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Rainbow Scattering Analysis of Recent Heavy Ion Data

M. V. Goldman

Oak Ridge National Laboratory
ABSTRACT

Heavy-ion elastic scattering cross sections recently obtained

12 14 16 20 197 209

for C N ", O~ and Ne = by Au and Bi

12
of C by Nisg, Ag107, In113, and Ta181, all at about 10 Mev/nucleon

, and scattering

incident energy, are fitted by means of the semiclassical rainbow
model of Ford and Wheeler. Values of ry in very good agreement
with the sharp cut-off model are found. The non-absorbing nuclear
surface thickness of the rainbow model is found to be about 2 fermis,
or 18Y% of the interaction radius, and shows little variation with
either projectile or target mass for these data. Several aspects of

the theory itself are examined.

“"ORNL summer employee, now at Harvard University, Physics
Department.
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THEORY

When a light ray enters a spherical water droplet, is
internally reflected once, and emerges, simple geometric optics
predicts that the angle of deviation or scattering of the ray (0) as
a function of impact parameter (b) will have a minimum at some
_130 less than the radius of the droplet. Since the classical ex-
pression for the differential scattering cross section contains a

%.g- in the denominator, a singularity in intensity arises at the angle

of minimum deviation, 0(20), where %.g = 0. We observe this
phenomenon in nature in the appearanc—eoof rainbows*. Here
O(EO) is the '"rainbow angle' and we will henceforth denote such
extrema by Or.

No ray can be deflected by an angle less than Qr, so the
cross section computed from geometric optics will obviously be
zero at angles smaller than 9. (dark side of the rainbow), A
more sophisticated treatment, using wave optics to account for
diffraction effects, would yield a large but finite oscillating inten-
sity on the bright side and a greater than exponential fall-off on
the dark side.

All this has an analogue in nuclear physics according to a

recent semiclassical scattering theory developed by Ford and

Wheelerl, which they apply to the scattering of a-particles by

3

The variety of colors corresponds to the slightly different angles
of minimum deviation for the various wave lengths present in
white light.

1K.W. Ford and J. A. Wheeler, Annals of Physics 7, 259 (1959)
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heavy nuclei. They define the deflection function (§) to be the
scattering angle 0 as a function of angular momentum ,L for a
repulsive force, and the negative of 0 for an attractive force.

The qualitative behavior of the deflection function for scattering
of nuclei by nuclei is clear if one ignores absorption (see Fig. 1).
For large 1{ and a fixed energy E, @ will be close to zero, As
L decreases, will monotonically increase, due to the
Coulomb repulsion, until the short-range attractive nuclear
force comes into play. Here (4 will begin to decrease as L
decreases, becoming negative as the nuclear force dominates,
and approaching - o, which corresponds to spiralling of the pro-
jectile around the target.

As in the scattering of light by water droplets, the deflection
function has an extremum which implies an infinite classical
cross section at the rainbow angle Or. Now, however, it is a
maximum, and the high-angle side of 01_ is the black side (zero
cross section). This classical behavior of the cross section would
be correct if the scattering of a beam of nuclei actually involved
well-defined paths. But quantum-mechanically, the definition of
the path is limited by the uncertainty principle, and wave ideas
must be introduced. Just as wave optics accounted for diffraction
effects in the scattering of light by water droplets, so wave
mechanics can lead to a semiclassical cross section which
accounts for diffraction effects in nuclear scattering and predicts
a similar cross section behavior (i.e. oscillating on the bright
side and a greater than exponential fall-off on the dark side of

Or). Ford and Wheeler follow a semiclassical partial wave analysis



as outlined below:

The quantum expression for scattering is,

2
o = |ue)| , (1)
where the amplitude f(0) is:
[0 0) 2iS
1
£(9) = == 2, +1 -1)P e 2
()H[ZO(L e TFOPy (cos9).  (2)

Here &, is the phase shift of the f,th partial wave. Table 1

L

gives the approximations valid under a semiclassical analysis and

the conditions for validity.

Table 1. Approximations for the Ford-Wheeler semiclassical
analysis.

Conditions for validity

Approximation (Necessary, not suff.)
1. The phase shifts 1. (a) S/@ large
are evaluated by (b) Slowly varying
the JWKB method. potential,
2. The Legendre poly- 2. (a) Large /(/
nomial is replaced by (b) sino = L
its asymptotic form. /(/
3. The summation of 3. Large A,(, (many partial
Eq. (2) is replaced waves contribute to the

by an integral, scattering).
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These approximations convert the expression for the scat-

tering amplitude, Eq. 2, into the semiclassical form:

o0

£ - - 1 j (f +1/2)1 217 +-ei¢")dﬁ, (3)

s.C. k(2 sin Q)1/2

(o]

¢¢ =2 Sﬂ +(f +1/2)0+ /4. (4)

The main contribution to the integral comes from the region where
either exponential varies slowly. This will be in the vicinity of the
ﬂ -value of stationary phase (s.p.) at which ¢:&: is not changing with

respect to l, :

=0 (5)

d¢i_
i3

al
S.p.

Differentiating Eq. (4) and setting equal to zero, therefore, gives

the condition:

S
"1

1 ‘
—— =20 L, ) (6)
d /{ 2 S.p.
s. Pp.
Relation (6) determines the phase shifts if G (ﬁ) is known.

Hence, one need only know the classical deflection function to eval-
uate the semiclassical cross section, which will be the square of the
absolute value of the right-hand side of Eq. (3). In practice, of
course, the situation is reversed. In many cases the cross section
has been measured experimentally and one wishes to know the shape
of the deflection function in Fig. 1 around the neighborhood of f, e

It is therefore necessary to somehow parametrize 9(,@ - fr) and fit
the resulting expression for TS e to the experimental cross section,

thereby determining the parameters and, hence, the shape.
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As a first approximation, Ford and Wheeler assume a parabolic

deflection function
2
otdy=0_-a(l-L)" (7)
This leads to the cross section
1 2 -2/3 .2

Ai(x) is the Airy integral,

+ oo
Ai(x) = 2% [exp(ixu +1/3 iu3)du;,
- 0o
and x is defined by the formula
-1/3
X =q (6, - 0). (9

A more convenient expression in the neighborhood of the rainbow
angle is the ratio of O'/O'C, where o is the value at Or of the Coulomb

scattering cross section

% = ﬁ(q‘1/3sinor/2)2Aiz(x), (10)
[od n 2
Z,7Z,e
= 172
KV

With a proper choice of the parameters q and Or, Eq. (10)
can be made to agree quite well with experimental O'/O'C, around Or,
provided 72 is sufficiently greater than one, The parameters Or
and g can be related to other quantities of more direct physical sig-
nificance, such as an interaction radius R and nuclear surface thick-

ness AR.
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If, as we have reason to believe, the nuclear force begins to
dominate the Coulomb force quite rapidly when the nuclei are close,
then, at Or the value of ﬁ derived from the Coulomb deflection
function will be reasonably close to Qr (derived from the actual de-
flection function) and we may use the Coulomb expression for the

distance of closest approach as a function of scattering angle:
R = 77(1 + csc 0_/2) (11)
k r

Thus, the rainbow angle gives us an interaction radius directly.
The nuclear radius parameter r  may be found in the usual way by
dividing by (Ai/3 + A;/?’).

In the rainbow model, absorption is ignored for,(, ~values
greater than /@S, where spiralling begins. Then the scattering
for L—values between j, 5 and /g, r may be regarded as due to a
non-absorbing refractive surface layer of thickness related to
( j/r - [ s)' Since the actual /[s is not known, Ford and Wheeler

take as A,e, the distance between the axis of the approximating

parabola (Lr) and its intersection with the/é -axis at ’Z’o' Since

& = Or - q(/f/0 —Z/r)z, we have
NANTA

The value of A,[ depends on the agreement between Or- q([ -/(}J r)2

/2

1
= (0_/q) (12)

and the actual deflection not only in the neighborhood of Or, but

also at 0=0. We shall return to this point later. A surface thick-
ness AR is obtained from A,ﬂ by dividing by the wave number k.

In Appendix I of the present paper, an alternative method of defining

AR is presented,
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METHOD OF FITTING

Expression (10) was fitted to the experimental o/ vs 0
mainly by a graphical method. Some fits were also made to rain-
bow model curves calculated on the IBM 704, but the hand technique
was found preferable in that it allowed more control at less expense
and was only slightly slower. The graphical method is as follows:

We rewrite expression (10) as

0‘/0’C = o.AiZ(x), (13)

/3 -1/3

where a is the constant 4-rr/)? (q-'1 sin G)r/Z)2 and x = q (6.-9).
The two independent parameters to be varied are taken as Or and

a. On a large piece of graph paper, x is put on the abscissa, and
both Ai2 and 0 are put on the ordinate, Fig. 2. The function

Aiz(x) is actually plotted on the graph, while the straight line repre-
senting x = q_1/3 (Or- 0) is scored on a length of plexiglass which

is laid over the graph in a position determined by the choice of
parameters. In this manner, the variation of the two parameters

is accomplished by taking advantage of the two degrees of freedom

1/3

of the straight line. After a and Or are chosen and q computed,

the line is easily positioned, since the 6 intercept is just Or, and

the x~intercept is -0,01745 q“l/3 Or’ or, alternatively, the slope

dx/de is 0,01745 q_1/3. When the line is fixed, one reads from 0
to the straight line, to the plotted curve, to the value of Aiz(x) cor-
responding to that @ (see above diagram). The value of x need not

even be read off. One then multiplies Aiz(x) by the scale factor a

- which may be kept as constant multiplier on a desk calculator. It
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quickly becomes apparent how to control the shape of o'/crC by utilizing
different portions of the Aiz(x) curve (determined by the slope and
intercept of the straight line) and by changing the multiplicative factor
m. Two rough but valuable rules of thumb are as follows:
A, To increase (or decrease) the downward slope of
the lower portion of o‘/o’c, increase (or decrease) a.
B. To move the lower part of ¢/c_ to the left (or
right), decrease (or increase) Qr.
One can come close to a fit even at first try, by choosing for
Or an angle corresponding on the experimental curve to a o’/o’C
between 0.3 and 0.5 and an a equal to that value of ¢/o_ divided by

0. 126, Then a and 0 are adjusted to obtain a best {it.
BEST FITS TO EXPERIMENTAL DATA

The data fitted in this paper were recently presented at the Second
Conference on Reactions Between Complex Nuclei at Gatlinburg,

Tennessee, May 2-4, 1960, Kerlee, Reynolds, and Goldberg2 have

investigated the elastic scattering of Clz, N14, O16 and Nezo by Au197

and Bi209 at energies of 10,4 Mev (lab) per nucleon, while Alster and

Conzett3 have studied elastic scattering of Clz by Ni59, Ag107, n113

81

I
and Ta'%! at 124.5 Mev (lab). The experimental a’/o‘C curves of both

groups provide excellent data for examination of the dependence of r,

and AR of the rainbow model on the masses of targets and projectiles.

*At 8=0_, x=0, and AiZ(O) = 0.126. Hence, choosing a = (¢/0 ) /0.126
r c’exp

will always put the rainbow angle right on the experimental curve.
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In the process of fitting, it soon became apparent that dif-
ferent fits were possible over different regions. There is a theo-
retical reason, however, for expecting (O-/O'C)theor. to be a better

fit to (o/cc)exp on the dark (high angle) side of the rainbow angle
than on the bright (low angle) side. On the bright side, contributions

to (O‘/O’C) come from the low- ,& and high-,é branches of the

theor.
deflection function. If the nuclear absorption is appreciable, how-
ever, waves with low ,[, -values will traverse much of the nuclear
interior and will, therefore, be rapidly damped out, leaving only
the contribution of waves which miss the nucleus and give rise to
ordinary Coulomb scattering. This should damp the bright side
oscillations predicted by the rainbow theory, since the theory does
not take absorption into account. The dark side behavior remains
unaffected.

In Fig. 3 are seen two different possible fits to experimental
data. The fit on the right was chosen as best, although the limits
of accuracy given below on the parameters rs and AR are such as to
permit the left hand fit also, Figure 4 shows how relatively insensi-
tive a fit is to AR. In the particular case shown, acceptable fits
are obtained with AR's ranging from 1.7 to 2.4 fermis. Figure 5
shows the effect on a best fit of a variation of r_ by about 1% and a
variation of AR by about 12%. Variation of the parameters by more
than these amounts produces unacceptable fits, therefore, they were
taken as the limits of accuracy of the determination of ro and AR.
The values of ro and AR were also varied over a much larger range,
but fits were found to be possible only in the neighborhood defined

by the above limits; this neighborhood is unique. In Figs. 6 and 7
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are shown the rainbow fits to all of the data of Alster and Conzett3
and part of the data of Kerlee, Reynolds and Goldbergz. The data
of the former lent itself to fits over wider angular ranges since
Alster and Conzett examine cr/crc as low as 0.01, while Kerlee,

Reynolds and Goldberg only go down to 0, 1.
DISCUSSION

In Tables 2 and 3 all relevant parameters of the fits are sum-
marized. Table 2 is ordered according to increasing target mass

with C12 as the projectile, The results of the rainbow fit of Halbert

14

and Zucker4 to scattering of N”~ by Al27 at 27.3 Mev are inserted

at the head of the table for comparison. Table 3 is ordered

according to increasing projectile mass with Au197 and B1209 a

S
targets. With Eiab in Mev and all masses in amu other quantities

in the table are calculated via the following formulas:

2D. D. Kerlee, H. L. Reynolds and E. Goldberg, Reactions Be-
tween Complex Nuclei, John Wiley and Sons, Inc. {1960}, p. 167.
3J. Alster and H. E. Conzett, Reactions Between Complex Nuclei,
John Wiley and Sons, Inc. (1960), p. 175.

4

M. L. Halbert and A. Zucker, Nuclear Physics 16, 158 (1960).
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7.7
= 0.1574 12 73
(Ejap/My)
M
2 1/2
k= 0. 2187 W=7, (M} B ap)
Kr :YZ cot Or/Z -1/2 (semiclassical Coulomb)

AS, =0.01745A/4 (6_/2)  (from Eq. 6).

A

Also used are Eqs. (l1) and (12) for AR and R.

In most cases, ﬂr’ A,é , and ASK are found to be suf-
ficiently greater than unity to validate a semiclassical analysis
(compare with Table 1).

The values obtained for s from rainbow angles ranging from
16° to 40° are all remarkably consistent and close to ro's obtained
from the Blair sharp-cutoff models. Kerlee, Reynolds and Goldbe rgZ
obtain agreement with the sharp cutoff model by using r_== 1. 46
fermis (see Table 4). These fits exhibit some diffraction structure
and are generally much better at the lower angles, while the rain-
bow fits fall off smoothly and are better at the higher angles, It is
striking that similar ro’s are obtained not only from very different
models, but also from completely different portions of the experi-
mental data.

Of greater interest perhaps is the number, A,[ , or refracted
but unabsorbed partial waves of Q—value lower than Kr’ or the
"surface thickness'" AR derived from A /€ Most conspicuous are

the rather large values obtained for AK and AR from the rainbow

5J. S. Blair, Phys. Rev. _92, 1218 (1954).
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fits made in this paper. For Q r = 65 we find A»Q to be about 16
partial waves, which is large compared with Alster and Conzett's
"fuzzed' fits to their data which yield AL 's of 2 and 3 around
,Q 0~ 62. Using AR = A /( /k, we derive nuclear surface thicknesses
of about 2 fermis. The fits are not accurate enough to obtain any
information about the dependence of AR on either target or projectile
mass and structure. The only significant difference is in the
A127(N14, N14)A127 scattering data of Halbert and Zucker, for which
AR = 0. 84 fermis. This, however, is the only low-energy rainbow
fit (aside from a-particles), and it is over a very different angular
range (91° to 131°).

In the following two appendices, we consider the consequences

of making more precise two approximations of the Ford and Wheeler

treatment.

>kThe "fuzzed' model is similar to the Blair model except that instead
of a sharp cutoff for a particular [—value of the partial wave
expansion, there is a gradual decrease of the amplitude of the f th
wave with ,Q according to the arbitrary rounding function

{1 + exp [ - (2 - /g.l)/A ﬁ] -1 introduced by MclIntyre, Baker and

Wangé.

6J. A. McIntyre, S. D. Baker, and K. H. Wang, Phys. Rev. (In press).
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APPENDIX I: AR Redefined in Terms of AZ,

The measure of non-absorbing surface thickness used by
Ford and Wheeler is AR = AL/k. Strictly speaking, however,

this gives one an increment in impact parameter, Ab, rather than

surface thickness since k is the wave number at infinity. The
initial angular momentum is/g, = bk, which equals R kR at peri-
helion (kR is the wave number at perihelion). Only if k:kR will

,& /k =R, or Aj/ /k = AR; this is satisfied only if the projectile
slows down only slightly in the Coulomb field. It seems reasonable
to divide by kR directly, where kR is taken as j,r/R. We then

define ARﬂ< by the equation,
ar¥ =al g = L 1L R (14)

(’Lr and R are found from the rainbow angle via the Coulomb ex-
pressions j/ L =Jjcot Or/Z -1/2, R = 7] /k (1 +csc Or/Z). In Table
4 the surface thickness AR>== is compared with Ford and Wheeler's
AR. Also compared are the ratios of surface thickness to inter-
action radius. The AR* for the low energy aluminum scattering is
more in line with the other AR*'s, now appearing relatively larger

instead of smaller.
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APPENDIX II: Correction for Angular Variation in the

Ford-Wheeler Expression for (¢/0 )

The scattering cross section for a Coulomb force may be

written as:

O___l_(_%)z 11 )2 cot 0/2 1
c 4 sintg/2 2 k' 'sin0 sin“0/2

(15)

If one inserts the semiclassical Coulomb relation between angular
momentum and scattering angle, (,& +1/2) = 7'1 cot 8/2, the Coulomb
cross section may be rewritten as,

_1 (f +1/2) 1 i
"2 -EZ sin @ sinTQ/Z (16)

Ford and Wheeler derive the rainbow scattering cross section,

.+ 1y a7 Pk .

=
1
W‘Jt—-

Their expression for O'/O‘C is obtained by freezing the sin 0
in the denominator of ¢ at sin Or and dividing by the value of the

Coulomb cross section at Qr:

2 -2/3, .2
_Tkl (L, +1/2) Lo q 2 a1
olo_ = a
c ( + 1/2)
S EELLR.
k r sin” 98/2

(18)

2

1/3)" 012 (x).

4

= (sin Or/Z q

I

This expression is valid only in a small region about the rainbow
angle, To take the angular variation into account we must divide
the o of (17) (withjir +1/2 = 7? cot Or/Z) directly by the L8 of (15),

obtaining,
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1Tco’cQ/Z 1/ 2

g 3y Ai%(x). (19)

4 r . -
{ ?C} :ﬁ—cot 072 (sin 6/2 q
o

In terms of the Ford-Wheeler expression (18),[% :fl may
c

. . 4]
be rewritten as,

¢ L 0) oo, where 4(0) = —orox'?sinelz 0
3 = v(8) o/a, where y(0) = 577 sin § 72"
0

At each angle of one of the fitted o‘/o‘C curves we computed
the correction factor y and the value of [ % } . The result is
shown in Fig. 8. The previously successfuc; parameters r_ and AR
no longer provide a good fit. The best fit with revised parameters
of[ % ] to the experimental data is also shown, Both ry and AR

c

for this fi% are slightly higher. The parameters are compared in

Table 6.
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Fig. 6. Rainbow Fits for C'? Scattered from Various Targets at
Eigp = 124.5 Mev. (Data of Alster and Conzett’). Values of rg and
MR for each of the four targets are given.
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Curve 1 was the best fit for the Ford-Wheeler expression

for o/0e. Curve 2 shows the effect of the correction for angular
variation on this fit. Curve 3 shows the fit obtained with the angle-
corrected expression and the new values of the parameters rg and AR.



Table 2. Rainbow scattering correlations.
£ 0]
Mass Fitted Region g
AR Q g
M; M, E} . 0 olo, 0. R R A &
o
14 27 217, 91°-131° ,2-,01 94 8.6 10% 2.4
12 59 124.5 16°-26° ,25-,01 16,25 9.4 18% 12,0
12 107 124.5 23.5°-32°,25-,03 23,50 10,7 16. 5% 14.0
12 113 124.5 24°-34° ,35-,01 24 10.9 20% 16.0
12 181 124.5 32°-41° ,5-,05 33.50 12,1 17.5% 17.0
12 197 121.4 36°-44° ,5-.1 38.50 12,2 17% 17.0
12 209 124.0 39°-44° ,4-.1 38.75 12.3 17% i7.0
*M = projectile mass in amu

1

M,

= target mass in amu

_gz_



Table 3., Rainbow scattering correlations,
Mass* Fitted Region °
M, M, E ) K 0 /o 0 r R AR AR A AS, ®
1 2 Tlab ! c r o ® , AL Y
Yj
(£1/2°) =1% (£12%) o
12 197 121.4 23,5 7.87 36°-44° .5-.1 37.75 1.50 12,2 2,1 17% 67 17 5.7 2
14 197 145.5 27.0 9.22 36°-41° .4-.1 36.25 1.50 12.4 2.0 16% 82 18 5.8 2
16 197 164.1 31.1 10,37 34°-41° ,7-.1 36.50 1.52 12.6 2.2 19% 94 23 7.3 2
20 197 207.6 38.6 12,87 35°-41° .55-,1 36,75 1.47 12.5 1.9 15% 116 24 7.7 2
12 209 124.0 24,4 8.0 39°-44° .4-.1 38.75 1.49 12.3 2.1 17% 69 17 5.7 2
14 209 145.4 28.4 9.25 39°-44° .4-.1 39.25 1.46 12,2 1.8 15% 79 17 5.8 2
16 209 164.0 32,7 10.4 39°-44° ,34-.1 39.0 1.49 12.6 1.8 14% 92 18 6.2 2
20 209 209.6 40,3 12.96 38°-43° ,4-.1 38.75 1.44 12.5 1.7 14% 114 22 7.4 2

*M = projectile mass in amu

= target mass in amu

_92_
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Table 4. Comparison of values of the nuclear radius parameter, r o

obtained from a sharp cutoff model and from rainbow model calculations.

Mass
Ml M2 Blair ro Rainbow ro Reference
(fermi) (fermi)
12 197 1.50 1.45 2
14 197 1.50 1.47 2
16 197 1.52 1.47 2
20 197 1,47 1.47 2
12 209 1.49 1.45 2
14 209 1.46 1.45 2
16 209 1.49 1.49 2

20 209 1.44 1.45 2
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Table 5. Comparison of surface thicknesses computed from k and kR

Mass

M, M, Al x g = —;5 AR :%L AR :fR/[ SL = ‘2

et «wh ’
14 27 2.4 2.8 1.0 .84 2.3 10% 279
12 59 12.0 7.0 6.2 1.7 2.0 187, 219,
12 107 14.0 7.6 6.0 1.8 2.3 16.5%  22%
12 113 16.0 7.7 6.1 2.1 2.6 20% 24%
12 181 17.0 7.9 5.8 2.1 2.9 17.5%  24%
12197 17.0 7.9 5.6 2.1 3.0 17% 25%
12 209 17.0 8.0 5.5 2.1 3.1 179% 25%
* M, = projectile mass in amu

<

, = target mass in amu

Table 6., Effect of correcting for angular variation in o'/o‘C for

m!3ct?, ct?)m!t? at E,, = 124.5 Mev.

Uncorrected 1.53 2.14

Corrected 1.62 2.52
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