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Abstract

The relation between the trapped ion density achieved in a machine like
OGRA and the molecular ion injection current required, the "S-curve” calculated
by Simon, has been extended to include the effect of energy transfer from trapped
ions to the continuous flux of cold electrons released in the ionization of the
neutral background. Because the cross section for charge exchange, the process
by which ions are lost before "burnout," increases sharply with decrease in
energy, even a little degradation greatly increases the ion loss rate and thereby
increases the injection current required to sustain a given density. Our revised
result for the critical current for burnout determined from the S-curve, is about
twice that calculated neglecting ilon energy degradation for the case of injecting
600 Kev Hg. In the report, we present new S-curves, and the critical current for

a range of H; injection energies from 500 Kev to 800 Kev.
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1. Introduction

In an OGRA-type fusion device (i. e., a device based on trapping ions
by dissociation of energetic molecular ions on collision with either back-
ground gas or trapped ions), the critical injection current for neutral "burnout,"
calculated by Simon,l is a sensitive function of the average energy of trapped
ions through the energy dependence of the charge exchange process by which ions
are lost before burnout. For injection of Hg at energies as high as 600 Kev, of
interest to the Oak Ridge Thermonuclear Group, a reduction in energy by, say,
ten percent doubles the charge exchange cross section.

In this paper we include in a calculation of the critical current the effect,
neglected by Simon, of the degradation of trapped ion energy due to energy transfer
to the continuous flux of cold electrons released in the ionization of the neutral
background. In summary, our calculation provides the charge exchange cross section,
averaged over the ion energy distribution, to be used in Simon's calculation of the

critical current, Ic As an example result, for injection of 600 Kev Hg, the

rit’
corrected Icrit turns out to be more than twice that calculated without energy
degradation. At higher energies, corresponding to longer ion lifetimes and hence
greater degradation, the correction is greater, and thus the expected reduction
in current requirements accompanying an increase in injection energy is diminished.
We have compared Icrit for various injection energies, including the effects of
energy degradation. The result is plotted in Fig. k.

In the next section, Simon's work is reviewed in an approximation due to

Mackin.2 Section 3 treats energy considerations, and Section 4 combines our

results with Simon's.



2. Approximate Critical Current Formula

Simon:L has shown that the relation between the steady state trapped ion
density n, and the injected molecular ion current I plots an S-shape curve,
such as Fig. 1. We are only interested in the solid-line portion, whose upper

boundary defines I Simon pointed out that for this portion, where burnout

crit”®
of neutrals is incomplete, loss of ions by charge exchange greatly dominates
loss by scattering out the mirrors. Thus, with Mackin,2 we neglect scattering losses.

The S-curve is a simultaneous solution of the following equations of conservation

of ions and neutrals, respectively:

I _ =

v B = nopov (1)

LT - oanov (2)
Vv + 071

Here n. is the neutral density inside the plasma. V is the plasma volume, v the

0
ion velocity, Gi the charge exchange cross section averaged over the ion energy
distribution. B, to be discussed, is the fraction of the molecular ion beam which
is dissocilated.

In Eq. (2) governing neutrals, again following Mackin, we have made two
assumptions. First, it is assumed that the only important sources of neutral gas
are the undissociated molecular ion beam striking the injector, the neutral atoms
released in dissociation,and the fast neutrals from charge-exchange striking the
walls. The assumed proportionality between neutral input and I is [', which
according to Simon might be as much as 2., The second assumption is that the only
important pumping of neutrasls is due to the plasma, whereby neutrals ionized by
the plasma are buried in "getters" or are otherwise prevented from returning to
the system as neutrals. o is the efficiency for this process, that is, the fraction

of ionized neutrals which are disposed of. o7 is the ionization cross section.
i

With application to the injection of several hundred Kev ions in mind,
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destruction of neutrals by charge exchange has been neglected in comparison with
simple ionization.

Because it turns out that electrons reach an energy .. 100 ev, ionization by
electrons should be included on the right side of (2). The products o;v for
ions and electrons are comparable. The trapped ion and electron densities are
also comparable, since, for neutrality, n_ equals n, plus the secondary ion
density resulting from ionization of neutrals, and, as will be pointed out, the
latter is much less than n, vhen either is important. Thus, for simplicity,
we may include ionization by electrons merely by doubling o; in (2).

Note that for the most part we shall neglect the slight energy dependence of
guantities such as o;v in comparison with the very strong energy dependence of 0;.

i
Dividing (1) by (2) gives

. (3)

Thus, having neglected scattering, we find that the dissociation fraction, B,

j
]

is constant over the portion of the S-curve under consideration, except for the
variation of 3§ with n+and I to be derived later. Further, inserting values,
B is quite small. Thus we may neglect attenuation of the molecular ion beam

along its path, L, through the plasma, so that B is adequately given by

B = o;SL(n+ + no) . ()
Oé is the dissociation cross section, assumed to be the same for all kinds of
dissociation centers including trapped ions and neutrals. Dissociation by
secondary ions has been neglected since, as Mackin points out and as was mentioned

earlier, for values of n, large enough so that an appreciable fraction of the

neutrals are ionized, n is much greater than either the neutral or secondary



ion densities. Dissociation by electrons, neglected by Simon, is also omitted
here.
Combining (2), (3), and (4) gives:
T
X

2 I"

n° . | —
+ +\o O,0 L
i3B

'z _
+&——V&i—v-o . (5)

Given 3:, this equation, quadratic in n+, defines the portion of the S-curve

under discussion, the solid-line portion in Fig. 1. The turning point defining
I G20 be found by taking the derivative of (5) with respect to n_, setting
dI/dn+ = 0, and solving the result simultaneously with (5). For the case without
energy degradation, 3; being then a known constant, the turning point is more
easily found as the point where the two solutions of (5), the quadratic equation

in n, coincide. That is, we set the discriminant equal to zero and solve for

I, wvhich yields Mackin's approximation

2
P ©)

Mackin has found that this formula agrees well with Simon's exact results for
numerous cases tested. Also, this solution for constant o; has an interesting
corollary. n+ is then just half the coefficient of the first power of n+ in (5).

Substituting this quantity into (4) gives

= (n)_ ., "3 =

(n,) B erit 5 S5 L - (7)

crit

Thus the ratio n+/nO at the critical current is always unity. In the next

section it is shown that 8; depends only on this ratio.



Because S; depends on n, and I, formula (6) for the critical current is not
correct. However, as we shall see in Section 4, it is approximately valid and
will be used to estimate the critical current at various injection energies

relative to that for 600 Kev Hg

3. Calculation of 5;

Assuming plasma radiation to be negligible, the energy deposited in the
system by degrading hot ions,llper ion, leaves the system via eScaping secondary
ions and electrons resulting from ionization. Each electron removes energy
ﬁj - g, Ej being the average electron energy weighted by their escape rate and
@ being the potential energy difference from the plasme interior to the walls
due to the electric field which establishes in order to restrict electron escape.
Since an examination of rates shows that secondary ions are not heated apprec-
iably, they each remove just energy ¢, assuming them to be singly charged (hydrogen
background). Thus, since secondary ions and electrons are produced in equal
numbers, neglecting a slight excess of ions due to charge exchange, secondary ions
gain from the electric field just the kinetic energy electrons lose to it. Or,
each electron-ion pair removes from the system energy Ej-

Thus, energy conservation in steady state requires that

<E)A - (apo ) T 8)

T

On the left, 7 is the ion lifetime, and n+/T = IB/V is the ion trapping rate per
unit volume. On the right, the quantity in parenthesis is the rate per unit
volume for forming secondary ion-electron pairs, that is, the ionization rate.

Again, 0; is doubled to take into account ionization by electrons. We have



neglected cold electrons from sources other than ionization of neutrals which
might drift through the system and be trapped long enough to gain some energy.
Even if their numbers were great, such electrons would each remove only an
energy f: - @ to be compared with Ej removed by ion-electron pairs produced by
ionization. Even for considerable electron flow, it has been shown that ¢’~’§:;
so that Ej - B ﬁ: (ref. 3).

Another relation between A and Ej is obtained from the ion energy distribution.
The ion lifetime, 7, being limited by charge exchange, is much less than the
scattering time, or thermalization time, and hence energy dispersion is negligible.
Furthermore, it turns out that the electron energy is low enough so that energy
transfer from fast ions to ions aslready degraded and to secondary ions is negli-
gible compared with transfer to electrons. Therefore, barring collective transfer
mechanisms, which we neglect here, the trapped ion energy is altered only by
dynamical friction due to collisions with electrons. In consequence, the Fokker-
Planck equation governing the ion energy distribution in steady state is solvable,
being linear and first order, with exponential solutions, an example being given
in Fig. 2. However, simple as the exact result is, the complication of taking
appropriate averages of it to get A as & function of Ej makes it profitable to
employ the following simpler approximation.

We take for the ion energy distribution a step function of width A, as
shown in Fig. 2. Then the ion lifetime can be thought of as either the time to

slow down from the initial trapped ion energy, E., to By - A, just A/(AE/at)

0

if dE/dt is the energy transfer rate, or, equivalently, the average charge ex-

change time over the interval EO to Eo - /A . Equating these two expressions

gives

. (9)
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o; without the bar denotes the charge exchange cross section at E Approximating

O.
the variation of this cross section with energy as oC E_q (g being ~~ 5 for 300 Kev

H+ trapped ions and hydrogen background), we find

=

\

— E q -1
AN R . G U Ty (1)
o A Eg-A E a-1 A Eg - A .

Since electrons escape only by scattering, we assume they approximately
' b
thermalize and employ for dE/dt Chandrasekhar's results quoted by Spitzer, or

rather an approximation good to 5% due to Rose,5

2
26 E
dE c 0
i = m_ o g(E_) ) (ll)
where
1
E )= .
g(E_) —7 (12)
6 [m "o
1+ - --Ct.E.:_
n (; 0

n is the electron density, m their mass. We have not averaged quantities over

the ion energy distribution here, but simply take the ion energy to be EO- Thus
)

- 2
dé is the 900-Coulomb scattering cross section at ECY being 3 x 10 2 cn at

300 kev and varying as EB . The electron energy on which g depends is the mean
energy of electrons in the system, which we write as aE: to distinguish it from
Ej, which may be thought of as the mean energy of electrons in process of escape.
We expect & to be of order unity. Exactly what a is depends somewhat sensitively
on the true electron energy distribution as modified by the plasma potential.

With y = 1, Eq. (11) is the energy transfer rate to a Mexwellian electron

distribution. Recent results of numerical integration of the Fokker-Planck
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equation by the Livermore group6 indicate that in non-equilibrium situations
the low-energy portion of the electron distribution, the only portion to which
ions transfer energy, tends not to have time to fill out completely, with the
congequence that dE/dt is less than that for a Mexwellian distribution by as
much as a factor of 2. Thus, in addition to treating Maxwellian electron
distributions, we shall also report an S~curve with y = 0.5,

Simultaneous solution of Egs. (8) to (12) with (5) from the previous section
completely defines the S-curve. It is enlightening first to rewrite these equa-
tions as follows. Combining Eq. (11) and the expression for T in terms of

dE/dt from Eq. (9) with Eq. (8) gives

E n Yo~
- - c M
— | — g —= - . (13)
Eo (no > o; m

Multiplying Eq. (12) by n_/nO and combining with Eq. (13) gives

e (15)

In order that Eq. (5) reduces to an equation in n and T only, we would like
to know Ei/o; as a function of these variables. Indeed, eliminating AJEO from
Eq. (10) and Eq. (15) to give 8;/0; in terms of Ef/Eo, and cowbining with Eq. (1k4),

we obtain Ei/c; as a function of n /no. In turn, using Eq. (2) and noting that



11

~ . . .
in the region of interest n = n,, as has been discussed earlier, we find

n 5 n ni div
o a c7 (N (16)
The ratio G;/c; for the 600 Kev Hg cagse, obtained graphically, is given in
Fig. 3 with a = 1 and y = 1 (Maxwellian electrons), and also for y = 0.5. At
n_/n0 = 1, the critical current condition according to Eq. (16) and results from
the previous section, 3?/0; is 2. This is 20% lower than the exact value, 2.k,
obtained by averaging oX over the true jion energy distribution for this case, which
is the example distribution in Fig. 2.
A good approximation to 3?/6; versus n_/no, also plotted in Fig. 3 for com-
parison, was arrived at as follows. First, note that for sufficiently large fi}
Eq. (14) simplifies to

_ 2/5 .
- f: xo Zié 1 & (17)
E. ng 6 o, ;375 ’ 1

Also, for large enough A, compatible with large E-, the term unity in parentheses

=

on the right side of Eq. (10) may be dropped, whereupon, combining with Eq. (15),

we obtain

o, E

— L=

- o_ Eg
= — = (18)

X 1 /(Q"l)

1 - o,

(g - 1) — =

Eo O,

In comparison with the numerator, the denominator of Eq. (18) is slowly varying

and may be regarded as a constant. Then, employing Eq. (17), we see that 5§/0;
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is proportional to (n_/no)e/s. Adding unity to such a term in order that the limit
at n_/nO = O be correct, we take as an approximation to Ei/ok for the case of 600

Kev Hg injection
o, /c;( = 1+ 1.18) — , (19)

vhere the coefficient was chosen to give the good agreement with exact results
exhibited in Fig. 3, for y = 1. At other injection energies, or for smaller 7y,
the coefficient is, of course, different. For 600 Kev H; injection but y = 0.5,
the coefficient is .875.
For too large results, our calculation of 3;/6; is untrustworthy. An important
source of error is the fact that our assumed energy dependence of 0; begins to
be an overestimate below about 100 Kev. Thus, our result is too large if EO -A<100 Kev.
For E, = 300 Kev (600 Kev HZ), this limit is unimportant. From (10), with
q = 5, we see that in that case this criterion is satisfied for 3;/0; { 30, which

permits us to calculate the portion of the S-curve of interest.

4. Results

Two kinds of results are presented. First, without employing the approximations
of Egs. (17) - (19), we have calculated for several E, the ratio 5;/6; at n_/nO =1,
which, as was established in Sec. 2, is the approximate critical condition.

Employing these values in formula (6) for I,.i¢> Ve obtain the critical current

it
at each energy relative to that at Ej = 300 Kev (600 Kev H;). The results are
plotted in Fig. 4 along with the result when energy degradation is omitted

(i.e., Ei = o;). Only o; was averaged over the ion energy distribution.

og, oz, and v were evaluated at EO' The factor vy appearing in (11) was taken as unity.
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At each injection energy, the electron energy, Et, at the critical current

condition turns out to be around 100 ev, ranging from 110 ev to 126 ev as EO

varies from 250 Kev to 400 Kev. That Ej should be approximately independent of

E, arises as follows: In (13), first multiplying by E,, (OE/OE)EO is constant,

since 6&/0} o E —l, and n_/nO at the critical condition is independent of E

O}

comes from g. But at the

0]

being always unity. Thus any dependence of Ej on EO
critical condition, E:/EO is low enough that g, defined in terms of E:VEO by (12),
is almost constant.

Concerning the sensitivity to assumptions, varying the power of the energy on
which o;’depends fromgq = 5 to q = 6 changes 5;/0; by < 20%. Varying o, the ratio
of the mean energy of electrons to the mean energy of those escaping, from 1
to 2 decreases 5; around 10%, hence Icrit by 20%, but has remarkably little effect

on the ratios of critical currents at different E. presented in Fig. 4.

0
Our second class of results consists of revised S~-curves, Jjust the portion

dominated by charge exchange, for injection of 600 Kev H The results for

+
oo
L = 10 meters and L = 20 meters are given in Fig. 5, which is a plot of (5) with

5;/0; from approximation (19) together with the relation between n_/nO and n_and I
given by (16). Here o = 1, and y = 1, corresponding to a Maxwellian electron
distribution. Values of other parameters are indicated on the curve. Note that

c; is twice that for ionization by ions only to take into account ionization

by electrons, as was discussed in Sec., 2. The critical current given by these

curves is ~50% higher than that calculated by the prescription just discussed by which

Fig. 4 was obtained; however, the dependence of Ic on L is exactly that predicted

rit
by (6), and by approximation (21) which follows.



16

UNCLASSIFIED

ORNL-LR-DWG. 53752

10'2
8 ]
6 4
a AN AN
600 KEV H3 INJECTION A\
U == L] \
= = M
» V o105 CM3 L=20M L=10
v = 7.7 X 108 CM/SEC N ,/ ’/
0 = 1076 CM2 (TWICE O FOR
10" IONIZATION BY IONS)
8 Og= 4 x 10717 M2 \ / aN
6 Oc= 3 x10723 cMm2 7
P Oc= 9 X 10720 CM2 (AT 300 KEV) / 7
'g 4 r=2 /
et g =0.8 / A
& /
/
an%e
1010 / —
8
6 —
4 i
: (
t0? 2 4 6 8 2 4 6 8 2 4 6 8
10 10 10° 10*
I IN MA

FIG.5 STEADY STATE ION DENSITY VERSUS
MOLECULAR ION INJECTION CURRENT



17

In Fig. 6, we replot the S-curve with energy degradation for L = 20 meters
and v = 1 and compare it with that for the same L but y = 0.5, corresponding
to an energy transfer rate from ions to electrons one-half that for a Maxwellian
electron distribution. For comparison, in Fig. 6 there is also shown for L = 20
meters the S-curve for y = O, that is, no energy degradation (hence, also, no
ionization by electrons). We give both Simon's exact result and Mackin's approximation
employing the simplifying assumptions discussed in Sec. 2.

For convenience, we have used the ORACLE to plot Figs. 5 and 6. Reasonably good

results can be obtained more simply by replacing approximetion (19) by a similar

~ n_
=l+f3n—o'. (20)

Then, as in the case with o constant, (5) becomes simply quadratic in n,_ and

form

x|

easy to solve. Again, also, the critical condition is obtained by setting the
discriminant of this new quadratic equation equal to zero and solving the resulting

equation for I, which yields

2
It = Io B +J1 + 32) . (21)

Here I, is the critical current without energy degradation given by (6) with v

and all cross sections, including c;} evaluated at E., but with o doubled to

0
account for ionization by electrons. Thus the correction factor depends only on
B, and in particular it is independent of I, V, and L. Formla (21) agrees to

within 2% with the curves of Fig. 5, if we take B = 1 chosen to give the correct
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3;70; at n_/nO = l. Unfortunately, this approach suffers from the fact that we

have not found a reliable, simple formula for B as a function of EO.

We would like to thank G. R. North for his ORACLE computations.
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