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ABSTRACT

The general relation between the angular flux of the neutrons in a lattice
measured with a neutron chopper and the total neutron flux is discussed. A
new approximate method for' calculating the spatial variation of neutron flux
and the emergent angular distribution of neutrons in a Milne problem with
capture is formulated. This method is based upon the representation of non-
asymptotic part of neutron flux by a single decaying exponential. The
coefficient and exponent of this exponential were determined by the iteration
method., The emergent angular distribution and total flux of neutrons in the
Milne problem were calculated for a large range of absorptions and compared
with the results of LeCaine, obtained by the variational method. The agree-

ment between the two results was found to be excellent in all cases.
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INTRODUCTION

In this paper we discuss two problems: first, the angular distribution
of neutrons at a point inside a semi~infinite medium; second, the spatial flux
and the angular distribution of emergent neutrons in the Milne problem with
capture. The relation between the angular distribution of neutrons about a
given direction and the total flux at the same point in space is needed to
interpret the measurements on the lattices with the help of a neutron chopper.
The experimentalist extracts a beam of neutrons from a point situated at a

distance from the surface (Fig. 1). From these measurements the total neutron
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Fig. 1. Milne Geometry

flux at the point of extraction of the beam is determined. The theoretical
expression for the angular distributlon of neutrons sbout a given direction
is given in terms of the total neutron flux. The physical approximations
involved in obtaining the final result are discussed at each stage.

The Milne problem with capture was studied analytically by Adler and
Mark,' using the Weiner-Hopf method. LeCaine® studied the same problem by

1. F. T. Adler and C. Mark, Milne's Problem with Capture, MT-6€.
2. J. LeCaine, Canadian J. Res. A28, 242 (1950); see also J. LeCaine, Milne
Problem with Capture, MI-119 (1945).




the variational method and carried out extensive numerical calculations for
the neutron density and the emergent angular distribution. In a few cases
LeCaine compared her results' with that of Adler and Mark and found them in
good agreement. Numerical calculations based upon the studies of Adler and
Mark are not available. It must, however, be pointed out that LeCaine's
formula for the non-asymptotic part of the neutron density involves a compli-
cated function. We have proposed in this study a new approximate method for
a Milne problem with capture. In this method the asymptotic part of neutron
flux was assumed to be known. The non-asymptotic part of neutron flux was
represented by a single exponential. The coefficient and exponent of this
exponential were determined by the iteration method. Placzek>’% used a
similar method to determine the neutron density in a Milne problem without
capture. We have, however, extended the Placzek method to the capture case.

Extensive numerical results are obtained and compared with IeCaine's results.
MATHEMATICAL FORMULATTION

The transport behavior of neutrons in a plane geometry is given by the

following Boltzmann transport equation.®

2x¢ 2n +1

" %g (z,1,E) + 2, (E)4(z,u,E) = f f f f z (E' - B; G' > 1)

0O 0 -1 E'

#(E',z,8) dE' ap’ ag' ag + s(z,E,u) (1)

3. G. Placzek, The Neutron Density Near a Plane Surface, MT-16 (194k).
h. V. Kourganoff, Basic Methods in Transfer Problems, Clarendon Press, Oxford (1952).
5. A. M. Veinberg and E. P. Wigner, The Physical Theory of Neutron Chain

Reactors, The University of Chicago Press, Chicago (1958)




where
é(z,n,E) = angular flux of neutrons,
z,l., B = space, angle, and energy variables,
S(z,E,p) = external source,
Zt(E) = total macroscopic cross section,

]

ZS(E;»E; g1-0)

scattering frequency,
KL = cosine of the angle between angular flux and the z axis.

We shall make the following assumptions:
1. The medium is source free. The source is located at
z = - o, and emits a constant beam of neutrons.
2. Medium extends from z = O to z = - o,
3. 'There is no flow of neutrons from vacuum to medium at the
boundary z = 0.
¢(0,u,E) = 0 for (-1 <u <0).
k., TFor z approaching -«
zZt(E)

#(z,u,E) e H* - o.

This is true for a finite source of neutrons.

The @bove four assumptions constitute the basis of the standard Milne
problem. We further assume that the medium is isotropic, and the scattering

frequency depends upon the angle between the initial and final directions.
z (B - E -9 = zs('ﬁ' ~E; 3. 9. (2)

We expand the scattering frequency and the angular flux d(E',z,ﬁ') by
means of the spherical Harmonics method. Using these expansions and
substituting in the scattering integral, we obtain the following final expres-

sion for the scattering integral I:



ro) BEL [ e 2 4y, @ (3)
£2=0 .E'
where
+1
g,(8,2) = [ 4E',z,n0) By(n) au’ (4)
-1
+1
2 ,(E" > E) = f I(B' > E; wo) Pyluo) duo (5)
-1
and
Lo = 3‘ . 6

i

cosine of the scattering angle between the initial and final

directions of neutrons.

On substituting Eq. (3) into Eq. (1) and integrating with respect to z we
get:

zZt(E)

#(z,u,E) au =e M [ A+

=i

Z) = l[ {Ef 3 (B > E) P,(u)

! i
z zt(n)
g,(B', 2") aE' } e M dz' } au . (6)
The constant of integration A is to be obtained from the boundary condi-
tions. We have two cases:

A, TFor positive p: 0 <p <1

For z = -» , Eq. (6) is given as follows:




zZt(E) - .
Lim p _ 1 24 + 1 —
Z»mqf(z,p.,E)e du_[p,xuz 5 f{fzz(n E)
£=0 0 B!
1 z'Zt(E)
%(E',Z')Pﬁ(u) dE' J‘e " dz' ildp- y (7)
zZt(E)
. e s Lim 1L .
Since it is assumed that 7 é(z,u,E) e = 0 Eq. (7) gives A.

The integral expression for the angular distribution is given as follows:

d(z,1,E) dp = {:5? EZL%§JL k/\Z{L/\ 2 ,(B' > E) P,(u) dz(E',zo ag’ }
- E'

£=0

B. For Negative p: (-1 <u <0)

#(0,n,E) = 0 for (-1 <u <0). (9)

Using the sbove boundary condition, we get:

#(z,u,E) dp = [i —2-"’1—“25——1-/? { f 2 (BT > E) Py(u)d,(B,2) aB" }
Bt

£=0 0

2 (®)

1

~(z-2
e H dz!

®le



Equations (8) and (10) give the angular flux for neutrons of energy E at
the point z in a Milne problem. We are, however, interested in the angular
distribution in the positive p interval only. It is given by Eg. (8). In
the case of a finite medium of width "a" the appropriate boundary condition
at z = -z instead of z = -« should be used. This condition would depend upon

the source of neutrons.
ANGULAR AND TOTAL NEUTRON FLUX

In a neutron chopper experiment the neutron beam is extracted with the
help of a re-entrant channel. The experimentalist wants to know the relation
between the angular flux measured in a perticular direction and the total flux.
Let us suppose that the neutron beam is extracted from a point at a distance
z equal to zp from the boundary. The angular flux at this point is given by

[e]

Eq. (8), putting z equal to zo.

co z
JuBme) =) i f{ [z =1 pyg e ae |
£=0 -co K

( ) {5
o O T dz' } Qo (11)

|S)

The scattering integrals corresponding to various values of "£" are ob-
tained by multiplying Eq. (1) by uﬂ and integrating over all angles. Zeroth

and Tirst angular moments are given by the following equations:

UL 3 (5,2 = [z, (80 =T dr,2) am (12)
C\)Z 1ol 5o
e (?’—')"z + 2, (E)3(E, 2) =f z, (B' > E)J(E',2) &' (13)

a
Z 1




where:
4(E, z) =f¢(z,p.,E) du Total Neutron Flux (1)
1L
J(E,z) =fp.¢(z,p.,E) du Total Neutron Current (15)
1

[z, a

w2 = B . (162)
/Qhﬂﬁ)w
'P.
Since pZ = % Po(n) + % Po(p)
"_2' 1 ¢2(Z1E)
u:g[l+2m}. (16v)

¢2 and ¢o are given by Eq. (&), 1If ¢2 is zero, which is equivalent to the

Py -approximation for the angular flux, then p? is equal to (1/3).
Restricting to linear anisotropic scattering £ = O and £ = 1 we obtain
from Eq. (11)

Zo

Hzomm) ar = 2| [ {3] i‘-j-‘-}i:z—f-'—)—+ 5 (B)d(5,57) |

+§[zémﬂgw)+ﬁ$¢mﬂw}}—
- Z

z,(E)

~(zo-2")

e o age J . (17)



The 2bove integral is the exact expression for the angular flux for the
linear anisotropic scattering case. The neutron current is given by Egq. (13).
In determining the neutron current we assume J(E!,z) =~ J(E,z) in the scat-
tering integral for the neutron current. This is the Selengut-Goertzel
approximation for treating the slowing down in hydrogen. The expression for

the neutron current is given as follows:

2
J(E,Z) - - aH__Q‘(E,Z) [ 1 —_:l (18)
oz
2, (E) - 2 (E) np
where
:L-I-.- = average cosine of the scattering angle in the lsboratory system.

In evaluating neutron current from the above expression, we shall assume

that p2 does not vary spatially, 1s obtalined for the isotropic scattering

Hy,
in the center of mass with the struck particle at rest. In this approximation
ﬁ; is equal to (2/3)A.

The final result for angular flux after substituting the above expression

for the neutron current is:

Z0
#(zo,1,E) du =2—d;i [ f {Zt(E)¢(E,z') + aé’%ﬂ

( " (2
- b .ﬂl.z_.)_} ~hEomE az! :l (19)
vhere
—_— 2. (E)
a= 3u° { 1 - 1 } (20)

Zt(E) - zS(E)EZ




ST G (21)
2,(E) - = (E)ii,

2
We expand ¢(E,z), 0G(E,z) g LEE,2) by the Taylor series about
dz oz

2 = g if the point zo is at a distance from the boundary. This expansion

o}
is not valid for zo at the boundary. The neutron flux has a logarithmically
infinite derivative at the boundary although flux is finite.

Using the Taylor series expansions the integral expression for the

angular flux reduces to the following form:

20
: (2" - 20)"
frop®) a =) [ S {5 @) + e FHe0) o 3 0) |
Sur S n!

(rom ) 5
e Zo- Z B dz! }gf (22)

where

Fleo) = | DhE2) |

The above expression involves integrals of the following type:
Zo Zt(E)
o ~(zo-z')
I= \/ﬁ (z'" - z0) e K dz' . (232)

=00

This integral can be reduced to the standard type by making the substitu-

tion (zp - z') = x. The above integral reduces to the following value:
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I=(-1)" (—%——;) : (23b)

The final expression for the angular flux is given in the following form:

#(zo,1,E) du = %% [i (-)" (Ejl_fly > " J[ZJC(E)szfn(zO)

n=0

ra o) + b 20 | (21)
We shall limit ourselves to n = 2 terms only.

#(zo,u,E) du =%“— [ #(E,z0) + ¢ f__é__E_,_._z_}

oz'
20
v o[ Pelman | ] (25)
dz ' .
Z =720
vhere
c = E_%ET [a - 4] (26)
t
q=—< [b Zt(E) - ap + p®] . (27)

Z‘zt(E)

Equation (25) gives the total flux ¢(E,zo) from the measured angular
flux provided the gradient terms are known theoretically or experimentally.

In a neutron chopper experiment the neutron beam is extracted along the




direction p = 1. For a special case of isotropic scattering in the

leboratory system (uL = 0) the angular flux for p = 1 is given by the fol-
lowing expression:

#(z0,1,E) du = éﬂ[ #(E,z0) - ﬁﬂ{m} } (28)

t oz' .
Z =70

[Neglecting second derivative term in Eq. (25)].

The above expression wes used by Poole® as well as Slovacek and Stone.’
In order to determine the flux gradient terms at the point of extraction of
beam the foils of resonance detectors are employed. Indium, gold, and
manganese measure the neutron flux corresponding to energies 1l.kh ev, 4.9 ev,
and 300 ev, respectively. Thermal-neutron flux is measured by the cadmium-

covered foils.

In Teble 1 the values of p? for different absorptions, as given by Case,
Placzek, and deHoffmann,® are given. These were obtained for the monoenergetic
neutrons suffering isotropic scattering.

For large values of absorption ;E is very large compared to the zero-
absorption value of (1/5). For example, the value of a corresponding to
thermal neutrons for lithium hydride is equal to 0.673. The corresponding
value of ;E is equal to 0.684. Equation (25) may be employed to obtain total

neutron flux from the measurement of the angular flux.

6. M. J. Poole, "Measurement of Neutron Spectra in Reactors,"” Proceedings of
Neutron Thermalization Conference, ORNL-2739 11958).

7. R. E. Slovacek and R. S. Stone, 'Low Energy Spectra Measurements," Ibid.

8. K. M, Case, F. deHoffmann, and G. Placzek, Introduction to the Theory of
Neutron Diffusion, U.S. Government Printing Office, Washington 25, D. C.

(1953) .
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Table 1. Values of u2

z,(E) ~

Q= = T
PAG)
0.0 0.3335
0.1 0.%622
0.2 0.3963
0.3 0.4369
0.4 0.4859
0.5 0.545k
0.6 0.6176
0.7 0.70%6
0.8 0.8001
0.9 0.9
1.0 1.0

NEUTRON FLUX

We discuss in brief the approximate method developed to determine neutron
flux for the monoenergetic neutrons scattered isotropically in the laboratory
system - ¢5(E,z) = O for £ > 1. We divide the neutron flux into asymptotic

amd non-asymptotic parts and express it as follows:

#(z) = 8. (2) + 24(2). (29)

In the above equation A¢(z) 1s the non-asymptotic part of the flux. Adler
and_Mark}’e using the Wiener-Hopf method, gave the following expressions

for the asymptotic flux as a function of distance z and at the boundary.
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¢ (z) = 3(0) 4/21'2 El = Y2 sim vz + z0) (20)

¢asy(0) = J(0) ./ 5? at the boundary (31)

where

o = ratio of absorption to total cross sections,

zo = extrapolated distance measured in total mean free path,

z = distance measured in total mean free path,

v = real root of the followlng transcendal equation

tanh t
(1-0=5—+=1 (32)

J(0) = total neutron current at the boundary.

Tn order to obtain the non-asymptotic part of neutron flux, we need the

total neutron flux ¢(z). It is given by the following integral equation:®

[ve)

4o - Bz [ gz mallz - 20 ) an. (53)

0

ILet us assume that the non-asymptotic part can be represented by a single

exponential term in the following manner:

d(z) = J(o)«/e"2 (2 - v%) l:sinh v(z + 7o) + Ae BZ } : (%k)

(2 -0



1k

The parameters A and B have to be determined. We consider the expres-
sion for ¢(z), as given by Eq. (34), as the zeroth iteration expression.
Using this expression we carry out the first iteration with the help of the
integral Eq. (33). To these two expressions we apply the integral condition
at the boundary as given by Eq. (3%1). This leads to two equations which

enable the determination of A and B. These two equations are as follows:

-~ sinh vzo (35)
(v2 - Q) i sinh vzo . cosh vzo { (1 - Q) l_og(l _ va) }
2(1 - +2) 2 2 2v
_l-a, (1 + B) (36)
- €78 -

The values of v and zo for different values of o were given by Case et g._}_.s
and LeCaine.® The calculated values of A and B along with v and zo for dif-

ferent values of ¢ are given in Table 2.

Teble 2. Values of v,® 2,2 -A, and B for Various Values of O

o v Zo =-A B
0.1 0.5254 0.7896 0.0784 3.4259
0.2 0. 7104 0.8891 0.119k4 3.2692
0.3 0.8286 1.0181 0.1621 3.0616
0.4 0.907% 1.1923 0.2115 2.8860
0.5 0.9575 1.4408 0.2778 2.7934
0.6 0.9856 1.82549 0.3893 2.403%5
0.7 0.9974 2.4947 0.6491 1.6261

0.8 0.999909 3.9238 1.83%60 1.3%93%9
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EMERGENT ANGULAR DISTRIBUTION

A general formula for the determination of directed angular neutron
flux at a point z along the direction cos-lu was given by Eq. (5). We shall
apply that formula to obtain the emergent angular distributlion of neutrons at
the boundary. The monoenergetic neutrons which are scattered isotropically

in the laboratory system have the following angular distribution at the
boundary (z = 0).

o Z'Zt
g(o,n) au = 12; [f 2 Hz) e Foat ]
0
for (» < z' L 0). (37)

In the above equation z' increases from zero to infinity. Expressing z'
in terms of total mean free path and substituting for #(z'), according to
Eq. (52) the emergent anguwlar distribution is given as follows:

#(0,1) @ = au 3(0) L& = ) J2V2(l - v2)

a(v® - )

YZo -VZo

e A
[Q(E—MV)-2(1+MD+1+BHJ’ (38)

NUMERICAL RESULTS

In the following Tables 3 and 4 extensive numerical results for the
neutron Tflux as a function of distance and the emergent angular distribution
of neutrons are presented. Some of these results are plotted in Figs. 2 and 3.

The values of @ range from 0.1 to 0.8. The normalization condition assumed
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in these calculations is of the unit neutron density at the boundary.

Mathematically, it is expressed as follows:
V2
4(0) = 3(0) o/ &= = 1. (39)

For the sake of comparison, the numerical results given by LeCaine®

using the variational method are alsc listed. The agreement is excellent.
The symbols used in Tables 3 and 4 represent the various physical quantities

in the following manner,

¢asy(z = asymptotic neutron flux,

)
- A¢(z) = non-asymptotic neutron flux,
b

a

af = percentage deviation of neutron flux

]

asy
4(0,1) du = emergent angular distribution of neutrons at the boundary,

b - (Oti)

b

= ratlo between emergent angular distribution of neutrons
in directions p and p = 1,
- - | #4085 |8
asy sH
= percentage deviation of the emergent angular distribution of
neutrons from the angular distribution corresponding to the
asymptotic neutron flux,

= LeCaine's results by the variational method.
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Table 3. Neutron Flux for Various
Values of z and &
d, *of
z ¢asy(z) - N4(z) - a% - a’%
a = 0.1
0.00 1.2250 0.22499 18.37 18.29
0.10 1.3905 0.15972 11.49 10.38
0.20 1.5599 0.11339 7.27 6.92
0.30 1.7339 0.08050 L. 6L 4.85
0.40 1.912k4 0.05715 2.99 3,51
0.50 2,0966 0.04057 1.94 2.60
1.00 3.113%6 0.00732 0.24 0.70
1.50 4.3469 0.00018 0.04 0.23
2.00 5.8817 0.00012 0.003% 0.08
o= 0.2
0.00 1.2163% 0.21634 17.79 17.76
0.10 1.3741 0.15602 11.35 10.35
0.20 1.5387 0.11251 7.31 6.995
0.30 1.7111 0.08113 b7k 4.95
0.40 1.8923 0.05851 3.09 3.60
0.50 2.0828 0.04219 2.03 2.68
1.00 3.2149 0.00822 0.26 0.71
1.50 k. 7569 0.0016 0.034 0.22
2.00 6.9053% 0.0003 0.00k4 0.07
o= 0.3
0.00 1.2065 0.20643 17.11 17.07
0.10 1.3562 0.15200 11.21 10.20
0.20 1.5151 0.11190 7.%9 6.999
0.3%0 1.6846 0.08239 4.89 5.01
0.40 1.8654 0.06656 3.57 3.67
0.50 2.0593 0.04469 2.17 2.7h
1.00 3.,2706 0.00967 0.30 0.7h
1.50 5.0513 0.00268 0.053% 0.2%
2.00 T.71L7 0.00045 0.006 0.07
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Table 3 (continued)

o *ef
z ¢asy(2) - 04(z) - af - a'%
o= 0.4
0.00 1.1934 0.19333 16.20 16.18
0.10 1.3348 0.14486 10.85 9.91
0.20 1.4872 0.10855 7.30 6.90
0.30 1.6521 0.08134 4,92 4,99
0.40 1.83%04 0.06037 3.30 3.69
0.50 2.0237 0.04567 2.26 2.77
1.00 3.2780 0.00797 0.24 0.75
1.50 5.2181 0.00188 0.04 0.23
2.00 8.2514 0.00060 0.01 0.07
a= 0.5
0.00 1.1755 0.17550 14.93 14,94
0.10 1.3088 0.13273 10.1k 9.36
0.20 1.h542 0.10038 6.90 6.61
0.30 1.6149 0.07516 4.65 4.84
0.40 1.7864 0.0568L4 3.18 3.61
0.50 1.9762 0.043k42 2.20 2.73
1.00 3.,2%89 0.01075 0.3% 0.75
1.50 5.2578 0.00266 0.05 0.23
2.00 8.5057 0.00066 0.01 0.07
a= 0.6
0.00 1.1528 0.1528 13.25 1%.18
0.10 1.2787 0.12012 9.39 8.41
0.20 1.4168 0.094hT 6.67 6.01
0.30 1.5689 0.07428 h.7% TRIN
0.40 1.73%63 0.05841 3.%6 3.3k
0.50 1.9203% 0.04593 2.39 2.54
1.00 3.1637 0.01381 0.4h 0.72
1.50 5.1917 0.00415 0.08 0.22
2.00 8.5004 0.00125 0.02 0.07
o= 0.7
0.00 1.1218 0.12180 10.86 10.63
0.10 1.2411 0.10352 8.34 6.84
0.20 1.3726 0.08799 6.41 4,91
0.30 1.5178 0.07478 4,93 3.65




Table 3 (continued)
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% e,
z ¢asy(2) - Ng(z) a$ a’
a=.0.7
0.40 1.6783 0.06356 3.79 2.75
0.50 1.855% 0.05402 2.91 2.10
1.00 3.0592 0.02396 0.78 0.60
1.50 5.0411 0.01063% 0.21 0.18
2.00 8.3024 0.00471 0.06 0.05
a= 0.8
0.00 1.0788 0.07836 7.4k 7.03
0.10 1.1923 0.07686 6.60 4.48
0.20 1.3178 0.06686 5.20 3.20
0.30 1.4648 0.05816 4.07 2.37
0.40 1.6097 0.05059 3,22 1.78
0.50 1.7791 0.04401 2.53% 1.36
1.00 2.9%32 0.02192 0.77 0.40
1.50 4.8361 0.01092 0.23 0.12
2.00 7.9735 0.00544 0.07 0.04
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Table 4. Emergent Angular Distribution #(0,u) for
Various Values of p and a
b glo,n)  [g(o,u) 1" b o cf
a= 0.1
0.00  0.4500 0.4502 2.551 x 107 2.566 x 10°* 18.37
0.01  0.4607 0.46k42 2.612 x 107* 2.645 x 107t 17.52
0.05 0.5022 0.5077 2.848 x 107 2.89% x 107+ 1L.68
0.10 0.5513 0.5562 3,126 x 10 3.170 x 10t 12.96
0.50 0.9510 0.9497 5.391 x 10 % 5.412 x 1071 3.77
0.60 1.0702 1.0686 6.067 x 107t 6.090 x 107 3.00
0.90  1.5L40k 1.5378 8.73% x 107 8.763 x 10_* 1.58
0.94 1.6222 1.6196 9.197 x 107 9.2%0 x 10 1.46
0.96 1.671k 1.6629 9.4k75 x 1077 9.476 x 1077 1.39
0.98 1.7106 1.7079 9.698 x 107 9.73% x 10° 1.3%
1.00 1.76%9 1.7548 10.000 x 10™Y  10.000 x 107% 1.28
a= 0.2
0.00  0.4000 0.4001 1.800 x 107% 1.810 x 10™*  17.78
0.01  0.4090 0.4117 1.842 x 1072 1.864 x 107 17.00
0.05 0.4436  0.4483 1.998 x 1071 2.030 x 10°*  14.36
0.10  0.4859 0.4900 2.188 x 107 2.219 x 107t 11.83
0.50 0.8776 0.877h 3,952 x 10° 3.97h x 1072 3.61
0.60 1.0184 1.0172 4,587 x 107 4.607 x 107% 2.02
0.90 1.7k22 1.7402 7.846 x 1072 7.880 x 107 1.24
0.94%  1.9056 1.9037 8.582 x 107 8.621 x 107t 1.10
0.96 1.9981 1.996% 8.999 x 107% 9.0k1 x 1071 1.0h
0.98 2.0683 2.0973 9.%15 x 10™ 2 9.498 x 107* 0.98
1.00 2.220k  2.2081 10.000 x 10™*  10.000 x 1071 0.91
a= 0.3
0.00  0.3500 0.%501 1.186 x 1072 1.186 x 10°t  17.12
0.01  0.3573 0.3595 1.210 x 107 1.218 x 10" 16.40
0.05 0.3858 0.3896 1.307 x 107 1.320 x 10 13.98
0.10 0.h212 0.42L5 1.426 x 1071 1.438 x 107 11.60
0.50 0.7883 0.7875 2.671 x 1071 2.668 x 1072 3.49
0.60 0.9%10  0.93%98 3,188 x 107 3,18k x 107  2.6%
0.90  1.963k4 1.9621 6.651 x 107+ 6.648 x 107 0.97
0.9Lh 2.2710  2.2692 7.69% x 1071 7.680 x 1071 0.81
0.96 2.4611  2.4599 8.337 x 107* 8.335 x 107t 0.7h4
0.98 2.6852 2.68L0 9.097 x 107 9,094 x 1077 0.67
1.00 2.9537 2.951L 10.000 x 10™*  10.000 x 107% 0.60
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Table 4 (continued)

ko dlom)  [dlo,m) 1* b b* cf
a= 0.4
0.00 0.3000  0.3000 6.94 x 1072 6.94 x 1072 16.20
0.01 0.3057  0.307h 7.07 x 1072 7.11 x 1072 15.70
0.05 0.3286 0.3315 7.60 x 1072 7.67 x 1072 13.%6
0.10 0.3572 0.3%599 8.26 x 1072 8.32 x 10~ 7.1%
0.50 0.6847  0.6841 15.83 x 1072 15.82 x 1072 3,35
0.60 0.8%65 0.8354 19.34 x 1072 19.%2 x 1072 2.48
0.90 2.1638 2.1622 50.04 x 1072 50.01 x 102 0.7k
0.94 2.7090  2.7073 62.65 x 1072 62.62 x 1072 0.57
0.96 3.095%  3.0946 71.58 x 1072 71.57 x 1072 0.khg
0.98  3.6109 3.6087 83.51 x 1072 83.46 x 1072 0.42
1.00 L.z2h1 L4.3237 100.00 x 1072  100.00 x 102 0.3k
Q= 0.5
0.00 0.2500  0.2500 3,40 x 1072 3.0 x 1072 14.93
0.01 0.254k 0.2556 3,46 x 1072 3,47 x 1072 14.36
0.05 0.2721  0.2776 3,70 x 1072 3,77 x 102 12.40
0.10 0.2944  0.2964 4.00 x 1072 4,03 x 1072 10.44
0.50 0.5702 0.5696 7.75 x 1072 7.74 x 1072 5.h1
0.60 0.7084%  0.7076 9.62 x 1072 9.61 x 102 2.26
0.90 2.2471  2.2456 30.53 x 1072 30.50 x 1072 0.55
0.9% 3%,1181  3.1160 42,63 x 1072 42.33 x 1072 0.39
0.96 3.8608 3.8605 52.54 x 1072 52,44 x 1072 0.31
0.98 5.071k 5.0673 68.90 x 1072 68.8%3 x 1072 0.23
1.00 T7.3606 7.3616 100.00 x 1072  100.00 x 102 0.16
a= 0.6
0.00 0.2000  0.2000 1.22 x 1072 1.22 x 102 13.25
0.01 0.20%2  0.2040 1.24 x 1072 1.2h x 1072 12.81
0.05 0.2159  0.2175 1.31 x 1072 1.2 x 1078 11.22
0.10 0.2%24F  0.2337 1.41 x 1072 1.hk2 x 1072 9.58
0.50 0.4h91  0.4492 2.7% x 1072 2.7%3 x 1072 5.28
0.60 0.56%6 0.56%3 3,43 x 1072 3,40 x 1072 2.17
0.90 2.0847  2.0840 12.67 x 1072 12.62 x 1072 0.46
0.94 3.2125 3,2091 19.5% x 1072 19.49 x 1072 0.29
0.96 L4.3937 }.2896 26.71 x 1072 26.66 x 1072 0.21
0.98 6.9%94  6.9361 42,18 x 1072 142,13 x 102 0.13
1.00 16.4500 11.6L46L 100.00 x 102  100.00 x 102  0.05
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Table 4 (continued)

4(0,u) [g(0,u) 1% b b* P
a= 0.7
0. 0.1500 0.1500 2.30 x 1072 2.30 x 102  10.
0. 0.1520 0.1526 2.33 x 102 2.34 x 1072 10.
0. 0.1603% 0.1618 2.46 x 1078 2.48 x 1072 9.
0. 0.171h 0.1733 2.63 x 1072 2.65 x 10 3 8.
0. 0.3272 0.3284 5.02 x 1073 5.03 x 10 2 2.
0. 0.4119 0.4129 6.32 x 1072 6.32 x 102 2.
0. 1.648% 1.6455 25.%0 x 10°° 25.18 x 10 3 0.
0. 2.7076 2.7013% 41.55 x 1073 41.33 x 1072 0.
0. 3.9791 3.9728 61.06 x 1073 60.9% x 1073 0.
0. 7.5231 7.495) 115.50 x 103 114.70 x 1073 0.
1. 65.1626 65.355 1000.00 x 1073 1000.00 x 1073 0.
o= 0.8

0. 0.1000 0.1000 8.4 x 1072 8.43 x 107 7.
0. 0.1012 0.1023 8.54 x 1073 8.62 x 10> 7.
0. 0.1062 0.1073 8.96 x 107> 9.0k x 107> 6.
0. 0.1130 0.1143 9.5%3 x 10> 9.6% x 10> 5.
0. 0.2111 0.2114 17.81 x 107> 17.90 x 107> 2.
0. 0.2654 0.2666 22.38 x 1073 22.47 x 1075 1.
0 1,074k 1.0751 90.6% x 10°° 90.61 x 10°° 0.
0. 1.7920 1.7925 151.20 x 10°° 151.10 x 107> 0.
0. 2.6877 2.6879 226.70 x 10°°  226.50 x 107> 0.
0. 5.3667 5.3659 452,70 x 1075 452.20 x 10> 0.
1. 0.

11.8548 x 107 11.865 x 107 1.00 1.0
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DISCUSSION

The general expression relating the angular neutron flux and the total
neutron flux has been formulated. In a neutron chopper experiment the neutron
beam is extracted from a point away from the boundary. The angular neutron
flux in the direction p = 1 is measured. In order to obtain the exact total
neutron flux from the measured angular flux the inverse Laplace transform of
the measured quantity is required, which cannot be obtained easily. Accord-
ing to the formulas developed in this study it is possible to determine the
total neutron flux provided the flux gradient terms can be estimated. IT
the point of extraction of beam is more than a distance of one mean free
path from the boundary then the neutron flux may be represented by an asymptotic
expression. But if this point is near the boundary then the non-asymptotic
part of the flux cannot be ignored. The exact determination of the non-
asymptotic flux, however, requires the exact solution of the transport
equation which is in itself a formidable task. We have, however, estimated
the non-asymptotic flux by an approximate method.

The total neutron flux is assumed to consist of two parts - asymptotic
and non-asymptotic. The asymptotic expression for flux is known exactly
and is given by the studies of Adler and Mark*’®’® for the absorbing medium.
The non-asymptotic flux is represented by a single exponential. We have
calculated the deviations of total flux from the asymptotic flux for different
values of @bsorption (&) and distance (z). We note that the deviation
decreases rapidly as we go away from the boundary. At a distance of one mean
free path the deviation is less than 1%.

We also calculated the emergent angular distribution. According to
Teble 4 we note that for a fixed absorption the percentage deviation of the
emergent angular distribution from the angular distribution corresponding to
the asymptotic neutron flux decreases as the value of p increases from zero
to one. In other words, it means that the distribution of neutrons moving
in the forward direction is given by the asymptotic flux. These neutrons

come from the interior or the medium. On the other hand, the distribution of
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neutrons along the direction (0 < p < 1) is governed by the non-asymptotic
flux. We further observe that for very large absorptions the emergent angular
distribution is peaked in the forward direction. The ratio between the dis-
tributions along directions p = O and p = 1 decreases rapidly as the
absorption is increased. TFor large absorption those neutrons contribute the
most which come from the interior in the forward direction.

The agreement between the results reported in this study and those given by
LeCaine using the variational method are good in all cases. This
agreement is understandable as the asymptotic fluxes are given by the same
expressions in both the cases. At the boundary the same normalization
condition was used in both the cases. Thus at the boundary and at a distance
far from the boundary both the methods give identical results. In between
two extreme cases the above agreement indicates that a simple trial function
will give the non-asymptotic part of the flux. The representation of non-
asymptotic or transient flux by a single exponential merits serious considera-

tion and further investigation.
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