K-1 S"1 K,

IS"1!! < h"2(D , )_1
1 " v min'

Ha"1!! < UK"1!! Us"1!! IIkI!

(4.13)

fmax k.
x
\'

mm k.
x

D .
mm

h~2

Combining the estimates (4.12) and (4.13) with inequality (4.11) provides

an upper bound for [|v||, and this bound is independent of h as h tends to

zero. Because of inequality (4.10), it has thus been shown that for

Problem II, there exists a bound M, independent of h, such that

(*.no hN e -••2 *
H-t, ii

N ' - - M
r.eR

i

3. Since a similar bound exists for Problem I, it follows from

the linearity of the equations and Cauchy's inequality -as already has
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been demonstrated —that a bound of the type (4.14) also applies when

both f and p are present in the diffusion problem.

Remark. The restriction that D. be bounded away from zero is

unpleasant. Further study of the matrix A may show that this condition

can be dispensed with. This is true in the one-region problem. Indeed,

it can be shown by the techniques of Householder (1956b and 1958) that
-1 p _1

||A || := (N it h )" , assuming only that D is nonnegative.

Theorem 4.2. When the interface conditions satisfy the conditions

of Theorem 2.1 as well as the conditions given in Chapter 1, then there

exists a bound M, independent of h, such that inequality (4.l4) applies

to any grid solution of the multiregion diffusion problem.

Bounds for Difference Quotients of all Orders

-X-

Consider any region R and its complement C(R). If R is a sub-

region of R such that the distance from R to C(R) is greater than zero,

then R is said to lie entirely in the interior of R or, simply, R is

an interior subregion of R.

For any region R, once a particular lattice is chosen, there is

a unique, smallest covering of R by cubes with centers at the grid points;

i.e., by grid cubes. This minimal collection of grid cubes will be

denoted by G+(h,R). Similarly, there is a maximal collection G~(h,R) of

grid cubes which do not intersect C(R). For sufficiently small h, G~(h,R)

will not be empty.

In this section the region R will not be, in general, a region

bounded by interfaces and external boundaries. This is particularly the

case when the grid function w is a high-order difference quotient of a
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function v satisfying a finite difference equation.

Theorem 4.3. Consider any region R. Suppose that for any grid

s-pacing h, there is a grid function w satisfying an equation of the form

(^•15) -h2 E (w,. -w..) +D.w.. = t.ffi± ±3 ii i ii bi

at each point in G~(h,R). If there exist bounds B and M, independent of

h, such that

hN e wh2 < B and «N E <>2 < m
G"Hi,R) h G"th,R) 1

as h tends to zero, then for every interior subregion R of R, there

exists a bound B , independent of h, such that

,N-2
h

r.eG (h,R ) JNi

*

< B

as h tends to zero.

In fact, if a is the distance from R to C(R), the bound B does

not increase faster than B/a . The following proof is due essentially to

Courant, et al.

The region R can be covered by a finite number of N-dimensional

rectangular parallelepipeds with sides parallel to the coordinate planes

chosen such that the distance from any rectangle to C(R) is not less than

a/2. It is sufficient to prove the theorem for each of the covering
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rectangles. Let R, be any one of them.

Consider an arbitrary lattice with fixed, uniform lattice spacing

h. Let the minimum collection of grid cubes covering R , that is, let

G+(h,R )be denoted simply as G,. Let L be the set of grid cubes in G1,

each of which has at least one face on the surface of G,, i.e., L, is the

layer of grid cubes along the inside surface of G, . Let G2 be a rectangle

concentric with G, but having two more grid cubes in each coordinate

direction. Then Gp - Lp = G-.. In this manner a nest of rectangles

G, (X = 1, ..., v) may be constructed together with the layers

L (X = 1, ..., v). The last rectangle G is determined by the condition

that G be contained in G_(h,R), whereas Gv+1 is not. Furthermore, let

L* ., denote the subset of L, ,, obtained by removing those grid cubes of
X+l A.+1

L which are not neighbors of some cube in G, . The deleted cubes will

lie along edges or in corners of G^ ,.

Since each G. is a region which is a union of grid cubes, the form
A.

of Green's identity given in equation (3-l6) is applicable. To simplify

displaying the following relations, the symbols

Ecp. . and /, cp..
Yi0 f7 ii

GX \

will be used as abbreviations for the summations

E E ^u and 2 <Pii >
r.eG. Pi J r.eL

X K 1 /\

respectively, where the r. are grid cubes belonging to G^ or L^. Setting
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v equal to w, equation (3.l6) may be written in the form

1 , N-2 y , r s2 1 N-2 V 2 1 , N-2 v 2
2h Z;(Vij-Vii) =2h I wii -2h L Wii

S. L\+l \

v.N-2 V / \- h /. w..(w.. - w..)
i-J n v n -i i '11x 10 11

X

From this, an inequality may be obtained by restricting the summation on

the left-hand side to G,, by increasing the first summation on the right

to include all of L , and finally by replacing the last summation by

one of equal or larger magnitude. Thus, for any X, 1 < X < v,

1 N-2 y , .2 < 1 .N-2 V 2 1 .N-2 v '<
2h I (Wij -Wii) S 2h I wii "2h L Wii

\+lG,

^E

X

w..(w.. - w..)
ii io ii

Adding these inequalities for all X from 1 through u yields

1 nN-2

"T L ...
u+1

+ u h 2y w..(w.. - w..)
11v 10 11'

The omission of the summation over L. strengthens the inequality. The

last inequality holds for all 1 < u < v - 1; hence, a final summation
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over u yields

lv(v-l)hN-2g {Vmm_Vmm)
2 2 Li ^ Xj xx'

(4.16)

* | hN-2 E v„2 + ^ nN"2 E
Gv Gv

2 ^ v(v-l) _N-2 w.. (w..
ii io

w..)

It is a direct consequence of the manner in which v is determined that

(v +1) h<ii > i a .

Therefore, for small enough values of h,

and consequently

vh\/N > (v - 1) hs/N > |

1 ^ 9E
o ?

v(v-l)h a

Combining this with inequality (4.16) yields

Gl " Gv Gv

w..(w. . - w..)
iiv io ii

The conclusion of Theorem 4.3 follows from this inequality after

substituting the partial difference equation into the last summation.

For, by Cauchy's inequality,

N

I w..(D. w.. - £,)
xxK x xx 5i7

1/2
,N V i-. i 2 L N V 9 2 ' ,N V £

Gv \ Gv / \ Gv

1/2
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and this is bounded by hypothesis. Hence, the right-hand side of

inequality (4.17) may be bounded independent of h. This completes the

proof of Theorem 4.3.

The maximal collection G"(h,R) of grid cubes contained in R but

not intersecting C(r), and the minimal collection of grid cubes G+(h,R*)
-*

containing R were introduced to point out that a distinction exists. If

Theorem 4.4 required a bound for w. summed over G (h,R) to conclude only

that the first differences were similarly bounded over G~(h,R ), there

would be difficulty in using the theorem repeatedly for successively higher
jf y y

partial difference quotients over a nest of regions R d R d R 3 ...

Fortunately, this is not the case. In fact, since G~(h,R ) either is

identical with G (h,R ) or is a subset of it, the theorem can be weakened

when applied to such a nest. Henceforth, the explicit distinction between

G+(h,R) and G"(h,R) will not be made.

Definition. A family @of grid functions defined over some region

R will be said to belong to the class Z (R) if there exists a finite bound

B, which may depend upon &and upon R but is independent of h as h tends to

zero, such that any function wh e @ satisfies the inequality

g(£r) h

Theorem 4.3, together with Theorem 4.2, provides a bound over

interior subregions for each of the first partial difference quotients of

Vh* For ~"usinS tne notation of 3-dimensions - if, for all h, the family

of functions

'V

.**/

2 IA \2 /. \2
Av Av

Ay) + [az/
nl/2
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belongs to the class Z (R ) then (Av/Ax)i also belongs to Z (R ). In

this case, referring to equation (4.15), £ = P« Next, let w = (Av/Ax).

Theorem 4.3 then provides the information that |(A v/Ax Ax) , (A v/Ay Ax)|
p -X--)f

etc. are of class Z (R ). The form of £ in this case may be inferred

from the corresponding differential equation satisfied by d|i/dx, namely

-v u +Du =p-Du.
x x "x x

This process may be repeated as long as the required partial difference

quotients (d.qs.) of D are bounded and the required d.qs. of p belong to

Z (R). The conclusions obtained by continuing the argument in this

direction are summarized in Theorem 4.4 below.

Before stating the theorem, certain definitions from Chapter 1

will be recalled. Equation (l.l), the diffusion equation, is to be

satisfied in each of the regions R.. If D = D (x), together with each of

its partial derivatives of order not exceeding r, exists and is bounded

over R., then this is denoted by DeM^r,). If p=Pi(x), together with
each of its partial derivatives of order not exceeding r, exists and

2 (r)is square integrable over R., then this is denoted by pe L [MK ', R^.

Of course, if p has this property then p and each of its d.qs. through
p

order r belong to the class Z (R.).

Theorem 4.4. Let DeM^ in R. ,let peL2[M^rS R ], and let

w.be v or a d.q. of v . If the order of w ^ not greater than r + 1,
-V. P -)(•

then, for any interior subregion R of R^ wfa e Z (R^ ).

(To establish the equicontinuity of the family 3" of grid solutions

v, , it is sufficient to show that only the mixed d.qs. of vh are of class

Z2. Hence, if establishing this were all that was desired, the conditions
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on p and on D could be relaxed to involve only their mixed d.qs. But

since equicontinuity of the first and second d.qs. of v, is also desired,

conditions on the mixed d.qs. ofp,p,...,p ,p ,..., and
x y xx xy

similarly for D, are also needed.)

Equicontinuity of the Solutions

Let &be the family of solutions whose members correspond to

distinct choices of lattice size h. These solutions are grid functions.

If some suitably smooth interpolation procedure is used to extend their

domains so that all members of the family are defined over the same

compact set, then the usual notion of equicontinuity may be applied. From

the boundedness properties already obtained, it will be shown that "5 is

equicontmuous in any interior subregion R. of any R.. Moreover, it will

be shown that the first and second d.qs. of v also form equicontinuous

families in R. . The theorem is proved in the following form:

Theorem 4.5. Let <B be a family of grid functions w . Along with

© , consider the families of the mixed d.qs. of all orders not exceeding

N, formed from the functions wh- Jf ®and each of these families are of
2/ *\ *#

class Z (R ), then the family ® is equicontinuous over any R which is
•x-

an interior subregion of R .

-X"X-

In fact, for any two points p and q in R , it will be shown that

(^•18) |wh(p) - wh(q)| < Mfp-qll1/2
-X-

for any wh where M depends only upon the region R . To show that this

Holder condition is satisfied, it is sufficient to demonstrate it for

any pair of points whose position vectors differ in only one component.
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Furthermore, it may be assumed without jeopardizing the argument, that

p = q + a± e1 ,

i.e., that they differ in their first components.

Using p and q as two vertices, construct an N-dimensional

rectangular parallelepiped which lies entirely in R . Denote it by

P (a.., ..., oL), where the a's indicate its linear dimensions.

Specifically, T^ (a^, ..., Q^) is the set of points

v=l

where

0 - ^v - av (v = 1, ..., N).

It must be noted that o^ through Q^ may be bounded away from zero since

P,T is constructed in R while p and q are restricted to belong to R .
N

Similarly, denote by P (ql, ..., a ) the u-dimensional face of P^ which

consists of those points representable in the form

x = q + /j % ev .
v=l

A translation of such a face may be denoted by P (o^, ..., a ) +7^ e^.

It is the set of points with the representation

x = q+7xex +P^ (0^, ..., c^) .

The desired estimate may be obtained by starting with the finite

difference form of Green's first identity, as given in equation (3.17).

To avoid obscuring the essence of the proof behind an array of multiple
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summation signs, an integral analog of the proof will be given first.

Apply Green's integral identity, equation (2.1), to any region

VV ~VP1' '"' PH~1' V contained in pu (°i' •••> %)> where
2 < u < N. Let w be any arbitrary function cp e C*. If the function u

is chosen to be u = | , so that Vu. = e and Vu = 0, then the integral

over the surface of P (7 ) vanishes except over the face P , = P ,
u u u-1 u-1

(P , ..., p ) and the face P , + 7 e . The result is
X jx~X, |X™X. [X |X

(^.19) / (-1) cp da(^l} + / (+i) 9 da^"1)
Pu-1 VlW

= / & . e ) da(^ .
P (7 ) ^

Integrating both sides of equation (4.19) with respect to 7 between the

limits 0 and 6 (6 < a ) and then rearranging the result slightly, one
(X JX (X

obtains

0 ViW

/ ^ / D cp da^d7| ,
0 P (7 )

Hwu/

where D denotes differentiation with respect to £ . The first integral
H* JX

on the right is an integration over P = P (p ..., p ). Thus, the
H" H* -X fX

integral of cp over P can be expressed in terms of integrals of cp and
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D cp over P . Indeed,
u Y u '

(4.20)

j cp d>-D = 1 f 9 da M

n P.,'u-1

i /V f d cpaaWd7
u 0 P (7 )h
^ u 'u

Since this equality holds for any u = 2, ..., N the integral of cp over

P (ql ) can be represented in terms of integrals of cp and its mixed partial.

derivatives up to order N-l over the region P (ol, ..., QlJ and certain

of its N-dimensional subregions, simply by repeated substitutions using

equation (4.20).

Consider the case of 3-dimensions. Set u = 2 in equation (4.20).

The integrals on the right, over Pp and Pp(72), can then be expressed by

using (4.20) twice more, with u = 3. The result is

h

(4.21)

da (1) 1
-PXP2

P*Jcpda(5) - f •> f D cpda
P5 0 P3(75)^

,(3)

(3)~ j2 / D cp da(5) - J3 f D D cp da
^3 0 p^72)2 0 p5r72,75)5 2

In this equation, if the substitution

cp = D. w

is made and if p,, P2, and 0_ are set equal to a±, a£, and a,, respectively,

then the left-hand side is exactly w(p) - w(q). On the right-hand side,

the absolute value of each of the integrals over P_ or its subsets can be
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bounded from above by applying Schwarz's inequality. For example,

/ Dp cp da^
P3f72)2 /,

(3) 1/2 r
(Dp cp)^ dada

P3?72)

- K °2 <V
1/2

IU7o)

/ (D cp)2 da(3)

LP3

(3)
1/2

1/2

The domain of integration was extended over all of P_ because the
3

integrands are nonnegative. The last integral is bounded by hypothesis.

That is, for the finite difference situation, which is actually the

point under consideration, the boundedness is one of the assumptions of

the theorem. Thus, with cp = D, w, it follows from (4.21) that

|w(p) -w(q)| < a^l2 B = ||p- q||l/2 B,

where B is bounded. This relation implies that the family of functions

w is equicontinuous.

To demonstrate the corresponding result for the family 7 of grid

functions w^, it is sufficient to show that there is a finite difference

relation corresponding to equation (4.20). The derivation proceeds

exactly as in the continuous argument. Let all the dimensions of

P/Tj) -P^ (P-^ •••, &„-!' 7u) te multiPles of n> so "that P (7 )may be
constructed from grid cubes. Apply equation (3.17) to this region,

replacing w by cp and choosing v. . in such a manner that
-LJ XJ XJ

v. . - v. = (e • n. .)h .
10 ii u xj'

With this choice, no matter what fixed value the index i is given, the
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summation

h"2 E (v.. -v..)
JNi 1J X1

vanishes. This corresponds to v v = 0 in the continuous case (see

Theorem 3-2). Hence, equation (3.17) reduces to

hM V E (e •n..)cp..
1^0 j^m » 1J X1

JNi

=ih11"1^ E (e • n,.)(q>.. - %.)hX
2 ,^n <bL H iO/VMiO iii=0 j<m

JNi

For the region P (7 ), the surface summation on the left reduces to
yx yx

summations over the faces P n and P , + 7 e . Indeed, the equation
u-1 u-1 u u '

may be rewritten, with a slight change in notation, in the form

,N-l V -. , i,N-l V-h I q> +h I <p
P , P .+7 e
u-1 u-1 'u u

= I ""-1 1,1 % • V«p« • "ii"1"1 •
JNi

where the summations on the left-hand side are understood to be over cubes

belonging to P (7 ) but lying on the faces P . and P , +7, e.
^ ^ u^'u' u-1 u-1 'u u'

respectively. (This equation corresponds to equation (4.19) in the

continuous case.) Since 7 must be an integral multiple of h, let

7 = c h. The smallest value for the integer c is c = 1, and in this
/u u u u

case P (7 ) is a single layer of cubes lying between the faces
yx |_l

P n and P ., + h e . In the last relation, let c (= 7 h" ) assume all
u-1 u-1 u u 'u
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-l
integral values from 1 to p h Multiply each of these equations by

h and sum. The result can be written as

-1

N-l
P h'
Pu

(4.22)

P h"

z 9,t -* 2
•u-1

c =1
u

Ph-1

2 >
c =1

u

P t+c he
u-1 u u

ii

I ^ .2 . _• K
P (c h) j<m

^ ^ JNi

nij^ij -^^1ii'

The first double summation on the right-hand side is exactly the summation

over all cubes in P (p ). Hence, after division by B there results a

finite difference expression corresponding to equation (4.20).

The remainder of the argument proceeds as in the continuous case.

It involves only substitution and finally Cauchy's inequality for bounding

the summations over P . The fact that higher order mixed difference

quotients are involved does not create any new difficulties. These exist

for cubes sufficiently far from boundaries. For example, corresponding to

the substitution cp = D, w used in the continuous case, one would define

^ii = E (nik • ei>
x kNi x

w.. - w.
lk ii

2h

Comparing Theorems 4.4 and 4.5, it is evident that if the integer

r satisfies r a N - 1 then the equicontinuity of the family "J is ensured.

While if w, is a second d.q. of v, , for each v, e °5, then the family (B of

functions w is equicontinuous if r - N + 1.

Theorem 4.6. Let DeM^N+1^ in R. and let peL2[M^W+1^, R.].

Then, in any interior subregion R. of R., the family °$ of grid solutions
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v, is equicontinuous over R. . Moreover, the several first and second
h •* 1

*

order d.qs. of v, also form families which are equicontinuous over R. .

Convergence

A family © which is equicontinuous over a region R and belongs

P -3f "K*
to the class Z (R ) can be shown to be uniformly bounded over R . The

convergence of the grid solutions is then a consequence of the following

standard theorem.

Theorem 4.7. If a family (& of functions w is_ uniformly bounded

and equicontinuous on a compact set R , then @ contains a uniformly

convergent subfamily.

Combined with Theorem 4.7, this proves that in any R there is

at least one uniformly convergent subfamily 3; in 'Sr. Let u be the

limiting function. From 5, form the family & consisting of the functions

w, = Av, /Af., , where v, e "S, and where £, is the first coordinate direction,
h h' 1' h 1

But © also satisfies the conditions of Theorem 4.8 because of Theorem 4.7;

hence it contains a uniformly convergent subfamily &„, with a limiting

function u . Recall that the grid functions vh and w^ were extended over

the region R. by a "suitably smooth" interpolation so that the customary

definition of equicontinuity applied. The criterion for "suitably smooth"

can now be formulated. Let each v, be interpolated so that it is

differentiable and, moreover, so that at each grid point dv /d|^ has the

same value as w, at that point. Since w converges to u> uniformly, it

follows that u = du/d| . Continuing in this fashion, it can be shown

that there is a subfamily of "? such that each of the first and second

order d.qs. of v, forms a uniformly convergent family whose only limit
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function is the corresponding partial derivative of u. Moreover, for

any R C R , u satisfies the diffusion equation (l.l) in R. . Since

any interior point p of R. is contained in an interior subregion R. c R.,
1 11'

it follows that u satisfies equation (l.l) at any interior point of R..

Nothing has been assumed about the existence of a solution of

the multiregion problem. Since the finite difference problem, for any

h > 0, reduces to a finite system of simultaneous, linear, algebraic

equations, the grid solutions do exist. Hence their limiting function

u exists and, at least, satisfies the diffusion equation in the interior

of each diffusing region. The behavior of u in the vicinity of interfaces

and of boundary surfaces is discussed in the next chapter.

The results obtained so far do not prove that the limit function

u is unique. If it could be shown, however, that any limit function u

also satisfies the interface and boundary conditions in such a manner

that Theorem 2.1 - the uniqueness theorem - could be applied, then the

conclusion that the family "3 has only one limit function would be valid.

(2)The uniqueness theorem assumed that u was of class Cv ' over each region

Ri« It cannot be expected that this will be the situation in general,

however, since singular points may exist for the one region problem at

which boundary conditions are not fulfilled.

Bounds Required in Chapter 5

The theorems in the next chapter on the behavior at interfaces

and boundaries depend upon the following properties of the family (v )

of grid solutions in each diffusing region R.:

(i) l\\ converges to u uniformly in any interior region R. C R.j
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f i 2
(ii) v, is of class Z (R.);

(iii) the set of first difference quotients of the functions

in v jform afamily of class Z (R.);

(iv) the set of second difference quotients of the functions

in Iv, Iform a family of class Z (R.).

Note that the required bounds are for entire diffusing regions and not

just interior subregions. Thus the bounds extend to the surfaces of

discontinuity.

Properties (ii), (iii), and (iv) may be relaxed somewhat by

deleting from each region R. an e-neighborhood of the (N-2)-dimensional

intersections of faces of R.. That is, let R.(e) denote the region

consisting of all those points p of R. such that at most one face of

R. is a distance less than e from p. Then in properties (ii), (iii),
2

and (iv) the phrase "of class Z (R.)" may be replaced by "of class

Z2(R.(e)) for every e> 0."

Property (i) was proved in the last section, property (ii) is

contained in Theorem 4.2, and property (iii) is proved in the next

section. A demonstration for property (iv) has not been found.

The requirement of property (iv) seems to be unavoidable in this

method of proof, although it will be observed in the next chapter that

it can be weakened slightly. A need for this property does not arise in

any of the papers already cited in the literature because they are

• p

TThe definition of Z (R) is given on page 64.
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concerned only with the one region problem with a Dirichlet type

condition imposed on the boundary. With mixed conditions or a Neumann

condition, however, it comes in because of the presence of the normal

derivative. Hence, it cannot be avoided in treating the interfaces of

a multiregion problem even by further restricting the class of

admissible interface conditions.

The First Difference Quotients Are Square Integrable

Let the prescribed interface and boundary conditions satisfy

the uniqueness conditions of Theorem 2.1, and let v be the grid function

which is a solution of the finite difference problem for some specified

grid spacing. It will be shown that the summation

<*.«> h"-2 E S (vu - ->2
r.eR JNi J X1
1 °

over all grid cubes in R is uniformly bounded as h tends to zero.

As before, let the cubes r. approximating the region of diffusion

have indices i = 0, ..., m-1, and let those cubes outside this region

have indices i-m. Start with the identity

Til£ (V« 'Vii> +i£ <*« "Tl/ -lj>ij "Til><TiJ +*ii> .
which applies to any grid cube r. (0 < i < m). Since each cube belongs

to one of the regions of the differential problem, multiply the identity

2
for each cube r by the constant k. determined by the uniqueness

conditions for the region R containing the cube r.. Moreover, use a set

2 2
of constants k such that each k. SI (see Remark 1, following Theorem
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2.1). After multiplying each identity by the corresponding k , sum

over all r. e R. Thus
1

nN"2 If k.2 v..E(-ii "-ii) +Î ^t E\2 (-ii "-ii)'i=o 2 xx j¥i 1J lx 2 i=o JNi i 1J xl

(4.24)

1=0 \j.O jffi &| 1J

where

rj
ij

(l/2h)(v -vlt)(v +v..)

By Lemma 2.1,

m-1 m-1 „ m-1 0 0

c*.25) E I \2 r, - 2 I- (*/ iji♦ V^ iy) •
1=0 j =0 x 1J i =0 JNi J J J

0<i

Expand r?. . in terms of v.. and v. . by using the finite difference inter-
•^ iO Oi 33

face equations (3.2). Then each term in the double summation can be

rearranged - as in the proof of Theorem 2.1 — in the form

kj noi+ki nU = [kJ -(aij5ij+Vio)ki]T?oi

(4.26)

- k. a..7..
1 ij'ij

v.. + v..
Ql 00

\

2 |VJi~VJJk. p. .5. . Mi sWI
1 10 10 \ h

The factor in brackets always vanishes. Indeed, if r and r. belong to
l 0

2 2
the same subregion, then k. = k. and the interface coefficients

J X

degenerate to

°ij = X = 5ij aM Pij = ° = 7±3 >
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while if r. and r. belong to different subregions then, by hypothesis,

the conditions of the uniqueness theorem apply. Next combine equations

(4.24), (4.25), and (4.26). The result, after using the partial

difference equation (3«l) to eliminate the first summation over j in

equation (4.24), is

h" E \2 Tll(Dt vu - Pl) ♦ h""2 °E I h2 <v, -vj
1=0 x xx x i =0oli J

,. , m-1 _,

+ h--1 I E \2
1 = 0 J<1

JNi

Vu l^V^I +Vu
/ \2
v..-v..

Q1 oo

/ J

. N-l V y v 2
h E E ki ^j •

i = 0 j_=m J
JNI

Since all the terms on the left are nonnegative, except possibly the

2
terms involving p., and since the k. _s 1, it follows that

i=0 JNi 1J 1:L 1=0 X 1X X i=0j>m x 1J
JNi

Cauchy's inequality provides a bound for the first summation on the right.

Indeed,

m-1 ntl A

h .Ea -up! * (m^xki) h .E-n
1=0

1/2

/
1=0 x

1/2

/

and all the factors on the right are uniformly bounded as h tends to zero.

Consider next the second summation in (4.27), where the boundary
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conditions must be brought into the argument. If condition (1.4a)

applies on the jth face of the cube r., then rj cannot be positive
X XJ

*..
Oi

For, if a.n. > 0 (j 2=m), then ^ (v^. +v±±) may be eliminated from t}

yielding

r\
ij

/v. .
2_L

h

PJi|ViJ- Vii''ii
a.
Ji

^ 0 .

If aM =0 then p.. > 0 and a similar result holds. When condition
oi Oi

(l.4b) applies, then p.. > 0 and hence
Oi

r\..
10

v. . + v. J,
ij ni

f.
J

a..

. __i

PJi PJi

fv.. + v..,
_i_ iii

The linearity of the diffusion problem must be used at this point, as in

the proof of Theorem 4.2. That is, the problem is decomposed into two

problems, one having f = 0 everywhere - as in the nuclear reactor

problem - and the other problem having p = 0 in every Ri. But it has

been shown above that n.. < 0 whenever f =0. On the other hand, when
10 n

p. = 0 then v.. satisfies the maximum principle -and v.. = f. —so that
X 11 1<J o

\ lvii +Yi-' -raax lfl* FinaHy the assumption (1.5) that |fn(x)/pni(x)|
is uniformly bounded yields the result

T7±J -s Mn max |f|.
"0

Since the second summation (4.27) is bounded for both problems, it

follows from Minkowski's inequality that the sum is also bounded for the

combined problem.

Theorem 4.8. Let v = v, be anv_ solution of the finite difference

problem formulated with grid cubes. If the coefficients of the interface
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conditions satisfy the conditions of Theorem 2.1 — the uniqueness

theorem — then the summation (4.23) is uniformly bounded as h tends

to zero.

Without condition (1.5) this theorem is not true in general,

as shown in the following example: Consider the region in the first

quadrant bounded by the lines x = 0 and y = 0 and by the circular arc

2 2
x + y = 1, as shown in figure 4.1. In this region —• call it R —

the function

u = arctan «-
x

is harmonic and on the boundary it satisfies the conditions

Since

the integral

u(x,0) = 0

u(0,y) = 2 n

(x, Vl-x2) =6 .u

du
Sx" 2 2 '

x +y

II [tf "* = + 00

Figure 4.1

The fact that du/dx is unbounded at the origin is not surprising

since this is a Dirichlet problem with a discontinuity in the prescribed

boundary values.

Theorem 4.8 provides a bound in the large which is sufficient
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but not necessary for the purposes of Chapter 5« A similar bound may

be obtained in a local sense with less restrictions on the boundary

conditions. The proof is included here because it suggests a possible

approach to the problem of demonstrating bounds for the second partial

difference quotients.

Since Theorem 4.8 is valid when f is identically zero, it is

sufficient at this point to consider only the case where p. is

identically zero, i.e., the heat conduction problem.

Let R.(e) again denote the region consisting of those points p

of R. such that at most one face of R. is a distance less than e from

p. Let s be any portion of the interface between R.(e) and R.(e), and

let N(s) be a neighborhood of s whose distance from the complement of

R. U R. is greater than a. It will be shown that
10

(4.28) 1 iN-2
2h 5 ^ 2 (-ij.eN(s) JNI d '«>'

is uniformly bounded as h tends to zero.

The neighborhood N(s) can be covered by a finite number of

rectangular parallelepipeds, each of which is a distance a/2 from

C(R.U R.). It is sufficient to consider one of these rectangles.
i 0

Call it G , and let it be imbedded

in a nest of concentric rectangles

G^ (X = 1, ..., v) — as in the
A.

proof of Theorem 4.3 — lying in

RiuV vhere G*.+i"G^= ^+i
is the outer layer of grid cubes in G^+1»
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In the proof of Theorem 4.8 it was shown that inequality (4.27)

applies to any collection of grid cubes independent of the interface

conditions between neighboring cubes, provided the uniqueness conditions

of Theorem 2.1 are satisfied. Thus for any X

IhH"2 _L Z (vu - Tii)2rieG1 JNi 1J

JNi

^2KiPii+§*N-22 kjV- |h-2E *±V

(4.29)

. 1 . N-2 y y ,.22,22^
+2 h L __• (ki -ii - ki Vii ) •

rier\rjeI\+l J J JJ
JNi

Consider the last summation. If r. and r. belong to the same region,
•*• 0

2 2
then k = k and v = v . Thus the only contributions to the sum

"^ J 1J J J

come from that portion of the interface which coincides with the surface

of G^. Since the intersection of G, and the actual interface is a set

of dimension N-2, the number of cube faces in the intersection of G, and
X

the approximation to the interface will be of the order h2"N. This then

is the number of nonzero terms in the summation. Since the maximum

principle applies, the last summation in (4.29) cannot exceed
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p O

70(max kt )(max |fn| )=rQ ,

where 70 and FQ are constants independent of h. Summing inequality

(4.29) over X = 1, 2, ..., u yields

,h"-2 e S(T1,-v11)a <,* 2 VH^I - I -K-2 £ ^V *^1 ,N-2

2 \eG, JNi J
1 1
r.eG-_m - G(1 L^+1

A final summation — compare with inequalities (4.16) and (4.17) —

over u = 1, 2, ..., v-1 yields the estimate

I *N-2 E E(-ij-ii)2 <>N E ^i-iiPii + f *N E \\2 +r0.2 rteG1 jVi 1J " G^1 1 X1 1 OT Gv

The right-hand side of this inequality is uniformly bounded for all h

because of Theorem 4.1 and the properties of p. Hence the summation (4.28)

is uniformly bounded as h tends to zero.

The crucial point in this proof is the fact that the intersection

2-Nof an interface with any of the rectangles consists of only 7Qh faces

of grid cubes. Consequently, it is not necessary to restrict Gx to be in

the union of only two regions. In fact, (4.28) is uniformly bounded if

N(s) is replaced by any open set belonging to the union of all R±

(i = 0, ..., n-1) but lying at least a distance a > 0 from the exterior.

The use of the maximum principle means that the boundary condition was

assumed to be of the form (l.4a) or (l.4b) but the restriction (1.5) was

not used.



Chapter 5

BEHAVIOR AT INTERFACES AND BOUNDARIES

For second order, elliptic partial differential equations, the

usual interface and boundary conditions are linear, differential

conditions of first order. Thus, the condition or conditions imposed

at a surface S.. have the form
ij

(5.1) ^(uj) =^(uj) ,

where the expressions on the left and the right are differential

expressions of the form

(5.2) X(u) = p . grad u + au + cp .

In general, the vector p and the scalars a and cp are functions of position.

In the diffusion problem, the vector p is proportional to the

normal to the surface and, hence, is not constant whenever curved surfaces

are involved. The inhomogeneous term cp is usually absent in interface

conditions, but generally occurs in boundary conditions, as in the

Dirichlet problem.

This chapter is devoted to studying the behavior of sequences

of finite difference solutions, v , in the vicinity of a boundary or an

interface as the grid size, h, tends to zero. The results obtained are

independent of any particular class of partial differential equations.

The basic assumptions are (a) that there exists a sequence Iv, |of grid

functions converging uniformly to a function u in every interior subregion

but not necessarily on S.., (b) that the surface S . is approximated by a
10 10

84
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(possibly trivial) sequence of surfaces <S '\ tending to S , (c) that
(h) *• '

at each surface S.. ' the corresponding grid function v, satisfies a

linear condition L.(h)(vJ =L.(h)(v, ), and (d) that the linear
1 h o h

operators L. 'and L.^ ' converge to the differential operators <*?. and
X J X

_£. as h tends to zero. Note that conditions (a) and (d) imply that the

sequence L.^ (vh) I converges uniformly to °£.(u) in every interior

subregion. This is a consequence of the well-known iterated limits theorem.

These four conditions are satisfied for the multiregion diffusion

problem. Condition (a) was demonstrated in Chapter 4; condition (b) is

implicit in the grid cube approximation for the subregions. That condition

(c) also holds may not be quite as obvious. Suppose, for example, that

r and r. are adjacent grid cubes whose common face is part of S.. .
i o o

Then one of the conditions imposed across this face is a finite difference

approximation for

ui = aij uj +Pij Vanj *

The approximation prescribed in equation (3-2) is

<"i3 +^i'/2 - aij(Tji+TjJ)''2 + V'ji - V/h •

The left-hand member is L.(h)(vh) and the right-hand member is L. (\)•
Although the virtual values v.. and v do not appear in the final

1J J X

numerical formulation given in Chapter 3, nevertheless, since the virtual

values were eliminated by applying equation (3-3)> the computed real values

determine these virtual values by virtue of equation (3*3); and therefore

the solution must satisfy the approximate interface conditions (3«2), since

equations (3.3) and (3.2) are equivalent. Thus condition (c) above is
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satisfied for the diffusion calculation as formulated in Chapter 3.

Finally, Theorem 3.1 implies that condition (d) always holds; that is,

that L *• ' tends to <£?. as h tends to zero.

Geometrical Considerations

Because of a necessity to single out some particular coordinate

direction, the discussion in this chapter is phrased in the language of

x, y, z coordinates. Nevertheless, the method is general in every respect.

Let S = S be any interface or boundary surface, and for any

e > 0, let S(e) be any open set of S with the property that the distance

from S(e) to the boundary of S is e. This requirement serves to eliminate

lines of intersection of two or more interfaces. Thus, the convergence

behavior is only studied at interior points of the interfaces and the

boundaries.

Given any fixed system of cartesian coordinates, the open surface

S(e) may be covered by a finite number of open surface elements each of

which has the following properties: First, for at least one of the

coordinate directions, which can be called the x direction without loss

of generality, the surface element may be represented by an equation of

the form

x = g(y,z) ,

where g is single valued, continuous, and has a piecewise continuous

derivative. Second, the maximum angle a, between the normals to the

surface element and the coordinate lines parallel to the x axis, is

bounded away from k/2.

Let s be one of these surface elements. If S and S' are the
u u
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loci of all points whose distance from S is exactly u, then let s and

s' be the portions of these loci lying inside the infinite cylinder

determined by projecting s perpendicularly onto the plane x = 0.

Moreover, let R (or R') be the region bounded by the surfaces s and
yx yx

s (or s') and this cylindrical surface. Henceforth in this chapter
yx yx

primes will be used in this fashion to distinguish between quantities

associated with the two sides of an interface. Moreover, it will be

implicitly assumed that the direction of increasing x is from the primed

side into the unprlmed side. When v satisfies the conditions 0 < v < u,

then the region R - R may be defined. For simplicity, it will be
yx v

denoted by R . Since u, in general, will be smaller than the dimensions

of the surface element s, it is suggestive to refer to R and R as
yx yx v

layers.

For any fixed grid size, the surfaces s, s , and s will be
v u

approximated by surfaces s^ , s ^ ,and s ^' depending in some manner
V yx

upon the lattice points. Note particularly that s ^ ' is determined
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by s and not by s^ \ By G will be understood the lattice points
r* r*

lying between s^ ' and s *• 'and the projection of sS ' onto the plane

x = 0. G is similarly defined. In the following, the distinction

will not always be made between s and s^ ', etc. However, until h is

allowed to approach zero, it will always be the approximating surfaces

that are of interest, even though h is suppressed.

Let p and p' be arbitrary grid points belonging to G and G'.
yx yx

Then for any grid function w, the values w(p) and w(p') may be related

to values at points q and q' near the interface s by means of relations

of the form

(5.3) v(p) = w(q) +h£ wx
_

(5.3') v(p') = w(q') -hJ \ >

where w denotes a first difference quotient of the grid function. The
_"_

exact limits of summation depend upon whether forward or backward

difference quotients are used. The choice is arbitrary and, indeed, for

the developments of this chapter alone, it is not necessary to be specific.

To be precise, however, let the summations in equation (5.3) and (5.3')

be understood to mean

E wx = Ij w(r +he]_) -w(r)
tl >»—n *-q r=q

P_+b

h"1

Z! vx =\ ,[*(r) -w(r -he^j h"1 .

Thus, the increment of x in the difference quotients is always directed

away from the surface s. Note that there is nothing in the foregoing
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to rule out the possibility that q might be a virtual point of the layer

G — in the sense of Chapter 3 — provided w is defined at q.

(Thus for the linear operator

Li(h)<V - <Tij+\i>/2'
which - In another notation - can be written

L±W(y(T±)) = ^(r± +he±) +^r(r.) ,

the value at a point p away from the interface can be expressed in the

form

(h)Yn;(v(p)) = |v(p +hex) h-Hp)

p+he,

= |v(q +hex) +h
q^e..

+|v(q) +h E -x

= L.(h)(v(q)) +hgL.(h)(vx)
<L

by applying relation (5*3) to v(p) and to v(p +he1).)

Consider next the line segment p, q and extend it to intersect

s (not s' )). At this intersection the normal to smakes an angle a

with the extended line segment, and by hypothesis, |a| £ aQ < it/2* If

q e s ( )and pes ^ ', then the summation of h from q to p will
u v u '

certainly satisfy the inequality

£ h<(u -v)7
1
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where 7 is some multiple of sec a_, independent of v, u, or h. This

estimate will be used repeatedly in subsequent sections.

Conditions with Variable Coefficients

The interface and the boundary conditions under consideration have

the form

W - W -

where e£ and *C are linear differential operators with variable
1 j

coefficients. For any h such a condition is approximated by a finite

difference equation of the form

L(n) (v!(h)} = (h) ((10)
1 1 j ,iJ

In the limit as h tends to zero, the operator l/ ' must converge to the

operator <£..

But these finite difference and differential operators are only

defined along the surface S. .. Since s is a surface element of S.. which
iO 10

can be represented in the form x = g(y,z), it is possible to extend the

domain of definition of ^ and L.' ''to any layer R in such a way that
j- -L yx

the variable coefficients of <»_ and L (h) remain independent of x for

any fixed choice of y and z. Geometrically, this means that at any

point q of s the value of each coefficient of the operator is extended

to all points along the coordinate line parallel to the x axis and passing

through q.

When the definitions of the finite difference operators are

extended in this manner, then, because they are linear operators whose
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coefficients are independent of x, the grid function w in equation (5*3)

may be replaced by L^ '(v). Thus

L(h)(v(p)) = L(h)(v(q)) +h £L(h)(vx) .
<1

There will be no confusion if this identity and the corresponding one

which applies to the other side of the interface are written in the

abbreviated forms

(5.*0 L(p) = L(q) ._ ^ x

(5.^') L'(p') = L'(q') -h V Lx .
c?

The Boundary Treatment of Courant, Friedrichs, and Lewy

The analysis in this section follows very closely that given by

Courant, Friedrichs, and Lewy in their classical treatment of the one

region, two-dimensional Dirichlet problem.

Let the differential condition imposed along the boundary be

<£(u) = 0. Then the corresponding condition in the finite difference

problem is L(v) = 0. It is only necessary, therefore, to consider one

layer, say R , which is chosen to lie along the inner surface of the

boundary.

The following theorem is the principal result of this section.

It applies to any surface element s representable in the form x = g(y,z),

Theorem 5.1. Ef the sequence |v, I-> uas h -> 0, then

+hDL ,
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lim u~ JJ/[^(u)] dx dy dz = 0
u-»0 R

u

provided

(i) |L(vh)l -> ^f(u) uniformly in every sublayer R , and

(ii) lr 2j l is uniformly bounded as h -» 0.
G

u

Let the point q in the identity (5.4) be chosen such that

L(v(q)) = 0. Thus, q is determined by the approximate boundary s(h).

Squaring both sides of the result and applying Cauchy's inequality, one

obtains

up)2 - h[f h^s h(£h](K2l
x

1

2
Since h and L are both positive, the range of summation may be

x

extended to include all points lying on the segment of the line between

the surfaces s and s . The length of this line segment will never exceed

7U for sufficiently small values of h. Hence

s

L(p)2 <7uh E L/ •
s

Summing this inequality over all points p on the line segment yields

h£ L(p)2 < y\\ I L2.
s s

Summing next in the y and z directions over the surface element s, one
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h5 e l2 < 7W e a
G G
u u

2

x

In N-dimensional space this step is exactly the same — summation over

the N-l dimensional surface element s.

If hypothesis (ii) of the theorem is satisfied, it follows that

ih5 E [L(v)]2 < Ku ,
^ G

u

where K is a constant independent of u, h, and of v. If the summation

is limited to a closed layer G lying entirely in the interior, then
yx v

the inequality still holds with the same constant K. As h tends to zero,

this inequality yields

- fff [<iS(u)]2 dx dy dz < ku .
^ R

uv

This limiting process is valid because of hypothesis (i) of the theorem.

Since this integral is bounded and monotonic as v tends to zero, it

implies the conclusion of Theorem 5«1«

For a Dirichlet problem ^S(u) = u - f and so the second hypothesis

of Theorem 5.1 requires only that a bound be found for

-3Z
2

v

G X
u
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while for a Neumann problem the boundedness of

i,3 V r 2 2 2,
n /, [v + v + v 1^ xx yx zx J

u

must be demonstrated.

Behavior at Interfaces and at Boundaries

If, for any fixed q, equation (^.h) is summed in the x direction

over all points p belonging to the grid layer G , the result is
yx v

s s s

hEL(p) = L(q) th+*2t t \
s q

Since the number of grid points between s and s on the line through q

may depend upon q, multiply this equation by the ratio

/ s . ^

sh(_) = (u - v) £ h

Then summing in the y and z directions over the surface element s, one

obtains

/ s \

*2 E h*h t L(p)
s \ sv /

(u-v)l2L(q)+h^Ef £ehLx
s s q

Similarly, on the other side of the surface element

/ \ s i

h" E ^ f L'(p') = (u -vk2E L'(q') -hk £ t f *h, h
s \ s1 s s' q'

But for each point q there is a point q' such that L'(q') = L(q),
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Therefore when the last two equations are combined by subtracting and

absolute values are introduced, the result is

(5.5) h5 Yj 9h L(p) - h5 E K L'(P')
G . G'.
uv

G'
uv

s s' ,

Eh2 t *t h|6h L|+E«2 t *%*K *±\-
s s n s r » n 'S S q

V ^
s' q'
V ^

In estimating the magnitude of the expressions on the right,

certainly 0. and 0' do not exceed 2. Moreover, by Cauchy's inequality,

the inner summation has the bound

Ihle. l
7 I nh x1 21 h h

4

< 2

1/2

IA1 \U X

1/2

1/2

t*ri h L
11/2

x

- 2 (r,)l/2 £ - l a
1/2

because the length of any line segment parallel to the x axis and

extending from q to s (or s * ') will not exceed y\±. Similarly
u u

s \ q / \ s /\ sV \ / \ y / \

11/2

275/2 u1/2 (, - v) £ h 1/2

and hence, applying Cauchy's inequality to the summation over the surface
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element s, one obtains the following estimate for the first term on

the right side of inequality (5.5):

2>21»_• »!<_ \\ * 2W<- - v)E h _! h' lx
s s q

1/2

1/2/,2^\-v)teh2fHh\2
1 s s

1/2

2r3/2(, .v)(ll<,)l/2(E h3 12 1/2

where a is the area of the surface element s. A similar estimate applies

to the triple summation on the other side of the surface.

If the summations

(5.6) h5 £ (Lx2) and h5 JJ (Lx)2 ,

which occur in these estimates, are uniformly bounded as h tends to

zero, then combining these estimates with inequality (5.5) yields

h5 £ 0 L - h5£ 0' L
G
uv

G
uv

k(u - v)(ucr)1/2

Finally, allowing h to approach zero, the following theorem has been

proved.

Theorem 5.2. Let s be a surface element representable in the form

x=g(y,z). Suppose that the sequence L(v. )| converges uniformly to
£(u) in every interior layer R (0 <v<u), and that [l'(v, )l
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converges uniformly to ^'(u) in every R' . Suppose, moreover, that the
yx v

summations (5.6) are uniformly bounded as h tends to zero. Then

(5-7) ///<£(u) dx dy dz -fff& (u) dx dy dz
R R'
uv uv

k(u - V)(|10) '

It does not appear possible to justify directly the process of

allowing R to tend to R in inequality (5«7) as was the case in the
yxy yx

treatment of boundary conditions where there was a single integral with

a nonnegative integrand. As an alternative procedure, the parameter u

will be allowed to tend to v, so that the layer R degenerates into the
yx y

surface s . As a final step, v will be allowed to approach zero and,

hence, the integrals in inequality (5*7) will tend to surface integrals

along the interface S. These limit processes may be carried out with

the aid of a transformation of coordinates.

Let (|, r\) be arbitrary coordinates defined over S and let %

be the oriented distance from S. The coordinates (i,r7,ir) assigned to

a point (x,y,z) are obtained by determining the length of %of the

shortest normal to S which passes through (x,y,z) and the coordinates

(|,rj) of the base of the normal on S. The new coordinates form a

geodesic normal coordinate system. The Jacobian J(x,y,z; £,rj,i) of the

transformation has the value sec a on s , where a is the angle between

the normal to s and a line parallel to the x axis. Thus J d£ drj = da

is an element of area of the surface s .

Either integral in inequality (5*7) may, therefore, be written

in the form
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fff<£(u) dx dy dz = J JfsC J d| drj dr = J ff^£ da dT
*,,•,, v s- v sUV T T

= (u -v) ff^Cda ,

where V ^ t -5 u. The third equality results from an application of the

mean-value theorem, which is valid provided =*f(u) is continuous in R
yx y

for all v / 0. Hence, in the limit as u tends to v,

lim (u - v)" JJJ^dx dy dz = ff^da ,
u-»v R s"

uv v

and, hence, a new inequality is obtained from (5«7). It is

(5.8) ffxto - /J> da<
sv

K(va)1/2

Theorem 5.3* If <jg(u) and a_' (u) are continuous in every R and

R* , respectively, for all v ^ 0, and if the conditions of Theorem 5.2

are satisfied, then inequality (5.8) is valid.

Corollary 1.

lim ff ^(u) da = lim ffj? (u) da .
v-»0 s. v-»0 s*

v v

Consider inequality (5.8) again and let the sequence of surfaces

sy be chosen so that the area, a, of each is equal to */v. Since ^zS(u) and

«£' (u) are continuous in the interior, the mean-value theorem may be applied

to the integrals. This produces two sequences of points pes and

Py e s^, converging to a common point q on S which possess the property
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that

(5-9) vi/2|^(pv) ---'(p;) 3A
s k v

Corollary 2. For any point q belonging to a surface element of

S = S. ., there exists a sequence of points pv| converging to q from
iJ

the interior of R and a second sequence Ip'l converging to q from the
u

interior of R', and these two sequences have the property that

(5.10) lim cfo )
V->0

lim<2»(p')
v->0

Figures 5.1 and 5.2 illustrate this corollary for two dimensions.

The envelopes of the arcs js1and s'I are tangent to the interface

because of the properties of «n/v . If the middle half of each arc in

Figure 5«1 Figure 5«2

figure 5.1 is deleted, figure 5.2 results, where there are two sequences

of arcs on each side. Consider just one of these. Again inequality

(5.9) applies since each s has length j-v/v . Moreover, the sequence si



100

is contained in a horn angle with vertex at q. For, using the normal

through q and the tangent at q as basis vectors, the curves comprising

the envelope of s must ultimately coincide with the curves

+ -rvv and t +|^

Hence, the sequences Jp 1 and P1 of Corollary 2 both approach q from

a direction which is tangent to the interface. A similar argument

applies in N-dimensions.

Corollary 3- For any point q belonging to a surface element

of S=S ,there exists asequence of points jp |converging to qfrom

the interior of R in a manner which is ultimately tangent to S at q,
yj, ' "

and a second sequence of points p^ Iconverging toqma similar manner

from the interior of R', and these two sequences have the property

expressed in relation (5.10).

Similar theorems hold on the boundary. Indeed, if s is an

element of a boundary surface S , then for each of the points q on or

near S K there exists a point q' such that

L(q) = f(q')

where f is a specified function of class C on S. . In this case,

inequality (5-5) may be replaced — compare the equations preceding

(5-5) - Ty

h5 E9hL(p)" ("-v)h2 Ef(l')
G. „ s
uv

s

Eh2 fh Jh|0hLx|,
Sv *

The estimation of the right-hand side is exactly the same, and hence,
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Theorem 5-2 applies with (5-7) replaced by

fff-Au) dx dy dz -(u -v)ff t da
R s

1/2k(u - v)(ua)

uv

Finally, inequality (5-8) is replaced by

(5.11) IP dcJ - II fda
1/2£ K(va)

An alternative approach is also possible. Let 5f'(u) = f.

Then recalling the convention for extending the domain of definition

of variable coefficients in *£', it is clear that f — the first
_"_

difference quotient — is identically zero. Hence the summation

h3 X(Lx)2 = h^ £fx2 = 0
G' G.'

vanishes for all h. Moreover, by hypothesis, ^' (u) = f is continuous

for all R'. Thus Theorem 5-3 applies with equation (5-8) replaced

(5.12) IS*** - IIf da
s'
v

l/2
k(vc)

By either method the following theorems may be obtained.

Theorem 5.4. Let s be an element of a boundary surface Sin

and let s be representable in the form x = g(y,z). Suppose that the

sequence |L(v )j converges uniformly to t(u) in every interior layer
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R (0 < v < u), that the summation
yxv

^ I \2
G
u

is unifbrmly bounded as h tends to zero, and that «z?(u) is continuous

in every R , v £ 0. Then inequalities (5.11) and (5.12) are valid.

Corollary 1.

lim JJW(u) da = ff fda .
v-*0s s

Corollary 2. Let q be any point belonging to a surface element

of S . Since, by hypothesis, f is continuous at q there exists a

sequence of points jp Iconverging to qfrom the interior of R with
the property that

lim<af(p ) = f(q) .
V->0

Corollary 3. Moreover, the sequence of Corollary 2 may be

constrained so that it is ultimately tangent to S. at q.



Chapter 6

A DISCRETE ANALOG OF THE

DIVERGENCE THEOREM FOR POLYTOPIC REGIONS

Discrete Versus Finite Difference Analogs

In contrast to Chapter 3 where attention was focused entirely

upon a particular choice for the finite difference approximation of

the derivatives, the theorems to be developed here are independent of

such a choice. They are based upon the assumption that the functions

involved and their derivatives will only be known or approximated at a

discrete set of points determined a priori by the geometry or other

pertinent considerations. In Chapter 3 these points were the grid points

and the centers of the faces of the cubes. Thus the results developed

here involve derivatives evaluated at specific points. It seems appropriate

to refer to these as discrete theorems.

By substituting finite difference approximations for the derivatives

in these discrete theorems, the corresponding finite difference theorems

can be obtained. This is carried out in the next chapter.

The regions considered in Chapter 3 were restricted to be the

union of a finite number of N-dimensional cubes, one for each real grid

point. To treat more general regions, it is necessary to distort the

N-dimensional cubes. Thus in this chapter, regions may be the union of a

finite number of closed, convex polytopes, each containing one real mesh

point.

103
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Statement of the Basic Theorem

NLet P be such a closed polytope and let x^ be the real grid point

N N
contained in P . The condition that P be convex can be relaxed. All that

N
is required is that for any point y e P then the line segment joining

x. and y — denoted by L [x , y] — must lie entirely in P .

Definition. A domain D will be said to be convex about a point

x0 i_l for aQy point y e D the closed line segment L [xn, y] is_ contained

in D.

An equivalent definition is provided by the theorem that D is convex

about x if and only if D is a union of convex sets, each of which contains

V
N

If P is any polytope, then its faces will be denoted, when

N-l / v N-l
necessary, by P. (j = 0, ..., M). Furthermore, the area of P. and its

0 0

exterior normal will be denoted by a and n., respectively, and its centroid
0 0

by c .. It is assumed in each of the following theorems that any polytope
0

which is constrained to be convex about some point is also constrained to

have at most a bounded number of faces. Thus M + 1 is less than some M

chosen in advance. For the applications in this paper, each P will be a

distorted cube and hence will have exactly 2N faces.

Theorem 6.1. Let f be a vector-valued function whose components

are of class C over R. Given any e > 0 then there exists a 6 > 0 such that

Nfor any point xQ e R and any polytope P in R which is convex about x and

has diameter less than 5, then

E a n •f(c )-(volume of PN) V •f(x )
i=0 3 3 3 U

< (vol. PN) e
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This basic theorem is a crude analog of Gauss* divergence

theorem. It is valid for N-dimensional Euclidean space independent of

any particular coordinate system. To prove it, however, it is sufficient

to use the familiar rectangular cartesian coordinates. The proof rests

primarily upon two geometric identities concerning polytopes.

Preliminary Lemmas

Any polytope may be triangulated so that it is the union of a

finite number of closed slmplexes, any two of which intersect at most in a

N
common face. Briefly, this may be accomplished for a convex polytope, P ,

by triangulating each face into slmplexes of dimension N-l and then joining

N
the vertices of each of these slmplexes to an interior point of P . The

desired identities will first be obtained for an arbitrary N-dimensional

simplex SW. Let the vertices of S be given by the position vectors

p (j = 0, 1, ..., N). Furthermore, let a. be the area of the face not
j 0

containing the vertex p.,
0

let c. be the centroid of
0

that face, and let the

exterior unit normal to the

face at c. be denoted by n..
0 0

In the following, the vectors n , c, and p. will be treated as column
3 3 3

vectors with components rj ., y , and it . (u = 1, ..., N), respectively.
\^3 r^O r*0

Lemma 6.1. For any simplex S ,

N

V. a. r] . = o ,
j=0 J w

(u = 1, ..., N)
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Lemma 6.2. For any simplex S ,

•? °J 'Vj 7vj = 5nV(v0lUme of sN)' (u =1, ..., N)

where 5 is the Kronecker delta.
yx v

Since d. = Y r\ . y . is the directed distance from the origin
0 Mi u-o 'uo °

to the plane of the jth face, it is a corollary of Lemma 6.2 that

Y a. d. = N(volume of P11) .
y 3 3

Lemma 6.1 and the last relation were given by Minkowski (1897). Lemma

6.2, itself, has not been located in the literature.

The first lemma is intuitively clear. The product a. 17 . is the

signed area of the projection of the jth face onto the uth coordinate

plane. For any closed surface, however, the "upper" and "lower" portions

with respect to any nonintersecting plane will have coinciding projections

in that plane. The second lemma for the case u / v asserts that the sum

of the first moments of these projections also vanishes.

Once these lemmas have been established, it will be shown that

they imply the same results for any polytope (because terms arising from

the interface of two simplexes will cancel). In this sense, the case

u = v provides a generalization to N-dimensions of the familiar trapezoid

rule for integration in two dimensions.

The following proof for these lemmas is analytic and hence

*

I am indebted to A. S. Householder for suggesting this method
of proof for the case of N-dimensions.
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requires that some attention be given to the signs of the areas and

volumes involved. It will be sufficient to show that an order for

labeling the vertices of S may be established which guarantees that the

volume of SW is positive and that the normals to the faces of S are

directed outward. In any rectangular cartesian coordinate system,

regardless of the ordering of the vertices, the magnitude of the volume

of S is given by the absolute value of the determinant

1

IT

,lio 11

*N0 *N1

lllN

*NN

It will be convenient to write such determinants in the abbreviated form

_1__
NI

•N

which displays the position vectors of the vertices. The volume of a

simplex is defined to be the value of this determinant and hence will be

positive or negative depending upon the orientation of the vertices.

Consider, however, the unit simplex whose vertices coincide with the origin,

0, and with the end points of the unit coordinate vectors e1, ..., e^. (the

(ith component of e. is 5 .). The volume of this unit simplex as given by

the determinant is clearly positive. Now deform the unit simplex into the

simplex SW in a continuous manner such that all N+l vertices never lie in

an N-l hyperplane; i.e., so that the volume always remains positive.
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The vertices of S may now be labeled by assigning p to the image of 0,

and p to the image of e. (j =1, ..., N). With this ordering, the volume
J 0

N
of S will be positive.

Next the directed area of any face of S" must be defined — first,

however, some additional notation. The symbol e* will be formally treated

as a column vector whose components are the unit vectors e. (j =1, ..., N).
0

If r^, ..., i\_ ., are linearly independent, then the determinant

1^ ... rN_1 "e| is a vector. This is a generalization of the cross product

of two vectors in 3-dimensional space. Indeed,

|r sll

pl al el

P2 a2 e2

p3 a3 e3

,N

(p2a5 - Pf2)e± + (p_o1 - Pla3)e2

+ (Pla2 - p2a1)e3 .

The inner product of the vector |r., ... r "e| with any vector q is the

value of the determinant \r± ... rN_x q|. The latter vanishes if q is a

linear combination of r^ ..., rN_1 and therefore the vector |r ... r ef|

is orthogonal to each of the r. (j = 1, ..., N-l).
0

Definition. If the vertices of S are treated in cyclic order so

that P,+N+1 = P,> then the oriented area of the jth face is

(-1)^
ajnJ Wljl PJ+1 • Pj+N' Pj+2 " Pj- '̂ '••' Pj+N-1 " Pj+N>

It is tedious, but not difficult, to verify that the areas of

the faces of the unit simplex, as given by this definition are
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:ono = TnITTT (ei +e2 + ••• +eN} '

for j ± 0

a,

ajnj - T¥a)T ej>

Using the continuous deformation argument again, it follows that the

normals to the faces of S will be directed outward whenever the vertices

are ordered in the manner already described.

The uth component of an. is
0 0

a, x] .
J Vj

JN

PJ+1 " PJ+N Pj+N-1 " PJ+N

By applying u-1 interchanges of adjacent rows, the uth row may be moved

to the top, yielding

j Vj
iri)

JN+u-l

(W

*u,j+l " *u,0+N '" *u,j+N-l " *u,j+N

Pj+1 " Pj+N Pj+N-1 " Pj+N 0

where primes denote that the vectors are of dimension N-l and are lacking

a uth component. Let 0 . (j = 1, ..., N) be arbitrary scalars to be chosen

later. Using the familiar rules for manipulating determinants,

(N-l): a. r? . 0 .
v ' j Vo vo

= (-i)^-^.
vj

(-l)JN-Hi-l R
vj

PJ+1 PJ+N

PJ+1

0

Pj+N-1 " Pj+N 0

•j+N-1 PJ+N



(N-l): a. r) . 0 .
v ' o Vo Kvo
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= (-1) JN+u-1

u-1
= (-D

0 . 0
VO

0 H+i

0

1

0

1

Pj+N-1

Pvj

0

1

Pj+N

0

1

•0 pJ-i 0
pj+l

0

1

• PN

The last expression is obtained after JN interchanges of adjacent columns,

Finally, summing over all j, the result is

N

(N-l): E a. r] . 0 . = (-l)^'1
J=0 J W J

0.
vO pvl '• • ^vN

1 1 1

p6 p{ ' PN

Lemma 6.1 follows directly from this result by setting 0 . = 1 for

all j. To obtain Lemma 6.2, let

N

Pvj "V> +Jfe "vk ="r"J
and then multiply the second row of the last determinant by y „ it and

__k=0 vk

subtract from the first row. The result is

N: ;. a. rj . 7 . = (-1)u-1

•rt„ it.
VO vl VN

p6 pi PN

But if v £ u, the determinant has two identical rows and, hence, vanishes.

This proves part of Lemma 6.2. The remaining assertion may be obtained
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from the last expression by multiplying the first row by -1 and then

performing u interchanges of adjacent rows. The resultant determinant

N /-
is NI times the volume of S . This completes the proof of Lemmas 6.1

and 6.2.

N
Consider next an arbitrary polytope P which has been triangulated.

Apply the previous lemmas to each simplex and then add. The two terms

arising from an interior face common to two simplexes will cancel, since

the areas are equal, but the normals are opposite. Hence, only the

summation over exterior faces of the simplexes will remain. Let

S ,H-1, .... S, N"1 be the faces which comprise P. -1, the kth face
k,l k,r k

N-lof the polytope. The area, a , of Pfc is

a, = a. .. + ...+ a, ,
k k,l k,r

and the centroid, c. , of P, " is the weighted mean of the centroids

N-l
of the S, . . That is,

k,0

a, , c, ,+...+ a, c.
c = h1 h1 -u£__-_i_ .
k - ak

N-l
Therefore, since the exterior normal to P is also the exterior normal

for each S .N_1 (j = 1, ..., r), the identities of Lemmas 6.1 and 6.2
k, j

are also true for arbitrary polytopes.

Lemma 6.3. If P is an arbitrary polytope with faces P

(j = 0, ..., M), then

A a, n. = 0 (u = 1, ..., N)
j=0 j M
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and

•D "j \j 7vj = 5uv (volume of pN) (u, v=1, ..., N)

where a is the (unsigned) area of P. and r\ . and 7 .are the components
0 0 M-o —— uj —— —— ——-__——_—

of the exterior normal and the centroid, respectively, of P. .
J

It is convenient in subsequent developments to define the 7 .

to be the components of the vector c. - x , where x is some fixed

reference vector in the polytope.

Corollary. Lemma 6.3 is also valid when the 7 . are the

ccmponents of the position vector c. relative to any fixed vector.
J " ' -----------------

If xQ and all the centroids c are interior points of R, then,

with these lemmas, the proof of Theorem 6.1 requires only an application

of the standard mean-value theorem for functions of several variables.

Before proceeding with the proof, however, it is desirable to call

attention to the fact that it is not sufficient to prove the weaker theorem

in which the polytope P^ is contained in the interior of the region R.

For it is precisely to handle irregular boundaries that the polytopes

have been introduced. It is therefore necessary to admit the possibility

that c and xQ may be points on the boundary of the region R beyond which

there is no guarantee that f has continuous partial derivatives. In fact,

the line joining them may lie in a face of P^ which forms part of the

boundary of R. To admit these boundary situations the following extension

of the mean-value theorem is used. A proof is given by Downing (i960).

Lemma 6.4. Let K be a convex, open set in E and let j be a
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real-valued function of class C over K, the closure of K. Let x and y

be distinct points of K. Then there exists a point p on the open line

segment joining x and y such that

*(y) = t(x) + w(p) • (y - x) .

The mention of both K and K insures that K is an N-dimensional

body and not merely an (N-l) disc.

The Discrete Divergence Theorem

With these preliminary results, the proof of Theorem 6.1 is

simple and direct. Since the components f of the vector field f are
yx

of class C over R, then the first partial derivatives of f are, in

fact, uniformly continuous over R. By definition, this means that for

any e' > 0 there exists a 5 > 0 such that if £ is any coordinate, and

if x and y are any two points in R, then

(6.1) |dv yx) -Dy yy)| <e'

whenever ||x - y|| < 6. By the extension of the mean-value theorem to

closed, convex sets (Lemma 6.4)

(6.2) yc ) = yxQ) +E 7VJ Dv f^ +Xc. -XxQ) ,

where the y . are components of c - x and where 0 < \ < 1. Here, and

subsequently, summations over u and v range from 1 to N. Summations over

the faces of P have the range j = 0, ..., M. Because of the uniform
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continuity of D f , equation (6.2) may be rewritten in the form
v yx

(6.3) ycj) - f(1(x0) +J 7v. [Ey f(i(x0) +e^] ,

where

By definition

e' J < e'1 uvj1

a, n, • f = y a. 17 . f .J J jf J Vj u

Hence, summing over j and applying equation (6.3), one obtains

5 aj nj • f(cj> "2 W § a, \* +2 2 \ ^ £ «, ",j rv3+K,
where

* =5 £ ? °J nMJ ^ €Jvj •
Applying Lemmas 6.1 and 6.2, this reduces to

(6.4) J aj nj *f(cj) = (vo1- pN) v *f(x0) +k .
3

In estimating k, note that

,aj 7vjl - (vo1- pW) >

for any choice of j and v. Hence, estimating crudely

(6.5) \k\ < (vol. P11) N2 MQ e» ,
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where use has been made of the assumption that M is bounded by some

M0, which is at most a function of N. Since the dimension is fixed,

it is evident, therefore, that given any e > 0, one may choose

(6.6) e' = e/N2(MQ +1) .

And e' determines 5. Hence, the conclusion of Theorem 6.1 follows by

combining equations (6.4) and (6.6) with inequality (6.5).

Consider next a polytopic region (i.e., a closed, bounded

polytope) that has been subdivided into a finite number of closed

polytopies P.W (i = 0, ..., n-l). The subdivision need not be a tri

angulationj however, the only subdivisions of interest in this paper

are those which have the following property, which is also a property

of any triangulation. The intersection P. A P. is either the empty

set or is some ^"r (l :£ r< N) which is an (N-r)-face of P± and of

PN.
0

Definition. A subdivision of a polytopic region R will be

called an admissible subdivision if it has the property described in

the preceding paragraph.

Definition. An admissible 5-subdivision of a polytopic region

R is a collection of polytopes, denoted by SE (S,R), which forms an

admissible subdivision of R and has the following additional properties;

Each P N e* (5,R)

(i) has diameter less than 5,

(ii) is convex about some point x., and

(iii) has less than MQ faces, where MQ is independent of 5.

Theorem 6.2. Let R be any polytopic region and let f be a

vector-valued function of class C* over R. Given any e > 0, then there
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exists a 8 > 0 such that for any admissible S-subdivision _» (5,R), then

(6.7)
surface

of R

n-l

an •f(c )-E (vol. PW) V.f(x )
J 0

1=0

< (vol. R)e ,

Nwhere the second summation is over all P. JLn. * (5,R), and the first

summai
N-la-tion _is over the faces P " of * (5,R) which form the surface of

R. The symbols a , n., and c denote the area, the exterior normal, and
3 3 3 _____. ____ ___________ ________ ____

the centroid, respectively, of each P .
__-_-_-__ j

For any prescribed e, let 5 be determined so that Theorem 6.1

applies. For any ^ (S,R) let the area of the jth face of P.W be denoted

by a , and similarly denote the exterior normal and centroid of P. .
J 1

Consider then the double summation

' = H a1 n/ •f(= i) .
i=0 j J J J

For each interface, there will be two terms which will cancel because

the exterior normals are oppositely directed. There remain, therefore,

only terms involving the faces P. " which lie on the surface of R.

Indeed, the union of these P is the surface of R. Hence
J

(6.8) J = E ai ni 'f(ci) •
surface d d d
of R

On the other hand, Theorem 6.1 provides the estimate

fcil

J - J (v°l- P/) v *f(x,)
i=0 x x

< (vol. R)e .

The desired result is then obtained by substituting equation (6.8)

into this estimate.
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It might be recalled here that in Chapter 3 the subdivision

into cubes had the property that two cubes intersected in at most one

face. This is not necessarily the case for an arbitrary^' (S,R).

Theorem 6.2 is a discrete analog of the divergence theorem.

Discrete Analogs of Green's Identities

Discrete analogs of Green's first and second identities may be

obtained from Theorem 6.2 in precisely the same manner as the integral

identities are derived from the divergence theorem. They are included

here for completeness.

Theorem 6.3. Let R be any polytopic region and let w and u be

real-valued functions of class C and C^ ', respectively, over R. Then

the conclusion of Theorem 6.2 holds for the inequality

E a w(c )n. •Vu(c )
surface J J d d
of R

(6.9) „ -1

E (vol. P.N)[w(xi)V2u(x.) +W(x.) •Va(x±)]
i=0

< (vol. R)e

This is obtained by setting f = wVu. To obtain the second identity,

let w e C^ ' over R and interchange the roles of u and w in relation (6.9).

Combining the two relations, one obtains

Y a [w(c )n •\fo(c )-u(c )n •VW(c )]
surface

of R

(6.10)

3 3 3

n-l

Sn
i=0

E (vol. P.N)[w(xi)^u(x.) -u(x.)v2w(x.)] < 2(vol. R)e .
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Theorem 6.4. Let R be a polytopic region and let w and u be

(2)
real-valued functions of class Cv ' over R. Then the conclusion of

Theorem 6.2 holds for inequality (6.10).



Chapter 7

FINITE DIFFERENCE ANALOGS FOR POLYTOPIC REGIONS

In this chapter finite difference theorems will be obtained which

correspond to the discrete theorems of the previous chapter, but with an

important difference. The error estimate obtained there, namely (vol R)e,

will be replaced by one which is proportional to the mesh size, h. To

achieve this, a further restriction must be imposed upon the admissible

subdivisions.

Well-Selected Subdivisions

In the class of all admissible 5-subdivisions, those which are

nearly cubical are of special interest. For if the interior of a region

is subdivided into cubes and the boundary layer into suitable polytopes,

then the strict identities obtained in Chapter 3 will apply to the

interior, and 5, e results, analogous to those obtained in the previous

chapter, will apply to the boundary layer. The volume of this layer,

however, is clearly proportional to h, the mesh size. Hence, in the

limit as h tends to zero, the errors introduced by the finite difference

approximations will vanish. The term "nearly cubical" used above is

roughly descriptive of a well-selected subdivision.

For any region R, a well-selected subdivision may be constructed

as follows: Superimpose on R a uniform lattice of points with spacing

h in each coordinate direction. Let each lattice point be the center of

a cube with sides parallel to the coordinate axes and of length h.

Approximate the region R by the union of those cubes associated with

lattice points lying in R. Next, distort the cubes near the boundary of

119
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R until the boundary of R is approximated by a suitable polyhedron, under

the restrictions that the distorted cubes remain polytopes, that the

number of faces remains invariant, and that the new subdivision is an

admissible 5-subdivision in which each polytope is convex about its own

lattice point. In general, 5 will be larger than h but need not be more

than a relatively small multiple of it. Indeed, for the sake of a

concrete definition of a well-selected subdivision, it may be stipulated,

without real restriction, that 5 < 3h n/n, where N is the dimension of the

space.

If R is a union of two or more regions, the same procedure is

applicable with one exception. When a lattice point lies on an inter

face, it must be assigned, arbitrarily, to one and only one of the

regions meeting at the interface. Cubes near the boundary and the

interfaces may then be distorted as already described to obtain polyhedral

approximations of these surfaces.

Well-selected subdivisions will be denoted by \l>(h,S,R).

Consider now a region R and a well-selected subdivision *(h,5,R).

Let the polytopes of 1l'(h,5,R)

be grouped into a boundary

region, R , and an interior

region, R , such that the latter

is a union of lattice cubes only.

Let the surface of the polyhedrons

approximating R, R , and R ,

respectively, be denoted by S, S ,

and S . The ratio S /S is certainly

bounded from above for any fixed dimension N. Moreover, the thickness of the
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boundary layer of polytopes will be a small multiple of 5 for any

particular region. Hence, for any fixed R, there exist constants k. and

kp such that

(7.1)

(7-2)

S < kn S
c 1

(volume of R ) < kg 5 S.

The Finite Difference Divergence Theorem

To apply Theorem 6.2 to a finite difference scheme over R, , it

is necessary to approximate the vector-valued function f at the centroids

of the faces in terms of known values of f at the lattice points. Let

the polytope containing the centroid c. be convex about the lattice point
0

x.. The value of f(c.) may then be approximated by a linear combination -
1 0

not necessarily unique — of the values

f(x.) and f(x. ± h e„) ,
i' l u'

(u = 1, ..., N)

An acceptable approximation, f*(c), of f(c.) is given by any
0 0

linear combination of the form

(7.3) f*(c.) -0Q f(x.) + J [^ f(x. +hej +0^ f(xt -he^)] ,

provided the 0's satisfy the conditions

/

0,o+lK +t'v) =x>
u=l

(7A)
u=l

(0 - 0") h e = c. - x. ,

V
u=l ^ p

< 3 n 5
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The last condition ensures that the 0's remain bounded, (if f were of

class C' it would be desirable to replace this condition by the conditions

0+0'u ^u

2a 2
7 /h
u '

(u = 1, ..., N) ,

where j is the uth component of c. - x..) These conditions are sufficient

because, by hypothesis, each component of f is of class C and therefore,

for any component, f , of f, there exist numbers 9,9 , and 0'

(0 < 9 , 9 , 0' < l) such that
v v' uv' uv '

f (c.) = f (x.) + (c. - x. ) • W (x. + 9 (c. - x.))
vN o vv x' v o i vv i vv j i"

(7-5) < f (x. +he)= f(x.)+he • Vf (x. +9 he)] vx i u' vv x' u vs i uv u'

f (x. - h e ) = f (x, ) - h e • Vf (x. - 0' he)
\ v x u' vv i' u vv i uv u'

for all u = 1, 2, ..., N. By direct substitution it follows that

f (c) =
vv o 3o+ ^^ f (x.)

VV l'

+ >. 0 h D f (x. + 9 he)^ u u vv i uv uy

fv(cj) +%

_

u=l

0' h D f (x. - 9 he)
U U Vx 1 UV u'



where
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/, 0 h D f (x, + 9 h e ) - D f (x. + 0 (c. - x.))/_/ ^u u xvv i uv u' u vv i vv j x"
\x—A- L

N

E ?!*
u=l v'

D f (x. - 0 he)-D f (x. + 0 (c. - x,))
u vv i uv u' u vv i vx j x

Since the diameter of the polytope is less than 8, inequality (6.1) may

be used to estimate k . Indeed

N

UJ < E (IPJ + le;D he' <3 e' N8
u=l

Since each component of f(c ) is approximated to within 3 e' N 5, it

follows that

||f(cj) -f*(Cj)||< 36' N5/2 8

Consequently, summing over all faces of R, , one obtains

(7.6) E a n •[f(c )-f*(c )]
J j x J

< 3 e' N5'2 8 S

Likewise

(*!> =%!*»%' [f(xi+h6u) -f(xi)(7.7) V • f

+ i
u=l

P e
u U

f(x± - he^) -f(xi)

is a satisfactory approximation for V • f(x.) provided the p's satisfy the

conditions



(7,8)

Indeed,

I
u=l
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(pu - p^)h = 1 ,

(|P(J + |P|^|)h < 3N.

(u = 1, ..., N)

V • f( Ci) = L, %
u=l **

f (x. + h e ) - f(x.)
H x u' v i'

+

u=l

P*
u

f (x, - h e ) - f(x. )
uv i \±' v x'

or, after substitution from equations (7-5)

where

V • f(x.)=/, p h
u=l

e • Vf (x. + 0 he)
u uv i uu u'

-2
u=l

-I
u=l

p* he • S7£ (x. - 0' he)
u u uv i uu n'

(p - p')h D f (xJ
XKu Ku' u uv x

*l>. p h[D f (x., + 0 h e ) - D f (x.)]^ Ku |i uv i uu u' u uv i/J

Z
u=l

p' h[D f (x. - 0* h e ) - D f (x.)]
Mu u uv i uu \iJ u uv i/J

V • f(xt) + k ,
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Ul < E (IpJ + IpJ)116' < 5 Ne'
u=l K ^

NTherefore, after summing over all the polytopes, P , forming R^, one

obtains the inequality

(7.9) E(vol. P.N)[V •f(x.) -V* •f(Xi)]
K

< (vol. P^) 3 e' N

Combining inequalities (7-6) and (7-9) with the inequality of

Theorem 6.2 yields

(7-10) E a. n •f*(c )-E (vol. P±N) V •f(x )
^ 3 3 0 p J- x
Sb *b

< (vol. R^e + (vol. Rb)3e' N+38S^ e. m3/2
N

The relation between e and e', given in equation (6.6), is

e = N2(2N + l) e' .

The expression on the right-hand side of inequality (7-10) may be bounded

from above by applying the simple properties of well-selected subdivisions

given by relations (7.1) and (7.2). Indeed

(vol. RD)(e +3e' N) +35S^ e' N5//2 < e* hS,

where

(8/h)[(e +3e« N)!^ +3e' N3/2(l +k±)]

It is convenient to summarize these results in the form of a lemma. Compare
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Theorem 6.2.

Lemma 7.1. Let R be any polytopic region and let f be a vector-

valued function with components of class C over R. Given any e > 0,

then there exists an h > 0 such that for any well-selected subdivision

*(h,8,R), then

(7.11) E a n •f*(c )-E(vol. P.N) V* •f(x )
S R
b <d

< e h S

where R is_ the collection of noncubical polytopes in *(h,8,R), S is

the collection of exterior faces of R_ , and where f (c.) and V • f(x )

are finite difference approximations satisfying conditions (7.l) and

(7.4).

The existence of a positive grid size satisfying this lemma is

justified by the following argument: Given any R, then the dimension N

is fixed and k and kp may be determined. Therefore, for any e , a

corresponding e' is determined. The existence of an h > 0 then follows

by the hypothesis that each component of f has a continuous first

differential.

This lemma can be combined with Theorem 3.6 which states a

corresponding result for the cubical region R . The latter result is an

identity which depends upon the use of a particular choice for the

approximations f (c ) and V • f(x.). To convert the identity to the

notation of this chapter, recall that for each cube r., the position

vector of its center is x., and hence, the position vector of the centroid

of the jth face of r ,denoted by c., is i (x. + x.). Moreover,

*\M) - \ (fu +fii' - \ [f<*j>+ r<xi»
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because this is the interior of R. Thus, the coefficients 0Q, 0^, 0'

are chosen to be

0O = |H,

|, if (x -xi)/h =e^,
(7.12) / ^ -<

\

and so

(7-13)

0, otherwise;

(1i, if (Xj -Xi)/h =-e^,

01 = <u \

V

0, otherwise .

The approximation for the divergence of f .at x is

i ^ jNi l ' l

= 2. 2hni.i
JNi

2h ij

— = -p'2h Hu

[f(x.)
J

f(x.)]

(u = 1, ..., N)

Let the particular approximations defined by equations (7.12) and (7.13),

respectively, be denoted by f (c.) and V • f(x ). Then Theorem 3-6

states that

(7.14) E «. nn *^K) "E (V01' P/) ^ •f(Xi) = °s 3 3 3 R
c c

Two approximations for f(c.) have been defined on the surface
J
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between R^ and R_. If the symbols S, S , and S are used, for the present,

as oriented surfaces, then the portion of the surface of R in contact

with R is given by S - S = -S . Thus, by simple manipulation

I a

Vs

**

J nJ ' f +I aJ nj * f

a n • f -I a n • f
Sb"S

0 J
Vs

J J

E aj n1 • f* - E a* n, • f* - E ai ni • fg 3 3 g 3 3 a _S 0 0
b b

E aj nj •f* - E(v°i- pt) v* •fq 0 0
Sb

**

E a n • f + E a n. • f
g 0 0 c; _q 0 0

Sb~S

*# E(vol. P )V* • f

Lemma 7.1 applies to each term in square brackets, and hence

(7.15) E a.n.-f + y a. n. •f
**

s -s J J
< 2 e h S.

In actual practice the probability is nearly one that the same

approximation for f(c.) would be used on S and on S^ - S.
0 c b

When combined with inequalities (7-10) and (7.1l), Lemma 7.1

provides a proof of a finite difference analog of the divergence theorem

which is applicable to arbitrary polyhedral regions.

Theorem 7.1. Let R be any polytopic region and let f be a vector•

valued function with components of class C over R. Given any e > 0,
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then there exists a grid size h > 0 such that for any well-selected

subdivision _r(h,5,R), and any choice of approximations f (c .) and

V • f(x.) of the form (7.3) and (7-7), respectively, satisfying

conditions (7.4) and (7-8) in Rfa, then

(7.16) E a n •f*(c.) - E(vol« p/) v* *f(xi)s 0 J 0 ^ i i

EN ** / \h1" V •f(Xi) < e h S

where R is the collection of noncubical polytopes in *(h,8,R), where
y y

R =R -R^, and where V •f(x )is defined by_ (7-13) and (7-7).

Green's Identity

The procedure employed in the previous section can also be used

to obtain a finite difference analog of Green's identity. Thus, the

result in this section is based upon Theorem 6.3, the discrete version of

Green's first identity, and upon Theorem 3.5 which applies to cubical

regions. In applying Theorem 3-5, however, there is difficulty in

approximating the normal derivative on the surface S, at least under the

restriction that there be only 2N neighbors for each real lattice point.

The resulting theorem is not as sharp as the one obtained in the previous

section.

N
In the polytope P. , which contains the lattice point x , suppose

that Vu(c.) is approximated by the gradient of u at x., and suppose that

\Ai(x ), in turn, is approximated by a finite difference expression. That

is, let the approximation for \7u(c.) be
J
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v*u(cj) s _5T 2 [u(xi +hev) "u(xi "hev)]ei
v=l

Since

||Vu(c ) - Vu(x )|| < ||c - x || max. max. |d u(x)|
0 •*• 3 ^" «• _• is I •• . • f^

X 6 *_ \^V

< 8 max. Id u|
1 uv '

< 3h N1'2 max. |d u|
1 uv •

!Mx.) -V*u(Cj)||< Nl/2|max. |Dyvu| ,

the error in approximating Vii(c ) may be estimated from

||vu(c.) -V*u(x.)|| < 4h N1'2 max. |d u| .
j X ' uv '

Combining this with Theorem 3-5, the resulting error estimate for the

sum over the entire surface S, is
b

4F^th S)max. |d u| max. |w|
uv

To obtain a result corresponding to Lemma 7.1, error estimates

for additional terms must be added to this expression. The expression

above, however, is proportional to h S while Lemma 7.1 guarantees an

error less than h S times some e , which can be made as small as is

desired by choosing h sufficiently small. Since the argument, in all

respects, proceeds as in the previous section, the details are omitted here.

The choice for V u(c .) on the surface of S need not be as
J

restricted as given above. Indeed it is sufficient to choose
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**(<=,> = L e„ »1 "<=,>(7.17) V_r -£1-„-,. --,

where

(7.18) D* u(c ) = E V ^(xi +hev) -u(xi)]

+ 7, a' [u(x. -he)- u(x.)] ,'-J uv i v \ 1 / •• ^
V = l

provided the a's satisfy the conditions

h(a - a' ) = 8
v uv liV uv

(7.19)

h2t (IV' +|auv')<5 2 l(ci "Xi} 'ev'' ^=1' •••'N)-2 £_" uv' uv' £__ o

The approximations for Vu(x.) and Vw(x ) in R^ will be of the same form,

satisfying the same conditions.

In the cubical region R ,the approximations for ^(x^ and Vw(xi)
c

must satisfy the conditions

(7.20) V = i = -a^ , (u,v =l, ..., N),
*

There is no choice in the approximation for v u(x ). Everywhere in R,

both in R, and R , the approximation must be

(7.21) (V2)\(x )=•— E tu(xi +nev) "2u(xi) +u(xi "hev)] *
h v

Theorem 7-2. Let R be any polytopic region and let w and u be

(2)
real-valued functions of class C and Cv , respectively, over R. If
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^(h,8,R) is any well-selected subdivision, then

E a w(c )n •V u(c )
g 3 3 3 3

E(vol. P.N)[w(x Kv2)* u(x.) +V*w(x.) •V*u(x.)]
T> J- J- X X X

*b

-E hN[w(x Kv2)* u(x.) +V** w(x.) .V** u(x.)]
R i i i l

< h S B ,

where B is proportional to the maximum of |D u| over R^, and where the

finite difference approximations satisfy the conditions given in the

preceding paragraphs.

A similar result holds for Green's second identity.
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