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ABSTRACT

The current formulation of the theory of weak interactions

predicts complete and opposite polarization for the positive and nega

tive mu mesons created in the decay of pi mesons. The remaining polar

ization of the mu mesons, when they decay, may be detected by

observation of the decay electrons. It is known that when positive

mu mesons are stopped in certain substances they remain completely

polarized; under identical circumstances the negative mu mesons are

only about 13 per cent polarized when they decay. Thus it is of

significance to understand this observed polarization of the negative

mu mesons.

It is shown that the depolarization of the negative mu mesons

may be explained by consideration of the processes attendant to the

formation of mu-mesic atoms. The depolarization occurs when the mu

mesons are initially captured into a highly excited bound state and

in the subsequent transitions. As an essential preliminary to deducing

the depolarization on capture the distribution of the mu mesons in

initial states of the capturing atoms is determined. This distribution

depends on the rate at which the mu mesons loose energy in the

stopping process.

The depolarization in the initial capturing event is due to the

spin-orbit coupling; however, the extent of the depolarization in

capture is strongly conditioned by the scattering preceeding capture.

It is shown that the mu mesons may be regarded as having random
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direction when they are captured.

In the cascade subsequent to capture both radiative and Auger

transitions are important. These are treated in an adequate manner and

the final polarization of the mu mesons is derived theoretically. The

circular polarization of the x-rays emitted in the last stage of the

cascade is discussed.

It is found that the negative mu mesons should retain a polari

zation of 0.133 in the ground state of mu-mesic carbon.

The results obtained are compared with the best experimental

data available. The excellent agreement and the unambiguous nature

of the analysis presented indicate the validity of the basic assumption

that the mu mesons interact with matter in just the same manner as an

electron.
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CHAPTER I

THE PHYSICS OF MU MESONS

In this dissertation we deal with a certain area of mu meson

physics. Specifically we determine the mechanism by which negative mu

mesons are depolarized when they interact with matter and give a quanti

tative account of the observed depolarization. In order to understand

the depolarization we find it necessary to call on much of the previous

work concerning the physics of electrons and mu mesons; in particular

we will be concerned with the formation of mu-mesic atoms and the

processes of de-excitation which occur in these atoms.

This chapter contains the necessary background for an under

standing of the depolarization problem. The role of the weak inter

actions in providing meson polarization and a means for the analysis of

this polarization is discussed and the experimental data is presented.

We then use the relevant known facts concerning mu mesons to determine

what processes must be given an analytical treatment so that one may

obtain a quantitative understanding of the depolarization. We now

turn to the discussion of the nature of mu mesons.

1. Mu Mesons as Dirac Particles

Mu mesons are known to have the properties expected of a Dirac

particle. This means that the mu mesons obey the Dirac equation.

Therefore the essential properties of mu mesons are exactly those of

electrons. The only differences are that the mass of the mu meson is



about 207 times greater than the electron mass and that the mu meson

is unstable. Thus mu mesons carry an intrinsic spin l/2, the masses

of the positive and negative mu mesons are identical, and the inter

action of mu mesons with the electromagnetic field is the same as for

electrons except for the difference in mass. This has been verified

experimentally to an accuracy sufficient to include the electrodynamic

effects . It has also been shown that the scattering of mu mesons by

2
an electric field is in accordance with the Dirac theory . Conse

quently we must treat the mu mesons as Dirac particles in all that

follows. We also point out that the mu mesons are not subject to the

strong interactions.

2. Mu Mesons and the Weak Interaction

Mu mesons are created by the decay of pi mesons and then after

a lifetime of 2.2 microseconds decay also. These decays are discussed

in the next section. The point here is that both the pi and mu decay

are due to the weak interaction. The fact that the mu meson decays

into an electron does not contradict the fact that the mu meson is a

Dirac particle; in fact, it furnishes additional evidence for such a

statement. Further evidence that the intrinsic natures of the mu

1. R. L. Garwin, D. P. Hutchinson, S. Penman, and G. Shapiro, Phys.
Rev. 118, 271 (i960). The theoretical value for the magnetic mo
ment of the mu meson is 1.00116 en/mc; the experiments confirm
this to within 0.007 per cent.

2. J. Rainwater, Ann. Rev. Nuclear Sci. 7, 1 (1957). This is an ex
cellent review of meson physics and gives additional details con
cerning the present discussion.



meson and electron are identical comes from the decay of the pi meson

3
into electrons . The evidence is that the weak interaction of mu

mesons is the same as for electrons except, of course, in that the

electron has no other states to decay into and that there is never

sufficient energy to produce mu mesons in nuclear beta decay.

3. The « -jU - e Decay Chain

The pi mesons are produced in processes involving the strong

interactions. They decay in the following manner, with a mean life

time of 0.025 microseconds.

*+ -r/iZ + T (l.la)

Jt~—-r£u + V (l.lb)

The energy release, about ~5b Mev^ is the same in (l.la) and (l.lb). The

mu mesons then decay according to the scheme

+ + —.

/c--t e" + v + y (1.2)

The neutrino is indicated by Y , the antineutrino by V . The assign

ment of V and Y instead of 2V in the mu decay is determined by the

spectrum of the decay electrons . The assignments of *V and *Y in the

pi decay (l.l) are based on measurements of the polarization of the

3. E. J. Konopinski, Ann. Rev. Nuclear Sci. £, 99 (1959). In
connection with the statement above we point out that only one pi
meson in many thousand decays into an electron; the decay is in
hibited for kinematical reasons. These matters are discussed in

detail in this review article and references to the experimental
observations are given.

b. C. Bouchiat and L. Michel, Phys. Rev. 106, 170 (1957).



electrons in mu decay. These matters have been discussed at length in

the literature . We point out that the distinction between neutrino

and antineutrino is that they have opposite helicity. The helicity is

given by the expectation value of 0"~'p, where p is a unit vector along

A
the direction of propagation and 0~ is the vector composed of the Pauli

spin matrices. The helicity of the neutrino is-1; the helicity of the

antineutrino is +1.

The facts of interest in the study presented here are the follow

ing. In pi decay the mu mesons are created with a definite polarization.

This fact is a consequence of the parity nonconservation in weak inter

actions . The extent of the polarization and its direction depend on

the exact nature of the coupling in the decay. If the mu mesons retain

any of their polarization until they decay, then the angular distri

bution of the decay electrons serves to analyze the polarization.

7
These matters have been discussed theoretically by Lee and Yang'. The

necessary experimental information was first given by the observations
o

of Garwin, Lederman, and Weinrich . These observations were of great

value in the study of weak interactions and, of course, were important

in the general reformulation of the theory of weak interactions follow

ing the discovery of parity nonconservation. For a treatment of these

5. M. Gell-Mann and A. H. Rosenfeld, Ann. Rev. Nuclear Sci. 7, 407
(1957). See also Konopinski, op_. cit.

6. Ibid.

7. T. D. Lee and C. N. Yang, Phys. Rev. 105, I67I (1957).

8. R. L. Garwin, L. M. Lederman, and M. Weinrich, Phys. Rev. 105, 1^15
(1957).



matters the references already cited may be consulted. It is sufficient

to state that the results of the present study are in no way in dis

agreement with the current formulation of weak interaction theory but

rather they furnish additional confirmation of the theory. We now

present some quantitative information concerning the mu meson polari

zation just mentioned.

The angular distribution of the electrons in mu decay was first

q

given by Lee and Yang . The distribution of the decay electrons in

energy and angle is given by:

dN =2x2M3 -2x) +r(l -2x)] dx d*A ^ (1.5)

where x is the ratio of the electron momentum to its maximum momentum

and 7 is given by

a + +7=!-{<fZ 'V~e) (1A)

where &z is a unit vector along the spin direction of the mu meson
r

and p is a unit vector along the electron direction. The upper signs

are taken for positive mesons; the lower for negative mesons. Equation

(1.3) is approximate in that the electron rest mass is ignored in its

direction. Since the mu decay releases an energy of 105 Mev this

approximation is well justified over almost all of the spectrum. Now

the prediction of the current formulation of weak interaction theory

is that the positive mu mesons are created with complete longitudinal

polarization opposite to their direction of motion and the negative mu

9. Lee and Yang, loc. cit.



mesons are created with complete longitudinal polarization along their

direction of motion. We discuss the experimental verification of this

in the next section. Using these facts we rewrite equation (l.U) as

y=+- (if. •p6)p (1-5)
where P is the remaining polarization on decay, including the proper

sign and the - or + is taken for positive or negative mu mesons re

spectively. Note that P is originally negative for positive muons and

positive for negative muons. On integrating equation (l.3) over the

electron spectrum the following result is obtained.

1(d)- l- | (1.6)

Thus there is an angular distribution of the decay electrons that de

pends on the amount of polarization of the muons when they decay. Using

7 as given by (l.5) we rewrite (l.6) as

I(^) =1-JyL cos (1.7)
where &• is the angle between the electron direction and the original

direction of the muon. Since there are two sign changes in going from

positive to negative muons in (l.5) the angular distribution relative

to the muon beam is of the same form for either positive or negative

/Pmuons. We shall call the quantity, ' ' , the asymmetry coefficient.

Since (1.7) often appears in the literature as

1(0-) = 1 + a cos (1.8)

values we give for the asymmetry coefficient will differ from some of

the references by a sign.

It is possible to accept electrons of a specific energy and to



measure the angular distribution at this energy. In such a case equa

tion (1.3) would be used to analyze the polarization of the decaying

muons. Since there is very little data of this type available, we do

not pursue this point further. Consequently whenever we discuss the

IP/asymmetry coefficient it is always the quantity -*-=— and thus refers

to the integrated electron spectrum.

The « - LL, - e decay chain is schematically represented in

Figure 1. In considering the conservation of angular momentum in this

diagram one should note that the pi mesons have zero spin. Since the

angular distribution of the positive and negative electrons is the same

one should note their respective spin directions.

b. Experimental Information Concerning Muon Polarization

In the immediately preceding section we discussed a formula that

allows the polarization of mu mesons to be determined experimentally.

Table I gives some representative values of the observed asymmetry co

efficients. It is seen that the asymmetry coefficients that are ob

served vary from 0.33 to essentially zero. We discuss first the

asymmetry coefficients for the positive muons.

Only two values of the asymmetry coefficient are given by the

positive muon. The asymmetry coefficient given for positive muons

stopping in emulsion is evidence for the mu muons being created com

pletely polarized, since it was deduced by studying mu mesons produced
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Spin Direction

Direction of Motion

Figure 1. Schematic Representation of « - U. - e Decay Chainn - lL



TABLE I

Observed Asymmetry Coefficients for the Decay of Mu Mesons

Meson Stopping Material Asymmetry Coefficient

Hydrogen 0.01 ± 0.01

Carbon 0.04 £ 0.005

Oxygen 0.043 + 0.005

Magnesium O.O58 i. 0.008

Sulfur 0.042 i 0.006

Zinc O.O56 £ 0.012

Cadmium O.O55 ± 0.012

Lead 0.054 i 0.013

Carbon 0.054 ±- 0.006

Helium 0.024 £• 0.01

Magnesium 0.036± 0.003

Carbon -%> 0.05

+ Carbon O.33 i 0.03

+ Emulsion 0.303 ± 0.024
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by the decay of pi mesons which decayed after they had stopped . The

study of mu meson polarization in emulsion is complicated by the fact

that there is a large depolarization of positive mu mesons due to the

emulsion. This was prevented in the study mentioned by applying a strong

magnetic field. In view of this known complication, we present the

emulsion datum but prefer to base our principle arguments on other data.

The asymmetry coefficient for positive mu mesons stopped in

carbon was observed for muons produced by the decay of pi mesons in

flight11. This value is the maximum value of the asymmetry coefficient

and this means that the positive muons were created completely polarized

and that they retained this polarization until they decayed. This

value for the asymmetry coefficient for positive muon decay under

the circumstances mentioned has been verified recently in an extremely

precise experiment . Thus we emphasize this point; under certain con

ditions positive mu mesons are experimentally observed to be completely

polarized when they decay. The implications of this fact are discussed

in section 6, below.

We now consider the experimental asymmetry coefficients for

negative muon decay. From Table I it is seen that the maximum

asymmetry coefficient for negative mu mesons does not exceed 0.06. It

10. G. Lynch, J. Orear, and S. Rosendorff, Bull. Am. Phys. Soc, 4, 82
(1959). For a review of early emulsion work concerning the
asymmetry coefficients and additional data concerning the positive
mu mesons see D. H. Wilkinson, Nuovo Cimento 6, 516 (1957).

11. R. L. Garwin, L. M. Lederman, and M. Weinrich, Phys. Rev. 105,
1415 (1957).

12. R. L. Garwin, D. P. Hutchinson, S. Penman, and G. Shapiro, Phys.
Rev. 118, 271 (i960).
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is also seen that the asymmetry coefficient depends on the element in

which the mesons are stopped. Thus we can state that the negative mu

mesons suffer severe depolarization and that this depolarization depends

on the stopping material.

In Table I we point out that the first eight values presented are

13
the work of a single group . It is instructive to compare the values

given by this group with those obtained by other workers for magnesium

14 15
and carbon ' . Clearly there is room for refinement in the experi

mental techniques.

5. Statement of the Problem

The problem that is solved in the following chapters is implic

itly stated above. Positive mu mesons are observed to remain completely

polarized under certain conditions; under identical conditions negative

mu mesons retain less than twenty per cent of their original polariza

tion. The problem is to account for this difference in a quantitative

fashion. To do this requires a treatment of every physical process

that can contribute to the depolarization. However, one can gain

sufficient understanding of many such processes by a careful comparison

of the properties of positive and negative mu mesons. Therefore the

13. A. E. Ignatenko, L. B. Egorov, B. Khalupa and D. Chultem, Soviet
Phys. - JETP, 35(8), 792 (1959).

14. W. F. Baker and C. Rubbia, Phys. Rev. Letters, 3, 179 (1959)-

15. R. Prepost, V. W. Hughes, S. Penman, D. McColm, and K. Ziock, Bull.
Am. Phys. Soc. 5, 75 (i960).
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solution of the problem may be subdivided into two steps. First one

must consider the well known parts of mu meson physics and determine

where there is an essential difference in the behavior of positive and

negative mu mesons. This qualitative analysis will then indicate which

mechanisms must be considered in detail so as to follow the process of

depolarization. Therefore we turn our attention to the life history of

mu mesons and consider the various events relevant to this purpose.

6. The Interaction of Mu Mesons with Matter

Since mu mesons are Dirac particles their interaction with

matter will be precisely the same as for electrons except in that there

are differences due to the meson's greater mass. These differences are

pointed out in their proper context. In order to present the essential

facts with maximum clarity we consider three different stages in the

life history of mu mesons.

a. The first stage in the lifetime of the mu mesons we consider

is the following. The mu meson is born in the decay of a pi meson in

flight. The energy of the mu meson in the laboratory system is of the

order of 100 Mev. The mu meson then looses energy by passing through

various stopping materials until it has an energy of several kev. Thus

as stage one we consider factors important during this period of the

meson's lifetime.

Fermi and Teller have shown that this stage is complete within

-9 16
10 sees after the meson is created . Therefore a negligible number

16. E. Fermi and E. Teller, Phys. Rev. 72, 399 (1947).
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of the mu mesons decay during this period. The first interaction of the

mu meson after it is created is with the accelerator's magnetic fringing

field. If there is any depolarization due to the magnetic field, it

should be the same for both the positive and negative mu mesons. There

is, however, no reason to expect any depolarization because of the

fringing field. Case has discussed this point in the literature and

17
proved that such a field does not depolarize Dirac particles .

As discussed in section 3 above, the mu mesons are created with

complete polarization, in the rest frame of the pi meson. Since the

laboratory energy of the pi mesons is quite high one might expect a re

duction of the polarization in the transformation from the rest frame

of the pi meson to the laboratory frame. This problem has been discuss

ed in the literature and it was shown that if the mu mesons are obtained

-I Q

as a well collimated beam then the loss of polarization is negligible .

Again, this effect would be the same for positive and negative mu

mesons.

Now we consider the high energy scattering. It is known from

electron theory that the sign of the charge has little to do with high

energy scattering or ionization. Consequently positive and negative

mu mesons will be scattered in the same fashion to a very good approx

imation. Further we note that the scattering is principally small

17. K. M. Case, Phys. Rev. 106, 173 (1957).

18. J. H. P. Jenson and H. Overas, Det. Kongeleige Norske Videnskabers
Selskabs for Handlinger 31, 34 (1958).
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angle scattering even in inelastic events such as ionization. The de

polarization expected from such scattering is very small. This problem

including the effects of multiple scattering has been treated in de-

19
tail in the literature .

The effects just mentioned are the only matters of importance

during stage one. We conclude that there is no theoretical reason why

the mu mesons, either positive or negative, should be depolarized sig

nificantly during this stage. This conclusion is verified by the fact

that the positive mu mesons are found to retain their polarization in

carbon. One might argue that the positive mu mesons do not retain

their polarization in certain other substances, which is true; however,

variations in the interactions of mu mesons with, say,carbon and emul

sion are variations which occur at very low energies, not at the

energies involved in stage one. Since there is no significant differ

ence in the interactions of positive and negative mu mesons during stage

one we assert that both species pass through this stage without suffer

ing appreciable depolarization.

b. Now we define the second stage in the history of mu mesons.

This is the stage in which the behavior of positive and negative mu

mesons beomes totally different. Before we define the end of this stage

19. B. Muhlschlegel and H. Koppe, Z. Physik 15_0, 496 (1958). In con
nection with depolarization in scattering see also L. Wolfenstein,
Phys. Rev. 75, 1664 (1949) and G. W. Ford and C. J. Mullin, Phys.
Rev. 108, 477 (1957). These studies all conclude that the depolar
ization due to scattering should be small.
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we consider the events that are occurring at its beginning. The mu

mesons have energies of several kilovolts and are being scattered.

Since mu mesons of this energy have velocities small compared to the

velocity of light, magnetic forces are small and the scattering is

essentially spin independent. Thus neither the positive nor the nega

tive mu mesons suffer depolarization from the scattering. There are

other effects and we now define the process that we call Auger capture.

The process of Auger capture consists of a mu meson in a free

state interacting with an atom to eject an atomic electron and leave

the meson in a bound state. This process is possible because the meson

has greater mass than the electron and therefore has lower lying energy

levels in the Coulomb field. Clearly only negative mu mesons undergo

Auger capture. This then is a process that involves negative mu mesons

but not positive mesons; consequently there is a mechanism that can

lead to differences in the asymmetry coefficients. Stage two for the

mu mesons then ends for the negative mu mesons when they are captured

by an atom, and for the positive mu mesons when they have been slowed

down to energies roughly equivalent to the energies involved in molec

ular binding. From this point on the histories of the two species are

totally different. The positive mu mesons would resemble a proton in

their chemical interaction and therefore may form positive ions in

some materials. Since all of stage two occurs in times of the order

-13of 10 sec, the total elapsed time since the creation of the mu mesons

-9
is still of the order of 10 ' sec, thus a negligible fraction the mesons

decay before the end of stage two.
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At this point it is possible to give a qualitative outline of the

processes that must be dealt with in detail. We have been unable to

find any significant difference in the behavior of positive and negative

mu mesons until the negative mu mesons are captured by an atom. There

fore, the depolarization of negative mu mesons is due to this capture

and to subsequent events; these then are the processes that must be

given an analytical treatment so that the amount of depolarization may

be understood.

c. Stage three is defined only for the negative mu mesons and

includes all events subsequent to the capture of the meson into an atomic

bound state. At this point we only mention that the mu meson is cap

tured into atomic states of high-excitation and then must make a series

of transitions to reach the atomic ground state. These matters are dis

cussed in detail in the following section. The mesons reach the atomic

-12
ground state in times of the order of 10 sec and, therefore, the

total time between the creation of a negative mu meson and its arrival

-9in an atomic ground state is around 10 ' sec. Consequently, the mu

mesons either decay from the ground state of a mu-mesic atom or are

captured from this state by the following reaction.

jjj + p-7.n + V (1.9)

where p is a nuclear proton and n, a neutron. Except for the electro

magnetic coupling, this is the only known interaction of mu mesons

with nuclei. The competition of this process with the mu decay merely

decreases the number of mu mesons decaying and is of no interest to
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20
the problem considered here . Clearly this process will not interfere

with experimental observation of the decay electrons.

Thus far we have established that the solution to the depolari

zation of negative mu mesons is to be found in the formation of mu mesic

atoms and in the subsequent de-excitation processes that occur in these

atoms. We now discuss the general properties of mu mesic atoms as a

preliminary to the subsequent chapters.

7. Mu-Mesic Atoms

A mesic atom is an atom containing a meson in a bound state.

Since the negative mu meson participates in electromagnetic processes

just as a heavy electron, the theory of ordinary atoms applies to mu-

mesic atoms with the only change being a replacement of the electron

rest mass by the mu meson rest mass. Consequently, there is an adequate

theoretical framework for the discussion of processes occurring after a

mu meson is captured by an atom. However, as was pointed out in the

preceding section, we must also understand the process of capture. We

now give a qualitative discussion of this capture mechanism.

The mu meson must make a transition from a free state to an atomic

bound state. The mechanism which induces this transition is the electro

static interaction of the meson with the atomic electrons and this re-

20. For a discussion of the mu meson proton reaction, see the previous
ly cited review by Rainwater. This reaction is, of course, due to
the weak coupling.



18

suits in the ejection of one of the electrons. Ir would be possible to

consider the capture of the meson by a radiative process. It is shown

in Chapter II that a typical cross section for capture by electron

p
ejection is 0.1 «a where a is the electron Bohr radius, whereas the
° e e

known cross sections for radiative capture would be a thousand times

21
smaller . Therefore we need only consider the electron ejection mecha

nism which we call Auger capture, in analogy with the normal Auger effect.

One notes that almost all of the atomic states are accessible to the

meson and that these states will all compete in the capture of the meson.

Consequently, many of the mesons will be captured into states having

high excitation. We must now consider the properties of these highly

excited states and understand how they liberate the energy of excitation.

If effects due to screening, finite size and relativity are neglected

the energy levels of a mu-mesic atom are given by:

2

En= -$[r\ °2 >°2 (1-10)
where a is the fine structure constant, nu^ the mu meson rest mass and

n the principle quantum numbers. This is the same as the energy rela

tion for normal hydrogen-like atoms if nw is replaced by the electron

mass. Thus the energy of any given level in a mesic atom is about 207

times the energy of the corresponding electron level in a normal atom.

The fact that the bound level for the mu mesons lie so much lower in

energy than for the electrons explains why the mesons are captured.

21. Hans A. Bethe and Edwin E. Salpeter, Quantum Mechanics of One and
Two Electron Atoms (Academic Press, Inc., New York, 1957) Chap. 4,
p. 322.
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The radii of the Bohr orbit of the mu meson are given by:

a, (n) =£~ jL~ (1.11)M- CnZ m* c

Thus for comparison, the Bohr radius of the Is state in hydrogen is
Q

about 0.5 x 10" cm, whereas the radius for the Is state of the mesic

hydrogen atom is about 0.25 x 10~ cm. Two facts are immediately

obvious from the foregoing; namely, that the effect of electron screen

ing on the meson will be small and that in heavy elements the effects of

finite nuclear size will be significant. The effects of finite nuclear

22
size on the mesic energy levels have been considered by Wheeler . We

do not consider these effects nor do we consider any other corrections

23
to the hydrogen-like energy level . The justification for this neglect

will be presented at the pertinent point.

It is of interest to consider the transition energies involved

in mu-mesic atoms. In Table II we present some transition energies

based on equation (l.lO). These are taken from the previously cited

review by Rainwater. The experimental evidence for the existence of mu

mesic atoms was the observation of such X rays corresponding to the

22. J. A. Wheeler, Revs. Modern Phys. 21, 133 (1949).

23. There are many such corrections. Their study has led to additional
confirmation of certain aspects of field theory and to information
concerning nuclear radii. For a review dealing with these subjects
see: M. B. Stearns, Prog, in Nuclear Phys. 6, 108 (1957). It is
of interest to note that the mesic 2p Is transition in Pb has an
energy of 14 Mev according to equation (1.10). The true transition
energy is 6 Mev. The difference is due to finite nuclear size.
In this connection see: D. L. Hill and K. W. Ford, Phys. Rev. 9_4,
1617 (1954).
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TABLE II

Transition Energies in Mu-mesic Atoms

Element Transition Energy (kev)

C 2p - Is 76

N 3d - 2p 19

0 5g - 4f 4

Ca 5g - 4f 26

Zn 5g - 4f 57

Br 5g - 4f 78
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appropriate mesonic transitions. These X rays were first observed by

24 25
Chang . They have since been studied in detail . Our interest in

this x-radiation is not so much the energy as the transition rate, since

there are competing processes. The theory of radiative transitions is

well known and is easily applicable to the mesonic transitions. It will

suffice to state here that the transitions of interest are electric di-

pole and that they are of exactly the same nature as the transitions in

a normal hydrogen-like atom. The process that competes with the radi

ative transitions is the Auger effect. We now discuss this effect and

the nature of the competition.

The Auger effect in mesic atoms was first investigated by Wheeler

This process is just the same as the normal Auger effect; namely, the

mu meson is in an excited state and there are bound electrons in the

same atom, the meson makes a transition to a state of lower excitation

by ejecting one of the electrons. Such electrons have been observed in

27
photographic emulsion . There has, however, not been an extensive

study of these electrons. It is possible to calculate the transition

rate for the Auger process in mesic atoms in a straightforward fashion.

24. W. Y. Chang, Revs. Modern Phys. 21, 166 (1949).

25. M. B. Stearns and M. Stearns, Phys. Rev. 105, 1573 (1957).

26. Wheeler, loc. cit. It is also shown in this paper that the process
of internal pair production (possible for Z> 26) does not compete
favorably with the other processes.

27. E. H. S. Burhop, The Auger Effect (Cambridge University Press,
London, 1952) Chap. 7, p. 162.
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28
The most informative calculations are those of Burbridge and de Borde .

These are not complete in that only certain types of transitions are

considered, however, they do show that to a good approximation, the

selection rules for the Auger process are the same as those for the

electric dipole radiative transitions. This fact will be shown to be

of considerable value for our purpose in Chapter V. In Table III we

present some typical values for Auger and radiative transition rates.

29
These are taken from a table due to Burhop . There are two important

points; namely, the Auger rates are essentially independent of Z, the

k
nuclear charge, whereas the radiative rates are proportional to Z and

at moderate excitation the Auger transitions are much faster than the

radiative transitions. For our purposes we take the mechanism by which

mu-mesic atoms are de-excited to be the proper combination of radiative

and Auger transitions. Other processes have been proposed in the liter

ature. We now mention these and give the reasons why we do not consider

such processes in detail.

It has been suggested that mesic atoms may make collisions with

other atoms and that these collisions may lead to either an exchange of

the meson between the two atoms or to ejection of an electron from the

28. G. R. Burbidge and A. H. de Borde, Phys. Rev. 89, 189 (1953) and
also A. H. de Borde, Proc. Phys. Soc. (London) A67, 57 (1954).

29. Burhop, op_. cit.



TABLE III

Mu-mesic Transition Probabilities (sec" )

Transition Type of
Transition

Z = 5 z = 20

7,6 6,5 Radiative 9-96 X 1010 2.6 HO"

*,3 3,2 Auger 4 X 1015 5.4 xio"

^3 3,2 Radiative 1.86 X 1012 4.8 xlO1^

3,2 2,1 Auger 6.0 X 1012 9.0 xlO12

3,2 2,1 Radiative 8.68 X 1012 2.25 xlO15

2,1 1,0 Auger 2.1 X 1011 3.1
,J1

x 10

2,1 1,0 Radiative '8.44 X 1012 2.15
i^6

x 10

23
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30
second atom with the mesic atom going to a state of lower excitation .

In the case of hydrogen such mechanisms may be reasonable since the

mesic hydrogen atom is a small neutral system and therefore could pene

trate another atom. For other mesic atoms these processes appear to

be somewhat unreasonable; the arguments have been presented in the

literature . There has also been a conjecture that collisions with

other atoms could induce transitions between the fine structure levels

in mesic atoms^2. For certain light elements the level structure is such

that this is plausible, however, those proposing the mechanism could

exhibit no reason why the effect should be competitive with either

Auger or radiative transitions. There is some experimental data which

points to an inadequacy in the theory of the Auger effect in light mesic

atoms^. This data indicates that the predicted Auger transition rate

is too low for mesic atoms lighter than carbon. This point remains un

settled; however, for reasons which we present in Chapter V it is of

little consequence to the problem solved herein. In any case, it is of

interest to point out that the validity of the data mentioned has been

34questioned in a recent paper . We now turn to a qualitative discus

sion of the depolarization suffered by the negative mu mesons in con

nection with the processes occurring in mesic atoms.

30. T. B. Day and P. Morrison, Phys. Rev. 107, 912 (1957).

31. J. Bernstein and T. Y. Wu, Phys. Rev. Letters 2, 404 (1959)-

32. N. A. Krall and E. Gerjuoy, Phys. Rev. Letters 3, 142 (1959)-

33. M. B. Stearns and M. Stearns, Loc. cit.

34. R. A. Ferrell, Phys. Rev. Letters 4, 425 (i960).
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8. The Process of Depolarization

We anticipate the results of the following chapters and state

here that the observed depolarization of the negative mu mesons may be

accounted for by an adequate treatment of the meson capture and the sub

sequent radiative and Auger transitions. The reason for the depolari

zation in the capture is that the orbital motion of the mu meson causes

the meson to experience a magnetic field which by virtue of the mesons

magnetic moment causes the spin to precess. Quantum mechanically this

states that the effect of the spin-orbit coupling is to mix the spin

states of the captured meson. The additional depolarization due to the

various transitions depends upon the number and type of transitions

and therefore it is determined by the initial state of the meson (im

mediately following capture). One may think of this depolarization in

transitions as an additional manifestation of the effects of spin orbit

coupling since depolarization occurs only in transitions in which there

is a change in the nature of the coupled state. A more specific dis

cussion of this point is given in Chapter V. We now wish to mention

the effect of nuclear spin.

Since it is our motivation to account quantitatively for the

observed depolarization we wish to check our results as precisely as

possible against experiment. At the moment, it is not possible to do

so to a thoroughly satisfying extent since the experimental errors

quoted in Table I are quite large. Except for hydrogen the elements

listed in Table I are composed principally of spin zero isotopes. These

are the elements which show the largest asymmetry coefficients, and
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thus the relative uncertainty in their measured asymmetry coefficients

is the smallest. For this reason we find no need to consider the

effects of nuclear spin in detail; however, for completeness we give

the following information. The effect of nuclear spin is to split the

levels of the bound mu mesons through the hyperfine interaction. This

leads to greatly increased depolarization. The depolarization due to

the hyperfine coupling has been investigated for certain types of

i 35
radiative cascades in atoms with nuclear spin f. Applying the pub

lished results in an approximate fashion leads to the conclusion that

the asymmetry coefficient observed for atoms with spin •§ nuclei will be

less than one third of the coefficient observed in atoms with zero

nuclear spin.

It is of interest to consider briefly the asymmetry coefficient

for hydrogen given in Table I. One might be tempted to use our final

results and the immediately preceeding remarks to predict an asymmetry

coefficient for hydrogen. This procedure would not be meaningful since

there are two effects not considered. These are peculiar to the iso

topes of hydrogen and occur because the experiments require hydrogen as

a liquid. The mu mesic hydrogen atom can exchange its meson with a

36
normal hydrogen atom . In such a transition one might expect some de

polarization. There is also the formation of mu mesic hydrogen mole-

35. M. E. Rose, Bull. Am. Phys. Soc. 4, 80 (1959 )•

36. V. B. Beliaev and B. N. Zakharev, Soviet Phys. - JETP 35(8), 696
(1959).
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cules which also depolarizes . Thus we state that we find no incon

27

sistency in the observed asymmetry coefficient for hydrogen. We now

give an outline of the means by which we predict asymmetry coefficients

in the case of spin zero nuclei.

9. Program of Analysis

The problem of accounting for the observed asymmetry coefficients

is solved by proceeding in the steps outlined below. The method of

analysis is applicable to any element containing only spin zero iso

topes; however, throughout the following chapters we will consider car

bon to be the element of principle interest. The reasons why we are

especially concerned with carbon are the following: It consists almost

entirely of spin zero isotopes, thus there need be no correction for

hyperfine complications and it is a common stopping material for meson

experiments, thus there is experimental data from several sources. The

steps in the analysis are as follows:

a. The problem of computing the capture cross section for the

formation of mu-mesic atoms is formulated and reduced to a problem

suitable for machine computation. This is the subject of Chapter II.

b. Since the mu-mesons are captured strongly over a consider

able energy range it is not sufficient to know only the capture cross

sections as a function of energy. To get the distribution of the mu

37- la. B. Zeldovich and S. S. Gershtein, Soviet Phys. - JETP 55(8),
451 (1959).
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mesons among the states of the capturing atom it is necessary to take

account of the number of mesons captured at each energy increment as

they are slowed down. A slowing mechanism is introduced and the prob

lem of capture is solved. The results obtained are discussed in ref

erence to certain previous assumptions by others. These matters are

treated in Chapter III.

c. Given the initial distribution in atomic states on capture

one must calculate the depolarization due to the capture. We show how

to calculate the depolarization for two extreme cases. It is shown

that the amount of scattering before capture determines which, if eith

er, of these cases has physical meaning. Using a conclusion which we

show to be very well justified we find that the polarization after

capture may be calculated in a fashion totally independent of assumptions

concerning the atomic model. These results are derived in Chapter IV.

d. After the mu mesons are captured they undergo a cascade to

the atomic ground state. The problem of depolarization in the various

transitions is solved. Results are presented which show the importance

of the Auger transitions in causing depolarization. Certain illustra

tive data concerning the radiative transitions is also given. The

polarization of the emitted X rays is discussed. Thus in Chapter V we

present a theoretical asymmetry coefficient.



CHAPTER II

THE CROSS SECTION FOR AUGER CAPTURE

In this chapter we calculate the cross section for an incident

mu meson to be captured into an atomic state by the ejection of an

atomic electron. This calculation is carried out by using first order

perturbation theory. The wave functions of the free particles are

taken to be plane waves. The wave functions of the bound particles are

those appropriate for a hydrogen like atom.

1. The Interaction

The total hamiltonian for a meson and electron in the field of a

nucleus of charge Z is:

/n2V2 rfV 2 2 2 2
H= H° + H< - - —1 —-2- - 25L . 2e_ + £_ (2ml)2m^ 2me r± v^ r±2

where subscripts,1, refer to meson coordinates, subscripts, 2, refer to

electron coordinates, r1p is r.. - rp . We consider two different de

compositions of this hamiltonian into components H and H'. For a

meson approaching from infinity the unperturbed hamiltonian, H , is

given by:

4x2v,2 -62Vo2 7 2H° 1 V2 Ze_ , sHi ="2mA " 2me ' rQ {2'2)
If the initial wave function is defined as:
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then clearly:

E°f =E°(p =(E +Ee) (2.4)

is satisfied. The perturbation is, in this decomposition,

h: =-^ +^ (2.5)i r1 r12

If we now consider the system after interaction H~ must be:

n ^l2Vn2 *N~ 7~2
H°=-—-i _2_-£e- (2.6)
f 2nw 2m rn

r^ e 1

and,

~ 2 2

f r2 r12

The effect of applying H° to the wave function of the final state,

is:

ToHjf- £°f -(£A+£e)i" (2-9)
Although the requirement of conservation of energy is that:

£^+ £e "E^+ Ee (2.10)

the wave functions _£ and ^ are eigenfunctions of different operators

and are not orthogonal. Thus we must determine the proper formulation

of the perturbation theory.

We define the exact wave function of the system, // , to be an

eigenfunction of H such that

H7T=ih^ (2.11)
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The wave functions jj/ and the wave functions Q both form com

plete sets. Therefore we may expand Jf in terms of either. When we

remove the time dependence from a wave function we lower the case of

the latter. Using n and m as eigenstate labels we write:

E°

TT -^(a° +ai+. .-J^e"1^* (2.12)
n

when the expansion coefficients of the orders in t are explicitly indi

cated. Alternatively,

m

We may now write:

(h° -1« ^)jj- -K; jt (2.i-)
and then use either (2.12) or (2.13) as we choose:

H°- ^t y^v m m

1 Cm

. .)? e" *
' m

iE°

"Hf ^K+an+ '''} ^ne" * (2'15)
n

multiply (2.15) by W , and integrate over all coordinate space .we now

This gives in first order

1. Note that we use a standard notation for the matrix elements. The

notation (X, AY) means explicitly JX AYdV where dV is the appro
priate volume element.
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From this point the treatment is the same as that of standard perturba-

2
tion theory as given, for example, by Schiff . The result for the

transition probability is:

2rt /< it h;<M2/•<*•> (2-it)
With the requirement that all quantities not observed be summed over.

H* is defined by (2.7). The term in — in H arises because we use
f r2 1

plane waves for the free particles; if we had used Coulomb wave functions

in the free states this term would not have occurred because the hamil

tonian would have been decomposed differently.

2. The Cross Section

We now apply equation (2.I7) to determine the cross section.

The mu mesons are taken as plane waves incident along the axis of quan-

titazation and as having their spin along the direction of motion. The

cross sections will not depend on these specifications; they are taken

here so that certain intermediate results may be used in the following

chapters. The initial state of the electron is taken as the ground

state of a hydrogen-like atom. It would be possible to consider

electrons outside of the K shell. We do not do so because their greatly

reduced binding energy means that they would contribute only at incident

meson energies much lower than we need consider. The final state for

2. Leonard I. Schiff, Quantum Mechanics (McGraw Hill Book Company, Inc.,
New York, 1955), 2nd ed., Chap. 8, p. 197.
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the electron is a plane wave. We discuss the approximations implicit in

this treatment in Section 3 below.

For the initial state

^n =f </") fie) (2.18)
with

^(/M == ^JmST^I) i^1 Y^ (r*) Jy^)^1 (2.19)
where the Rayleigh expansion has been used for the plane wave. V is a

normalization volume, Y-Q(r1) is aspherical harmonic, jj (kir]_) is a

spherical Bessel function and

We will choose T-, = \ at a convenient point.

^(e) =-kR(r2) V1; (2.21)
' ^47 d / \

where R(rp) is a radial function defined below. For the final state:

^m= ^(A)^e) (2'22)
with

f •) -^ % ^ v<^> w^ v^*? (2-25)
2' 2

ik2-r2
where the plane wave, e , has been expanded.

/y4= ^C(^j;m-r,r)Yi^_r(r\)RM (r,)^ (2.24)
R ,(r ) is a radial function defined below. For the Clebsch-Gordan
n,iv 1
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3 ™
coefficients we follow the notation and conventions of Rose . The

choice of <f (/O is dictated by the requirement that the final state

wave functions diagonalize the spin-orbit coupling.

We are interested in the cross section for absorption of a partial

wave, X .., with the meson going to a state n, -K , j and the electron

being emitted into the partial wave M _. Therefore, the quantity that

we refer to as cross section will be the partial cross section for this

process, unless otherwise indicated. The cross section is given by:

(T-f--T (2-25)
Jinc 1

where j. is the incident meson current; V, a normalization volume,
dinc '

and v is the velocity of the incident meson. In all that follows sub

scripts 1 refer to the meson; subscripts 2 refer to the electron. The

transition probability is obtained according to

V=t\ {f> Hf^^/(E2) (2'17)
We first evaluate the density of final states for the ejected

electron.

P(E )dE= l=-JT7 P?dJUk dP2 (2'26)
722 (2«n)5 (2«*i)3 2 2 2

where djj is the solid angle in the electron direction. At this
k2

M. E. Rose, Elementary Theory of Angular Momentum (John Wiley and
Sons, Inc., New York, 1957). All of the relations used in the
following pages concerning the Clebsch-Gordan coefficients and the
Racah algebra are proven in this book. A summary of the basic re
lations is given in Appendix I.
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point it is evident that all normalization volumes must cancel in W and

we therefore drop the Vs. Using •—- - —?— and taking the energy of the

2 C P
electron as m c yields:

m vo n
/>(E) =-e—2-d^A, (2.27)

* (2*h)5 k2

Thus the cross section becomes

<r .-^—*• (M |(/, «;f t (2.28)
and

b;-^K-4) (2-7)
2 i

taking the e out of H we have

<r- 4-^2 KUh-rM2^^ *•*>\l (2«a f N' W12 x2"^ "2\ e

A?where a = —^ is the electron Bohr radius. To carry out the angular
me

interaction we use the standard expansion

7- -̂ 2X7T *M> £<4> h^V r2> (2'50)
X,MX

X

vhere fx =%I (2'31)
r>

We now define functions F^ as follows:

F =i — ; F. = f. , if X^ 0 (2.32)o n r? X X '

4. See, for example, Schiff, op_. cit., p. 175•
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We now evaluate (i(-k+t^ which we denote by H' .

h;. = (4*r
i2/ii1(2^1+iy

(-1) ' (i)
X^m^V 2X+1

, A y * , A . .A A

Where Jti.,, A, J? ,X) is the radial integral defined by:

d(h>h>t>X) - ri drl r2 dr2 ^/Vl* Rn,i(rl} FX(rl'r2}
J J 1

X R(r2) ij (k2 r2)

We now have the following:

,^2

From the orthonormality of the spherical harmonics we have:

(Yi2m/2}' V"2^ =̂ 2X ^
5

We also have

r2 *e

(2.33)

(2.34)

(2.35a)

(2.35b)

(2.36)

5. Rose, op_. cit. p. 62. The general form of the relation is given
in Appendix I.



X CC^JjOjM^m-z) C(/1xi;00)

M^ f"(2X+l)(2>f1+iy

4«(2/+l)

Where use has been made of the following two relations

Y, (r) = (- Y. (r)
/ mv /, -mv

and

Y, (r)Y^ (r)Y, (r)dJ-=l 2.J Ami VV ^V /(2/x
•(2/,+l)(2/2+l)

L+l) 4rt

C(^3 i^m^) C(jf3J2Jl}0O0)
C(J/j/Jl;OQO) is called the parity coefficient since it has the value

unless X -, + X. p+-X ,= even integer. We replace Xby X and M.zero

37

(2.37)

by m as is permitted by (2.36); but we are interested in the partial

L-cross section for which the electron is emitted into the Xp'th partial

wave so we drop the sum on X. Since "£J is to be fixed, we drop the

sum on ~C as indicated by (2.35b)« We now have

L I ^r oVr
1

(2i2+l)(2J?+l)

C(i/ij;m-r,-C)C(i1i2i?;0,-m2,m-^) Yj m(^ )J(i±jfQ1) (2.38)

We are not concerned with the direction of the emitted electron, there

fore we next find *5S»" J &vfl„ j H_. | since we must sum over the

quantities not observed (m). We have:
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m,m„

it' f 1\^\2iJls , (M3^ (-i/2 iia (-1) 1(i) 1
m.m,

2

Xr {f+1)\ t r-^p*c(i1i'P/,«»)c(^/8/,co,L(2/2+l)(2J?+l)J i(?J2+i)(?J+i)_ 1 2 1 2

XC(i1i2i;0,-m2,m-r )C( J^i^;0,-m2,m- -C )[c(j? £j;m- r ,T T)2

(2.39)

Orthonormality of the spherical harmonics gives ^ n a, so there is no

interference between partial waves of the ejected electrons. From

C(f J £;0,-m ,m-Z )we have T -m =m ;consequently we may rewrite

(2.39) as

A .*1 (2/1+l)(2i;+l)
Hf.| dVl2 =(4«)3 (-i) X(i)

m

(2i_+l)(2i+l)

m

Xc(7iy2/;0,m-r)C(/;y2>/;0,m-T;)= §K (2.4o)

For any element other than hydrogen it is necessary to multiply (2.4o)

by two to account for the two K shell electrons. As we are not prin

cipally interested in hydrogen this factor is inserted henceforth. We

now carry out the sum over m. Define

SQ= 2[c(/ij;m-r,c)J2 C^/J;0,m- r) C(J[jJ;0,m--C) (2.4la)

We use a symmetry relation to rewrite the last two Clebsch-Gordan co-

-,2
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efficients.

clfj2Jso,»*).(-/1*'fs* CO?JJ;n--C,0)

In each of these the phase may be dropped since in (2.40) the parity

coefficients vanish unless the sum of their arguments is even. Now

we may write:

SQ =Z&(/2AV;m-r,0)C(/ij;m-r,T:)]
m

X \c(JP2J1J}m-Tl,0) C(/ij;m-r,t:)] (2.4lb)

It is now necessary to rewrite each of the square brackets in (2.4lb)

using the Racah recoupling theorem.

C(J?2J1J ;m-V,0) C(/ij;m-r,C) =^ [(2i+l)(2v+lf)2

Where W( J/J' j1-; /v) is a Racah coefficient. In exactly the same

manner:

C( /2i;/;m- Z,0) C(iij;m-x, «) =gTg2jf+l)(2V+l)]
v'

XW(/2^ji;/r') C( /^V;0,C) C( />V j;m- £", C)

So we now have:
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SQ =J? (2Al) £(2v+l)(2V+lT)? W(/2i1j|;i?v) W( /2^j±;/v )
v.v

Xc(i^v';0,r) C(/1iv;0D2'c(/2Vj;m-r,r) C^vjjm- T, V)
m

(2.4lc)

The sum over m is accomplished by using a symmetry relation to rewrite

both Clebsch-Gordan coefficients as follows:

I_-(m- -C) Jz
C(i2vj;m-r,t) =(-)2 (l^j C(j/2v;m,r-m)

4-(m- T) /2j+l\2
C(i2v'j;m-r, C) =(-)2 (2vI+1| C(ji2v';m,r-m)

Since (m- E") is an integer the phases give unity and the sum over m is:

^ =rr S" C(j/_v;m, T-m) C(j Av';m,r-m)
[(2v+l)(2v'+lj2 ^

which by the orthogonality of the Clebsch-Gordan coefficients reduces

to

2J+1 5
2v+l ° vv'

Therefore:

o

O 2 (2^+i)(2j+i> w(^2A^^v) w(AA^^v)

X C(_/^v;0C) C(i?1|v;0r) (2.4ld)

Now we again consider the two parity coefficients in (2.40). Since

/ + -A +/= even integer and similarly for J +ig +/it follows

that /A - 0 '/= 0, 2, . . . . In this case it is impossible to
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satisfy fa (j?^v) and A (jf^) unless /1 =/^. Therefore, there
is no interference between different partial waves in the cross section

and we rewrite (2.4ld) as

Sq -^ (2/+l)(2j+l)[w(/2/1j|;A3)2llc(i1|v;0,r)]2 (2.4le)

At this point we assign to X its value \ since we wish to specify the

initial spin direction. We now use the explicit values of the Clebsch-

Gordan coefficient as follows:

[C(j? frrjO,±)T

In either case

ll+1
2 1+1

A
-2 i+1 j

[cU^o.if =§(1^)

for v /,♦

for v •A
(2.42a)

(2.42b)

We now make use of a symmetry relation for the Racah coefficients to

write

v(i2/1j|Jv) =W(i2ji'1|;vi7)

and rewrite S as:
o

S =0- 272^17E<^«a'*» ["(/2l/l*»^ >] ^

6. The symbol ^ (j-,JoJ*) is used to indlcate that tne "three angular
I I Imomenta must for a triangle, meaning that /J-i-Jp — J5 ^Z- Hl+^2
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By the orthonormality property of the Racah coefficients

,2

v

(2v+l)(2J^l)[w(/2j/jr;v/3 =1

and therefore

s = 2j+l (2.44)
o 2(2/1+1)

Thus

and

(T= — ——5- K (2.46)
Vl (2«ae)2

At this stage several points may be mentioned. Except for the

evaluation of the radial integrals, J(( J± j/2J), the partial cross
sections for the Auger capture are given by (2.46). One notes that the

two levels, j=J? +\ and j=J -•§, belonging to agiven } are popu

lated in accordance to their statistical weight. If the electron is

ejected with zero orbital angular momentum then K becomes

K= (4*)5 (2j+l),|(yioi) S^/ (2.47)
and the cross section has a very simple form. Otherwise the Clebsch-

7
Gordan coefficients are evaluated by the relation

7. Rose, op. cit. p. 47.



|(L +L -L ) r 2L +1C^L^OO) =(-) 1 ^ ^_
7^(L1+L2+L5)

7*(L1+L2-L3 ) ^(L1-L2+L5 ) ^(-L1+L2+L5 )

43

(2.48)

where 7*(x) = ^x and Ln+L0+L-. must be an even integer. We now dis-
]/7l 12 3

cuss the evaluation of the radial integrals.

To evaluate the radial integral we must first specify the radial

bound state functions. These are taken as those appropriate to a

hydrogen-like atom and these are well known. Thus in (2.34) we set:

/7 v3/2 -Zr_/aR(r2)= 2(f-] e 2 e (2^}

and

R/( )„. fc*\3 (n-/-l): X e-X J L2^+1(x)nj 1 OpyD 2n[(n+/)f)5j n+/
(2.50)

2^+1where L p (x) is the associated Laguerre polynomial given as:

n- /-1 —l o v
T2jP+l, v ^=— / vk+1 L(n+/ )l j x /. _. »
Ln+i(x)= ZL (") (n-7-l-k)l (2^+l+k)' kl (2'51)

k=0

and

x = 2^-r1 (2.52)

The normalization is

j*ki M2 2
ri drl = X
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We now define:

J(J!J2P)= J-ZG SjQ (2.53)
[2

Corresponding to the definition (2.32). We now consider the term J, and

use the following definitions:

Z J'2Rn^<'l>-[5pJ XK> (2^a)

R(r2)=fr) Y(r2} (2-5Ub)
e

The J is:

^3/2 3/2

a/^u

where:

J=fdb) fr) j X^r^k^V^dr, (2.55)

*1 r2+^
V^ =) ^^1 *Y(r2) j^ (k2r2)

o r.

r dr

+ 4—— Y(r?}J, (V?} (2'56)Jr /-l /2
1 r2

We use the definitions (2.52) and the following

Zr

y = —- (2.57a)
cl
e

kpa
b2 =-—• (2.57b)



nk a ~

na

/*-
b =
o 2a

to change variables in (2.55 )jwe then have:

,3/2,- ••*.'- >3 <•-

45

(2.57c)

(2.57d)

nafe un# X(x) x^ j (b x) V(x) dx (2.58)
/ 1 x

where:

A« i2+w /2+2
Z to

/2+1
V

Therefore J is rewritten as

k3/2 /na^5 /a^2 C, ^2+1

-^^r^r^^fe)
A

oft , /

X 1 x
'o

+ b

where

A

j * (bxx) X(x) K^x) dx

^ *L

.b x
o

j » (blX) X(x) K2(x) dx

+2
AVx) = \ y4^ e-jr j^ (b2y) <*y

(2.60)

(2.6la)
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and

JO*9

y 2e"y j^ (b2y) dy (2.6lb)
D X
O

This defines the term J. It is possible to carry out all of the in

tegrations analytically. Except for a special case, J2 =0and a

circular capturing orbit, this is of little value since the results are

obtained as multiple sums in a form not suited for numerical evaluation.

Therefore in the term J the integrals were done numerically. We defer

discussion of the results until after the evaluation of G. For a

purpose that will be obvious presently we define

Using the definitions (2.54) the term G is

H^) (s) JJ X(r1)r2JA(k1r1)Y(r2)jy2(k2r2)r

X dr2 dr1 (2.63)

and on changing variables as before and substituting for Y(r0) we get

,3/2,, ,3/2- '5--2 '">
Z

na
G.2,_f (hfmm x«x)^A(V)dx

/-O0

X e_y yjQ(b2y) dy (2.64)

2



and we now define

3/2 .„ N3/2
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At this point we rewrite the cross section,(2.45),as

V2 n3 «% (2A+l)(2J+l) . . -2 -2
Vl ZM207)5 (2i+l)(2/2+l)'- 1 2 J U ^

(2.66)

The quantities b.. and bp are related by energy conservation. The con

servation of energy requies that the change in energy of the mu meson

equal the change in energy of the electron. Thus:

*2i2 o *2.2
* kl 1/aZ)2 2 A k2 1,„.2 2

+

2m., ^ »^2-af +|(^v2 <2-6^
and this may be rewritten as

b2 =-2—^^"l (2.68)
n n

Using the definitions, (2.57), one may rewrite (2.66) as

Q- \tn\k 1 (2i1+l)(2j+l)
«a

e
£<!r£?3g^,r«'.4M,£-*a

(2.69)

We must still consider the functions I and F although these are both

defined explicitly above. The parameters b.. and bp must satisfy (2.68).

From (2.68) we have the interesting result that sufficiently slow mu

mesons cannot be captured into states with principle quantum numbers
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2
greater than 14, since bp must remain positive. However, we will find

in Chapter III that such slow mesons need not concern us.

We now carry out the integration indicated in (2.64). For this

purpose we use the definition

where J D j^(x) is the standard Bessel function. We then have

F-[*<*> *2 (^ J44(bix) dx [ e"y *J^ J±<v>dy (2-70)
^o o

Q

Integrals of this form may be evaluated using a result given by Watson .

Namely,

a I

pF is the hypergeometric function. The condition that this result be

valid is that V'+ M > 0. Application of this gives

r qo

F-J X<*> X"^ J/1+i(V) to f^2 ) <2^>
Inserting X(x) and taking J: = j[, which follows from (2.53) gives

8. G. N. Watson, A Treatise on the Theory of Bessel Functions (Cam
bridge University Press, London, 1944) 2nd. ed., Chap. 13, p. 385.
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2 f (n-j7-i): (nf^); m2^-"1 (-Dk+1

2l+b2 j 2 nbx j "TO (n-^-l-k)* (2^+l+k: ) k!

rOO

X e-*/2 xk+^+5/2 J,4(V> dx (2'̂ )

The integration is done according to the prescription above and we

obtain

Jr - \?+2
n 1 . . 2 V 2 ,

1 C(n-i-i): (n+l); ,)2 _i_ /bi)V 1 Y
55 " J Ml U' l(i)2+b2J P(i+3/2)

xf1 (-i,kafch:(i^)k 2F^-- -j/+3/2; "^
(2.73)

Since k is never negative the F terminates in all cases. One notes

that the evaluation of (2.73) involves a double summation. The structure

of the expression is such that very precise numerical work is required

to get meaningful results.

We now discuss the relative magnitude of the terms in (2.71 )•

Clearly, if I and F are of comparable magnitude the term in F will be

dominant for large values of Z, if we consider electrons emitted into

partial waves with zero orbital angular momentum. If we consider other

values of the electron orbital angular momentum only the quantity I

exists. In Figure 2 we present some typical values for the expression

i- ~i2 ]_ 2j I - FJ and —•»—- I . The ordinate is arbitrary. The curve labeled,

y(p - 0 is forfl -FJ ;the two curves labeled J( = 1 are the two
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possible cases for the electron being ejected with one unit of orbital

angular momentum. The three points labeled J( = 2 are corresponding

peaks for the ejection of electrons with two units of orbital angular

momentum. Consequently, we conclude from Figure 1 that the important

contributions to the total Auger capture cross section will be from the

partial cross section involving ejection of electrons with zero and one

unit of orbital angular momentum. However, all of Figure 2 is for Z = 1;

and we have little interest in hydrogen. In Figure 3 we show the

r -i2quantity/ I - 2FJ corresponding to the case Z = 2. We also show the

point corresponding to the peak of the Jc = 0 curve in Figure 2.

From this information we conclude that the ejection of electrons into

partial waves other than those with zero orbital angular momentum is un

important if Z^> 2. We also conclude that the term F is the dominant

term in the cross section for medium values of Z. A detailed numerical

study was made concerning this point and it was found that for Z = 6

the replacement of Z by (Z - l) in the term ZF and neglect of I led to

less than 10 per cent inaccuracy in the cross sections obtained.

At this point we may remark that in the calculation of the

partial cross sections 10 per cent errors in the numerical work need

cause no concern. This is true for several reasons. We are calculating

to first order using plane waves. This is therefore an approximate

calculation, regardless of how precisely the various terms are computed.

The relevant point is that we do not need very good absolute values of

the partial cross sections. This will be discussed in the following

chapter but we state here that the relevant quantities are the ratios



52

r

1°'

t1 5
N
l

H

iou

lo-1

/VL'/S"

=-2.

\

1 iz--/
\

/,= * \
\

\
\

0.0 0 1 0 >* 1 o « 0 a 1,0

Variation of Auger Capture Radial Integrals with Z

Figure 3



53

of the various partial cross sections to their sum. Further, we find

that the quantity we are principally concerned with, namely, the meson

polarization, is quite insensitive to the accuracy of the calculated

cross sections. For these reasons we make use of the fact that the

quantity F, defined above, is adequate for computing the cross sections

as indicated.

It is of interest to consider some of the individual partial

cross sections. These are presented in Figures 4, 5, and 6. These are

all for capture of the mu mesons by carbon. In Figure 4 the partial

cross sections are shown for capture of the meson into three states be

longing to the level n = 15. The state, X = 14, is the circular orbit,

namely, the state with radial quantum number n =n-/-l=0. One

notes that there is only one peak in the partial cross section for

capture into this state. Further, this peak is higher than any peak

belonging to the same n and any other Jl at incident meson energies

higher than the one at which the peak occurs. For the state with^f = 12

there are three peaks. In general there are n + 1 = n -J[ peaks in a

specified partial cross section plot. Figures 5 and 6 show the partial

cross section for capture into the state n = 14, J( = 0. The figure

does not cover the entire relevant energy range and so only shows nine

of the fourteen peaks. The variation with n is not very rapid. For

example, if Figure 4 had been constructed for n = 16 then the peak in

the Jf = 15 partial cross section would have been at ^""/na = 0.48 and

at the same b.. value as the peak in the Jf = 14 curve in Figure 4. A

similar decrease in n would cause about the same decrease in (T . The
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difference is essentially due to the different statistical weights of

the states. The relevant point is that b.. is a function of the prin

ciple quantum number, n, and therefore increasing n causes the peaks to

be shifted to lower incident meson energy. The importance of this will

be demonstrated in the following chapter.



CHAPTER III

THE DISTRIBUTION OF MU MESONS IN ATOMIC STATES

FOLLOWING AUGER CAPTURE

1. The Capture Rate as a Function of the Meson Energy

It was demonstrated in the preceding chapter that the partial

cross sections for Auger capture are strongly varying funtions of the

incident meson energy. Consequently, the number of mesons captured into a

specific state will depend on the rate at which the mesons lose energy

in the slowing down process and the rate at which the mesons are captured

at a specific energy. We must now formulate this process in terms of the

Auger partial capture cross sections. This is done as follows:

Let N(E) be the number of free mu mesons at energy E; then

dN(E) ^ dN(E) dX /o j\
dE dX dE K '

where dx is the path increment for the meson beam. Nov;,

g ^-4E>n<rT(E) (3.2)

where n is the number of stopping atoms per unit volume, 0"7p(E) is the

total elastic scattering cross section for mu mesons incident on the atoms

of the stopping material, and <2>E/ is the average energy loss in a

collision between meson and atom at energy E. The minus sign occurs because

a collision leads to a reduction of the meson energy. The energy loss

in such an elastic collision is given by:
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A E =• KE(l-cos6>) (3-3)

where W, — 2 nu.M an(i M is tne magg 0f the atom. Thus ^ E^ is

given by the average of (3.3) over the scattering angle,& . This is:

/ \ 27T \(T(6) (1-cosO ) sin©d<S> . ..(A e> = * e ^q; : (3-4)

where 0~~(&) is the differential elastic scattering cross section. How

ever the denominator of (3-4) is just 0~m and- "the numerator (apart from

)iE) is commonly called the transport cross section. Thus, we write

<4E> ^E^D^l (3.5)

The reduction in the number of free mesons may now be expressed as

^ =. -n N(E)*"7(E) (3-6)
dx R

where n and N(E) have been previously defined. (T'pi.'E) is the total Auger

capture cross section at energy E; namely, the partial cross sections of

Chapter II summed over all j, J?, and n. We now have:

dN(E) _ N(E)^7(E)
~dE~ ~~ ^E^rCE) (3.6a)

which may be put into the form of an elementary differential equation:

dH(E> _<JA^! (3-6b)
N(E) ~ KE^"r(E)

The appropiate boundary condition is that

N(E) s: N(E0) where EQ < E

1. There should be no confusion due to the use of n for the principle

quantum number and also for the number of scattering centers per unit
volume, since the context is always adequate for a clear distinction.
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Thus we have r EQ

B(B) -„(Eo) eXp[-Ij C^ f (3-7)
E

with the requirement that E-<Eo-

In (3-7) we will consider EQ to be an energy sufficiently high so that

no mesons have been captured; then we may use (3-7) to determine the number

remaining at energy E down to energies sufficiently low so that essenti

ally all of the mesons have been captured. Thus we know the number of

mesons captured at energy E, namely N(E+ A E) - N(E). Define the number

of mesons captured into a specified state n, J , j, in the energy range A E

to be A PE (n, 1 , j)- Then

AP_, (n, i , j, E) - ^(n; t , h E) N(E-rAB) -N(E) (3-8)

Since

!EL tfTn, i , j, e) = crk.
n, -I , j

Summation of J\ PE over all relevant AE then gives the distribution of

the mu mesons in the initial states.

Thus we can find all we need from (3-7)i however, we must do the inte

gration in (3-7) numerically and then sum (3-8) over the energy. We now

determine 07[ir(E) in a form suitable for machine computation.

2. The Elastic Scattering of Mu Mesons by Carbon Atoms

Since the best experimental data concerning the asymmetry coeffic

ients is for mu mesons stopping in Carbon we calculate ff~l for Carbon.

The method we use is clearly applicable to any atom. The problem of

elastic scattering from atoms has been treated by many writers. The



p
differential cross sections is given by

2 \ 2_ _ 2

2 p2 sin2 ^ /2

where m^is the mass of a mu meson having incident momentum p and Z is the

atomic number of the scattering atom. The form factor F (&) is usually

given as

F(6>) = 47f\ P(r) sinKr r2 dr (3.10)
J Kr
-'o

where p(r) is the electron density and Ji K is the momentum transfer; namely

K n 2 k sin QJ2 where k is the incident meson wave number.

The normalization is such that

— ) r^p(r)dr =. number of electrons

We must now evaluate this form factor for the Carbon atom. Using hydrogen

like wave functions gives

p(r)~W=(j^)lB <j^>2s (^t)2Pl (3.11)
2

where the contribution to the electron density from each of the filled

electron states in Carbon has been explicity indicated. It is clear that

(3-10) is valid for scattering from^ =- 0 states; however, one may be

inclined to question its validity when there is a H^ 1 state involved.

Since this point is not discussed in the literature we give the following

proof.

2. N. F. Mott and Ai. S. W. Massey, The Theory of Atomic Collisions
(Clarendon Press, Oxford, 1949) 2nd ed., Chap. 7, p. 117. The deri
vation of this formula may be found in many other standard treatments
of quantum mechanics.

2 \ 2

*~(£)= ( 5*1! ) r z - F(^)*n (3.9)
l 9 r.2 sin2 & /o I L- —*

61
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First we construct the proper antisymmetric wave function for the 2Pi_

state, namely:
m-, nvj

where

//,__ ^ C(HO; mx mg) X (1) X- (2) (3-12)

so that the total angular momentum in the shell is zero.

m t^—
If, \ — > nf-> 1 1.XHi) - 2- c(i|- b vr»c)

.A. , ,,;i
X Yi m r (V R AW (3'13)1, m-|_-V 1 n,Jl 1 /

Note that (3.12) is antisymmetric since interchange of electrons 1 and

2 gives:

C(| £ 0; mg roj_) =. -C(£ £ 0; n^ n^)

Also we have that m-, sr - mo-

In complete generality we may write the form factor as:3

FG9) = J p(r)ei K'rd3r (3-15)
In (3.15) we take p(r) n. (f*^) and use

2Pi
2 1 „

1. * 1
l"?"mi //X C.tir 0 A: m 01) - ^-C(i i 0; ny m2) ^ (-) //> C(± 0£; 1^ 0) =

to get

<r/> = 22:^
2Pj 1, 2 in , m'

2 11

m1* m, ml* nu

X1 (DX MX (2)X (2)

3- Ibid.

1-m,-m-j
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and ^ _,
<=- i f 2 2 f _._ m{* nu mi* i K-r m

P(^)= 5. * r2r dr dr [2 L(DX (DX (2)° 2^ 2(2)

m'* i K-r, m-. mi* m 1-m -rn'

+#1(l)e 1^1(1)X (2)X2(2) J dJ1d4 (-) ll (3-16)

where the sum over 1 and 2 has been written out. The angular integration

overv^L in the first term of (3.16) gives C and overJt2 in the
m, m'

second term gives ^ ', thus the two terms are equivalent and we have
m^ nig

/~ ~5* •*"
« ( o m,* l K*r m,

FO) = 5^ r dr X e X dJt (3-17)
m]_ -^

since the other radial integration in each term yielded unity because

we are dealing with normalized wave functions. We now use

i K-r L a # a
e :=. b?T2-i j (Kr) Y (r) Y (K) (3-18)

L,M L LM LM

and obtain

F(O) = klT^E Y*(K) iL /"c(l \ b m-T, Z)Y I r2 Rn (r) JL(Kr)dr
L,M LM J J
m1,r-

X (y (?) Y (?) Y (r) ") (3.19)
\ 1, m±-i , L,M 1, n^- x,)

This becomes

F(6)- 4Z^ Y* (K) iL (c (1 ££; m,-T,Z)\ C(l L1; 00) (^pA *
L,M LM V ' \ * " J
m^t

rQP

)( C(l L1; x^-L, M, m±-V) \ r2 %}1(r) JL(Kr)dr (3-20)
Jo
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From the last Clebsch-Gordan coefficient in (3-20) we have M = 0, and

we see that L ~ 0,2. We now do the sums over ~c , and m-jj for this

purpose we make the substitution m^- "£" — /^, and we then have

21[c(l £\;JU.,tS\ 2 C(l Ll',/C 0) which we define as S.
Using the symmetry relation

(i hbf-jt) - (-)J
yields

C(l |ly^D - (-) 1/2/3 C(| I1; -Uc+C),77)

S=. 2/3 ^E.C(l Llj^.0) Sjj(i 5!i /^C>^^j (3-21)

ronorand by the orthonormality of the Clebsch-Gordan coefficients this is

S = 2/3 ^Tc(l L 1'A0) (3,22)
The most satisfying way to do this sum is as follows:

C(l 0 l;yu.0) = 1

Thus

s - 2/3Z c(i 0 ualo) c(i l lyoo) (3.23)
Applying a symmetry relation to each of the Clebsch-Gordan coefficients

yields

s s:

and again by the orthonormality relation we have

- &L,0 (3-25)

I-IO 1-JUs
(-) / (-) / C(l 1L;^u, yto) C(l 10;/*., yt*.) (3-24)

S^ 2
JT5lTt

thus ^ a

r2 R -l (r) jo (Kr) dr (3-26)
d u

Consequently the form factor given by (3-10) is correct, even for scattering

from the Pi shell. The factor 2 in (3.26) is of course due to the presence

of 2 electrons. We now evaluate the form factor for Carbon.



The following radial wave functions are used:

„ Zr

R?1(r) - |_Z_\ 3/2 _Zr
l2ae ) aeK7

e -
Zr_
2a.

Zr

2ac
e -

(3.27a)

(3.27b)

(3.27c)
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with the understanding that Z will be set equal to 6 at a convenient point.

Using these the form factor for Carbon becomes:

where

P. = 32B
Is K

<**
re

F(S) * Fls-H F2s-f F.2P1

y - i K r -i K rN
"2 dr (e - e ) dr

2i

(3-28)

(3.29a)

- B/K \ r[4 - 4/r-f/2r2j Li K r -i K rN v/r
J _-e • ) -6 r

'2s 2i

v^r^ ^-^
where B~ 2(gf^) and Y- — •

e

The integrals are elementary and may be evaluated as:

8b/

Fls = 16 (4^+K2)2
8B
2

2 2 2 i

>2F2s^
or

22 2 ^

lB_il_ I" x _ 3X_lK- 3r ( r - K^^2 1^ ^/2+K2 (^2 ^ ^

f - 8b r y2(^2-/)
2^r (/2+^)2 (>2^ kS2

e"° dr (3.29b)

(3.29c)

(3.30a)

(3.30b)

(3.30c)

4. These are the same as the hydrogen-like wave functions used in Chapter
II; except here they contain the electron mass.
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So now we have

L t^+K2)2 (f2+ K2)4 J
Now the differential cross section becomes:

*-{*) ^ -±- ( -5-i )2[ Z-F(©D 2 (3.32)4^2 Vk2sin2 &/2 J L J
Using K -2 k sin & /2 one may show that:

sin4*/2 - JiL (3.33a)
16?

Tf2
1 - cos* ^ £~ (3.33b)

2k^

sin £ d© - K d K (3.33c)
k2

So we obtain:

_ 27T
0~ir - 4a-'d

/2k ,42 2
\ 1 i6k K KdK rz.He)l (3.3^)

^ Jo ^ ^^ 2k2 k L J
which may be rewritten as

2k 2

^fz-F(e)] (3.3»«))
o K L-

Using 8B^ «2f*" in (3-31) and setting Z =. 6 gives:

2 6.8 -1-2.

L J" L (^2+^)2+ (^-c^ J (3-35)
We note that this has the proper limiting values; namely:

Lim (6 -F (d)) :=. 0
K -^0 (3.36a)
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Lim (6 - F(©)) = 6 (3.36b)
K-^ao

It is obvious that it would be possible to substitute (3-35) into

(3'34b) and carry out the indicated integration; this leads to a compli

cated function not ideally suited for machine computation. Therefore,

we proceed in the following fashion. In Figure 7 we have plotted the

integrand of (3.34b). The dotted line is for 6-F(&) 2 6. Thus

with reasonable accuracy we may use this value when K^s. 4 o . So we have:

U ~ 02 \bTr a^,k
[" Ix -f- I2 j| (3-37)

where 1± » j §| [~6-F(3)^2
("2k

^ ^= kr *"=** (£)
I is obtained by applying Simpsons rule and using the points given in

Figure 7- The formula obtained is given by:

— _ 47Ta2 /207)2 C&-5+ 36m(gT)H (3.38)
^Tr ~ 6( 36 / (k/m

where we have multiplied and divided by Y and used

^ =fef af (3-39)
We must note that (3-38) is not correct when 2 k^4fl ; however, it will

be seen later that we have no need to concern ourselves with such low

energy mesons. The expression given by (3-38) is a simple function of

its arguments and may therefore be used efficiently in a machine calcu

lation.
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At this point we may make several remarks concerning the accuracy

of (3.38). The error introduced by the numerical treatment is very small

and therefore of no concern. It is, of course, known that the treatment

used; namely, using hydrogen-like wave functions to calculate the form

factor, is not the best. Nevertheless, we feel that the transport cross

section we obtain is suitable for the purpose at hand. We are not striving

for great numberical accuracy in the distribution we obtain since it will

be evident in Chapter IV that small errors in the distribution will not

affect the final results. In fact, we will see presently that the energy

range of importance is such that the scattering is principally nuclear

(k >> bo ) so the form factor corrections one might make would alter the

distribution obtained in a negligible manner.

3. Calculation of the Distribution

In (3.7) the initial distribution, N(EQ) was taken as unity corres

ponding to the assumption that all of the mesons have a given energy E0.

The expression (3.7) was then programed for the electronic computer using

the expression for partial capture cross sections derived in Chapter II

and (3.38) above.^ The relevant range of energies over which the mesons

are captured strongly was found by trial. The mu mesons are not captured

to any appreciable extent when their energy is such that k > 70 fl ; this is

about 11.5 kev. The mesons are captured strongly at energies around 8 kev.

and lower; essentially none of the mesons remain free until their energy

5. The computer used for all of these calculations was the IBM-704 located
at the Oak Ridge Gaseous Diffusion Plant.
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is reduced to 2.5 kev. The number of free mesons as a function of k/( is

shown in Figure 8.

It was found desirable to modify the notation of Chapter II and

express all momentum dependent quantities in terms of $ . A suitable

increment for the integration of (3-7) was the energy increment corresponding

to & k — O.bY. This was determined by trial. The actual integration

was done by using Simpson's rule and recomputing N(E0) at each inteval.

It was not necessary to compute the distribution as a function of j since if

the number of mu mesons in a state n,y is given the two corresponding

states j — X i 2 are populated according to their satistical weight.

We have indicated at several points that certain approximations

were made. If one should attempt to improve on the work presented here,

presumably by using Coulomb waves for the free particles in the cross

section calculation, then the following problem would arise. In the course

of evaluating N(E) as a function of E, it was necessary to compute 21,600

values for the partial cross sections. The expression we used for the

partial cross section is not very complicated as may be judged by the

fact that the final run took slightly less than one hour of computer time.

It is our feeling that the expressions involving Coulomb waves would be

much more complicated than these and that the evaluation of N(E) with

these expressions would take an unreasonable amount of computer time in view

of the relatively small sensitivity of the final polarization results on

N(E).
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4. The Distribution

Table 4 gives the calculated distribution of mu mesons in atomic

states. We found that there was no need to consider states for which

n >l6. Figures 9 through 11 show how this distribution varies with the

quantum numbers involved. From Figure 9 it is seen that the mesons are

captured into states around £ ~ 5- Figure 10 shows that the states

around n =. 7 get the maximum number of mesons. In Figure 11 we show

the distribution as a function of the radial quantum number, nr =. n-/-l.

These are the results we calculate; however, as there has been some

qualitative discussion in the literature concerning what one might expect

we present the following remarks.

Since there has been no previous analytical treatment of the

distribution, several writers have attempted to guess its form. Their

arguments go something like this. The meson orbit has nearly the same

Bohr radius as the electron orbit if the meson goes into a state for which

n •= 14; this means that the meson wave function and the electron wave

function have maximum overlap for this case. Since maximum overlap some

times leads to large transition rates, it is asserted that the mesons will

be captured into states around n -=• 14. As the statistical weight of a

6. G. R. Burbidge and A. H. de Borde, Phys. Rev. 89, 189 (1953)- See
M. Demeur, Nuclear Phys. 1, 5l6 (1956). Assumptions concerning the
initial distribution appear in many other places in the literature.
It is usually assumed that the mesons are captured into states around
n =: 14 and then the distribution in X is varied to suit the problem
at hand. As will be seen in the subsequent chapters, the observable
facts are rather insensitive to these assumptions, and for this reason
the inaccuracy of such a procedure has not been brought to light
previously.



TABLE 4

NUMBER OF MESONS, IN 10,000, CAPTURED INTO ATOMIC STATE n, / IN CARBON

Circular

n-M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

n

1 1

2 35 13

3 232 38 21

4 499 54 101 12

5 525 256 82 87 15
6 338 449 134 102 64 16

7 151 401 302 98 93 48 15
8 50 227 346 204 82 77 38 13
9 13 91 236 273 145 70 62 31 11

10 3 27 110 215 212 108 59 49 26 9
11 - 6 37 113 186 165 84 50 4o 21 7
12 - l 10 42 107 157 130 67 4l 32 17 6

13 - - 2 12 44 97 132 104 54 35 27 14 5
14 - - - 3 13 42 87 110 85 44 29 22 12 4

15 - - - l 3 14 40 77 93 69 37 25 19 10 3
16 - - - - 1 4 14 37 67 79 58 31 21 16 9 3

Total 1847 1563 1381 1152 O965 0798 0661 0538 0417 0289 0175 OO98 0057 0030 0012 0003

TOTAL NUMBER SHOWN: 9986

3
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state having given n is largest when Jf^ n-1 it is further assumed that

these circular orbits will get the most mesons. We do not disagree with

these considerations; we merely state that they are not adequate. From

Figure 11 it is evident that the circular orbits do get the most mesons.

The reason that the states of high n, n >• 12, get so few mesons is that

the mesons are captured before they are slowed down enough to be captured

by these states. It is in this respect that the qualitative arguments are

inadequate; they do not take into account the competition of the various

capturing states as a function of the meson energy.

In view of the foregoing we make the following statements concerning

the distribution given in Table 4. There is no theoretical argument that

contradicts the results we have presented; in fact, the distribution we

have is in several ways in agreement with the expectations. There is no

experimental information that can be used to test this distribution directly;

any such test using the results of the reported observations is indirect.

In Chapter V we obtain results which are to some extent a test of this

distribution and we find that, in so far as the results we get constitute

a test of the distribution, the agreement is very good. Therefore we assert

that the mu mesons are captured into the states of mu-mesic Carbon as

given in Table 4.



CHAPTER IV

THE POLARIZATION OF MU MESONS IN THE INITIAL STATES OF MU-MESIC ATOMS

In the preceding chapter we have found how the mu mesons are dis

tributed in atomic states when they are initially captured. Although

the problem of the distribution had not been previously solved, we are

principally concerned with the polarization of the mu mesons. Thus the

results to be derived in the present and following chapter constitute

an adequate solution of one of the several problems that require knowl

edge of such a distribution. In this chapter we show how one may de

termine the polarization of the mu mesons in their initial states

following capture if we know their polarization previous to capture.

As was explained in Chapter I, we have excellent reasons to believe that

the mu mesons are completely polarized along their original beam di

rection. We will see here that the important consideration is the

amount of scattering the mu mesons suffer before capture. To show this

in detail we show how to obtain the polarization after capture for the

case of no scattering and for the case of much scattering. We then

prove that one of these cases is an extremely good approximation to the

actual situation. We now turn to an analytical treatment of the problem.

1. Definition of Polarization
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We define the polarization of the mu mesons as :

p = 12_2 L_i (1^.1)

W,f )

where y is the meson wave function and ~tr is the vector composed of the

Pauli spin matrices. We have indicated previously that the muon beam

is along the z axis and that it is initially completely polarized along

the beam direction. Thus, initially we have that

P-S = + 1 (4.2)
z

where e is a unit vector along the z axis. The process of depolari-
z

zation will reduce P*e ; of course a strong spin flip mechanism could

reverse the sign in (4.2), however, we do not treat a case where this

occurs. We use the fact that the meson wave functions are normalized

and write

P- <<TZ> ez (4.3)

where we have used the standard notation for the expectation value.

Thus we are going to calculate <(<?"*) in the following and at any stage

this will correspond to the surviving average spin orientation along the

initial beam direction. If one should wish to consider an incident beam

not fully polarized then the only change would be to multiply (4.3) by

the appropriate factor.

1. M. E. Rose, Relativistic Electron Theory (John Wiley and Sons, Inc.,
New York, to be published) Chap. I. This reference contains a
complete discussion of the description of the polarization in the
Pauli representation. Since the mu mesons have small velocity when
they are captured we need not consider relativistic effects.
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Although it was just stated that we intend to calculate K.<T~ "> ,

we do not do so directly; since it will be easier to work in terms of

"\i \ . The relationship between <(<7~ > and <^j > may be obtained by
z z z

2
using the projection theorem for first rank tensors . Thus,

_ <^> Mini*)

and one may take the reduced matrix element as the expectation value of

v~" i, namely

<<?7> = j(j+l) - i(i+l) + 3/4 (4.5)

Then we obtain

<<T> =̂ 4^" when j=/+| (4.6a)

<tf"z> ="TfT" when J=-^ "2 (^.6b)

When we discuss bound states, the values of j and £ are known, there

fore having <( j ^ is equivalent to having <^(^~ /> • Since we will find

that •\(J~~ ^> is required only for the final atomic state of the mu

mesons, namely, the ls^ state we will only need to use (4.6a). There-

<Jz>
fore the quantity which we shall deal with will be — ; and we shall

J

speak of this as the polarization. Thus, with the restriction that we

only apply this to the ls^ state, the asymmetry coefficient of Chapter
2

I is:

2. This and the other important theorems that we use to treat angular
momenta are reproduced in Appendix 1, suitable references are given
there.
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-^-*^
<o

In Chapter V we shall see how to obtain —r for the mu mesons in the

lsj^ state. Here we must find this quantity for the states that the mu
2

mesons are initially captured into.

2. Depolarization of Mu Mesons Captured from a Beam

In this section we consider the depolarization of the mu mesons

if they undergo Auger capture from a beam. By capture from a beam we

mean that the mu mesons are incident on an absorber as a well collimated

beam and that we assume them to be captured before their initial di

rection is altered by scattering. Discussion of the extent to which

this represents the physical facts is postponed to section 4 below.

We now note that

~ m pop(m)
Oz> ^
J J ^pop(m)

where pop(m) means the number of mu mesons that go into a state of j

and J having the magnetic quantum number m. In Chapter II we saw that

the partial cross section for capture into a state j and J? was given

by

<--(?)(=bji^8d-\
e

which is just (2.29) with the integration over electron directions in

dicated. Since there is no dependence on the magnetic quantum numbers

(4.8)
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in the front factors we may take

pop(m) OC-

Thus we use the result

|Hril2dJ)

3 , Jl ,J\ (2/1+D(2^+l)

(4.9)

)JH«I dA -^ ("i} (i) (gy^i)(gyii) c< n U'^
Ci^jJ-.OO) K^J/J) Hj'J2J?)lcUiy,m-T,-C)f

C( J± 4 A°>™- -0) C( 7; i2 /;0,m- T) (4.10)

which is just (2.4o) with the JET removed. In Chapter II, K was defined
m

as

K = 2

m

r[i Hfii2d^i£
and we now define

so that

\ = 2^ m
m

j J K

We now define S such that

r

IHf.I2dJZ2

(4.11a)

(4.11b)

(4.12)

K, =2(4,?(-i/1 (l/l ^^^ C( ^/2/;00) C( 7X /J;00)
(24+1x2/+!)

'•UiJzf)*^^!)*! (4.13)



83

Thus

S1= ^m[c(i?|j;m-r,^2 C( j^^O^r)
m

C(iii2/;0,m--C) (4.14)

Now, tt must be taken as + •§ and we do so in the following. We define

a new quantity, an integer,

M = m -| (4.15)

and substitute this into (4.14) to obtain

S-l =̂ (M+!)[cU?ij;M,ij]2 C( J± /2/;0M) C( £± /,i;0M) (4.16)
M

and we now use the explicit values of the Clebsch-Gordan coefficients

to obtain

[c(iij;M,|)j2 =4^g for j-f +\ (4.17a)

[c( ny,^2 =(y^ forj =^-| (4.17b)
We substitute these into (4.16) to obtain

M2

M

4" ?:ft ^♦»^l^57^]0^i/2/'0.»»0<Aia^">
(4.18a)

- I o o F In + M o7~tT " p
M

(4.18b)

Where the superscript + and - refer to the j = i +§ and j = J -•§ cases

respectively.

SI - f [§£?T +M^ -OTl] "(AA/io."' c(4/2/,o.n>
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Use of the symmetry relations and the fact that /.+ /2+ / and

£ '+ £ +I must both be even integers as was shown in Chapter II will

verify that

C( ix 4/;0,M) C( J[ 4/;0,M) -C( J± /2 /;0,-M) C( /; y2/;0,-M)

(4.19)

Consequently, the terms linear in M in (4.l8a) and (4.l8b) vanish in

the summation. Now we use the symmetry relations to obtain
_i

ScC/^/.o.iOcC/i fJ:o,M)-.E(.)2j^ [(2,(^f.+l)]2
M M

XC( £jf1;M,-M) C(72/y;;M,-M) =M*. $ ^ (4.20)

as the last sum is immediately evaluated by the orthonormality condition.

This allows the evaluation of the contributions due to the first terms

in S and S~ and also those due to the additional constant term that

arises when the explicit value of C(/ 2J;M,0) is used to find how we

must write W. Thus

2.

M2^ [(i+l)(2Al)(2i+3))2 C(i2i;M0) +i^(/+l) (4.2l)

Therefore, the final summation required to evaluate S^ is

JEc(J>2/;M,0) C(i1i2/jO,M) C<jf^2/;0,ll)
M

and the symmetry relations may be used to show that this is equivalent

to

^C(4^2/;0,M) C(y2i1/;M0) C(/2/;M0) (4.22)
M
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We use the Racah recoupling formula to rewrite the last two Clebsch-

Gordan coefficients in (4.22) as

C(/2A^;M0) C(^2/;M0) =^-[(2s+l)(2i+l]|2 W(7271/?2;/s)
s

X C(V2s/;M,0) C(yi2s;0,0) (4.23)

and the sum over M we are now requir.ed to evaluate is

^C(f1J2{;0,M) C(/2si);M,0)
M

and by the symmetry relations and the orthonormality condition this is

i

_ 2/+1 r (u.2U)
- j/J+i m b

Now (4.22) may be written as

C(A2/;0,0) ^2^T *{JtJJZiJU\) (^5)
1 X (2^^+1)2 d l

We use a symmetry relation for permutation of the arguments of the Racal

coeffient as follows

W(/2/L/2;/f[)= (-)^2'I'^M{£U\hA) ^26)

M

Clearly the phase is unity and we may write out S and S .

q+ ri f+i , nj+D~] c , , Ci(i+iX2i-i)(2/+3)T
bi =12 27^+T 3(2/l+i)J d^ g\ 3

XLf^I C(i12/;;0,0)w(//^;/;i;24) (4.27a)
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Di - (_ 2 27-n 5(2y1+i) J d£1 j?{ 3

Xf-Hr^] c(A2^;;0,0)w(//^yi;2^ (4.27b)
2/x+l

We use

and

to write

^-/ J-/ -4

(-1)^-^ =1 J-/ +*

(-1/-^= -1 j = y -I

? ri 2j+i _, r ^ -j+§ (Ai)"i c ,. / ^ -j+i

Xr^(^D(2/-l)(2i+3Q2 ^_g£+lj4 c( ^2 ^.0>0) Mff/J^
(4.28)

So from this result, we see that although there was no interference

between the different partial waves in the cross section, there is

interference in the polarization. The only values possible for x •,,

given /1, are j[ = J±, J^ 2.

We may now write

2)
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^;.y1(2/1+i)(2y;+i)
<JZ> tylTL (2yg+i)(2^i)

• " (2/1+D2
jv t2 (2/2+i)(2i>+i)

c{£'1jp2Jio,o) 0(4/^0,0) UjJ2J( )!{£[£J) \

(4.29)

from which one can obtain the polarization of the mu mesons captured

into a state $,£ . The Racah coefficients occurring in S may be

4
evaluated by using formulas given in the literature .

In Chapter II we found that the majority of the mu mesons were

captured by emission of an electron with zero orbital angular momentum.

If we set J =0in (4.29) we see that: J 1=£ 1=J, the sums

contain one term each and the interference disappears. So, for the case

Jl = 0, we may write

In (4.29) there occur products of l(y, /^yf)' Since our radial
functions are real this is correct. However, in obtaining (4.29)
we make no assumptions concerning radial functions and the calcu
lation would be the same for Coulomb waves if the !(/ / ,/) were
redefined. This would involve redefining F^ in Chapter II. In such
a calculation the Coulomb phase would be kept with the radial
functions and the relevant products in (4.29) would be replaced byfunctions and the relevant products in (4.29 J
JKA/^f and K£[/2Jf K^/g/).

4. L. C. Biedenharn, J. M. Blatt, and M. E. Rose, Revs. Modern Phys.
24, 249 (1952).



88

<J2> s.
1

^So
(4.30)

S was evaluated in Chapter II and is

so =̂ n <2-^>
For 0 = 0, S. becomes

^2 1

Y C(/2/;00) W(J>/// i SO) (lt.3!)

and using a symmetry relation for the Racah coefficient we have

W(y///j20) =W(7///;02) (4.32)
5

which may be evaluated as follows

W(////;02) -̂ (4.33)

The Clebsch-Gordan coefficient may be evaluated by using (2.48) to

obtain

Thus we see that, if ^p = 0, S reduces to

i.

e>.3io

Sl»ii7l <*•»>

5. When one of the arguments of a Racah coefficient is zero it may be
evaluated by using the symmetry relations and:

(_}f-b-d (
W(abcd;of) =-= SSLAcd >

[(2b+l)(2d+l)j 2
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and (4.30) becomes, on setting j( = | in S ,

<JZ> 1
j 2j

Consequently, for the problem we are concerned with, (4.36) gives the

remaining polarization after capture if the mu mesons are completely

polarized and if they are captured from a beam. We make a rough esti

mate of the remaining polarization under these circumstances. In

Figure 9 as discussed in Chapter III we show that the peak in the dis

tribution of the mesons in states of X is around £ •=. b, tj>. So a fair

value for jis ^ and (4.36) tells us that the remaining polarization

is about —. Therefore, since we know from experiment that the depolar

ization is not this severe, we know that we have not described the

physical situation correctly .

So that we may understand why the result, (4.36) gives such a

small polarization it is worthwhile to look for this reason in the

mechanics of the calculation. The reason may be found by looking at the

last two Clebsch-Gordan coefficients in (4.10). Since we took the

original beam along the z axis X = 0 and the maximum value of Jz in

the bound state is determined by the requirement that £ - m -X.

Since J^ is taken as zero there is clearly a severe restriction on the

values that m assumes in (4.14). Indeed, the only case where there is

(4.36)

By this statement we mean that we have not described the situation
that prevails when the asymmetry coefficients are measured. It is
easy to think of a case where one would expect (4.36) to apply;
namely, for the mu mesons captured, which would be very few, when
a fast beam penetrates a thin foil.
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<Jz>
no restriction on m, namely j = -$, gives the maximum value —H = 1.

J

Thus we may ask how the physics of the problem must be so that when we

calculate, this restriction on j will be lifted. The answer is clear

from the above statements; the mesons must not move along the axis of

quantization. If this is the case then J(. can have values of the same

magnitude as £ . Since the axis of quantization is fixed by the initial

beam direction we are led to consider the scattering of the mu mesons

before they are captured. In section 4 we will treat this scattering

quantitatively; we now determine how it affects the polarization.

3. Depolarization of Mu Mesons Captured after Scattering

In Chapter II and therefore in the above treatment we represented

the mu mesons by plane waves along the z axis. We could now take them

as plane waves moving in the direction k,. However, as will be shown,

we need not limit ourselves to the use of plane waves. Therefore we

will take the free meson wave function to be given by

_. ft

A'mi

(4.37)

where we neglect to write normalization volumes, since these always

cancel. The function f (^-ir-i ) i-s defined to be the proper radial wave
1

function; if one wished, it could be a Coulomb function with phase.

There is another improvement which \te use here. In Chapter II

we took the wave function of the bound electron to be a hydrogen-like

function and we considered only electrons in the K shell. We now take
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the wave function of the bound electron to be

Abound**) =2Tc(/5iJ3iVTr3>r5) Y^^_x^2)^ R(r2)
3 (4.38)

with the stipulation that R(rp) is the correct radial wave function for

the bound electron. Thus, for example, R(r?) might include the effects

of screening.

The wave function for the ejected electron is taken as

Kee^-^^7 2 ^2%^2^;2,^\,^
X2,^

(4.39)

where the same remarks apply to f * (k^r„) as to f /> (knrn ). The wave
A 2

function for the final meson state is

apply to fj (kgr2) as to f/ (k^).

where R q (r.. ) is not necessarily a hydrogen-like function. For the

interaction we keep the definition of Chapter II, since the only con

ceivable modification would be to change the definition of F^. Thus

we write

Vlnt -^ SET <,«,<'2> *X,M<'1> V'l'V {kAl)

with the understanding that the choice of F is determined by the proper

formulation of the perturbation; which depends on the choice of f n
* 2

and f . • We are now ready to begin the calculation.

* 1
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The quantity which contains all the information concerning polar

ization is I /h'J d^2- . Thus we must first find H .

Hfi (4*)5 JE (-i)^2 (i) XC(£^i3;m3--Cyri) C(i?ij;m-r,r)

where the sum is over Z~ , £"' X, K, m., m , £ , and j( ; we do not

write the sum on m and m, yet since we will form ^ j )> before we do

these sums. Also we have used the definition

I(/X f2 J± /5) -J Jr2 r2 drx dr2 F^,^) Rn>/ (r^ R(r2)
o vo

X t (k2r2) fj (k^) (4.43)

Henceforth we denote (4.43) by I, with the understanding that the

arguments are implied. In (4.42) we use

v 2 2 ' ^2 C3

(Zx. &)= Lc c.w.)



(*j m (*oh *i M(r0) *,
/I 1**1(2 A+l)(2Ul)

(£))- (-) 7 ^
L(2JP2+1) 4n J2,V 2" %M^2' ^,1^-^-2

(2/1+l)(2X+l)
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(4.44c)

(Yp (rn ), Y. M (rn ) Y„ (r. ))
, (2/+1) 4*

0(7^^0,0)

X C( £1\J ;m1,Mx,m. X)

We see that the spin sum is now over ~C-,> Eventually we will take U = j?

so there will be no sum on T . Now we may write out I H' I , taking

account of the following consideration. The problem is formulated so

that y,,j,, Jf and j are specified in advance. Thus we have

|Hfi|2 -(4*)^ (-i/2 J2 J1 (-lAfctf^nylTj, ^)]*

(4.44d)

(2/1+l)(2X+l) (2^+l)(2X'+l) k
X[c(i!j;m-i:,7;)] i

(2X+l)(2X'+l)L (2i+l) (2>P+l)

Xc(^X'i;0,0) C(/1x/;0,0) C( J^xJ ;m^,M^,m-T) C( /^ .ftm^M^m-C )

"(2/3+l)(2X'+l) (2/5+l)(2X+l)
f2/*+l) <^2/2+l)

Xc(73x/2;m3-T3,-Mx,m2) C( ^X* i^OO) C( ^?X ^; 0,0)

.A \ *

(-A^ C(Y3X'i2;m3- 7"3,-M;,m2)

(1>.1>5)
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•x- * #
The meaning of the prime on I is that the appropriate arguments of I

are primed. The sum is over C,, X, X1, K, M* til,ml, m , m*, J', A,

/ and / '. We now integrate over the unobserved electron direction;

this involves only the last two spherical harmonics.

This results in considerable simplification of (4.45) since K. must now

be M., and therefore m. = m..

At this point we must discuss the fashion in which we will proceed.

We could expand the product Y/ t •(kn ) Y n (k ) using a standard1iA x fv^i 1 <J >
technique and proceed eventually to the evaluation of —-. . However,

we will prove, in the following section, that this is unnecessary. For

the present we assume that the mu mesons have random directions. This

A

assumption is equivalent to stating that all directions of k are equally

A

probable. Therefore we shall average over k... We define

m,m_ 2 1

The factor, 4n , is just \ dA . The integral over d7t involves

only the spherical harmonics just mentioned.

So, we now obtain
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^ *2, h Wr3
Aim A*

X^C(^^j;m- T, cTj 0(^X^00) CiJ^/iOO) C(X1x£;m1flx,m- u)

Xc( /.jX' /^M^m- &) C( ^X'J^ny Zy-\,r^) C^X ^jny "C^-M^)

2^3+1 2/1+l #,
^•*2->—5-2->- 2x7 ^ ')(C(y3X'̂ 2;0,0) C(^3x/2;0,0) —^- -1A- I I (4.49)

2"1

Now the sums over the magnetic quantum numbers must be carried out. We

consider the sum involving these four Clebsch-Gordan coefficients

2" C( ^xy^M^m.-C)C(/1X'y;m1,Mx,m-r) C( J^ J^- T^-M^)

Xc(/3x r2;r^- z^-m^) (4.50)

We consider two of these as follows:

VL = m- r-m, (4.51a)

Since we also have

m2 =m^- zr^-M^ (4.51b)

m„ is determined by m. and we need sum only over m.. We use the symmetry

relations to obtain

C(/1x/;m1,m- ZT-n^) -CixX^ ;m- r-n^,^) (4.52a)

since J(.. + X+ / is even.
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/,-m_+"T / 2yo+l>C(/3x/2;m3-r3,-(m-r.mi)) =(_/3 3 3' -^-
V 2X+1 /

XC(/3^2X;m3-r3,m-r-m1-m3+ r? ) (4.52b)

Applying the Racah recoupling formula:

1

(_) 5 3(~2xfl7 C(^3 /2X;m3"x3,m"r'Vm3+r3) C(X 4^;m"T"nl'ffll)

. (-) 3"Vr3 (i^) ^ [(2v+l)(2X+l)]* C( y^ny Z^,m- r-ay- T^)
v

^ c( 4 ^m- -cr-m1-m5+ T^,^) W( ^ JQ JJ^Xv) (4.53 )

We do exactly the same with the other pair of Clebsch-Gordan coefficients

in (4.50); we then obtain the equivalent expression

;=T (2y2+l) (j2v+l)(2V+l3* W(/3/2//1jXv) W(/3/2//1;X'vO
v,v'

Xc( /3vi;m3-T3,m-r-m3+ t^) C( ^v'/jny T3,m- r-ny- ^)

X^_c( -4 ^v;m--c-11^-1^+r3,m1) C^^v^m- r-nynyryn^) (4.54)
=1

The sum over m. gives ^ ,by the orthonormality relation, so Q is

reduced to:

, <^T <-— ^- (2/+l)(2v+l)(2/,+l) .
Q0=(4n)^ ^ Z g * 2Al *—*hhPlv

•2> "1 m»m5 T3 v
Xv)

A.* A.

Xw(/372/^1;X'v)[c(/ij;m-r, T)]2 C( £±\ J;00) C(i1X'/;00)
Xc(/_X'/2;00) I* l[c(/3v/;m3-T3,m-r-m3+r3) C( /^j^ny T?, c^lf

XC(i3xi2;00) (U.55)
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where the last four Clebsch-Gordan coefficients have been written with

the brackets to indicate how we will do the sum on TT and m,. Using a

symmetry relation we may write

v-(m_- r,)+m-C/p /?,-, \* /+v-/»c(Y3v/;vr3,M-T-v^)=(-) ' 3 (§4^-) (-) '

Xc(/v J>5+(m-T),-(m-TMivV) (U-5*)
and we now recouple the last Clebsch-Gordan coefficient in (4.56) with

the last in (4.55) to obtain

v-(iil- "C, )+m- T+-f+v- -K. /-./ , N2 ^ -,!•(-) ^ ^ (Ir+l) S"C28+l)(2y3+l3aW(/,rJ3i;^8)
C(/sJ3;m- r,ny(m-x)) C(vfs;ny zyfa- *), r5) C+-57)

and we do exactly the same with the other pair in the last bracket of

(4.55), clearly the phase must be unity

2 i

ZT"] s? C(2s+l)(2s«+ll]2 (2y+l) W(jfvj iSy b) W(Aji; ^ B•)

X^C( 2j ;m--c-,m,-(m-r)) C(/s'j ;m- C,ny(m-c))

X^C(vis;m3-t3-(m-7:), Z^) C(v§s<;ny Eydn- X), ^ ) (4.58)

Applying a symmetry relation to each of these last two Clebsch-Gordan

coefficients and then using the orthonormality relation yields A ,.
ss

For the Clebsch-Gordan coefficients in the sum over m, we use two

symmetry relations to write:
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2f£c(isJ5;m-t,ny(m-t))] =£^ Z" £c( j^y^(m-r J-m^ (4.59)
2jyi

So, by the orthonormality relation the sum over m, is 0 i . Now Q

becomes:

(2/+l)(2v+l)(2y +1)(2J,+1)(2b+1)
Q = (k*y > > > ± 2 2
0 ^C Z__ ^—- (2/+1)

X X'

%/vj^; i3sT|2 W(^4 ffaxv) W(/3 f2 //^X'v) C(/1X7;00)
2

C(^1X^;00) C(^3x72;0,0) C(/y/>;0,0) I* I [c( i^jjm-r, rTj

(4.60)

We use a symmetry relation for the Racah coefficients to write

(w( A^J /3s)f =[w(^ j3v|;s /3))2 (4.61)
and the sum over s is, by the orthonormality of the Racah coefficients,

g" (2s+l)(2/3+l) fw(/j3v|;s/3)| =1 (4.62
s

The sum over v is done in a similar fashion. From the symmetry re

lations

W(/5/2^ A*v) W^3 U*V X'V) =W( V^2^vX) W(/3//2/rVX')

(4.63)

and the sum over v is

^(2v+l)(2X+l) W(i3/y2/1;vX) W( ^ //g/^vX')=fu, (4.64)



Consequently, Q becomes

* CTT (2 ^/+l)(2j,+l) r -12r -,2
ft°=(M fr, (2AD(2x!d [><>WH ["(-V^H

m

2
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X/i| [ct/ljjm-r, r)]~ (U.65)

Now, if we wished, we could use Q to calculate a cross section; however,

<Jz>
we wish to find —- . We find this quantity just as we did before,

J

^m pop(m)
by calculating — . One should note that m occurs in (4.65)

j2fpop(m)
m

only in the last Clebsch-Gordan coefficient and that the quantum numbers,

/ and j, that are the arguments of the coefficient are not summed over

<Jz>
in evaluating Q . Thus when we form the expression for —; we have

o j

/, N ^ m£c(?£jjm-r,r)T
\Jz' m J

[c(y|j;m-r,T)]'

2

(4.66)

and all the other factors have canceled. We now evaluate this expression.

First we use the symmetry relations to rewrite the Clebsch-Gordan co

efficients in the denominator; thus

2 [c(Mj;m-T, zf -^ ^[c(^£;^.mf - Sfci (4.6T)
m m

To accomplish the sum in the numerator of (4.66) we use

C(jlj;m,0) = —£=: (4.68)
yj(j+i)
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and the sum we now have is

^/jTj+T7 cU^j;m- C, Z) C(jlj;mO) C{X |j,m- T, t) (4.69)
m

We recouple the first two Clebsch-Gordan coefficients in (4.69), thus

C(iij;m-T,C) C(jlj;m,0) =^"/l(2v+l )(2j+l j]2 W( j?|jl;jv)
v

C(ivj;m-T,T) C(ilv;z:,0) (4.70)

When we substitute (4.70) in (4.69) the remaining sum is done as follows:

?C(yvj;m-T,r)C(/ij;m-r,L)= (|^f l^f
>(^C(j^v;m'r"m) ^Ji^^r-m) =^ §vi (*.7l)

m

So we now have

-^- =i[(2J+1) j(j+l)2]2 C(ili;r,0) W(i|jl;ji) (4.72)
and we now use

C(il|; 71,0) = (4.73)

K 2 2

and the explicit value of the Racah coefficient

3

w(>P*ji;j£) =(-)^+1-J"2 w(jjM;i/) = ^ =pr
/_2j(j+l)(2j+l)3j2

(4.74)

Consequently we obtain our result:

^ =fj^ fj(j+i) +1 - /fy+Dj (^.75)
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We note that we still must choose the value of "C . First we remark that

(4.75) clearly is an odd function of U, thus — changes sign if the

polarization of the initial beam is taken opposite to the beam instead

of along the beam. So, even though we have averaged over the meson di

rection the initial direction of the meson's spin is still with us. One

also notes, that had the initial beam been unpolarized then we would now

have to sum over t; and we would find that ^ j^ = 0 as we should. ~C is
z

now taken as \ and (4.75) evaluated for the two possible cases:

^7^ =5(1 +j) ' i =X+i (M6a)

-^-= -\ I J=y-\ (*.76b)
We wish to emphasize that these results, (4.76), depend only on

the assumption that the mu mesons have random direction when they are

captured. The results do not depend on which electron is ejected, which

partial wave in the incoming beam is captured, or which partial wave the

electron is emitted into. Further, in setting up the wave functions

used in obtaining (4.76) we were careful to point out that the wave

functions were defined in such a way that one could introduce any re

finements desired; therefore the results do not depend on the atomic

model. Of course, when we deal with an ensemble of mesons we must know

the relative number of mesons captured into each state j; for this

purpose we will use the distribution obtained in Chapter III. We must

now determine if the assumption of random directions is valid.

4. Randomization of a Mu Meson Beam by Scattering
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We wish to determine what the effect of scattering is on the mu

kE*kE is dei,ine<1. This
o

quantity is just the expectation value of cos & where © is the angle

between the original beam direction of the mu mesons with energy E and

the direction of the mu meson when it has energy E. If <_kg-k^' = 1
o

the mu mesons form a beam; if <^ kE'k > = 0 the mesons have random
o

directions. To calculate this quantity we proceed as follows. Define:

A

z current /,, „„ \
s = cos 6? = (4.77a;

z initial

s' =coss '=y c^ent+l (4.77b)
k . ... .
z initial

where G is the angle between the initial direction and the direction

after some scattering has occurred. Then & ' is the angle between the

direction of the meson after one more scattering event and the initial

direction. Then we may write

As = s*-s = cos Q cos «S + sin© sin S> cos f - cos & (4.78)

where & is the angle that the meson was scattered through by the

scattering event current + 1. Now we may average /\ s over an incre

ment of path £ x, and obtain

^<S> =n \CT(e)&yLAs (4.79)
A x J

where C~{ ©) is the differential scattering cross section, n, the number

of scattering centers per unit volume and d Jh the surface element.
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Using (4.78), and observing that the second term of (4.78) does not con

tribute, we have

^<s>
& x

where we have used the definition, (4.77a). We note that the integral

in (4.80) is just the definition of the transport cross section, tT"^',

so we have

Now we use the identity

dx = dE/(dE/dx) (4.82)

and dE/dx is given by

f§= - <i\E> n^r-T(E) (3.2)

as in Chapter III; use of (3-5),

then yields

= -n<*> <T(&) (1 - cos €> )dJL (4.80)

dx= dE (1|-83)
n K-E ^.(E)

where

2my. M

(m.+Mf
A

M is the mass of the scattering atom. We now integrate (4.8l) to obtain

rx<s> =exp (-n \ CT^. dx) (4.85)
Jo
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we interchange the limits in (4.85) to remove the minus sign and use

(4.83) to find

fEo<s> =exp (-M °f) (4.86)
-*E

l/Kand clearly the right side of (4.86) may be evaluated as (E/E ) '*.

Thus we obtain the result,

<kE-kE> =(E/E J1/* (4.87)
o

This expression tells us, in effect, how well the mesons remember their

initial direction. To see what one may say about the direction of the

mu mesons when they are captured it is necessary to compare the energy

dependence of their direction memory with their capture rate. In Figure

12 we have taken E to correspond to p = 70 7^fv and taken carbon as the

scattering atom, as was done in Chapter III, when we derived the initial

distribution. The nearly flat curve in Figure 12 shows the number of

mu mesons remaining free at energy E; the other curve represents (4.87).

Thus we see from Figure 12 that the vast majority of the mu mesons will

have forgotten their initial direction before they are captured. There

fore we have shown that we have a very good description of the physical

situation if we assume that the mu mesons have random directions when

they are captured. Further, we understand why we obtained a result that

could not be compatible with the experimental facts when we assumed that

the mesons were captured from a beam.

5. Discussion



L°

X-

o.ts

£>,So

\
\

N
o,,zr

U

r> ——.

J-.6 •).n O.** T- &

Effect of Scattering on Meson Beam

Figure 12

I.O

Relative number of free

mu mesons at energy E

II. \k 'k-g/ ; memory of

initial beam direction

at energy E

o
VJ1



106

The results of sections 3 and 4, above, lead us to a very definite

conclusion concerning the amount of polarization the mu mesons retain

7
after they are captured . We reproduce these results here so that we

may point out some of their consequences.

^- =5(1 +3) ; J= t*\ (*-76a)
Oz> 1

j " 3 '

First we note that if a mu meson is captured into a state £ = 0, then

it remains completely polarized. Next we point out that there appears

to be an asymmetry in the expressions (4.76a) and (4.76b), this is be

cause we calculate —: ; in particular the minus sign in (4.76b) does
J

not mean spin reversal for the mesons that go into states with j =£ - \.

For the purpose of this discussion we write (4.76) in terms of \CT *J

«Tz> -5 C1" 3^ ; J- •?-* ("•88b)
From these we see that the mesons never suffer a spin flip in

capture; however, we note that those mesons captured into states

j = J( - \ are always depolarized to some extent. This is understandable

y -1 (4.76b)

7. There have been previous attempts to determine the depolarization
due to capture. None of the articles are very comprehensive. See:
J. Von Behr and H. Marshall, Nuclear Phys. 14, 342 (1959); also
I. M. Shmuskevitch, Nuclear Phys. 11, 419 (1959).
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when one recalls that there are values of m, the projection of j , for
z

which the bound state wave function is an eigenfunction of (J~~ when

j = X + b when j =y - \ eigenfunctions of CT do not occur.
z

We now discuss a statement that we have made several times pre

viously; namely that the depolarization on capture is insensitive to

the distribution of the mesons among the atomic states. As we mentioned

in section 2 above, a fair value for j according to our distribution is

2« Therefore the term — in (4.76a) represents a correction of about

20 per cent. Consequently, a 10 per cent change in our distribution

would amount to only 2 per cent change in the depolarization due to

capture.

The results of Chapter III and sections 3 and 4 above constitute

an adequate solution of the depolarization suffered when the mu mesons

are captured; it is now necessary to study the events that occur after

the mesons are captured.



CHAPTER V

DEPOLARIZATION OF MU MESONS IN THE ATOMIC CASCADE

1. The Nature of the Atomic Cascade

As shown in Chapter III the mu mesons are captured into highly

excited states of the mu mesic atom. The mesons in such states make

transitions to the lower states and in general suffer some depolari

zation in these transitions. There are only two possible types of

transitions that the mu meson may make; namely, radiative transitions

and Auger transitions. The mesic Auger transition was defined in

Chapter I, where typical rates for these two processes were also

presented. The matters to be discussed in this section are the details

of the cascade as determined by the selection rules and the available

energy.

First, it is necessary to recall that the states of the mesic

atom are described by the three quantum numbers n, x, , j. The

principle quantum number n gives the energy of the state. A given

state n is n-fold degenerate in states of J ; that is, for a given

state n, X takes on the value 0 £_/_f£_ n-1. The degeneracy in energy

is lifted by the finite nuclear size but we have no need to consider

this small effect. For each state J( there are two states of

j, j = J •+- f and j= X - b except when J —• 0 where there is

one state j — \. We now temporarily confine ourselves to a discussion

of the radiative transitions. It is well known that the electric

dipole transitions are the only transitions that occur with significant

probability in hydrogen-like atoms, excluding meta-stable
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states of course. The selection rules for electric dipole transitions

are

^"' tl (5.1a)

4j - 0, ± l (5.1b)

Since we will see, presently, that the transition rate depends strongly

on the available energy we exclude transitions with -A n = 0 because

the splitting between states of different M, belonging to a given n, is

never sufficient to make such transitions competitive. Comsequently, we

may add the selection rule,

A n /._ -1 (5.1c)

Now that we have the classification of states and the selection

rules we can discuss the possible transitions. In Figure 13, we show the

state of a mu-mesic atom ina schematic manner. The possible paths that a

mu meson may take in reaching the ground state are shown for two assumed

initial states. There is a significant amount of understanding to be

gained by a study of Figure 13. First one will note that the possible

transitions are either straight down or further to the left in such a

representation. This means that the eccentricity of the orbit of the

meson is never increased by the transition. We use the term eccentricity

as a measure of n - j/ because in the Bohr theory the states in £ at the

1. Hans A. Bethe and Edwin E. Salpeter, Quantum Mechanics of One and TVo-
Electron Atoms (Academic Press, Inc., New York, 1957) Chap. 4. This
includes a comprehensive treatment of radiation by hydrogen like atoms.
The radiative decay of the meta-stable state is discussed beginning
with p. 285 of the chapter cited.



j Ik §k
£ 7

§k 5i22 4i 4i 3i3i 2| 2i 1
6 5 4 3 2

7 J
6 5^32

0.
2.

1 oi ll ll 1. 1.
±2. 2. 2.

1 0

ii ii A
2.

2. 2.

SOME STATES INVOLVED IN THE ATOMIC CASCADE SHOWING POSSIBLE BRANCHING

FROM TYPICAL STARTING POINTS

Figure 13

H
O



Ill

extreme left of Figure 13 are the circular orbits (n- / - 1); as one

goes across Figure 13 toward the right the orbit becomes less circular

until one reaches the most penetrating orbit (X ~ 0). Further, it is

to be noticed that once a meson is in a state j = X •+" \ then only a

ft £, •=. -h 1 transition can cause it to go into a state j' -r Jf - \.

In particular, for states for which n- ^^ 2 there is no possibility of

a meson leaving a state of type j r X +* \.

There is an important fact that may be deduced from Figure 13

that we wish to point out before we go further. Consider a meson captured

into a state n- X - 1. Then it must be in one of the two possible states

of j. For mesons in these circular orbits, the selection rules require

b n - -1, /}j ; 0,-1. Since the two states in j are degenerate in

energy the branching ratio for a meson in a state j =. A -^ to go to

a state j' r £ - 3/2 or to a state j' rr J* + \ =• j is determined

only by angular momentum considerations. This fact is utilized in some

previous work concerning the problem at hand. We will discuss this

in section 6 below.

There is one question that arises from the preceeding; how does

a mu meson leave the 2s^ state? The answer is given in section 4,below.
2

It is clear that to determine how the mesons reach the ground

state from the states shown in Figure 13 one must be able to compute

the various branching ratios. The branching ratios are determined from

the transition rates for the various specific transitions; and the theory

of these transition rates is well known. The reciprocal lifetime for a

transition from a state j', J ' to a state j, X with emission of an
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electric multipole, E-L, is given by:

l_=2L_Jt^ (2/+-1) (2j-rl) (2/^1) I" C{J/,L. 0Q)
~c l (J2L+-1) : :] L

Xw(jij'Y'; iLfj

^.c

2

^ e (kR)^ML (5.2)

where

,JL Vi(r) (f) Rn.^.(-) ^ (5.3)

and where Pnp'r) is a radial hydrogen-like wave function. The meaning

of R need not concern us; since we are only interested in electric dipole

transitions (L —l) and R cancels in all cases. Therefore, we have

roc

M - \ R R r3 dr (5-4)

Jo

This integral may be evaluated in general and is given by:-^

R ,R , a , r3 dr - il) (n -fi) I(n'+l-l)
n,i n ,J>-1 k (2J-1): L (n-/-l) .» (n'- J) '.

"J o

J-h 1 n+n'-2,i-2

xn+ n' \; •> i
(n+ n')

2. M. E. Rose, Multipole Fields (John Wiley and Sons, 1955) p. 78. This
formula was derived for application to nuclear radiation, thus the
parameter R. We note that the condition kR << 1 is well satisfied
for the radiation we discuss when R is taken as the meson Bohr radius.

3- Bethe and Salpeter, op. cit. p. 262,
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and

G= [2F± ( -nr, -n'; 2£ ,^Ui_
*- (n - n' )c:

^T^\ 2 2F3 ( "nr "2> ~̂ ; 2*> -7JLJLL\2n + n' / 2 1 V r (n - n1)
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(5-5b)

nr - n -£ - 1 (5.5c)

n; - n - y (5.5d)

We can discard the constants in (5-2) since we need only the branching

ratios. Then for the electric dipole radiation the relative rates are

obtained from:

1_ qc (2^f 1) (2Jt 1) (2T + 1)
n

X[c(yy-1;0 0) W(jij'i';il)] E M^ (5.6)
where for our purpose E is defined as:

E^( 7"n^) (5.7)
Thus the quantity E is proportional to the energy available in a given

•3.

transition and we note that the transition rate is proportional to E .

For this reason, the branching ratios that may be derived from (5>6) will

tend to favor the maximum decrease in n. One also notes that thebranching

between states in j for a specific transition in Jf and n is determined

by the angular momenta involved and is independent of E and M.

The rate of the Auger transitions in the cascade is discussed in

section 4, below. It suffices to state here that, the Auger transitions
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do not cause any transitions that violate the selection rules for

radiative transitions, within the limits of a good approximation.

2. Depolarization in Radiative Transitions

We now give a derivation of the depolarization due to radiative

transitions. After we have found how the different transitions affect

the polarization, we may continue with the study of the cascade.

By definition:

p is the meson population of a final state m belonging to jand J?;

p . is the population of an initial state m' belonging to j' and jj\

A , is proportional to the transition probability from state
m m'

m' to m.

4
Thus we have

2

P(Efinal) (5-8)
„ .J / . m , t, -r i ,m'

_P
Where V is the current operator and A is the vector potential for the

radiation field. The vector potential is taken as

A := l/TJT^E 1 (2L+-1)*2 D ((9,9, 0)
L,M MP

XY A (mag) fiPA (el)"""] (5-9)
LM L M J

L

where D is a rotation matrix, P -=" ~L 1. Since we are only concerned
M P

4. For information concerning the rotation matrices and the multipole
potentials see: M. E. Rose, Elementary Theory of Angular Momentum
(John Wiley and Sons, New York 1957) Chapters 4 and 7 respectively.
For proof of the Wigner-Eckart theorem see also Chapter 5>
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with electric dipole radiation we may rewrite (5-8) as

2

\ CO \ DL (<P,&,Q)\ fc(j'Lj; m', m- m')]
'mm* IMP I L- J

2

d.

final

where we have used the Wigner-Eckart theorem.

There will be no need to consider the reduced matrix element in (5.10)

further since it is independent of m. We proceed as follows. The product

L
of D„ p may be expanded;

L* L M-P L L M-P

D D - (-) D D =*>(-) C (L L V ; -M, M)
M P M P -M, -P M P V

XC(L LV ;-P, P) D^ (5.H)
0, 0

But

D = P v/ (cos & ) (5>12)
0, 0 v

Now the population of the state m' is expanded;

P , - £ a C(j' n j1; m', 0) (5.13)
m' n n

which is just a power series in m.

The population of state m is given in terms of p , as

Pm -5 pm' A mm' (5.1*0

Substitution of (5-H) into (5-10) and then (5-10) into (5-13) yields

-— —. _ M-P
Pm ~ ^T^ an C(j' n j'; m, 0) *&>.(-) C(L L V ; P, - P)

2 fXC(L LV; M, -M) £~ C(j' Lj; m', m-m1) J P^(cosQ) d/L (5.15)
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Since,

Pv (cos 6>) &JL = £
<J y,

S a C(j' n j'; m', 0) fC(j'L j; m', m-m'j~) _L_
n n '— J 2L-f-lm m'

we obtain

V o
2

(5-16)

We may drop the factor —i—. Now, the notation is altered as follows.
J 2L+1

Define Sn such that

*m ^%. an Sn (5-17)

Thus,

S -
n m'

'- C(j n j1; m', 0) £_C(j' L j; m', m- m')] (5-l8)

Use of a symmetry relation yields

L +• m - rn' 2

C(j' Lj; m, m- m') = (-) I¥^~tJ °(L dJ'-:m'"m^ m)
(5-19)

Next a Racah recoupling is used.

L+-m - m' . x

(_) ( 2j'"^A) ? C(L J J'; m' "m' m) C(j'n J'; m'' 0) =
\ L + m - iV ±

(2j+ 1) (-) ZL~ (2 »'+• 1) C(j nv; m, 0) c(L j', m'-m, m)

X W(L jj'n; j1/) (S.20)

where V is now different from the previous V . Sn becomes

S = (2J-+- 1)2<§:W(L j j' n; j' W) (2 I/-+- l)2 C(jni/;m, 0)
n ^

L -f m - m'

X ^- (0 C(j« L j; m', m -m') C(L Vj'; m' -m, m) (5.21)



Using the symmetry relations one obtains,

L + m - m'

!JE(-) C(j« L j; m1, m - m') C(LVj'; m' - m, m)

m"

1.

(gvt lj C(J' Lj; m', m-m') C(j' LV;m1, m-m1)
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= (¥^)\v (5-22>
Using a symmetry relation to permute the arguments of the Racah

coefficient in (5-21) now allows us to write

L+n - j' - j £
S = (-) [(2j^l) (2j'-h 1)1 W(j' j' j j; n L)
n *-

XC(J n j; m, 0) (5-23)

We define

Sn = Tn C(j n j; m, 0) (5-24)

for the sake of compactness. The condition on n is that n^2 Jmin> •

Where j . is the minimum possible value of j. Here j . = ^ so
mm. min. t-

n = 0, 1. We now use P to designate _S_.^_- • Thus for the final state
J

P - J2 (5-25)
j ^Prn

m

Since

Pm^a0Sc^a1S1 (5-26)

and since SQ is an even function of m and S-^ is an odd function of m

we have
^g: a-, S, m

^^—r- (5.27)
J^E ao so

m
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taking m = ]/ j (j-f- l) C(j 1 j; m, 0) and using the definition of T

yields 2
*F ax TL i/j (j-Hl)" £c(j 1j; m, 0)1P= ^ (528)

j ^ ao To
m

and we have immediately

£a0T0 - (2 j+l) aQ TQ (5.29)
m

Further; use of the symmetry relations gives

lF£c(j 1j; m, of/ = Si+1 S£c(j . 1; ^ _m)J 2= SjJ^
(5-30)

Therefore

)—; r a TP- h (J + l) J^J: ,s ,.v
3J aQT0 ^'^

For the initial state .
*~ (a0+ai C(j' 1 j'; m', 0) m'

P'~ j' ^" (a0+-ai C(j' 1j'; m«, 0)J (5'32)
m1

The numerator and denominator of (5.32) are evaluated in the same fashion

as was done for (5.28); thus

P. = Vv i.v+ 1) !i (5.33)
3d* aQ

The quantity that concerns us is the change in the polarization in a

given transition, therefore we form

1.

p_ _ m+Drl2 !i (5.3U)
p' ]Jy+ 1) j J t0

To evaluate this we need only take the part of (5-23) that is defined
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as Tn and evaluate the Racah coefficients for n - 0 and n -=^L We find,

T0 - 1 (5.35a)

T - .1' (J' + D + .1 (.14-1) - L (L4-1) ,

1 C^cj'+d (j +i)j]i (5'35b)
and consequently

p ^.v (y-h D + .1 (j + 1) -l (L-f-i) , 6v
P' 2 j (j'-r-l) °'Jb;

We set L = 1 since we wish to consider electric dipole ratiation. Now

we may evaluate p/P' for the three possible cases 4 j =0, 1-i. We

find:

1 (5-37a)

; 4j = 0 (5-37b)

-% ; Aj =+1 (5.37c)

Thus we can find the change in ^— for any possible radiative
<J

transition. We note that for A j = - 1 transitions there is no depol

arization. For H j =-/-1 transitions the maximum depolarization

corresponds to P/p* - -~- . The most severe depolarization is due

to the A j - 0, j - \ transitions; here P/P1 — -l/3- This type

transition is of considerable importance since it is the final tran

sition for many of the mesons (2px —> Is,).

3. Pure Radiative Cascades

Now that we know how much the various transitions depolarize the

mu mesons we can determine what the remaining polarization in the ls^
2

JT -1 ', &l =

P , 1

P* _ j (J + l)

p 1 1 1
P' - 1 /,. . ,x2 - X
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state should be. In order to treat the cascade, we need the following

formulation. We denote a quantity proportional to the partial width of

t r7" y ja state n', £ ', J' for a transition to a state n, X , j by / , * , .,.

Then we may use (5.6);

- fc(yiy '; 0 0) (2/^ 1) (2J + 1)
n', y ', j1 L J

2

*£w(j y yj>; *i)J e3 m2 (5.38)
Then the total width of the state n', £ ' j' is

P> / , .
(5-39)

r-i _ ^- rin> y >j
'n', Jt ', 3' ~~ n, ,_ ,jIn', £ ', j'

It is possible to do the sum on j as follows:

We use a symmetry relation to rewrite the Racah coefficient in (5-38);

,H X ' - \ - 1
w(J J>y Xx-> *D =• (0 w(i y j' l; j7 0 (5-40)

Then for the sum over j we have

2-^TT s<2j*D (2f-u) [»(Uj' 1; jyo] i ^-^n:
(5.41)

by the orthonormality of the Racah coefficients. Therefore

2

E:
(5.42)LX' y~ %. \jrhri^jY*x>-> 00)T e3^.

The Clebsch-Gordan coefficient in (5-42) has values such that

(5.43)
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So (5-42) may be written as

H - l P>L / ' E3 M2^ *=^r ( 0'-h 1) E3 M2]
(5.44)

Evaluation of this requires evaluation of the quantities M for all the

possible transitions. Consider now an initial state containing N mesons

Then the fraction of these mesons that make the transition n', J( ' jL^.

n, X , j is given by
n n, / , j

f - /n<, / '; y
A n', ^ ', j1

We mention that there are in general n - £ states n that are accessible

from a state n'.

The cascade problem was programed for the electronic computer.

Quantities equivalent to (5.45) were computed along with the change in

polarization for the various transitions. This was done by setting up

arrays in the computer memory similar to Figure 13- The initial distri

bution as a function of j and the corresponding initial polarization as

determined by (4.76) were computed for each state. The resulting ensemble

was then treated in a static fashion by considering first the states

n — l6. The program computed the change in population and polarization

in all the other states due to transitions out of the states n = 16;

states with n=15 were then considered and so on until all of the mesons

were in either the 2s^ or 1 sx state. For reasons given in section 4,
2 2

we assert that the Auger transition from the 2s5 to the ls3 state causes

no additional depolarization. This transition will always proceed by
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electron ejection since the 2si state is metastable against radiative
2

transitions.

Some results derived for pure radiative transitions in Carbon

are given in Figures l4 and 15. In Figure l4 the final polarization

of mu mesons, assumed to be captured in specific states n and n is

given. This includes the depolarization due to capture. If we take

the mu mesons to be captured as given by our initial distribution the

polarization in the lsx state is
2

P = 0.24 (5.46a)

This leads to an asymmetry coefficient of

a = 0.08 (5.46b)

which is not in agreement with experiment, since the experimental

asymmetry coefficients do not exceed 0.06.

In Figure 15 we show the relative number of mu mesons that pass

through the 2s state when they are captured into states of different

belonging to nr 8. As we are considering only radiative transitions

here, these are the relative numbers of mesons that would not producea

mesonic K - X-ray. We mention this point because of its bearing on the

yield of X-rays per captured mu mesons, which we discuss briefly in

section 6 below. It is clear from Figure 13 that the complexity of the

cascade is such that any attempt to use the observed X-ray intensities

to extrapolate back to the initial distribution will fail.

There have been two papers, dealing with the problem justdiscussed

which did not contain obvious errors. In both of these the problem was

5. M. E. Rose, Bull. Am. Phys. Soc. 4, 80 (1959); see also I. M.
Shmushkevitch, Nuclear Phys. 11, 4~19 (1959). An additional paper,
V. A. Bzhrlashyan, Soviet Physics-JETP 36(8), 188 (1959), contains
the same approximations but obtains an incorrect result.
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considered in such a manner that the radial matrix elements were

ignored. This can be done by, either restricting one's attention to

the circular orbits or by just assuming all the matrix elements to be

equal (no />J[^j4). Using either approximation one finds that the polari

zation is reduced by about \ due to radiative transitions. In the

study discussed in this section we did not attempt to seperate the

depolarization due to capture from that due to transitions. Our

results, however, are rigourous in that nothing has been left out.

Since the asymmetry coefficient we obtain is not in agreement

with experiment, it is clear that we must consider the Auger tran

sitions as well as the radiative transitions.

4. The Auger Transitions

We must include the Auger transitions in competition with the

radiative transitions in order to determine the final polarization.

It has been shown by Burbidge and de Borde that the principle contri

bution to the mesonic Auger transition rate occurs when the Auger

transition satisfies dipole selection rules. In other words, the

same selection rules as those for emission of electric dipole

radiation, apply to the ejection of electrons. Now, this yields

the following significant simplification when we consider the

Auger transitions. When we derived the expressions for the

polarization change in a given transition in section 2 above

6. G. R. Burbidge and A. H. de Borde, Phys. Rev. §9, 189 (1953) and
also A. H. de Borde, Proc. Phys. Soc. (London) A67, 57 (1954).
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we did not need to consider the reduced matrix elements but obtained all

of the results from considerations of the angular momentum. Thus the

results obtained depend only on the multipolarity of the transitions.

Therefore the change in polarization in a dipolar Auger transition is

given by (5-37)• Further, as we mentioned in the preceeding section,if

we consider a monopolar Auger transition, then L in (5-36) is zero and

j =. j'. This leads to

?- - 1; /M = 0 (5-47)Ai

So there is no depolarization in the 2sz—y,lsl transition. Thus weknow
£ 2

how to calculate the change in the polarization for the Auger transitions.

Next we must determine how the competition of the Auger transitions

with the radiative transitions is to be handled. Burbidge and de Borde

also show that the Auger transitions favor fa n zz. - 1, whereas the

radiative transitions favor /j, n ;= - maximum. This is an important

difference for it is clear that, in general, the more transitions a mu

meson makes, the greater the depolarization. There is, however, no simple

formula for the Auger transition rates, such as (5>6) for the radiative

rates. Therefore we use a schematic method to handle the competion.

Figure 16 shows the relative probability of radiation toAuger transitions

for certain transitions and different elements. The Z dependence comes

in because the radiative rates vary as Z whereas the Auger rates are

essentially independent of Z. The graph is based on the work of Burbidge
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7
and de Borde and is taken from a paper by Rainwater. To deal with the

Auger transitions we use the data of this graph and one other fact.

Demeur has shown that for A n -=. - 1 the dipolar Auger transitions have

the same branching ratio between transitions that involve Q£ =- £_ 1

as the radiative transitions. In view of the information just given,

we were able to include the Auger transitions as follows. The computer

program for the radiative transitions was rewritten so that for states

n ^ M only radiative transitions of the type /£ n =- 1 were allowed,

where M is an integer. For n <M the program computed as it did originally.

This scheme includes the effect of the Auger transitions with reasonable

accuracy. Mis determined from Figure 16 as a function of Z.

5. Theoretical Asymmetry Coefficients for the

Decay of Bound Mu Mesons

For Carbon, Figure l6 tells us that all of the transitions should

be Auger transitions until the mu mesons reach the states n •=. 3- From

then on the the normal radiative transitions occur. By utilizing the

scheme outlined in section 4 above, we find that the final polarization

in the Is state of mu mesons stopping in Carbon is
2

P = 0.133 (5.47a)

7. Rainwater, Ann. Rev. Nuclear Sci. 7, 1 (1957). The graph appears in
this source because of the bearing of these relative transition proba
bilities on the still unexplained experiments of Stearns and Steams.

8. M. Demeur, Nuclear Phys. 1, 5l6 (1956). This work was also an
attempt to understand the data of Stearns and Stearns.
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This gives a theoretical asymmetry coefficient,

a - 0.044 (5.47b)

this should be compared with the two experimental values given in Chap. 1:

a - 0.041 0.005 (5.48a)

a - 0.054"t 0.006 (5-48b)

Q

and a more recent value^

a r 0.045 (5.48c)

The agreement is satisfying. Only one of the reported values of the

three asymmetry coefficients is inconsistent with out result, and this

is only a very small difference.

Although our initial distribution was derived for Carbon, we can

assume that it will not vary significantly when we goto heavier elements

If we make this assumption, then we canpredict the asymmetry coefficients

for heavier elements by stopping the Auger transitions at higher n values.

With the last Auger transition being into the state n r 4 we find

P rr 0.153 (5.49a)

a = 0.051 (5.49b)

and with the last Auger transition being into the state n rr 5 we find

P = 0.183 (5.50a)

a = 0.06l (5.50b)

The limiting value is, of course,

a = 0.08 (5-46)

9. Oral communication from the floor, Session 0, Washington meeting of
American Physical Society, April i960. No limits of error *ere
stated.
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which we found for pure radiative transitions.

The values (5.49) and (5-50) would apply to elements with spin zero

nuclei around Z r: l4 and Z — 30 respectively. If the elements contain

non spin zero contaminants then the observed asymmetry coefficient should

be corrected for this before comparing with the values given, since the

depolarizing effect of nuclear spin is very strong an approximate correction

can be made by dividing the observed asymmetry coefficients by the fract

ional abundance of the zero spin isotope when the element contains pre

dominately spin zero nuclei. Applying this procedure to Cadium, we

correct the observed asymmetry coefficient, 0.055 ±"0.012 by a factor

1.33 to obtain

a = 0.073 t 0.016 (5-51)

since Z - 48 for Cd this is just about what we would predict. There

are two asymmetry coefficients given in Table 1 for Mg. These are OJO36

TT0.003 and 0.058 ~t 0.008. Since the difference is so great, we only

point out that we would expect the observed asymmetry coefficient of

Mg. to be about

a •=. 0.045 (5-52)

after correction for a 10 per cent spin 5/2 impurity.

6. Discussion and Conclusions Concerning the

Theoretical Asymmetry Coefficients

In connection with our treatment of the atomic cascade, we wish

to present the following remarks. The experiments of Stearns andStearns

indicate a discrepancy between theory and experiment concerning the Auger
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transition rate. They were able to deduce that the Auger rates

p
should be of the order 10 times the calculated rates in order to

account for the observed yield of X-rays per stopped mu meson. They

attempt to explain this by assuming that the mu mesons pass through

the 2s state. Therefore, we give the following information; using

our initial distribution and the appropriate schematic description of

the Auger transitions in Carbon we find that 5-4 per cent of the mu

mesons pass through the 2s state and 55-1 per cent pass through the 2p

statej this is not consistant with what they report. As was mentioned

in Chapter 1; their data has been questioned and it would be desirable

to have their results verified. However, as we treated the Auger

transitions in a schematic manner, we can make no stronger statements

concerning their results. Part of the treatment we used for the Auger

effect is based on the assumption that the atomic electrons are

replenished as fast as they are ejected. This is a common assumption;

see, for example, the paper of Demeur which we mentioned earlier. No

substantial evidence concerning this replenishment of electrons has

appeared in the literature.

We have just pointed out certain unsettled questions that might

have some bearing on our results; nevertheless, we feel that we have

presented for the first time an adequate and comprehensive treatment of

the depolarization mechanisms. We conclude that there is no lack of

understanding concerning the observed asymmetry coefficients; by this we

mean that the negative mu mesons are created with complete polarization

10. M. B. Stearns and M. Stearns, Phys. Rev. 105, 1573 (1957)-
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and that they retain this complete polarization until they are captured

by an atom. With these remarks we conclude the consideration of the

asymmetry coefficients.

In connection with the atomic cascade, there is a possibility of

observing the polarization of the x-rays. We now determine the magni

tude of this polarization.

7. Circular Polarization of the Mu-Mesic X-Rays

We consider a radiative transition from the state j', j| to the

state j, $ . The intensity of the emitted x-rays is

1= > MU/J
mm'

j*-\* IK/•)!***/*****) <5-5"
where p , is the population of the state j', J(x, m' and is defined as

before

Pm, =^ an C(j'nj';m',0) (5.13)
n

Then using the Wigner-Eckart theorem we have

Iar2"|DMp| (c(j,LJ;m-,m-m')) pm, (5-54)
mm1

where we have dropped all quantities that do not depend on the magnetic

quantum numbers. If P = + 1 the X-ray is right circular polarized; if

P = - 1 the X-ray is left circular polarized. We also have that M, the

L \2
projection of L is m-m1. Now expanding the product D j as before

we have



I(rX Pm' (")M_P ^_C(LLv'P'-P) C(LLv;M,-M)

133

NM-P

pm- ^
mm'

\2
X(c(j'Lj;m',m-m')] Pv(cos &) (5-55)

where £9 is the angle between the axis of quantization (the initial

beam direction) and the direction of the x ray.

P 1
We now use (-) = (-) and write

2

S=^(-)Mfl C(LLv;M,-M) (c(j«Lj;m' ,m-m'j) (5.56)
m

Using the symmetry relations

C(LLv;M,-M) = (-)V C(LLv;-M,M) (5-57a)

C(j'Lj;m>,m-m') =(-)J'"m' {ffil) C( j'jL;m-,-m) (5-57b)
and a Racah recoupling then yields the following for the first pair of

Clebsch-Gordan coefficients in (5-56)

(-)J,"m,+V(Mf C(j'JL,mVm) C(LLv;-M,M) =

(^j'-mtv^l^iy ^T[j2s+1)(2L+1) 2C(j'sv;m',-m') C(jLs;m,m-m-)

X W(j<jvL;Ls) (5.58)

where we used M = m-m'. Substitution of (5>58) in (5-56) gives for the

sum on m

C(j'Lj;m»,m-m') C(jLs;-m',m-m-) (-)m_m' (5-59)
m
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Use of the symmetry relations gives this as

2

(ijSr) ^(-)L+m"m' (-)m"ra'+1 C(jLj',-m,m-m') C(jLs;-m,m-m')
m

1

The Racah coefficient in (5-58) becomes

W(j'jvL;Lj>) = (_)J+V-L-J' w(j'j'LL;vj) (5-6l)

and S is

s=(_)j+l-m' (2j+i) C(j>j'v;m',-m') W(j'j'LL;vj) (5-62)

But (-)" =(-) and we rewrite I as

I = ]>~ (2j+l) C(LLv;P,-P) W(j'j>LL;vj) Py(cos ©) (-)j+m'
v,n,m'

XC(j'j'v;m',-m') an C(j'nj';m-,0) (5.65)

where we used (5.13). We do the sum on m':

(-)J+m' C(j'j'v;m',-m') C(j'nj•;m',0) =
m'

.1

^(_)j+m- ^j'-m' c(j'j'vjm',-m')C(j'J'nim'f.m')(ggi) (5.64)
nr

After we have applied the usual procedure to (5-64) we find

=(-)J'+J(i^/^„ (5.65)
m'



135

So

I0r2.(2j+1) W(j'j'LL;vj) Py(cos &)C(LLv;P,-P) ay (t£^ (-)j'+j
v

(5.66)

We need only be concerned with the quantities that contain v; there

fore we have

IOrTav P(cos &•) W(j-j'LL;vj) C(LLv;P,-P) 1 (5.67)
U2V+1

V

But v is n and n is limited to be •£- 2j . . j . is h. So we have
mm "min d-

ICC^n P (cos ^ ) = I +1, cose (5.68)
4L. V vv o 1 v
V

We evaluate I and I., as follows:
o 1

IQ = aQ C(LL0;P,-P) W(j'j'LL;Oj) (5.69a)

I. = a C(LL1;P,-P) W(j'j'LL;lj) —k (5.69b)
11 vT

which may be determined to be:

Xo =an (-)J'J,+1 ~ 1 (5.70a)
° ° (2L+l)(2j-+l)2

I1 =a1P(-)^-J J'(j'+l) +1,(1*1) -j(j+l) ^ (5>?0b)
L(L+l)(2L+l) [4j'(j'+l)(2j'+l)j 2

and the ratio I, /i is
1' o
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I,
- = .ipi

L(L+1) J4j'(j'+1)]
Now we found before, that the polarization of either the initial or

final state could be expressed in terms of a../a . Thus from (5.33) we

have

Ll _ 1rj'(j'+l) +L(L+l) -j(j+l) (5_7l)
2

a1 =—-^—:pa (5>72)o j'(j'+l)/

<Jz>where P^, is just —- for the mu mesons in the emitting state. Thus:

h.= .i j'(j'+i) +l(ih-i) - j(j+i) r r (5 73)
Jo 2 L(L+l)(j-+l) r

and L is taken as 1 since we deal with electric dipoles. The transi

tions of interest are 2p, /• / ls^ and 2pi-^'lsi; since the K-x rays
•>ld 2 2 2

are those that one might observe. Therefore we evaluate (5«73) for

j' = j+1 and j' = j, respectively.

Y1 =-§P P^ ; J' = j+l (5.74a)
o /

I P P

T--lx£) > J' =J (5.74b)

For the K-x rays j = \ in (5.74b).

The experimental determination of these ratios may be quite

difficult because one cannot get enough mesons to have a high counting

rate. To get good results, the 2p / - 2p^ splitting should be well

resolved. For carbon, we predict that 55-1 per cent of the mesons pass
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through the 2p state, with the statistical distribution. For these

states, we predict

^= ^T^- »•« i"2p3/2 (5.75.)
/j \

P - ,z =-0.25 in 2pi (5.75b)
'MM J 2
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APPENDIX A

The following relations are those that were used in the various

calculations. Derivations, references and additional information may

be found in the place cited.

The basic symmetry relations for the Clebsch-Gordan coefficients

1
are:

C(j1 J2 J3; m1 n^ m3) — (-) ° C(j1 Jg jj-n^, -n^, -m)

(Al.la)

1 "2 "3' "1 ~2 ""3' '' "w2 °1 °3' "2' "l m3'C(j, «L J.J mn m^ mJ " (") C(J^ J, J.J "» , m, mo)

Ji " mi / 2j_i- i ^ 2
C(j, J„ j„; m, ni m) - (-) _Jl

1 2 "3 1 2 3 \2j2 f 1

Xc(Ji J3 J2; mi'-m3' ""2) (Al.lc)

From these one may obtain:

j2 t- mg /2j + 1 ) \
CU1 J2 V V V m3) "("> 2J77T/ C(j3j2j1;-m3,m2,-m1)

x , A - mi / 2j3f- 1 ) 2-
:(jx j2 j ; ry ^ m) ^ (-) { 2JZT1 I

x (Al.lb)

(A1.2a)

X C(j j j ;m ,-m ,m)
3 1 2 3 12 (A1.2b)

1. M. E. Rose, Elementary Theory of Angular Momentum (John Wiley and
Sons, Inc., New York, 1957) Chap. 3, p. 38.
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C(j1 j2 j3; V m2, m3) =(-) (23^;

X C(j2 j ji; -m2, m,n^) (A1.2c)

In all cases the third projection quantum number is the sum of the first

two.

1 2
The orthonormality relation for the Clebsch-Gordan coefficients is:

^ C(j1 j2 j3; mp m-n^) C(jx j2 j^; m± m-m1) •=. d^ y (A1.3)

The coupling rule for the rotation matrices is the Clebsch-Gordan

3
series;-'

D1 D2 - <=Z C(j1 j2 j;/^,^)
/^l Bl ^"2 J ' '

j

K c(Ji J2 J; V "^ D (A1.4)
fit /*2, n^-/- n^

Use of (A1.4) may be shown to lead to^"

A /1 «=-rT"(2.A -r- 1) (2J2+ l)"] i
Y„ (H) Y, (/L) - TL ,1}. ,2 i

inu X L ^7T 2^t-l) J

^0(^4/^^) c(i14i;00) Y^m^^(A)
(A1.5)

2. Ibid., p. 34.
3. Ibid., p. 58.
4. Ibid., p. 61.
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* A

Multiplication of (A1.5) by Y (n) and integration over the solid
*3 3

angle leads to

33^2 2A11 3

Xc( Jx i2 ^ «y V m3} C( A ^2 A> °0) (A1-6)
because of the orthornomality of the spherical harmonics.

The dependence on the magnetic quantum numbers of the matrix

element of any irreducible tensor, TL is given by the Wigner-Eckart

theorem;

(j' m1 /tlm^ jm) = C(j Lj', m, M, m') (j1 [/ TL /| j)
(A1.7)

where (j1 // TT //j) is a reduced matrix element independent of the

magnetic quantum numbers.

The basic relation used in performing sums over the magnetic

quantum numbers is the Racah recoupling theorem;

jL.

C(a be; K,f )C(e dc; CX-t fi ,S)~ <*L \j2e+-1) {2t + l)]*

Y * Y A Y n _ /&Ar 1) (2/2+ 1) ")*
m ^m /. mdJ/"( ^<2^+l) /

W(a bcd; e^) C(b df; J& , &) C(afcje\,^+S) (A1.8)
Some symmetry relations for the Racah coefficients are:'

W(a b c d; e f) •= W(b a d c; e f) - w(c d a b; e f) r W(a c b d; f e)

(A1.9a)

5. Ibid., p. 85.
6. Ibid., p. 110.
7. Ibid., p. 111.
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e+f-a-d e-t-f-b-c

W(a b c d; e f) — (-) W(e b c f; a d) = (-)

X, W(a e f d; b c) (A1.9b)

The orthornormality relation for the Rocah coefficients is:°

(2e~f 1) (2f-f- 1) W(a b c d; e f) W(a b c d; e g) - C
f g

(ALIO)

9
The projection theorem for first rank tensors may be written as:

, i . x (J m1 JM j m) (j // J-Tj// J)(j. ». |Tx M|Jm) 1 ! .^Jl Ul—
(Al.ll)

where T, ., is the Mth component of T,.
1 M ^ 1

8. Ibid., p. 113.

9- Ibid., p. 94.
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