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MULTIKII,OCURIE PRODUCTIOM OE' KRYPTON- 85 

R.  E .  McIlenry 

AEr STR4C T 

! 

An adsorption process has been developed and placed i n  operation f o r  

tlne recovery of n i u l t i l i t e r  quan t i t i e s  of radioact ive krypton from f i s s i o n  

gases r e su l t i ng  from spent-uranium f u e l  d i sso lu t ion .  The method i s  also 

useTul f o r  t h e  separat ion of l a rge  quan t i t i e s  of p u r i f i e d  xenon and may 

be useful. f o r  concentrating long-lived f i s s i o n  gases f o r  storage.  

Tlne r a w  Tission gases were passed through charcoal a t  900°C t o  con- 

v e r t  t h e  oxides of ni t rogen t o  ni t rogen and carbon monoxide. Tne gas w a s  
then adsorbed on ac t iva ted  charcoal at temperatures from -30 t o  -125OC. 

Elut ion of t h e  adsorbed gas w i t h  heliwn (through another ac t iva ted  char- 

coal  c o l m )  permitted the  co l l ec t ion  of separate  fracLions of krypton, 

xenon, and the  other  gases (mostly n i t rogen) .  

t r a p s  operating a t  l iquid-ni t rogen temperature. 

Col lect ion was made i n  cold 

The chemical p u r i t y  of t h e  krypton product was > 9% and the  rac7jo- 

chemical p u r i t y  of t h e  K r 8 5  w a s  e s s e n t i a l l y  lOO$,  

w a s  > 9%. 

'The xenon product pur i ty  

The nethod i s  not advantageous f o r  use i n  removing krypton and xenon 

from gases where t h e i r  concentration i s  l e s s  than about 1%. It i s  most 

e f f ec t ive  f o r  f i n a l  processing of r a r e  gases t h a t  have been enriched by 

other  procep ooes. 

INTRODUS: T I ON 

A process has been developed and a plant has been construe-ted and 

placed i n  operat ion f o r  t h e  separat ion and pu r i f i ca t ion  of m u l t i l i t e r  
quan t i t i e s  of f i s s i o n  r a r e  gases from u r a n i m  f u e l  dissolver off-&m con- 

cent ra tes .  The process which i s  described i n  t h i s  repolrt i s  based on a 

combined procedure of s e l ec t ive  adsorption of t h e  desired gases on a c t i -  

vated coconut charcoal followed by e lu t ion  with a c a r r i e r  gas. 

This work was i n i t i a t e d  t o  obtain long-lived K r 8 5  f o r  t he  isotope 

program of t he  Oak Ridge National Laboratory. 

separate  l a rge  quan t i t i e s  of pur i f ied  xenon containing only t r a c e s  of K r S 5  

a c t i v i t y .  
Concentrating the Long-lived Zission gases E O  that they could be more 

A la-Ler object ive w&s t o  

A fu r the r  object ive was t o  dxmonstrate a f eas ib l e  method. f o r  
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e a s i l y  stored. i f  it became necessaxy to prevent t h e i r  re lease t o  the at- 

mosphere. The data  f o r  t h e  production runs .cjhich a re  given i n  t h i s  pxpr  

were taken from a. nimber of runs starti-ag i.n 1a.te 1-95? and extendefi over 

a period of approximately 2 1_/2 yr .  

scribed w a s  developed i n  1953 and was used f o r  rou'tSne small-scal_e pro- 
duction from e a r l y  1954. 

However, 'ihi. process which i s  de- 

FolLowing t h e  discovery' of t h e  rare-gas elements by S i r  \ J i l I - L m  

Ramsay and h i s  associates,  several  invest igators  I Valentiner and Schmidt, 

Dewar, 

s m a l l  quant i t ies  of r e l a L i v e l j  pure krypton and xenon from the atmosphere. 

Through t'ne use of various combinations of d i s t i l l a t i o n ,  adsorption, and 

chemical p u r i f i c a t i o n  procedures, they were able t o  i s o l a t e  and pur i fy  

enough of the ra re  gases t o  detem-ij:ie their  physical.. propert ies .  These 

procedures recovered onl-y a ,small- f r a c t i o n  of the  ra re  gases i n  the  a i r  
that was processed and resu l ted  i n  la rge  e r rors  i n  the  repor-Led values 

f o r  tile atmospheric abimclance of krypton and xenon 

using a similar procedure made a quant i ta t ive recovery of krypton and xenon 

froifl a i r  and e5 La'blished their concentration i n  t'ne atmosphere . 

Aston, ' Mowieu and Lepape, and others, succeeded i n  separating 

Much l a t e r ,  Dar&6hler6 

Peters  and. WeiL7  determined the  ad-sorption. i-sothems for argon, 

krypton, and xenon and proposed a method f o r  separating these gases. 

- their  method the gases to be separated were adsorbed on activai;e& char- 

With 

coal., then deso:e'oed by pimj$.ng a t  a l.ow ten~perature a They c!.ajmed tiiat, ( 

with s u f f i c i e n t  adsorbent and a t  a temperature s u f f i c i e n t l y  Low, the  sep- 
a r s t i o n  f a c t o r  between the least adsorbed component a~ld t h e  next lower 

ad-sorbed component was great  enough t o  e f f e c t  complete separation i n  a 

s ingle  s tage.  They a l s o  claimed 'iha-i; wider these conditions the  r a t e  of 
removsl w a s  suffj.cieiit foj: a n  appreciab1.e prod-uction of these gases. 
-.-lll__ .._............. ..................~~ __ 

'M. W. Travers, The Discovery of the  Rare Gases 
2 n  

Arncjl.d, London, 1928. -. -- *> 
a. Valentiner and R.  Schmidt, Si tzber .  kgl.  preuss. Akad. ItTiss, No. 

_I_ 27/7, 816 (1905). - 
jJ. 

5c. 
k. 

8K. 

'F . 

7K. 

Dewar, I'roc. Koy. Ins t .  Gt. B r i t .  16 433, 74-,7 (1906). 
W. Aston, ?roc. ROY. SOC. (London) 1_03A, 462 (1-923). 
Mou-reu and A. Lepape, Compt. rend. 183, 1.71. (1926). 
Danlkijhler, Z. Elektrochem. 41- 74 (5935). 
Pebers aad- K. Weil, Z. angew. Chem. 43, 608 (1930). 
Peters  and K. Weil, Z. physik. Chem. A14-8, 1 (1930). 

-J 

- 
-2 
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The separat ion of a combined krypton-xenon mixture from an oxygen 

p l an t  d i s t i l l a t i o n  residue has been described by Fastovski i .  The bas i c  

method of concentrating krypton and xenon i n  a d i s t i l l a t e  residue had been 

previously patented by Claude .lo Fas tovski i  removed t h e  oxygen (99.L46 i n  

res idue)  by combustion with hydrogen, then removed t h e  argon by d i s t i l l a -  

t i on .  The krypton and xenon were not separated.  

I n  a l a t e r  paper Fastovskii" proposed t h e  separat ion of krypton from 

oxygen-krypton mixtures by a procedwe s imi l a r  t o  t h a t  proposed by Peters  

and Weil. S t i l l  later,  Fastovski iL2 demonstrated a d i s t i l l a t i o n  procedure 

f o r  t h e  indus t r i a l - sca l e  production of krypton-xenon-oxxgen concentrates 

containing mixed kiryyton-xenon. iT'he f i m l  removal of oxygen was ac- 

complished chemically. Fron t h e  above it seems t h a t  Fastovski i  abandoned 

h i s  e f f o r t s  to make use of a metinod based on f r a c t i o n a l  desorption from 

ac t iva t ed  charcoal.  

Arrol, Chackett, and Epstein13 succeeded i n  applying the  method of 

Peteirs and Weil t o  a muLt;iple-stage batch process.  With a nine-unit  ap- 

paratus '  they were ab le  t o  separahe cubic millirrneter quanti-t ies of r e l a -  

t i v e l y  pure f i s s i o n  r a r e  gases. 

Tne f i r s t  a,pplication of a chrunatographic technique t o  the  separa- 

t i o n  of gases was made by Zeldes and Rrosi.'': 

gas t o  e l u t e  t h e  adsorbe& gases through a column of ac t iva t ed  coconut char- 

coal.  The various components of t h e  gases t o  be separated were e lu ted  

along t h e  charcoal colurr~n a-t a r a t e  inverse ly  proport ional  -to t h e i r  degree 

of adsorption. 

t i o n  could be obtained. This i n  e f f e c t  provided a continuous method of 

repeat ing the procedure of Pe ters  and The effect iveness  of t h e  

gas chromatographic technique i s  denionstrated by the  560 t h e o r e t i c a l  p l a t e s  

They used a flow of helium 

Thus, with 3, s u f f i c i e n t l y  long column any desired separa- 

'V. G. Fastovski i ,  J. Chem. Ind. (U. S. S ,  R.) I 14, 1416 (1937). 
'OG. Claude, B r i t .  Pa t .  432, 644 (193335). 
"V. G. Fastovski i ,  J. Gen. Chern. (U. S. S. 11.) - 9, 1666 (1939). 
"V. G. Fastovski i ,  Kislorod 5, 5 (1947). - 
13W. J-. Arrol, K .  F. Chackett, and S. E p t e i n ,  Rare Gas Se-pazation, 

CRC-297 (no da te ) .  
1 4 H .  Zeldes and A. E. Zrosi,  Chem. Div. Quart .  Progr. Rept. Mar. 31, 

1350, Pad I: Chem. Research, ORNL-685, pp 5361. 
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ob-Lained. by Zeldes and Brosi with a 50-em-long colimn of ac t iva ted  char- 

coal  a t  -98°C. 

The pr inc ip les  of e lu t ion  chromatography, as wel-l as f r o n t a l  analysis  

and displacement chroma-tography, were e a r l i e r  s e t  for-til by Ciaesson i n  h i s  

work with liquid-so1.i.d chromatography. l5 

analysis  and displacement techniques with a gas-sol.l.d column, he d i d -  not 

use the e lu t ion  procedure with the  gas-solid column. 

Al-though he used t h e  f r o n t a l  I 

The technology of concentrating 'die krypton-xenon componenLs from 

a i r  i s  wel l  es tabl ished on an industrial-  sca le .  l2 These i n d u s t r i a l  

u n i t s  produce 1-276 krypton-xenon by variabions of t h e  method of Claude.'' 

l6 

I n  the  past ,  gas chromatography has not been used t o  prepare la rge  

qilanti t ics of pure g;3.ses. Previous workers, f o r  the most par t ,  have been 

concerned with the  development of gas chror~iatography as an analy-tic3.1 too l ,  

o r  a t  most as a means of preparing quant i t ies  of various gases s u f f i c i e n t  

f o r  research purposes e 

A chromatographic method has several  a t t r a c t i v e  quali'ii.es, especia1.l-y 

when radioactive materri.sl.s a r e  being processed. Xigh sepaxation i s  ob- 

baiiiaJhl.e in a, t rouble-free,  e a s i l y  conkroiled, inexpensive piece of equip- 

ment t h a t  i s  ressoiiably small. The g r e a t e s t  disadvantage i s  the  l o s s  of 

product c a ~ ~ a c i t y  when the  feed mater ia l  is d i l u t e .  Al.so, s ince low tern- 

p e r a t w e s  a r e  required f o r  e f f i c i e n t  operation, the  use of coolant i s  ex- 

cessive when l a r g e  volumes of gases a r e  processed. 

i n  t h i s  report  rout inely separates and. p u r i f i e s  i n  excess of 1000-liter 

batches of f i s s i o n  ra re  gases from concentrates conLalning 56C% t o t a l  

ra re  gas. 

'Wie equipment described 

Separation Effects  Thring Loading 

If a pure gas i s  allowed. t o  eqixi.l.ibrate with a quantLt,y of activated- 

charcoal, a port ion of the  gas w i l l  be adsorbed by the  charcoal. The amount 
I- 

15Se Cl-aesson, Arkiv KemL, Mineral. Ceol. A23(1), 1 (1946). 
l 6 R .  E .  Kirk and I). %'. O t h i i e r  (eds.) ,  Encyclopedia of Chemical Tech- 

'-'Id, Ruhemann,  The SeparaLion of Gases, Clarendon, Oxford, 1.940. 

- 
nology, vol. 7, p 417, In-ierscience, New York, 1.951. 
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. 
adsorbed w i l l  be determined by t h e  temperature, 1;he pressure of the gas, 

c 

and the  adsorpt ion capaci ty  of t h e  charcoal,  ' 

The adsorrption capaci ty  of activa,ted charcoal depends on i t s  surface 

area.  Di f fe ren t  batches of charcoal may have ciifferent; surface areas;  an 

average value i s  775 m2/g. 

face a rea  will be assumed t o  be constar&. 

The adsorption of a pure gas as a. funct ion of t h e  pressure a t  constant 

However, i n  t h e  fo l lox ing  discussion, tlie sur- 

bernperature can be expressed by tine equation of Freundlich,18 

V = K ( P > l / "  , 
where 

V = volume of gas at; STP adsorbed per  grm of ad-sorbeiit, 

K and n a r e  constants (dependent on temperature, t h e  adsorbent, and 
t h e  a& orbnte ) , 

P = pressure.  

I l a m f r a ~ r ' ~  proposed the  following enpirical. equation t o  express the  

adsorption of various gases on ac t iva t ed  charcoal a t  constant pressure:  

where K = constanti, x = cc of gas adsorbed, and m = grams of charcoal.  

If a mixture of gases i s  equ i l ib ra t ed  with ac t iva t ed  charcoal t h e  ': 
quant i ty  of each gas: adsorbed w i l l  be lower than would be obtained if a . 

pure gas were equ i l ib ra t ed  at t he  sale  p a r t i a l  pressure.  Tlrie amount of 

each gas adsorbed depends on t h e  p a r t i a l  pressure and adsorptiofl charac- 

t e r i s t i c s  of t h e  o ther  components. 

Two techniques a r e  ava i lab le  for  separat ion of. gases on ac t iva t ed  

charcoal. by use of t h e i r  d i f f e r e n t  adsorption cha rac t e r i s t i c s  I 'The d d e r  

of' t he  techniques has been r e fe r r ed  t o  as " f r o n t a l  analysis ."  

w a s  o r ig ina l ly  used as an ana1;ytieal technique hut i s  nor4 seldom used be- 

cause more powerful techniques a r e  ava i lab le .  nie other  method i s  the  

e lu t ion  separat ion.  

This method .  

This method uses a flow of pure l i g h t l y  adsorbed gas 

I8H.  Freundlich, Colloid and Capi l lary Chemistry, p 110, Methuen, 

l9I. F. Hamfray, Z. physik Chem. 74, 129 (1910). 
London, 1926. 

- 
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t o  eI.ij.tte the  adsor’oed gases i n  iiiverse order oT t h e i r  adsorption streiigth. 

Botn techniques are combined i n  the present process and will be described. 

If a quanti~ty of gas of nonvarying composition con-tsinlng krypton 

and nitrogen i s  passed i n t o  one end ol’ a tube containing a c t i v a k d  char- 

coal in a helium atmosphere, the p a r t i c l e s  of charcoal a t  the entrance of 

the  tube will rapidly become equi l ibrated with the  gas stream. The corn- 

posi-ti.on of the  gas which i s  adsorbed depends 011 the r e l a t i v e  degree t h a t  

Lhe krypton and nitrogen a r e  adsorbed, the  canposition of t he  gas phase, 

and the  temperature. ‘The r a t i o  of Lhe mole f r a c t i o n  of krypton i n  the 

adsorbed phase t o  the mole f r a c t i o n  i n  the  gas p:o.ase i s  the concentration 

f a c t o r  far one equi l ibra ted  stage.  The lower t h e  ’ceqxx-ature, tile higher 

will be the conceiitration fac tor .  Since krypton i s  more readi ly  adsorbed 

than nitrogen, tlne adsorbed phase i s  enriched i:n krypton. 

Downstiem of the  equi l ibrated p a r t i c l e s  of ac t iva ted  charcoal, tlne 

flowing stream i s  depleted o f  krypton. This  depletion con-tinues f a r t h e r  

downstream until  t h e  gas phase contains no krypton, 

The gas which emerges f i r s t  from the e x i t  end of tine activated-cbar- 

c o a l - f i l l e d  tube wil-3- be the  l e a s t  adsorbed g a s  i n  10% concentration. 

If the  flow of gas i s  continued i n t o  the tube, eve:iztually krypton w i l l  be 

detected. i n  the  gas a t  the  exit, end. o f  th2 tube. 4 schematic represen- 

t a t i o n  of the tu.be i s  shown i n  F ig .  1. 

Iditli the  above procedure only nitrogen can be obtained i n  a, pure f rac-  

t ion; however, .tile krygton can be concentrated without l o s s .  I n  Fig.  l b ,  

i . C  the  f l o d  of gas i s  s-Lopped a t  the  mom-ent krypton i s  f i r s t  detected 5.n 

the  e x i t  s t rean  and. the  adsorbed gases a r e  removed from tile ac t iva ted  car- 

bon, the  desorbed gases w i l l  contain a g r e s t e r  fracLion of kryptori than 

did  the o r i g i n a l  gas. If the  Lu’be is 1-ong, t h e  d-egree of concentration 

wi1.1 approach the  concentration f a c t o r  0’utainabl.e a t  equi.lihrl.wn under 

the  same conditions.  ‘This i s  one sLage. 

Figure 2 i s  a representation of a three-component gas: nitrogen, 

krypton, and xenon. The xenon, which i s  very s t rongly adsorbed, reduces 

the  quant,ity of krypton and n i t i ogen  tizat i s  adso:r’aed. The krypton i n  

t u r i l  reduces t h e  quanti-ty of nitrogen t h a t  i s  adsorbed i n  i t s  presence. 

6 
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Big. 1. Dis t r ibu t ion  of Two Components on Gas Chromatographic CoLum. 

As more of the  -l;hree-component gas is flowed through the  ac t iva t ed  

charcoal the  xenon w i l l  displace,  to a Larger extent ,  t h e  krypton band. 

T k i s  results i n  a "pileup" of krypton i n  f ron t  of t h e  xenon. 

At the "iirize of t h e  nitrogen "breakthrougk?' a partial- sepa,ra%ion has 

occurred between l;he xenon, krypton, and nitrogen. &so, %lie bulk of .the 

ni t rogen has been removed from t h e  xenon and k m t o n .  

7 
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Fig e 2. Distr ibut ion of Three Components on G a s  Chromatographic Column. 

The preceding pazagraphs have descsi.bed i n  ideal ized form t h e  effec ts 

which occur during I.oading of the  separation column, I n  pract ice ,  t h e  

gases contain nlany components: H2, 1\12, 0 2 ,  Ar, CG, N20, Kr, CG2, Xe, and 

N02. "hese  gases m a y  be divided i n t o  Lhree groups: 

group, which inel-udes a l l  t h e  gas l e s s  strongly adsorbed than krypton, 

(2)  krypton, and (3) the xenon group, which includes all the  gases tha'r; 

a r e  more stron.gl..y adsorbed than krypton. 

(1.) the  nitrogen 

Elution 

Elution chromatography makes use of a flow of l i g h t l y  adsorbed gas 

t o  p r e f e r e n t i a l l y  e l u t e  the  ad-sorbed gases f r o m  the  ac t iva ted  charcoal. 

The l e s s  t h e  el.ut,ing gas i s  ads or bed^, t'ne grea te r  w i l l  bc the separabion 

effec-t obtained. If the  e lu t ing  gas is adsorbed t o  an appreci3bl.e exten-L, 

it w i l l  Lend t o  displace the gases which a r e  being eluted and reduce t h e  

separation e f f e c t  of the  ac t iva ted  charcoal.. In separation procedures 

8 



where t h e  f r ac t ions  a r e  t o  be recovered, it i s  important t h a t  t h e  e lu t ing  

gas be e a s i l y  separable from the  f rac t iona ted  gases. If t h e  e lu t ing  gas 

i s  adsorbed only t o  a small extent ,  t h i s  can be e a s i l y  accomplished. 

The influence of t h e  e lu t ing  gas on t h e  gases t o  be separated occurs 

only (assunling t h e  e l u t i n g  gas i s  not adsorbed) on t h e  molecules which 

are i n  t h e  gas phase. The gas which i s  l e a s t  adsorbed w i l l  be e lu t ed  

f irst .  

make longer ''jmps" while it i s  i n  the  gas phase. 

Also, a gas w i t h  less tendency t o  remain i n  t h e  adsor'aed s t a t e  w i l l  

Linear it y 

If a gas does not obey Henry's l a w ,  t he  adsorption i s o t h e m  i s  non- ' I  

l i n e a r  and the re  i s  competition between molecules of t he  same gas f o r  ad- 

sorpt ion space. Because of t h i s  competition, a t  higher concentrations 

t h e  molecules w i l l  make longer "jumps .I' 

by krypton and xenon. 'Jypical e lu t ion  curves f o r  krypton show t h e  s teep  

f r o n t  and drawn out t a i l  of nonl inear ly  adsorbed- gases.  

of t h e  adsorption and t h e  r e su l t i ng  drawn out t a i l  of t he  e lu t ion  curve 

tend t o  make separat ion of t h e  kiypton Prom xenon incomplete. 

cu l ty  has been encowitered i n  rout ine ly  preparing krypton wit'n no xenon 

de tec tab le  by mss spectrographic ana lys i s .  However, a small amount OX 

krypton i s  always present  i n  t h e  xenon. 

Such nonl inear i ty  i s  exhibi ted 

The l ionl inear i ty  

No diff i -  

To reduce KrS5 a c t i v i t y  i n  t h e  xenon product, t h e  separat ion c o l m  

could be made s u f f i c i e n t l y  10% o r  the  column could be operated witn l e s s  

loading, and t h e  required separat ion could be a t t a i n e d  with a s ingle  e lu-  

t i on .  Bowever, s ince  it i s  necessary t o  recycle t h e  xenon t o  remove C02, 

it i s  more e f f i c i e n t  t o  run two e lu t ions  t o  remove t h e  krypton. It prob- 

ably would be more e f f ic ic r i t  t o  rerun t h e  xenon e lu t ion  cycle even if it 
w a s  not necessary t o  remove C 0 2 .  

Effec t  of C ompo s it i on 

I f  a gas mixture containing krypton and a t o t a l l y  unadsorbed (hypo- 

t h e t i c a l )  gas i s  equi l ibra ted  with ac t iva t ed  charcoal and the  quant i ty  of 
krypton adsorbed by t h e  charcoal i s  p l o t t e d  versus t;he p a r t i a l  pressure 

of krypton i n  the  gas phase, t h e  curve obtained should be i d e n t i c a l  with 

9 



t h e  adsorpLi.on isoYnerm. 

l i b r a t e d  w i t i n  ac- t ivated charcoal, t h e  quant i ty  of krypton adsorbed will be 

3-css than the va.l.ue predicted by the  adsomtion isotherm. I n  e f f e c t  the  

adsorption curve exh ib i t s  a negaLive deviation from the  isotherm and in -  

t e r cep t s  Llie i s o t n e m  a t  ($ and 100% krypton. 

deviation depends on t h e  adso rp t iv i ty  of the dilukjng gas.  

Xhea kryptoa i s  d i l u t e d  with a r e a l  gas and equi- 

The extent of t he  negative 

In  th2  two-component sys-Le-rtl iiitrogen and krypton, i f  t he  e f f ec t  of 

nitrogen i s  proportional t o  i t s  concentration, tine adsorptive capaci'iy 

of ac t iva t ed  charcoal f o r  krypton ts 

where 

f :I: cc of kryptoi? adsorbed p e r  gran of charcoal, 

n, K, and kl = constants, 

C = f r a c t i o n  of iiitrogen, 

PKr = par-cial  pressure of ksypbon. 

The term K(P)'jn i s  the f ami l i a r  Freundlich expression f o r  t h e  ad- 

N 2 

s o 1.p t i  on i s  o the rrfi . 
When t h e  t o t a l  pressure above tile charcoal i s  maintained ai; atmos- 

i s  t h e  f r a c t i o n  of krypton i n  pheric pressure, 7. 

i h e  gas .  

= 760 CKr, where C 
lir K r  

Equation (3) t h m  becomes 

If t h e  e f f ec t  of a i i i i rd  component i s  pLXoportiona1 t o  i i s  concentra- 

t ion ,  ;hen fo l -  t h e  iiiree-component sys iem nitrogen, krypton, and xenon, 

For a long colurrill containing 14 grams of charcoal, where the  amount 

of kryyton adsorbed approaches t h e  eqiA.i.J.ibriui1 val.ue, the capacity of the 

columi for krjyton i s  

\$here the capacity, C,  i s  i n  cc tile equation C 7 bK((760 C K , ) l j n  gives 

the  capaciiy of t h e  column f o r  a ~ r y p i o n  przssure equal iu 760 C with 

no o ther  gases presenz. 
Kr. 
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'L'he terni (1 - k l C N Z  - k2C ) i s  t h e  Prac-Lion of t h e  pure kryyton ca- Xe 
pac i ty  obtainable w i t h  n i t rogen and xenon present .  

EQUIPMENT 

Tine bas ic  components of the krypton-xenon separat ion system were the  

activated-charcoal-fiLled separat ion colurnns, charcoal-bed reactor ,  a c t i -  

vated-charcoal-f i l led cold t raps ,  condensation co ld  t raps ,  flow cont ro l le rs ,  

a n a l y t i c a l  instruments, and a shielded enclosure t o  contain t h e  equipment. 

Also included i n  t h e  system were t h e  necessary valves, piping, and storage 

tanks t o  f a c i l i t a t e  operation. This i s  shown i n  Fig.  3. 

UNCLASSli7ED 
ORN I-- !.R- DWG 5 5537 

FLOW METkR 

KRYPTON CHARCOAL 
TRAP TRAP 

6 

18 
n... . . 

- 

Pig.  3. Krypton-Xenon Process Flowshee t . 
Separation Column 

The column used t o  separate  krypton and xenon was constructed i n  two 

sect ions,  A and B. The A sec t ion  was 36 ft; long and w a s  constructed of 

2- in . -d im by 0.065-in.-wall s t a i n l e s s  s t e e l  tubing. T'ne B sec t ion  was 

20 f.1; long and was constructed of 1-1/2-in.-diam by 0.065-in.-wall s t a in -  

less s t e e l  tubing,  

1 1  



'The two sect ions were co i led  i n  s e r i e s  t o  ?om 3 s ingle  hz l ix  20 in. 

in. diameter and 26 i n .  high. The  coluriuiui was contained in- an Insulated 

encl-osuee which coul-d be cooled t o  the  required Lmperature by use o f  

1:iquj.d ni t rogen . 
s o  that the  coliunn could be hea,ted t o  ,300"C. The two c o h m  sect ions were 

connected by 3/8-in.-OU Lubing t o  a manifold- ou-tside t h e  container.  

manifold w a s  arraiiged so tlhat t he  A sectio:n could be used separately or  

i n  s e r i e s  wiih t h e  B section, o r  the  e n t i r e  column co1Jl.d be bypassed. 

Thermos t a t  i c a l l y  c on'irolled. heat e rs were a1.s o provided 

The 

Each sec t ion  of tiie col.iAmn w a s  f i l l ed .  with 6-l.4-mesh Fischerc a c t i -  

vated coconu'i charcoal. 

3300 g of charcoal. 'The col.ui-~i.n w a s  shielded with 2 in .  of lead.  Manifold 

valves were operated remotely by use of extension handles. 

The A sec t ion  contained 9400 g and the  B sec t ion  

The separation colurm used i n  the  e a r l i e r  runs (described 1.ate-r i n  
t h i s  report) w a s  mad.e i n  four  par ts  12  Tt in Leiigth S V T ~ ~ ~ ? I  a I-1/2-in. OD 

and a 0.065-i:n. wa1.l. 

6-14-mesh ac t iva ted  charcosl- ~ 

Each of  'ihese pa r t s  was f i l l e d .  T T i t h  1850 g of 

Cold Traps 

There were three  co ld  t r aps  i n  t h e  krypton-xenon sy-stem, one of which 

was f i l l e d  with ac Livated. charcoal and -two which were condensation t r aps .  

A l l -  t r aps  were operated a t  -195°C by cooling with liquid. nitrogen. 

'The charcoal.-fi l led cold t r a p  was 5 i n .  i n  diameter and 20 i n .  high 

and w a s  f i l - led with 2000 g of 6-1.4-rnesh C O C O i 1 u t  charcoal. A finned, co i lcd  

Calrod heat ing elernelit wa.s placed ins ide  t h e  trap i n  contact with the  char- 

coal  so  that, t he  t r a p  could be heated t o  300°C during desorption. 

temperatures of t h e  hea ter  and tile cha-rcoal. were indicated by thermocouples. 

'The 

'The eondensation cold t r aps  were 5 i n .  in di-meter  and 1 2  it-0. high. 

These t r aps  could be heated, when requtred, by heat ing imi '~s  which were 

brazed t o  the ex ter ior  of 'Llie t r aps .  During operation, t ne  gas scream 

eatertid the  cold traps a t  the  top, passed. th-ro-ugh a d i s t r ibu to r  baf f le  near 

the  bottom of the t raps ,  and exi ted tnrough a tube whiclz extended ilirougii 

the top. 

'The co1.d traps :$ere cooled by l i q u i d  ni t rogen contained i n  s t a in l e s s  

s t e e l  Dewar flasks which could be raised. and I.owered rernotely by pneumatic 
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motors. 

su l a t ed  tubing. 

by t h e  vapor pressure of argon i n  .two argon-fil led.  dip tubes positioned. 

a t  t h e  des i red  high arid low l eve l s  i n  t h e  f l a sk .  

l e v e l  was r a i sed  above a dip tube, t he  argon condensation w a s  indicated 

by a pressure drop on a gage. 

Liquid ni t rogen was added. t o  the f l a sks  as required through i n -  

The l i q u i d  ni t rogen l e v e l  i n  a Dewar flask w a s  indicated 

When t h e  l i q u i d  ni t rogen 

Charcoa,l.-Eed Reactor 

The charcoal-bed reactor ,  which was used t o  remove t'ne oxides of n i -  

t rogen from the  gas stream, w a n  8 i n .  i n  diameter by 30 i l i .  long and con- 

t a ined  12 lb of 6-lA-mesh ac t iva t ed  charcoal.  The reac tor  isras heated to 

t'ne operating temperature of 900°C by a a  %in .  tube f amace .  

Kryp Lon St  orage 

A s  a sa fe ty  precaution, Lhe Krg5 product w a s  s to red  a t  pressures less  

than atmospheric. 

l ibr ium with ac t iva t ed  charcoal.  A t  room tempera-Lure and atmospheric pres-  

sure,  13 l i t e r s  of kryptoll could be contained i n  a 1 - l i t e r  volm-e which 

was f i l l e d  with 6-14-mesh ac t iva t ed  charcoa,l. Is t h e  s torage vessel ,  the  

charcoal was contained i n  th i r ty-one  2-in.-dia.m by 8-1/2-ft-loizg s t a i n l e s s  

steel Lubes. 

jacket .  

To reduce t h e  volume required, it w a s  s tored  i n  equi- 

These tubes were buridled i n  p a r a l l e l  i n s ide  a water-cooled 

The krypton capaci-Ly of .the s torage vesse l  w a s  2.000 l i t e r s .  

Instruments and Controls 

Three pressure-control  u n i t s  regulated t h e  flow of gas through t h e  

krypton-xenon system. 

t ransmi t te r ,  a cont ro l le r ,  and a pnewnatic valve.  One pressure cont ro l  

u n i t  reduced t h e  i n l e t  ga,s pressure from 500 to 5-10 p s i .  

coil trolled the  flow through t h e  separat ion c01~m.n by regulat ing -the inle-1; 

and o u t l e t  pressure.  

gage outs ide the  shielded eqvipmeut enclosure. 

A complete cont ro l  u n i t  consis ted of a pressure 

'The other  two 

The cont ro l led  pressure was transmit ted t o  a pressure 

Tlne on-off valve:: which were used i n  t h e  system were equipped with 

pneumatic motors f o r  remote operation. 

s t e e l  and had bellows-sealed stems and 'Teflon seats. 

The valves were made of s t a i n l e s s  
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Three radiaLion monitors were used i n  the sysLeni, one each a t  t h e  

i n l e t  and o u t l e t  of the  colunn and another a t  the cel-l. exhaust. The moni- 

t o r s  were ga,s-fl.ow be ta  ion chambers (ORNL-Q-1873) used wit'n an RC elec- 

tromeier (ORNL-Q-826) I W i L h  O.Ol$ krypioii (mixed fissi .on) i n  a gas stream 

a-t atmospheric pressure, the moniLor would yie1.d Cull-scale def lec t ion  

(equivalent t o  amp). Background w a s  u.suaLly less  than amp 

With 100% kryptoii (mixed f i s s i o n ) ,  ihe  currren-t obtained was approximately 

2 - 7 3  x 10-7 ap. 
A Gow-Fac Instrwnen-t Company model 9454 thermal.. conduc Livity c e l l  

end meter were used with a Brown Electronik recorder t o  p l o t  the  Lilermal 

conductivity of  the  column e x i t  stream. 

w a s  used as  a reference.  Because of the pressure s e n s i t i v i t y  o f  t h e  in-  

strument, it was neceosazy t o  r e z e r o  the instrument f o r  any change i n  flow 

conditions through t h e  column. 

'The column sweep gas (pure helium) 

P3OCEDURE 

Pr ior  t o  the  s tar t  of each r U i I ,  the separation columi w a s  s t r ipped 

of adsorbed g a s e s  by purgiiig with helium for 30 mi11 with th2 column a t  

330°C. The cleanup of the  column w a s  7.ndicated by the a c t i v i t y  monitor 

and thermal conductivity analyzer.  The col.wnn w a s  'chen cooled t o  the re- 

quired tenxperature and f.i.l.l.ed with hel..i.um at atmospheric pressure . Khen 

the  chazcoal-bed reactor  w a s  charged wi.tl-i f resh  charcoal_, it w a s  necessary 

t o  remove condensables by purging wj.t,ii helium a t  600°C f o r  approximately 

1. hr .  ' T h i s  procedure removed ally adsor'oed gases which might be released 

during a run and form a plug i n  the separation column. The t r a p s  and. l i n e s  

were e i t h e r  evacuated o r  purged f r e e  of impurit ies and f i l l e d  with helium. 

'The f i s s i o n  eases which were processed contained l-l@ krypton and 

up t o  65% xenon. 

cylinders a t  pressures up t o  500 p s i .  

system as shown i n  Fig.  3 .  

These gases were contained i n  standard I - - l /2 - f t3  gas 

The cylinders were attached t o  the 

Loading Cycle 

J?ne f i s s i o n  gas concentrates from the  cylinders were reduced i n  pres- 
sure to 15 p s i  by a pressure control. un i t  (valve I, Fig. 3 )  and passed 
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through t h e  charcoal-bed reac tor  a-i; a ra . te  of 0.1 t o  1. cfm.. I n  t h e  re- 

ac tor ,  the charcoal. a t  900°C reacted with t h e  oxides of nitrogen t o  pro- 

duce nitrogen and carbon monoxide . 
The gas flow t o  the column was control led by tvo pressu:re control  

u n i t s  (valves 4 and 9, Fig.  3 ) .  Controller 9 was set t o  open a t  1 p s i .  

Controller 4 was adjusted t o  marirctiain suf f ic ie i i t  p r e s s u e ,  usually less 

than 5 psi, t o  give the  required. f lox throu@i t h e  colwnu. 
While t h e  A sec t ion  of t h e  column was being loaded, the  B sect ion 

of t h e  columzl w a s  bypassed through valves 5 and 8.  

trogen, oxygen, and carbon monoxide) from t h e  column w a s  exhausted through 

valve 10 t o  the  off-gas l i n e .  The f l o w  of gas to t h e  colwnn was continued 

u n t i l  the concentration of kry;pton i n  t h e  e f f luent  gas reached approxi- 

mately 1% of t h e  concentration of tine feed gas. 

then stopped and t h e  A and B sect ions of the col.ur~m were valved i n  s e r i e s  

(valve 8 closed, valves 6 and 7 open). 

The e f f luent  gas ( n i -  

The feed gas flow vas 

K w t o n  Elut ion Cyc1.e 

Helium w a s  .then passed through both sect ions of t h e  column i n  s e r i e s  

a t  approximately L cfin. The flow was regulated by pressure cont ro l le rs  

4 and 9. 
were exhausted through v-alve 10. 

The helium and the f r a c t i o n  of gas which e lu ted  p r i o r  t o  krypton 

When kry-pton began to e l u t e  from t h e  colur~n, the  flow w a s  diver ted 

through valves 12  and. 13. The charcoal t r a p  w a s  cooled t o  -190°C. The 

heliwn from the  charcoal t r a p  was exhausted through valve 11. 

When khe k r n t o n  was completely eluted,  valve 11 was closed and khe 

helium pumped f w m  the  charcoal t r a p  through valves 14 and 15. The helium 

was pwaped t o  less than LO p Hg. 'The temperature of tne charcoal t r a p  

w a s  then slowly ra i sed  t o  200°C and t h e  krypton was condensed- i n t o  the  

krygLorL cold trap a t  -195°C. 

product was evaporated t o  t h e  s torage tank. 

From the krypbon cold t rap ,  t h e  krypton 

Xenon Pur i f ica t ion  

The gases which remained on t h e  colurnn after the  krypton e lu t ion  were 

xenon, a small percentage of C O z ,  approximately 0.1% krypton, and tbe  

e l u t i n g  gas, helium. 
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The bulk of the e lu t ing  gas was removed by pumping the  he1ii.m from 

the  c01w:m through the  xenon t rap ,  which was cooled- t o  -195°C. 

temperature was then slowly ra i sed  t o  300°C and Lhe xenon was condensed 

i n  the xenon t r a p .  

accumulated helium. The condensed xenon w a s  then evaporated i n t o  the xenon 

storage tank. 

and then cooli.ng t o  -40°C. 

The colmm 

The xenon t r a p  was pumped per iodica l ly  t o  remove any 

The column w a s  regenerated by purging with helium a t  300°C 

'The xenon i n  the storage tank was passed through t l e  charcoal-bed 

reactor  a t  900°C and adsorbed on t'ne A sect ion of the column. The xenon 

remaining i n  the  tank a t  equilibriiun pressure WES condensed i n t o  tlie 

xenon cold t r a p  and evaporated through the  charcoal-bed reactor  t o  -Lhe 

coliimn. The remainring xenoil In the cold t r a p  was discarded. 

The impurit ies i n  the xenon (CO, K r )  were then e lu ted  from the  c o l w i  

t o  the  off-%as l i n e .  

the  a c t i v i t y  monitor and thermal. conductivity analyzer e 

The removal of Liie iiiipurities w a s  monitored wi-Lh 

Tne pure  xenon f r a c t i o n  which remained on t h e  colw~ln was coildensed 

and evaporated. t o  t h e  storage tank as previously described.. 

DATA 

Effect of T enip e ra t ur e 

The constants K and l/n i n  t h e  FremcUich isotherin equation a re  de- 

pendent on temperature and must be determined experi:cnentally a t  each tem- 

perature .  

coal  being used. 

The coilstants a l s o  depend on t ine quality of tihe ac t iva ted  char- 

These constants were determined by s t a t i c  adsorptri-on a t  0, 8.5, and 

23°C. The adsorption data a r c  shoim i n  Table 1 a;nd PQ. 4.  A l s o  p l o t t e d  

i n  P i g .  4 a r e  tine isotherms f o r  krypton as reported by Sangster. 2 o  There 

i s  good agreement with Sangster 's  r d a t a  s ince charcoal or" s i m i l a r  charac- 

t e r i s t i c s  was used i n  both cases.  'The values of K and l / n  as  determir-ied 

from these isotherms (using the  Freundlich equation) a r e  p l o t t e d  i n  Figs.  

5 and. 6. Also shown f o r  comparison a r e  the data of Peters  and Ttdei1.21*22 

20D. F. Sangster, The Isotherm f o r  the  Adsorption --- of Krypton on Char- 

21K. Peters a n d  K.  WetS, Z. angew. Chem. 2, 603 (1930). 
22K, Peters and K. Weil, Z. physik. Chem. I__ U 4 8 ,  1- (1930). 

____J coal.. AERE C/M 280 (1956). 
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Table 1. Adsorption of  Qypton 0x1 Coconut Cnarcoal 

T = 0°C 

5 0.6 

8 l . 0  

11 1.7 
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Fig. 4. Freujndlich Isothenns for Krypton. 
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T'ne extrapolated l i n e  below -40°C w a s  drxwn so as t o  fit Ey. (6) as  w i l l  
be seen l a t e r .  

Charcoal-Bed Reac-tor 

The ef fec t iveness  of t h e  charcoal-bed reac tor23  i n  destroying the  

oxides of ni t rogen was e s s e a t i a l l y  100%. No de tec tab le  amout  of Lhe ox- 
ides  of nit rogen was found i n  t h e  xenon product when a.mlyzed by in f r a red  

absorption or  mass spectrometer a m l y s i s .  

The yeaction products of t h e  oxides of ni t rogen and carbon are n i -  
trogen, carbon monoxide, and carbon dioxide.  The r a t i o  of C(32 t o  CO a t  
900°C i n  t h e  presence of carbon a t  equilibrium i s  0.022 (ref 2 4 ) .  

two passes through t h e  reactor ,  the theore- t ica l  r a t i o  of ini-Lial  C02 t o  
f i n a l  CO concentration should be l e s s  than 0.0004.8. 

i n i t i a l l y  present  i n  equal quant i t ies ,  t he  f i n a l  xenon product would con- 

t a i n  less than 0.04% C02. I n  a c t u a l  runs, equilibrium values were not 
obtained; however, t h e  C 0 2  concentration w a s  l e s s  than 0.5%. 

For 

If xenon and N2O were 

Elu t ion  'Time and Flow Hates 

The volwne of e lu t ing  gas required t o  move a?? adsorbed gas a f ixed  

dis tance on a column at  a given temperature i s  approximatel-y constant.  

For  a shor t  e lu t ion  time a high flow r a t e  i s  desired.  

flow rates the number of t h e o r e t i c a l  p l a t e s  obtainable i s  decreased. 
Ilowever, a t  high 

The maximum t h e o r e t i c a l  p l a t e s  a r e  obtained a t  a flow ve loc i ty  which 

i s  j u s t  s u f f i c i e n t  t o  e l iminate  longi tudina l  d i f fus ion  i n  t h e  gas phase 

as a f a c t o r .  

(ref 25). 
Tjnis a a x i r n u m  i s  obtained a t  a flow ve loc i ty  of about I cm/sec 

In a c0lum.n which i s  t o  be used t o  separate  l a rge  amounts of rriaterial, 

a compromise a u s t  be nmde between elu%ion time and c o l ~ m  1-ength. 

t h e  c o l m i  described i n  t h i s  report ,  t h e  mean flow ve loc i ty  was 23 cm/sec. 
With 

233 .  C .  Posey, Removal of Oxides of Nitrogen f r o m  Iner t  Gases by Re-  

2 4 J .  F. 'Thorpe and M. H. Wnitely, Dictionary of Applied Cheris-tr'y, 
ac t ion  with Carbon, unpublished report ,  ORNL. 

vo l  11, p 348, Long~nm Green, New York, 1946. 
25C. Phi l l i p s ,  G a s  Chromatography, p 76, Academic Press, New York, 

1956. 
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This f l o w  ve loc i ty  gave a ressonable e lu t ion  time and s u f f i c i e n t  theoret-  

i c a l  p l a t e s  t o  acconiplish the required separation. 

Haw Material Composition 

The process raw mater ia l  from which t h e  krypton and xenon were sepa- 

ra ted  was a f i s s i o n  gas concentrate obtained from the  sases  rel.eared. by 

dissolut ion of uranium fuel. elemen-Ls. 

‘The concentrates were received i n  cylinders containing 100 t o  1400 

I . i ters  of gas (STP). 

varied over a wide range. I n  Table 2 a r e  Tl-is-ted. the approximate compo- 

siLion ranges of the  gases which were processed. Table 3 shows t h e  av- 

erage isotopic  composition of tlne xenon and kryptoL1 present i n  the gases. 

Thc composition of the mater ia l  ia  the  cylinders 

Table 2.  Composition of Process Raw Material 

Concentration Range 
(k 1 Component 

Hydro g e n 

Nitrogen 

Oxygen 

Argon 

Nitrous oxide 

Nitrogen dioxide 

Carbon dioxide 

Krypton 

Xenon 

0-1 
5-96 

0-8 

a - 2  

2-60 

(3-2 

0-1 

0 .5-40 

5-5 5 

Production Rurls  

I’ne da’ia from a number of production runs a t  varjous temperatures 

a r e  shown i n  Table 4.  During processing, ihe gases a r e  passrd through 

the  charcoal-bed reactor21 whlch cortverts C02, N20, and NO2 t o  Xz and CO. 

A small mount of C02 remains i i i  the  gas. Since N2 and CO have simi.l_ar 

adsorption charac te r i s t ics  and the  impurit ies otincr than N2 and CO are 

small, %ll- the  const i tuenis  of tlne process raw material ,  other than krypton 
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Ta,ble 3 .  Average Isotopic  Composition 
of Krypton and Xenon 

Concentration 
(k 1 Mass 

Xenon 

131 
132 

I34 

134 

1 0  .l? 

16.35 

25.20 

44.25 

Krypton 

82 0.78 

83 13.42 

%4 25. i+l 

85 5.32 

86 45.87 

arid xenon, a r e  l i s t e d  3,s nit rogen i n  t h e  third.  column of Lhe t ab l e .  

of these  runs required severa l  cyl inders  of raw gas t o  load t h e  colmm, 

and these cyl inders  were of d i f f e r e n t  compositions. For t h i s  reason the 
composition values l i s t e d  a re  average values f o r  t h a t  p a r t i c u l a r  run and 

coifid be a source of e r r o r  i n  t h e  d-ata. 

Most 

The values f o r  t h e  observed krypton capaciLy as given i n  -the s i x t h  

column of the  t a b l e  were based on the  krypton ana lys i s  and t h e  volume of 

t he  feed  gas en ter ing  t h e  colwnr?. p r i o r  t o  t h e  appearance of kSyLjton i n  

t h e  e f f luen t .  

loading of t h e  charcoal was reached. However, i n  -these runs) it w a s  pos- 

s ib l e ,  by means of valves along the  sect ion,  t o  monitor gas samples and 

flake an estimate of the ex ten t  o f  1oad;ing reached. Tie observed capaci ty  

values i n  t h e  t a b l e  f o r  these  r m s  have been adjusted t o  100'$ loading 

based on t n e  est imates .  Loading w a s  a l s o  incomplete i n  runs 21, 22, 25, 

and 27, bur; liere ii; was no?; possiiLlle t o  estimate t h e  degree of load ing  

and therefore  t h e  actuzl.  observed values a r e  given. 

Runs 5, 6, 8, 11, 12, and 15 were terminzted before 100% 

21 



Table Column Capacities 

c olwm Feed Gas Composl Lion ($ )  K m t o n  Capzci ty ( c c )  
( “ c )  Nitrogen’ Krypton Xenon Observed Calculated 

Iiun Temperatine .*. No.’ 

2 
3 
5 
6 
7 
8 
9 
10 
11 
1 2  
13 
14 
1.5 
16  

17 
18 
19 
20 
21  
22 
23 
24 
25 
27 

-30 
-30 
-30 
-30 
-30 
-30 
-30 
-30 
-30 
-30 
-30 
-30 
-30 
-30 

-30 
-30 
-30 
-60 
-50 
-70 
-125 
-80 
-90 
-1.10 

Szction A F i l l e d  w r i t h  5500 g of Charcoal 

99.5 
99 .1  
83.7 
86.8 
74 .3  
78.9 
81.9 
68 .2  
58.5 
66 .8  
76.7 
81.6 
47.7 
82.1 

0. A8 0 
0.95 0 
2 .  s4 13 .7  
5 .4  7. 8 
4.9 20.8 

15,O 6 .1  
6 . 7  11 .L 
2.9 29.0 
7.6 3 3 , 9  
7 . 8  25.4 
5 . 8  17.5 
4 .2  1-4s 2 

3.7.8 31r* 6 
3.7 15.5 

3,650 
8,300 

20,5003 
2 8 ,  5003 
27, 000 
42 , 7003 
37 , 000 
21,000 
34J  4003 
41  , 2003 
35 , 500 
3 1  , 900 
40 , 3003 
22,500 

Section A F i l l e d  i.rith 9400 g of Charcoal 

51.9 
6 1 . 0  
22.6 
86.9 
85.1 
56.2 
69 .7  
60.2 
40.0 
56.2 

11. L 
6 .7  

1 3 . 4  
6.2 
4 - 2  
5.2 

2 
9.0 
7.0 
5.4 

36.7 61,600 
32.3 43,000 
64.0 33,900 

6 . 9  115,000 
10.7 50,0004 
38.6 58,6004 
26.1 143,000 
30.8 122,000 
53.0 59,0004 
38.4 90,0004 

4, 009 
8,064 

15  , 982 
34,598 
25,850 
82,431 
40,157 
13,790 
30,6’78 
36,972 
32,132 
24,970 
60,135 
21 , 641 

7 2  , 936 
48,011 
36 , 837 
106 , 808 

66 , 834- 
59,305 

142,572 
122,000 

57,885 
86,292 

‘Feed gas ana1ys-i.s w a s  not avai lable  f o r  runs I and 4.  
stopped. due i o  a leak i n  the equipment. 

‘Includes a l l  gases other  than kiypLon and xenon (see tex-1;). 
3 C 0 L 1 2 m  ilot completely loaded. 

4C01.urfin not cornple.i;ely loaded. 

k n  26 w a s  

Val-ue gtv-ert Lis based on estimate of 

Value given i s  ‘chat observed. 
extent  of loading. 

As was shown in ‘TabLe 2, the major impurit ies i r t  t he  krypton-xenon 

concentraLes are nitrogen, oxygen, and ni t rous oxide. In  o n l y  f i v e  runs 

(Nos. 5, 7, 1.0, 1.1, and.  1 2 )  w a s  i;he nii rous oxide content mnre tl1a.n a few 

p e r  ces t ,  but i n  these runs, the  nitrous oxidk concentration w a s  approxi- 

mately equal to the nitrogen concentration. 
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Using: t h e  observed column capaci t ies ,  t h e  values for IC shown i n  Fig.  

5, and the values f o r  I/:* shown i n  Fig. 6 it was poss ib le  t o  ca l cu la t e  

values for kl and k2 of Eq. (6) .  
t r apo la t ed  values f o r  K (Fig. 5); however, t h e  agreement between t h e  o'o- 

served and ca lcu la ted  c o l m  capac i t ies  i nd ica t e s  t h a t  n reasonable choice 

w a s  rad-e. 

ca lcu la t ions  are given in Table 5. From t h e  tskle it appears t h a t  a t  l e a s t  

over t h e  range of conditions i n  t h e  production runs t h e  values of kl and 

k2 a r e  not temperai;ure dependent e 

Some ky-pical e lu t ion  curves for t h e  production runs a r e  shown i n  Fig. 

Below -40°C it was necessary t o  use ex- 

The values f o r  the constants used i n  Eq.  (6) f o r  the capaci ty  

7. 

Table 5. Constants f o r  Equatlion (6)  

K 1/11 kl k2 
Temperature 

("c)  

-30 0.42 0.88 0.390 1.. 176 

-50 0.79 0.81 0.390 I. 176 

-60 1.01 0.77 0.3'30 1. .l76 

-70 1.27 0.84 0.390 1.. 176 

-80 1.60 0.71 0,390 1.. 1.76 

-90 1.95 0.67 0.390 1.. 1-76 

-110 3.00 0.60 0.390 1.1'76 

-125 3.90 0.55 0.390 1.176 

Product AQalysis 

The chemical p u r i t y  of t h e  krypton product was g rea t e r  than 9%. The 

impuri-ties were t r a c e s  of helium and nitrogen. The Emits on impuri t ies  

are detennined by the thoroughness of the krypton cold trap cleanup, leak- 
age of a i r  into t h e  bybtem, and the completeness of helium removal €ram 
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UNCLASSIFIED 
O R N L - L R - D W G  55641 

150 ~~ ...-. ~ ........ ~ 

425 ............. . .__ 

R U N  18 

TEMPERATURE: - 3 0 ° C  
TOTAL ACTIV l - iY :  4300 curies 

150 

125 
_. 
n t 

c 3 
.- 

," 100 : + .- 
n 
i 

o 

z 
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0 75 s 
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I-- 
z 
W 
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a 

0 

v, 

13 

25 

0 

RUN 24 ~ 

TEMPFRATURE : - 5 0 ° C  
TOTAL ACTIV ITY:  5000 cur ies  

RUN 2 0  I 
. . ~ ~~__________ ~ 

TEM DERAIUYE : - 6 0 ° C  

~ ' O T A L  ACTIVITY:  11,500 cur ies 1 

c RUN 25 
T E M P E R A T U R E :  - 9 0 ° C  
TOTAL A C T I V I I Y :  5900 cur ies 

I I 
c I 

0 1 2 3 4 0  1 2 3 4 
-rir@'E FROM ~ELI IJM " BREAKTHROUGH" (h r )  T I M E  FROM H E L I U M  " B R E A K T H R O U G H " ( h r 1  

Fig" 7. Some Typical. E l u t i o n  Cu.i.-ves. 
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t h e  kry-pton cold t r a p .  

t i a l l y  IO@. 

The radiochemical p u r i t y  of t h e  K r 8 5  -was essen- 

The xenon product pmiLy was greater. than 9<$, The major impurity 

w a s  carbon dioxide. Decontanination f a c t o r s  f o r  xenon through one coin- 

p l e t e  process cycle were approxirmtely 1 x l o5 ,  or approximately- one cur ie  

of K r 8 5  per  1.000 l i t e r ' s  of xenon product. 

o f  thf: xenon a r e  determined. by .the p r a c t i c a l  limit of the  column decon- 

tan ina t ion  between cycles.  

which had been grossly contaminated reduced t h e  Kr" by a f a c t o r  of 10. 

The l i r d t s  on decontamination 

Addition21 recycle of the  xenon on the  c o l m ~  

CONCLUSION 

Krypton and xenon can be e f f e c t i v e l y  separated from gross amounts o f  

impuri t ies  and from each other  with negl igible  loss of eLther ksy-ptcn o r  

xenon by a gas chromatographic method. The method makes use of a com'oined 

displacement and e l u t i o n  technique from an ac t iva ted  charcoal columri. 

The capacity of an ac t iva ted  charcoal column f o r  t o t a l  krypton and 

xmon i s  h i m y  dependent on the temperature of the colunn and the con- 

centra;i;ion of krypton and xenon i n  t h e  gas process stream. 

a l so  depends on the nature of the d i l u t i n g  gzs. Column capac i t ies  as ca l -  

culated by aiz empirical  equation agree reasonably wel l  with Yne experi- 

mentally determined capacities, 

The capacity 

The method described i s  not advantageous f o r  use i n  removing krypton 

and xenon from a gas stream where t h e  concentration of rare gas i s  less 

than I$. 

have been enriched by otber processes. 

It i s  xost e f f e c t i v e  f o r  f i n a l  processing of r a r e  gases tha,t 
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