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ABSTRACT

The general relation between the angular flux of the neutrons in a lattice

measured with a neutron chopper and the total neutron flux is discussed. A

new approximate method for" calculating the spatial variation of neutron flux

and the emergent angular distribution of neutrons in a Milne problem with

capture is formulated. This method is based upon the representation of non-

asymptotic part of neutron flux by a single decaying exponential. The

coefficient and exponent of this exponential were determined by the iteration

method. The emergent angular distribution and total flux of neutrons in the

Milne problem were calculated for a large range of absorptions and compared

with the results of LeCaine, obtained by the variational method. The agree

ment between the two results was found to be excellent in all cases.
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INTRODUCTION

In this paper we discuss two problems: first, the angular distribution

of neutrons at a point inside a serai-infinite medium; second, the spatial flux

and the angular distribution of emergent neutrons in the Milne problem with

capture. The relation between the angular distribution of neutrons about a

given direction and the total flux at the same point in space is needed to

interpret the measurements on the lattices with the help of a neutron chopper.

The experimentalist extracts a beam of neutrons from a point situated at a

distance from the surface (Fig. l). From these measurements the total neutron

0!
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Z = -co

Absorbing Merf/um Vacuum

Detector

z = Q

Fig. 1. Milne Geometry

flux at the point of extraction of the beam is determined. The theoretical

expression for the angular distribution of neutrons about a given direction

is given in terms of the total neutron flux. The physical approximations

involved in obtaining the final result are discussed at each stage.

The Milne problem with capture was studied analytically by Adler and

Mark,1 using the Weiner-Hopf method. LeCaine2 studied the same problem by

1. F. T. Adler and C. Mark, Milne's Problem with Capture, MT-66.
2. J. LeCaine, Canadian J. Res. A28, 2k2. (1950); see also J. LeCaine, Milne

Problem with Capture, MT-119 (19^5)•



the variational method and carried out extensive numerical calculations for

the neutron density and the emergent angular distribution. In a few cases

LeCaine compared her results' with that of Adler and Mark and found them in

good agreement. Numerical calculations based upon the studies of Adler and

Mark are not available. It must, however, be pointed out that LeCaine's

formula for the non-asymptotic part of the neutron density involves a compli

cated function. We have proposed in this study a new approximate method for

a Mine problem with capture. In this method the asymptotic part of neutron

flux was assumed to be known. The non-asymptotic part of neutron flux was

represented by a single exponential. The coefficient and exponent of this

exponential were determined by the iteration method. Placzek3'4 used a

similar method to determine the neutron density in a Milne problem without

capture. We have, however, extended the Placzek method to the capture case.

Extensive numerical results are obtained and compared with LeCaine's results.

MATHEMATICAL FORMULATION

The transport behavior of neutrons in a plane geometry is given by the

following Boltzmann transport equation.5

d«
2n 2n +1

H^ (z,n,E) + Zt(E)^(z,n,E) = / / / / Zs(E« - E; ft« -*• H)
0 0-1 E1

^(E^z,^*) dE* du' &j>' &(j)+ S(z,E,n) (l)

3. G. Placzek, The Neutron Density Near a Plane Surface, MT-l6 (19i4.l1-)
k
5. A. M. Weinberg and E. P." Wigner,~The Physical Theory of Neutron Chain

V. Kourganoff, Basic Methods in Transfer Problems, Clarendon Press, Oxford (1952).
ry of 1M(

(19587Reactors, The University of Chicago Press, Chicago



where

^(z,u,E) = angular flux of neutrons,

z,u,E = space, angle, and energy variables,

S(z,E,n) = external source,

Z (E) = total macroscopic cross section,

Z (E'->E; u,-*Q) = scattering frequency,

u = cosine of the angle between angular flux and the z axis.

We shall make the following assumptions:

1. The medium is source free. The source is located at

z = - *>, and emits a constant beam of neutrons.

2. Medium extends from z=0toz= - °°.

3. There is no flow of neutrons from vacuum to medium at the

boundary z = 0.

^(0,n,E) =0 for (-1 ^ n < 0).

it. For z approaching -«
z2t(E)

^(z,u,E) e M-

This is true for a finite source of neutrons.

The above four assumptions constitute the basis of the standard Milne

problem. We further assume that the medium is isotropic, and the scattering

frequency depends upon the angle between the initial and final directions.

Z (E' -> E; It' ->• ft) = Z (I• -> E; It' • It) - (2)
s s

We expand the scattering frequency and the angular flux ^(E',z,ft') by

means of the spherical Harmonics method. Using these expansions and

substituting in the scattering integral, we obtain the following final expres

sion for the scattering integral I:



where

1=) 2V 1 / 2 (E» -E) P.(n) ^(E',z) dE'
2 J sr

£=0 E'

+1

•&\yj rz\

^(E',z) = / 0'(E',z,u') P„(u') du'
-1

+1

ZBi(E'-.E) Zg(E' - E; u0) P^Cno) ou0

and

= cosine of the scattering angle between the initial and final

directions of neutrons.

On substituting Eq. (3) into Eq. (l) and integrating with respect to z we

get:

z2t(E)

^(z,u,E) du = e A +
1 \ 2£ + 1

£=0 0 E*

Zs<g(E« -E) P^(u)

'ZjE)

(3)

w

(5)

$UE',z') dE' fe dz' du . (6)

The constant of integration A is to be obtained from the boundary condi

tions. We have two cases:

A, For positive u_: 0 < u ^ I

For z = -°° , Eq. (6) is given as follows:



Lim

zZt(E)

9((z,u,E) e du 1 \ 21 + 1

V- L 2 J
i=0 0 E"

ZBi(E- ->E)

z'Zt(E)

;(E',z')P_g(u) dE' je ^ dz' dM .. (T)

z2t(E)

Since it is assumed that ^f1 ^(z,u,E) e '"L =0 Eq. (7) gives A.

The integral expression for the angular distribution is given as follows:

^(z,(i,E) du
2.0 + 1 2s_g(E' ->E) P^u) ^(E',z') dE' J

^=0 E'

~(z-z')
2JE)

dz*
du

B. For Negative u: (-U[i < 0)

Sz((0,u,E) =0 for (-1 ^ u < 0)

Using the above boundary condition, we get:

$z((z,u,E) du =

£=0

21 + 1 2 (E« ->E) P.(n)^-(E',z') dE
Jsi iu jyV

0 E'

2+(E)
-U-z') -i—

dz'
du

(8)

(9)



Equations (8) and (10) give the angular flux for neutrons of energy E at

the point z in a Milne problem. We are, however, interested in the angular

distribution in the positive u interval only. It is given by Eq. (8). In

the case of a finite medium of width "a" the appropriate boundary condition

at z = -a instead of z = -03 should be used. This condition would depend upon

the source of neutrons.

ANGULAR AND TOTAL NEUTRON FLUX

In a neutron chopper experiment the neutron beam is extracted with the

help of a re-entrant channel. The experimentalist wants to know the relation

between the angular flux measured in a particular direction and the total flux.

Let us suppose that the neutron beam is extracted from a point at a distance

z equal to zo from the boundary. The angular flux at this point is given by

Eq. (8), putting z equal to zq.

^(u,E,z0) <3ji = ) 2£ + 1 '/ Z.(E« ->E) P,(u)^(E',z') dE'
si £^,rr

£=0 .00 E1

-(z0-z')
2jE)

dz1
u

(11)

The scattering integrals corresponding to various values of "£" are ob

tained by multiplying Eq. (l) by u and integrating over all angles. Zeroth

and first angular moments are given by the following equations:

djfot?) +Z„(E)gf(E,z) = fz (E'->E) *f(E',z) dE'
E'

az

5u2^(E,z) +2(E)J(E ) / z (E, ->E)j(e' z) dE'
oZ t J^, Sl

E1

(12)

(13)



where:

Since p. =

^(E,z) = / $z((z,u,E) du Total Neutron Flux

J(E,z) = /uj^(z,u,E) du Total Neutron Current

/u2^(z,u,E) du
2 M-

?f(z,u,E) du

i P0(u) +| P2(u)

~2 1u2 =5
^>(z,E) "

1+2 ^o(z,E) J

(no

(15)

(l6a)

(16b)

<f>z and j^o are given by Eq. (it). If 4z is zero, which is equivalent to the

Pi-approximation for the angular flux, then u2 is equal to (l/3)-
Restricting to linear anisotropic scattering £ - 0 and £ - 1 we obtain

from Eq. (ll)

!z0,u,E) du = —

zo

r ri"ajiE^i+z(E)^E,a.)
J L2 - dz' t

+ 2,(E)J(E,z') +^ <rf(E,z«)
X dz1

•(zo-z')
2JE)

dz'

1
J

(17)



The above integral is the exact expression for the angular flux for the

linear anisotropic scattering case. The neutron current is given by Eq. (13).

In determining the neutron current we assume j(E',z) — J(E,z) in the scat

tering integral for the neutron current. This is the Selengut-Goertzel

approximation for treating the slowing down in hydrogen. The expression for

the neutron current is given as follows:

j(e,z) =•*aMs)
dz

1

2t(E) -2s(E) uL
(18)

where

u = average cosine of the scattering angle in the laboratory system.

In evaluating neutron current from the above expression, we shall assume

that u2 does not vary spatially, uT is obtained for the isotropic scattering

in the center of mass with the struck particle at rest. In this approximation

u is equal to (2/3)A.

The final result for angular flux after substituting the above expression

for the neutron current is:

zo

<t(z0,\±,E) du. = —

•cp

where

a = 3u£

Z+(E)^(E,z') +aMM

+b^(E?z')l
rW'2 J

2t(E)

oz

•(zo-z')

1 -

2t(E) -2g(E)uL

ZjE)

dz' (19)

(20)



b =

Zt(E) -2g(E)uL
(21)

We expand <z((E, z), ^ •• ?Z and r^ j,?), ^y the Taylor series about
dz dz2

z = z if the point zo is at a distance from the boundary. This expansion

is not valid for zo at the boundary. The neutron flux has a logarithmically

infinite derivative at the boundary although flux is finite.

Using the Taylor series expansions the integral expression for the

angular flux reduces to the following form:

zo
n

^(z0,H,E) du =
(z> - zo)

2tWn(z0) +a 4n+1(zo) +t iT2(z0)
n=0 -°°

where

jAzq) =

2,(E)
-(zo-z>) ^—

dz'

3n^(E,z')

dz'n
z'=z0

2u

The above expression involves integrals of the following type:

zo

I= J (z' -z0)n e
2.(E)

-(zo-z') -?
H

dz'

(22)

(23a)

This integral can be reduced to the standard type by mailing the substitu

tion (zo - z') = x. The above integral reduces to the following value:



10

n+l

I-(-U-nj(^ (23b)

The final expression for the angular flux is given in the following form:

n+i

2u
9^(z0,u,E) du = •=- (-Dn

la 2t(E)Azo)
n=0

+ a (fi1 (z0) + b 5z(n (z0) r

We shall limit ourselves to n = 2 terms only.

?((zo,H,E) du =|i

where

$E}Zo)+c\M^l
dz'

z'=z0

+
d(^(E,z')

dz'2

c =57^
[a - u]

d = __i_ [tj z.(E) - an + u2]
2^(E) t

z' =z0

(2U)

(25)

(26)

(27)

Equation (25) gives the total flux jz((E, zo) from the measured angular

flux provided the gradient terms are known theoretically or experimentally.

In a neutron chopper experiment the neutron beam is extracted along the
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direction u = 1. For a special case of isotropic scattering in the

lowing expression:

9*(z0,l,E) <^ =f1 ^(E,z0)
1 [ty(S,z')\ 1

z'=z0

(28)

[Neglecting second derivative term in Eq. (25)].

The above expression was used by Poole6 as well as Slovacek and Stone.7

In order to determine the flux gradient terms at the point of extraction of

beam the foils of resonance detectors are employed. Indium, gold, and

manganese measure the neutron flux corresponding to energies l.kk ev, it.9 ev,

and 300 ev, respectively. Thermal-neutron flux is measured by the cadmium-

covered foils.

In Table 1 the values of u2 for different absorptions, as given by Case,

Placzek, and deHoffmann,8 are given. These were obtained for the monoenergetic

neutrons suffering isotropic scattering.

For large values of absorption u2 is very large compared to the zero-

absorption value of (l/3). For example, the value of a corresponding to

thermal neutrons for lithium hydride is equal to O.673. The corresponding

value of u2 is equal to 0.684. Equation (25) may be employed to obtain total

neutron flux from the measurement of the angular flux.

6. M. J. Poole, "Measurement of Neutron Spectra in Rejectors," Proceedings of
Neutron Thermalization Conference, 0RNL-2739 j1958).

7. R. E. Slovacek and R. S. Stone, "Low Energy Spectra Measurements, " Ibid.
8. K. M. Case, F. deHoffmann, and G. Placzek, Introduction to the Theory of

Neutron Diffusion, U.S. Government Printing Office, Washington 25, D. C.

(1953).
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Table 1. Values of u2

Z (E) —

a= 2^El ^

0.0 0.3333

0.1 0.3622

0.2 0.3963

0.3 0.4369

0.4 O.4859

0.5 0.5454

0.6 0.6176

0.7 0.7036

0.8 0.8001

0.9 0.9

1.0 1.0

NEUTRON FLUX

We discuss in brief the approximate method developed to determine neutron

flux for the monoenergetic neutrons scattered isotrcpicslly in the laboratory

system - ©j(E,z) = 0 for £ >. 1. We divide the neutron flux into asymptotic

and non-asymptotic parts and express it as follows:

$z) - d (z) + Ao'(z). (29)
asy

In the above equation A$^(z) is the non-asymptotic part of the flux. Adler

and Mark, ' using the Wiener-Hopf method, gave the following expressions

for the asymptotic flux as a function of distance z and at the boundary.
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<Wz) =J(0)
2vf_ (1 -v2) sinh v(z + }
a (v2 - a)

^ (0) = J(0)
^asy a

at the boundary

where

a = ratio of absorption to total cross sections,

Zo = extrapolated distance measured in total mean free path,

z = distance measured in total mean free path,

v = real root of the following transcendal equation

(1 -a)
tanh"1 v

= 1

(30)

(3D

(32)

j(0) = total neutron current at the boundary.

In order to obtain the non-asymptotic part of neutron flux, we need the

total neutron flux ^(z). It is given by the following integral equation:8

0

z - z *I) dz'. (33)

Let us assume that the non-asymptotic part can be represented by a single

exponential term in the following manner:

4(z) = j(o) 2vf. (1 - v2)
a (v2 - a)

-Bz
sinh v(z + zq) + Ae (34)
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The parameters A and B have to be determined. We consider the expres

sion for oXz), as given by Eq. (34), as the zeroth iteration expression.

Using this expression we carry out the first iteration with the help of the

integral Eq. (33)* To these two expressions we apply the integral condition

at the boundary as given by Eq. (3l). This leads to two equations which

enable the determination of A and B. These two equations are as follows:

(v2 - a)

2(1 - v2)

A =
v2 - a

2(1 /2)
sinh vzq

sinh vz0 cosh vz0 f(1 . a) loR(l _v2}
2 2 1 2v

a
A log

(1 + B)
B

(35)

(36)

The values of v and zo for different values of a were given by Case et al.8

and LeCaine.2 The calculated values of A and B along with v and z0 for dif

ferent values of a are given in Table 2.

Table 2. Values of v,8 zo, -A, and B for Various Values of a

a V zo -A B

0.1 O.5254 0.7896 0.0784 3.4259

0.2 0.7104 0.8891 0.1194 3.2692

0.3 0.8286 1.0181 0.1621 3.0616

0.4 O.9073 1.1923 0.2115 2.8860

0.5 0.9575 1.4408 0.2778 2.795^
0.6 O.9856 1.8249 O.3893 2.4035

0.7 O.9974 2.4947 0.6491 1.6261

0.8 O.999909 3.9238 1.8360 1.3939
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EMERGENT ANGULAR DISTRIBUTION

A general formula for the determination of directed angular neutron

flux at a point z along the direction cos~V was given by Eq. (5). We shall

aPPly that formula to obtain the emergent angular distribution of neutrons at

the boundary. The monoenergetic neutrons which are scattered isotropically

in the laboratory system have the following angular distribution at the

boundary (z = 0).

4(0,[i) du =
2u

0

2e #z') e
»o

z'2,

dz' du

for (00 < z1 < 0). (37)

In the above equation z' increases from zero to infinity. Expressing z'

in terms of total mean free path and substituting for j^(z'), according to

Eq. (32) the emergent angular distribution is given as follows:

Mrs \ j a r(rs\ (l - 0=) /2v2(l - V2)0(O,u) du = du J(0) -—5—L / *
2 V a(v2 - a)

VZo -VZq

2fT T " 2(1 + uv) 1 + Buuv
(38)

NUMERICAL RESULTS

In the following Tables 3 and 4 extensive numerical results for the

neutron flux as a function of distance and the emergent angular distribution

of neutrons are presented. Some of these results are plotted in Figs. 2 and 3<

The values of a range from 0.1 to 0.8. The normalization condition assumed
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in these calculations is of the unit neutron density at the boundary.

Mathematically, it is expressed as follows:

4{o) = j(o)
a

= 1. (39)

For the sake of comparison, the numerical results given by LeCaine2
using the variational method are also listed. The agreement is excellent.

The symbols used in Tables 3 and 4 represent the various physical quantities

in the following manner.

<f> (z) - asymptotic neutron flux,

- A^(z) = non-asymptotic neutron flux,

a$ = percentage deviation of neutron flux

L rasy J

^(0,u) du = emergent angular distribution of neutrons at the boundary,

* =Mi5"

= ratio between emergent angular distribution of neutrons

in directions u and u = 1,

c^= -
asy

= percentage deviation of the emergent angular distribution of

neutrons from the angular distribution corresponding to the

asymptotic neutron flux,

= LeCaine's results by the variational method.
*
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Table 4. Emergent Angular Distribution c/(0,u) for
Various Values of n and a

M- c/(0,u) IV(o,n)]* b b* d

a = 0.1

0.00 0.4500 0.4502 2.551 x 10"1 2.566 X 10"1 18.37
0.01 0.4607 0.4642 2.612 x 10"1 2.645 x 10"1 17.52
0.05 0.5022 0.5077 2.848 x 10~X 2.893 x 10_1 14.68
0.10 0.5513 0.5562 3.126 x 10"1 3.170 X 10_1 12.96
0.50 0.9510 0.9497 5.391 x 10"1 5.412 x 10"1 3.77
0.60 1.0702 1.0686 6.067 x 10"1 6.090 X 10**1 3.00
0.90 1.5404 1.5378 8.733 x 10~1 8.763 X 10"1 1.58
0.94 1.6222 1.6196 9.197 x 10"1 9.230 X 10_1 1.46
0.96 1.6714 1.6629 9.475 x 10"1 9.476 X 10_1 1.39
0.98 1.7106 1.7079 9.698 x 10"1 9-733 x 10"1 1.33
1.00 1.7639 1.7548 10.000 x 10_1

rv /"N O

10.000 x 10""1 1.28

0.00 0.4000 0.4001 1.800 x 10"1 1.810 X 10_1 17.78
0.01 0.4090 0.4117 1.842 x 10*1 1.864 x 10"1 17.00
0.05 0.4436 0.4483 1.998 x 10"1 2.030 X 10"1 14.36
0.10 0.4859 0.4900 2.188 x 10"1 2.219 x 10"1 11.83
0.50 0.8776 0.8774 3.952 x 10"1 3-974 X 10"1 3.61
0.60 1.0184 1.0172 4.587 x 10"1 4.607 X 10"1 2.02

0.90 1.7422 1.7402 7.846 x 10"1 7.880 X 10"1 1.24
0.94 1.9056 1.9037 8.582 x 10"1 8.621 x 10"1 1.10

0.96 1.9981 1.9963 8.999 x 10"1 9.04i x 10"1 1.04
0.98 2.0683 2.0973 9.315 x 10"1 9.498 X 10"1 0.98
1.00 2.2204 2.2081 10.000 x 10"1

rv — A "X

10.000 x 10_1 0.91

0.00 0.3500 O.3501 1.186 x 10"1 1.186 X lO-1 17.12
0.01 0-3573 0.3595 1.210 x 10"1 1.218 X 10_1 16.40
0.05 O.3858 0.3896 1.307 x 10"1 1.320 X 10_1 13.98
0.10 0.4212 0.4245 1.426 x 10_1 1.438 X 10"1 11.60
0.50 O.7883 O.7875 2.671 x 10"1 2.668 x 10"1 3.49
0.60 0.9410 0.9398 3.188 x 10"1 3-184 x 10"1 2.63
0.90 1.9634 I.9621 6.651 x 10"1 6.648 x 10"1 0.97
0.94 2.2710 2.2692 7.693 x 10"1 7.689 X 10"1 0.81
0.96 2.4611 2.4599 8.337 x 10"1 8.335 X 10"1 0.74
0.98 2.6852 2.6840 9-097 x 10"1 9.094 X 10"1 0.67
1.60 2-9537 2.9514 10.000 x 10"1 10.000 x 10_1 0.60
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z, DISTANCE FROM BOUNDARY (meon free paths)

UNCLASSIFIED

ORWL-LR-DWG 50756

2.0

Fig. 2. Percentage Deviation from Asymptotic Flux as a Function of Distance from Boundary.
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Fig. 3. Angular Distribution of Emergent Neutrons at the Boundary.
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DISCUSSION

The general expression relating the angular neutron flux and the total

neutron flux has been formulated. In a neutron chopper experiment the neutron

beam is extracted from a point away from the boundary. The angular neutron

flux in the direction u = 1 is measured. In order to obtain the exact total

neutron flux from the measured angular flux the inverse Laplace transform of

the measured quantity is required, "which cannot be obtained easily. Accord

ing to the formulas developed in this study it is possible to determine the

total neutron flux provided the flux gradient terms can be estimated. If

the point of extraction of beam is more than a distance of one mean free

path from the boundary then the neutron flux may be represented by an asymptotic

expression. But if this point is near the boundary then the non-asymptotic

part of the flux cannot be ignored. The exact determination of the non-

asymptotic flux, however, requires the exact solution of the transport

equation which is in itself a formidable task. We have, however, estimated

the non-asymptotic flux by an approximate method.

The total neutron flux is assumed to consist of two parts - asymptotic

and non-asymptotic. The asymptotic expression for flux is known exactly

and is given by the studies of Adler and Mark1"2*8 for the absorbing medium.

The non-asymptotic flux is represented by a single exponential. We have

calculated the deviations of total flux from the asymptotic flux for different

values of absorption (a) and distance (z). We note that the deviation

decreases rapidly as we go away from the boundary. At a distance of one mean

free path the deviation is less than 1$.

We also calculated the emergent angular distribution. According to

Table 4 we note that for a fixed absorption the percentage deviation of the

emergent angular distribution from the angular distribution corresponding to

the asymptotic neutron flux decreases as the value of u increases from zero

to one. In other words, it means that the distribution of neutrons moving

in the forward direction is given by the asymptotic flux. These neutrons

come from the interior or the medium. On the other hand, the distribution of
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neutrons along the direction (0 ^ u < l) is governed by the non-asymptotic
flux. We further observe that for very large absorptions the emergent angular

distribution is peaked in the forward direction. The ratio between the dis

tributions along directions u = 0 and u = 1 decreases rapidly as the

absorption is increased. For large absorption those neutrons contribute the

most which come from the interior in the forward direction.

The agreement between the results reported in this study and those given by

LeCaine using the variational method are good in all cases. This

agreement is understandable as the asymptotic fluxes are given by the same

expressions in both the cases. At the boundary the same normalization

condition was used in both the cases. Thus at the boundary and at a distance

far from the boundary both the methods give identical results. In between

two extreme cases the above agreement indicates that a simple trial function

will give the non-asymptotic part of the flux. The representation of non-

asymptotic or transient flux by a single exponential merits serious considera

tion and further investigation.
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