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SEW-DIFFUSION OF CHROMIUM I N  NICKEL-WE ALLOYS 

J. H. DeVan G. M. Watson R. B. Evans I11 

The se l f -d i f fus ion  coef f ic ien ts  of C r 5 1  i n  Inconel and INOR-8, which 

are  a l loys  su i tab le  f o r  use a t  high temperatures, were measured by con- 
t ac t ing  the  a l loys  with fused salt mixtures containing radioactive chro- 

mous f luor ide .  These data  are  per t inent  t o  the  in t e rp re t a t ion  of cor- 

rosion behavior occurring i n  polythemnal systems consis t ing of molten 
f luor ides  contained i n  nickel-base a l loys ,  The diffusion coef f ic ien ts  

were determined both by d i r e c t  monitoring of the  C r 5 I  intake by the a l -  
loys and i n  some cases by an analysis  of the  C r 5 I  concentration p r o f i l e  
below the  exposed surfaces of the metals. 

t o  provide data over the  temperature range 600 t o  900°C, where r e l a t i v e l y  

low diffusion coef f ic ien ts  t o  cm2/sec) were obtained. A t  

temperatures above 800°C the  magnitudes of the  d i f fus ion  coef f ic ien ts  ob- 

ta ined by both techniques were the same. A t  temperatures below 800°C the  
diffusion coef f ic ien ts  obtained from the  concentration p ro f i l e s  were 

higher and had a lower temperature dependence than those obtained by d i -  

r e c t  monitoring of the  intake of C r 5 1 .  This was interpreted as implying 

t h a t  at the  lower temperatures, d i f fus ion  occurs la rge ly  through se lec t ive  
paths, while a t  the  high temperatures, homogeneous diffusion occurs. 

observed d i f fus ion  coef f ic ien ts  can be expressed by the  equation 

The experiments were designed 

The 

-E/RT D = Doe . 
The values of Do and E were found t o  vary, depending on the h i s to ry  of 
the  specimen. For Inconel specimens annealed a t  1150°C for periods of 

2 h r  or longer, t he  values of E ranged from 62 t o  66 kcal/mole, and Do 
from 1.0 t o  2 8 crn2/sec. For the  two a l loys  studied the  observed d i f  - 
fusion coef f ic ien ts  were the same. 
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INTRODUCTION 

Two primary r equ i s i t e s  t o  be considered when se lec t ing  a su i tab le  

container mater ia l  f o r  molten f luor ide  mixtures a re  a v a i l a b i l i t y  and com- 

p a t i b i l i t y  with the  salt .  
i s  an obvious choice f o r  many container appl icat ions.  

ments, such as air  oxidation resis tance and strength,  a re  imposed when 

the appl icat ions involve polythermal reac tor  systems. Developmnt work 
has c l e a r l y  indicated t h a t  nickel-base a l loys  a re  su i tab le  mater ia ls  f o r  
reac tor  appl icat ions aad cons t i tu te  a workable compromise f o r  the  diverse 

requirements mentioned. 

Based on these r equ i s i t e s  alone, pure nickel  

Additional require-  

Inconel and INOR-8 a re  two nickel-base a l loys  which have received a 
considerable degree of research a t t en t ion  during the  last  few years - 
par t i cu la r ly  regarding f luor ide  corrosion resis tance.  It has been found 

t h a t  the corrosive a t tack  incurred i s  se lec t ive  toward chromium2 and i s  
i n i t i a t e d  through chromium oxidation a t  the  surface by t r aces  of HF, NU?,, 

FeF2, and IF40 

purif ied.  
which cannot be completely eliminated. 

The a t tack  i s  r e l a t i v e l y  mild when the  salt i s  properly 

The res idua l  a t tack  may be due t o  UF4 alone, the  e f f e c t s  of 

Past  work also suggests t h a t  the  over -a l l  r a t e  of the  se lec t ive  at-  
tack i s  p r i w r i l y  governed by the  diffusion r a t e s  of chromium within the  

al loys.  
The work covered i n  the  present report  deals  with a s e r i e s  of experi-  

ments which should be d i r e c t l y  r e l a t ed  t o  the  corrosion problem under d i s -  

cussion. 
various " se l f  -diffusion" coef f ic ien ts  of Cr5 '  i n  Inconel and INOR-8 a t  

temperatures ranging from 600 t o  900°C. It should be pointed out t h a t  
the f i r s t  experiments were perf omed elsewhere3 through a subcontract 
arrangement. 
by the  present invest igators .  

The experiments had as t h e i r  object ives  the  measurements of 

These da ta  have been u t i l i z e d  and considerably extended 

l W .  D. Manly e t  a l . ,  "Construction Materials f o r  Molten S a l t  Re- - -  
actors ,"  p 595 i n  Fluid Fuel Reactors (ed.  by Lane, MacPherson, and 
Maslan), Addison-Wesley, Reading, Mass. , 1958. 

21bid., - p 599. 
3R. B. Price e t  s., A Tracer Study of the Transport of Chromium 

i n  Fluoride Fuel SFtems, BMI-1194 (June 18, 1957). 

Y 

4W. R. Grimes, ORNL, pr ivate  communication, 1956. 
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c T h i s  report  i s  divided i n t o  three major sect ions:  a presentat ion 
of experimental r e s u l t s  involving over -a l l  C r 5 I  d i f fus ion  r a t e s ,  a pres- 
entat ion of the corresponding Cr5’  concentration p ro f i l e s ,  and an i n t e r -  

p re ta t ion  of the  da ta  i n  terms of a simple d i f fus ion  model. 

E X P E R I m A L  APPROACH 

Diffusion Coefficients 

The d i f fus ion  coef f ic ien t  i s  a flow-resistance parameter used i n  

It i s  defined by the  l i n e a r  flow diffusion rate-time relat ionships .  

equation (Fick’ s f i r s t  l a w )  

which, i f  s teady-state  conditions are  es tabl ished and D i s  assumed t o  
be independent of concentration, may be wr i t ten  as 

where 

m/at = 

A =  
L =  

n c =  

D =  

constant r a t e  of diffusion,  g/sec, 
a rea  through which d i f fus ion  takes  place, em2, 

length, cm, of system i n  x d i rec t ion  ( L  i s  zero at the  sur- 
face and increases with penetration of the metal w a l l ) ,  

concentration change of d i f fus ing  mater ia l  across L, 

d i f fus ion  coef f ic ien t ,  cm2/sec. 

C x z o  - cx,y g/cm39 

The diffusion coef f ic ien t  i s  a function of temperature, the  d i f fus ing  
material ,  and the  m t e r i a l  through which d i f fus ion  takes place. 
not depend on the  macroscopic geometry of the  flow system. 

It does 

The s teady-state  equation (2)  i s  useful  f o r  discussion and forms the  

basis f o r  the  determination of flow constants i n  analogous systems (flow 

of heat,  flow of e l e c t r i c i t y ,  and f l u i d  f l o w  i n  porous media); however, 

i t s  use i n  so l id - s t a t e  d i f fus ion  s tudies  has been discouraged because of 

the extremely low values of AM/& 

i s  u t i l i z a t i o n  of experiments and 

and D involved. The only a l t e rna t ive  

equations based on unsteady-state flow. 
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The basic l i n e a r  flow equation f o r  t h i s  case i s  

If self-diffusion measurements a re  t o  be made, f o r  example, d i f fus ion  

of radioactive s i l v e r  i n t o  pure s i l ve r ,  and/or i f  the values of &/ax 
involved are  not high, the diffusion coef f ic ien t  can be t r ea t ed  a s  a 

constant . 
Eq. (3) llliy be wr i t ten  as5 

Under such conditions and a t  f ixed temperature and pressure,  

( 4 )  

Equation ( 4 )  i s  known a s  Fick’s second diffusion law. 

In  the case of one-dimensional diffusion,  applicable in tegra ted  forms 

of the above d i f f e r e n t i a l  equations contain two independent var iables ,  the 
time t and the  coordinate x along which d i f fus ion  takes  place. 

quently, development of equations r e l a t i n g  the  d i f fus ion  coe f f i c i en t  t o  

measured var iables  requires  knowledge of e i t h e r  the  concentration p r o f i l e  

along the  path of d i f fus ion  at a given time or the  va r i a t ion  of concentra- 

t i o n  with respect t o  time a t  a given coordinate. 

successfully employed f o r  diffusion s tudies .  

Conse- 

Both methods have been 

Tracer Techniques Applied t o  Diffusion Measurements 

Several es tabl ished techniques based on the  use of radioactive iso- 
topes a s  t r a c e r s  a re  avai lable  f o r  measuring diffusion coef f ic ien ts  i n  

metals. 
t h a t  the d i f fus ion  behavior can be conveniently described by using the 
f’undamental d i f fus ion  equations discussed i n  the preceding section. The 
techniques d i f f e r  widely, however, i n  the  method of t r a c e r  placement and 

i n  the method of data analysis .  

All t he  methods s t r i v e  t o  e s t ab l i sh  experimental conditions such 

I n  the  case of se l f -d i f fus ion  measurements, the  method of t r a c e r  

placement has generally involved the use of a diff’usion couple, t h a t  i s ,  

a mater ia l  containing a high percentage of radioactive atoms physically 

5J. H.  Wang, “Radioactivity Applied t o  Self-Diffusion Studies.  ” i n  
/ 

Radioactivity Applied t o  Chemistry (ed. by W a h l  and Bonner) , Wiley, New 
York, 1951. 
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joined t o  a mater ia l  of s imilar  chemical composition but of l e s s e r  radio- 

ac t iv i ty .  The simplest mathematical solut ion describing the movement of 
diff'using atoms i n  such a couple r e s u l t s  i f  the mater ia l  of higher radio- 

a c t i v i t y  is i n  the  form of an i n f i n i t e l y  t h i n  layer  (or plane source) and 

i f  the diffbsing medium may be considered i n f i n i t e l y  thick.  The solut ion 

of Eq. (4 )  f o r  t h i s  condition (assuming one-dimensional diffbsion)  i s  

Qo -x2/4Dt C =  e 
( n D t )  

, (5)  

where C r e fe r s  t o  t r a c e r  concentrations a t  depth x a f t e r  time t, and the  

quantity QO r e f e r s  t o  an impulse (g/cm2) of t r a c e r  supplied t o  the  metal 

from the  t h i n  layer  source. These boundary conditions a re  met experi-  

mentally only i f  the penetration distance i s  la rge  compared with the or ig-  

i n a l  thickness of the t r a c e r  layer .  

A convenient s e t  of boundary conditions r e s u l t s  from an experimental 

standpoint when both the t r a c e r  l aye r  and the diffusing medium approach 
a thickness which can be regarded a s  i n f i n i t e .  The solut ion i n  t h i s  case 

becomes 

X - - -  io - + e r r  I 

2 ( D t  )' / 

I n  ce r t a in  experiments placement of t r a c e r  atoms i s  e f fec ted  through 

surface reactions.  If by such a method the surface concentration of t r a c e r  

atoms i s  brought instantaneously t o  and maintained a t  a constant l eve l ,  a 

convenient solut ion of Eq.  ( 4 )  resu l t s ;  namely, 

X C = CO e r f c  . 
2(Dt) 

a 

Carburizing experiments i n  which labeled carbon a c t i v i t i e s  a re  es tabl ished 
a t  surfaces of metal specimens by exposing them t o  CO2-CO or CH4-H2 gas 

mixtures a re  well-known examples' of t h i s  technique. 

Three bas ica l ly  d i f f e ren t  apprdaches have been u t i l i z e d  t o  analyze 

the experimental r e s u l t s  once the d i f fus ion  of t r a c e r  has been effected.  

6L. S. Darken and R. W. Gurry, Physical Chemistry of Metals, p 450- 
51, McGraw-Hill, New York, 1953. 
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Most commonly the  diff 'usion medium has been sectioned and the sect ions 

analyzed t o  obtain a concentration p r o f i l e  a s  a f'unction of distance be- 

low the diffusion in te r face .  

nique has been employed; 
calculated from the decrease i n  a c t i v i t y  of the face of the  specimen on 
which a t h i n  l aye r  of the  radioactive isotope was o r ig ina l ly  deposited. 

I n  ce r t a in  cases a surface counting tech- 

i n  t h i s  technique the  diff 'usion coef f ic ien t  i s  

A more recent ly  advanced method f o r  determining the  extent  of t r a c e r  

penetration i s  based on the use of autoradiography.8 

procedure i s  s imilar  t o  t h a t  used i n  the  sectioning technique except t h a t  

a s ingle  sect ion i s  cut  on a plane which i s  s l i g h t l y  l e s s  than normal t o  

the d i rec t ion  of diffusion.  
d ia t ion  emitted by the  t r a c e r  i s  placed over t h i s  section. 

f i lm r e s u l t s  i n  a photograph of the d i s t r ibu t ion  of the t r ace r .  

graphic density can be correlated with t r a c e r  concentration t o  give a com- 

p l e t e  penetrat ion curve. 

The experimental 

A f i lm which i s  sens i t ive  t o  the type of ra- 
The exposed 

The photo- 

Many of the previous experimental methods were developed t o  obtain 

magnitudes of the  diffusion coefficientsand,more bas ica l ly ,  t o  gain an 
understanding of the  mechanism of t r a c e r  invasion. 

however, it was desired foremost t o  determine the amount of chromium which 

would en te r  or leave the  a l loy  a s  a f'unction of surface concentration, 
time, and temperature, and the method selected w a s  aimed a t  determining 
the r a t e  a t  which the  t r a c e r  entered the  d i f fus ion  medium a s  well  as the  
d i s t r ibu t ion  of t r a c e r  within the medium. Accordingly, the  experimental 

information determined includes a l l  the  processes which occur a s  the dif-  

f'usion medium adjus ts  t o  the  concentration driving force,  not j u s t  the  
u n i t  atomic process by which an atom moves t o  a neighboring l a t t i c e  s i t e O g  
The importance of t h i s  d i s t i nc t ion  becomes evident when it i s  rea l ized  
t h a t  a t  l e a s t  two d i s t i n c t  processes contribute t o  the  d i f fus ion  of atoms 

i n  polycrystal l ine metals - diff'usion occurring along gra in  boundaries 

I n  the  present s tudies ,  

7G. Hevesy and W. Seith,  Z. Physik 5'7, 869 (1929). 
'S. T. Kishkin and S. Z.  Bokstein, "Distribution and Diff'usion of 

- 

Components i n  Metal Alloys Studied by the Autoradiographic Method," 
Peaceful Uses of Atomic Energy, p 8'7, A/Conf 8/15, United Nations, 1955. 

'C. Zener, "Theory of Diff'usion," p 289 i n  Imperfections i n  Nearly 
Perfect  Crystals (ed.  by W. Shockley), Wiley, New York, 1952. 
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and diffusion through the gra in  matrix. 

made t o  separate d i r e c t l y  the e f f e c t s  of these two processes, although 
ce r t a in  ind i r ec t  observations of t h e i r  r e l a t ive  magnitudes were permitted. 

I n  these s tudies  no e f f o r t s  were 

Present Experimental Methods 

I n  the  experimental methods employed f o r  the  present s tudies ,  the  
placement of rad io t racer  ( C r 5 1 )  w a s  accomplished by means of the  exchange 

reac t  ion 

C r o  + Cr*F2 e CrF2 + C r o *  (8) 

for which 

r i e r  salt 

gested by 

mo = 0, 

composed 

= 1, and K E 1. The Cr*F2 w a s  dissolved i n  a car-  Ka W 
of NaJ?-ZrF4 (53-47 mole 4). This approach w a s  sug- 

the r e l a t i v e  iner tness  of CrF,, N a 3 ,  and ZrF4 with respect t o  
the primary const i tuents  of Inconel ( N i ,  C r ,  and Fe) and INOR-8 ( N i ,  C r ,  

Fe, and Mo). 
invest igat ion w a s  inconsequential;1° hence the  only react ion r e su l t i ng  at  

The chemical react ion between the  salts and the  metals under 

the  surface w a s  the  exchange 

of act ivated t o  nonactivated 

iden t i ca l  with the r a t i o s  of 

the  salt. 

react ion (8) noted above, which created r a t i o s  

chromium atoms a t  the  surface of the  mater ia l  

act ivated t o  nonactivated chromium ions i n  

MEASUR%MENT OF OVER-ALL DIFFUSION COEFFICIENTS 

Depletion Method 

If consideration is given to an alloy-molten salt system in which 

the  molten s a l t  i n i t i a l l y  contains dissolved CrF2 and Cr*F2 and the a l loy  
contains C r o  and no Cro*,  a random exchange w i l l  take place a s  shown by 

Eq. (8), although the  net  change of t o t a l  chromium i s  zero. 
act ion of the exchange react ion and the diff 'usional forces within the  
a l loy  w i l l  r e s u l t  i n  a gain of C r o *  i n  the a l loy  and a loss of Cr*F2 from 

The combined 

"A. Glassner, The Thermochemical Propert ies  of the Oxides, Fluo- 
r ides ,  and Chlorides t o  2500°K, ANL-5750. 
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the  salt.  If the  f r ac t iona l  depletion of Cr*F2 a c t i v i t y  i n  the s a l t  (cor-  

rected f o r  time decay) i s  measured a s  a function of time, a d i f f i s i o n  co- 
e f f i c i e n t  f o r  chromium i n  the metal may be calculated by means of the  f o l -  
lowing re la t ionship  : 

where 

t = time, sec, 

= counts/g-min (a t  time count i s  made) of a f i l t e r e d  

bt = counts/g-min ( a t  time count i s  made) of a f i l t e r e d  

bt=o s a l t  sample taken a t  t = 0, 

salt  sample taken a t  t, 
a = depletion parameter, sec-1/2, 

A/V = r a t i o  of the  salt-exposed area of a l loy  t o  the  salt  
volume, cm-l, 

f luoride ( a s  Cr") i n  the s a l t ,  
pm/ps = density r a t i o  of metal t o  salt ,  

D = diff'usion coef f ic ien t ,  cm2/sec, 

u = at1/2. 

[ C r o ] / [ C r F 2 ]  = weight f r ac t ion  r a t i o  of chromium i n  a l loy  t o  chromous 

Equation (9)  i s  based on a simultaneous solut ion of Eq. ( 4 )  and the 
equation resu l t ing  from a balance of the instantaneous t r a n s f e r  r a t e s  of 

labeled chromium from the s a l t  t o  the metal, or 

The var iable  x i s  distance within the a l loy  measured i n  the d i r ec t ion  of 

diff'usion, i n  cm; 'CrO* i s  concentration of Cro*, i n  g/cm3; and MCr*F2 i s  
the amount of C r 5 1  a s  Cr*F2 i n  the melt. 

The boundary conditions applied t o  obtain t h i s  solut ion are:  (1) the  
a l loy  i s  i n f i n i t e l y  th ick  i n  the x direct ion,  ( 2 )  the i n i t i a l  concentra- 
t i o n  of C r o *  i n  the a l loy  i s  zero, and (3) the concentration of C r o *  a t  

the a l loy  surface a t  any t > 0 i s  governed by Eq.  (10) and var ies  with 

8 



3 
time according t o  the re la t ionship  

which stems d i r e c t l y  from Eq. ( 8 ) .  
depletion were used t o  convert the experimental data  t o  the corresponding 

diffusion coef f ic ien ts .  

Large-scale p l o t s  of u vs f r ac t iona l  

Experimental data have been obtained f o r  two se r i e s  of experiments, 

designated isothermal and polythemnal, which s a t i s f y  the boundary condi- 

t i o n s  f o r  Eq. (9 )  . I n  the isothermal experiments, u was varied by varying 

t; a l l  other parameters were held constant by charging an iden t i ca l  amount 
of salt  t o  capsules of i den t i ca l  geometry and imposing isothermal condi- 

t i ons  during the exposure period. 

ve r i f i ca t ion  of the time-dependence re la t ionship  for the  depletion-type 
experiments. 

These experiments afforded a d i r e c t  

Constant-Potential Method 

I n i t i a l  experimentation indicated t h a t  the Cr*F2 content of the  molten 

s a l t s  i n  a l loy  containers will remain constant i f ,  p r i o r  t o  the experiment, 

the temperature of the system i s  ra i sed  t o  900°C f o r  a few hours and then 

lowered. Depletion of Cr*F2 i s  e s sen t i a l ly  stopped a t  the lower tempera- 

t u re  by t h i s  procedure. 

mocouple wells subsequently immersed i n  the salts  absorb labeled chromium 

under conditions of a constant surface poten t ia l ;  t h a t  i s ,  the C r o *  con- 

Specimens i n  the  form of 1/4-in.-OD Inconel ther -  

centrat ion a t  the specimen surface remains constant with time. The cor- 
responding Cr'* t r ans fe r  equation12 i s  

IIA descr ipt ion of the  experimental d e t a i l s  and the  time-dependence 

12J. H. Wang, "Radioactivity Applied t o  Self-Diffusion Studies,'' 
curves m y  be found i n  the  Appendix. 

i n  Radioactivity Applied t o  Chemistry (ed. by Wahl and Bonner), Wiley, 
New York, 1951. 

9 
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The var iable  C denotes concentration a s  g/cm3. Rearranging Eq. (12) ,  

where 

h = height of the imersed  specimen, 

r = radius of the immersed specimen, 

y = t o t a l  counts of the e n t i r e  specimen (without a l t e r a t i o n )  per  

z = counts of the  s a l t  per  gram-minute a t  t. 
minute a t  t, 

The variable y i s  a measure of the  t o t a l  amount of t r a c e r  gained by the  
specimen; z i s  an ind i r ec t  measure of the  t r a c e r  concentration which i s  

maintained on the specimen surface during immersion. 

Four se r i e s  of experiments were performed by means of the  constant- 

po ten t i a l  method. 
subjected t o  three types of pretreatment conditions; the fourth s e r i e s  

involved INOR-8 specimens. The development and u t i l i z a t i o n  of t h i s  method 

was p a r t i a l l y  stimulated by the need f o r  tracer-containing a l loy  specimens 
for subsequent e lectropol ishing experiments. Specimens from a constant- 

po ten t i a l  experiment were desirable  i n  t h i s  respect a s  they were r e l a t ed  

t o  a convenient s e t  of solut ions of the diffusion equations. 

formation regarding experimental d e t a i l s  i s  presented i n  the  Appendix. 

Three se r i e s  involved Inconel specimens which had been 

Further i n -  

Re su l t  s 

Over-all coeff ic ients ,  a s  a function of temperature and gra in  s ize ,  
were obtained from s i x  se r i e s  of experiments. 

conveniently grouped according t o  experimental method, a l loy  pretreatment, 
and type of a l loy .  For brevi ty  of presentation, an out l ine  of the experi-  

ments i s  shown i n  Table 1. 

The experiments could be 

Experimental points  for groups I-IV and reported13 high-temperature 

values f o r  a s imilar  a l loy  are  p lo t t ed  i n  Fig. 1. 

for groups V and V I  are not shown, since the general appearance, s ca t t e r ,  

and slope of a p l o t  of these points  a re  very s imilar  t o  those of Fig. 1. 

The experimental po in ts  

l3P. Gmzin and G. F'ederov, Doklady &ad. N a u k  S.S.S.R. 105, 264 - 
(1955) . 
10 



4 A iI 

Table 1. S-mary of Experiments to Determine Over-All Diffusion Coefficients 

i 

Alloy Material Alloy Pretreatment or 
and Dimensions Annealing Conditions 

Solvent 

(mole %) 
‘Ontent compos it ion Type of Experiment 

Group 
Number Experiment of Alloy  

( w t  %I 
Remarks 

I Isothermal 
capsule 
(depletion) 

capsule 
(depletion) 

I1 Polythe rmal 

I11 

IV 

v 

Constant 
potential 

Constant 
potential 

Constant 
potent i a1 

Constant 
potent i a1 

16.0 NaF - Z rF4 
(50-50) 

14.4 NaF-ZrF4 
(53-47) 

15.2 NaF - ZrF4 
(53-4?) 

15.1 NaF - ZrF4 
(53-47) 

14.8 NaF-ZrF4 
(53-47) 

7.03 N U - Z r F ,  
(53-47) 

Inconel: sides, 
3/8- in. tubing; 
bottom, plate 

Inconel: capsules 
machined from bar 
stock 3/8-in. OD, 
5/16-in. ID, 
25/64- in. inside 
length 

tubing, 0.035- in. 
wall 

Inconel: 1/4-in. 

Inconel : 1/4- in. 
tubing, 0.035-in. 
wall 

Inconel : 1/4-in. 
tubing, 0.035-in. 
wall 

INOR- 8 : 1/4- in. 
tubing, 0.028- in. 
wall 

Welding temperature, then 
normalized under H2 for 
4 hr at 900°C 

hr at 1150°C 
Annealed under H2 for 8 

Annealed under H2 for 2 
to 4 hr at 1150°C 

Annealed under He for 2 
to 4 hr at 1150°C 

Annealed under H2 for 8 
to 12 hr at 800°C 

Annealed under H2 for 8 
to 12 hr at 800°C 

Previously uncorrelated data 
obtained from ref 3 at 3 
temperature s 

Experiment performed to 
verify and augnent 
group I results 

Several groups of isothermal 
experiments performed to 
verify Eq. (12) and to 
evaluate the experimental 
method 

Single 1-day exposure time; 
experiments performed to 
show effects of H2 vs He 
annealing 

Single 2-week exposure-time 
experiments performed to 
show effects of lower an- 
nealing temperatures and 
to provide specimens for 
electropolishing experi- 
ment s 

Single 2-week exposure-time 
experiments performed to 
obtain preliminary INOR-8 
over-all coefficients 
comparable to Inconel co- 
efficients 
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Fig, 1, Experimental Results f o r  115OOC Annealed Inconel, Over- 
a l l  c oef f i c  i e n t  s, 

It should be mentioned t h a t  an isothermally determined over-al l  co- 

e f f i c i e n t  depends on the measurement, control,  or  knowledge of t en  vari- 
ables.  

the coef f ic ien t  changes approximately &$ per  degree centigrade a t  700". 

The maximum e r r o r  i n  any s ingle  coef f ic ien t  could be k0.4 of a cycle on 

Figs. 1 and 2. This estimate excludes the e f f e c t s  of gra in  s i ze  var ia-  
t i ons .  

Seven of these var iables  are  squared i n  the f i n a l  equation; a lso,  

The e f f e c t  of temperature on the observed diff 'usion coef f ic ien ts  can 
be expressed by the equation 

-E/RT D = Doe 

12 



For the  two s o l i d  l i n e s  labeled "groups I, 11" and "groups 111, I V , "  the  
values of E a re  66 and 62 kcal/mole, and the values of Do are  2.8 and 1 .0  
em2 / se c r e  spe e t  ive ly  

I n  view of the over-al l  precis ion involved, the most r e a l i s t i c  sum- 
mary of the r e s u l t s  might consis t  of a comparison of the average curves 

for a l l  avai lable  data.  Such a comparison i s  presented i n  Fig. 2. 

A comparison of r e s u l t s  obtained with an unannealed Inconel specimen 

(point  A, Fig. 2) and those obtained with three annealed specimens (point  

B, Fig. 2) presents  a pointed i l l u s t r a t i o n  of e f f e c t s  associated with gra in  
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-1 5 5 N i  WITH 19.8% C r  ( R E F  13) 
6 Ni PURE ( R E F 1 3 )  

- 
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Over-all values, 
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s ize .  Photomicrographs showing the gra in  s ize  of these specimens may be 

found i n  Fig. 3 ( r e f  1 4 ) .  
were exposed t o  the  same po t - sa l t  system a t  the  same temperature. The 

same t rend  was shown by a l l  the experimental r e su l t s ,  i n  t h a t  increases  

i n  the time and temperature of pretreatment increased the  gra in  s ize ,  

which, i n  turn,  l e d  t o  a decrease i n  the  over -a l l  coef f ic ien t .  It was 

concluded t h a t  gra in  s ize  e f f e c t s  had a marked influence on the over -a l l  

dif fusion coef f ic ien t  . 

Both the  unannealed and the annealed specimens 

The above conclusion formed the bas i s  f o r  another in te rpre ta t ion ;  
t h a t  i s ,  specimens with the  highest  number of grains  a l so  contained the  

highest  number of "grain boundaries"; accordingly, one might suspect t h a t  

a ce r t a in  f r ac t ion  of the diffusion took place along g ra in  boundaries a t  

temperatures around 70OoC. 
Thus there  would be reason t o  th ink  i n  terms of two coef f ic ien ts ,  

fo r  example, volume and grain boundary. A treatment of a s imi la r  case 

by Fisher" and by Whipple16 revealed t h a t  the  time dependence of the 

penetrat ion relat ionships  would be a l t e r ed  when both mechanisms are  com- 

bined. Such was not the  case i n  t h i s  invest igat ion.  The data  appeared 

t o  follow the  equations presented. 

phenomenological coef f ic ien t  which could be used t o  represent a homogeneous 
diff 'usion process taking place i n  an i so t ropic  medium. 

These equations were based on a s ingle  

An encouraging feature  of the r e s u l t s  shown i n  Fig. 2 i s  the  r e l a -  

t i v e l y  good agreement between the high- and low-temperature data .  
"break1' i n  the over-al l  coef f ic ien t  curves indicat ing a change i n  mechanism 
was not found f o r  the Inconel specimens. The breaks noted i n  previous in- 
vest igat ions (general ly  obtained from concentration p r o f i l e s )  r e s u l t  i n  
r e l a t ive ly  f l a t  curves a t  low temperature regions. 

A 

Coefficients presented i n  Fig. 2 represent a l loys  with chromium con- 

I n  view of the precis ion of the  meas- t e n t s  ranging from 0 t o  20.4 w t  %. 
urements and gra in  s ize  e f f ec t s ,  it w a s  concluded t h a t  the over -a l l  co- 

e f f i c i e n t s  above 700°C did not depend on the chromium concentration i n  

the INOR-8 and the Inconel. The mount of diffusion did depend on the  

concentration i n  a manner predicted by Eqs. (9 )  and (12 ) .  

14Additional photomicrographs a re  included i n  the Appendix. 
I5J. S. Fisher, J. Appl. Phys. - 22, 7 4  (1951) .  
16R. T. P. Whipple, Phi l .  Mag. - 45, 1225 (1954) . 
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6 

Fig .  3. Photomicrographs of Annealed and Unannealed Inconel Speci- 

mens. 
(b)  Specimen annealed a t  1150°C for 4 hr; D = 1.7 x loy5  cm2/sec. 

675°C for both experiments. 

(a)  Specimen unannealed (point  A, Fig.  2) ;  D = 78 x loy5 cm2/sec. 
- - 

Tsalt 
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CHROMIUM-51 DIFFUSION COEFFICIENTS FROM 
ELECTROPOLISHING EXPERIMENTS 

Introduction 

Prac t ica l ly  a l l  the  so l id-s ta te  d i f fus ion  data reported i n  the lit- 
era ture  a re  based on the experimental determination of t r a c e r  concentration 

p ro f i l e s  a s  a function of penetration dis tance.  

a s  t o  the boundary conditions, t r a c e r  placement techniques, and sectioning 

procedures employed. However, determination of the  t r a c e r  p ro f i l e  i s  the  
basic  objective common t o  a l l  experiments of t h i s  type. The p r o f i l e  data  

are  then converted t o  diff'usion coef f ic ien ts  through a knowledge of the  

proper concentration equations. 

The eqe r imen t s  d i f f e r  

It w a s  f e l t  t h a t  a s e r i e s  of experiments of t h i s  type would const i -  

t u t e  an in t e re s t ing  complement t o  the Inconel experiments discussed i n  

the preceding sect ion of t h i s  report .  Two types of coef f ic ien ts  f o r  a 

given specimen would be avai lable .  

of the over-al l  amount of t r a c e r  which diff'used i n t o  the specimen under 

a known surface potent ia l ;  the  second would be based on the  t r a c e r  con- 
centrat ion p r o f i l e  within the specimen. 

One would be based on the measurement 

Description of Method 

Three major considerations governed the  choice of a method f o r  sec- 
t ioning the tracer-containing specimens. F i r s t ,  very shallow t r a c e r  pene- 
t r a t i o n s  (very steep t r a c e r  concentration vs distance curves) would be in -  
volved; second, the operation should be f a s t  and should not require p a r t i -  
cular  s k i l l s ;  t h i rd ,  the specimens would be cy l indr ica l  i n  shape since they 
would or iginate  from capsules, pots, or loops. It appeared t h a t  an e lec-  

t ropol ishing technique would s a t i s m  a l l  these requirements. 
Based on the f i rs t  two requirements mentioned, an in t eg ra l  method17 

was employed t o  cor re la te  the data. This avoided the necessi ty  of taking 

a la rge  number of minute f fcutsff  and then having t o  calculate  a l a rge  num- 

ber of "average" concentrations. The experiments were conducted i n  the  

I7S. D. Gertsricken and I. Y. Dekhtyar, Proc. Intern.  Conf. Peaceful 
Uses Atomic Energy, Geneva, 1955 - 15, 99 (1955) . 
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following manner. 

ished, re-counted, polished again, e t c . ,  u n t i l  l e s s  than l$ of the  or ig-  

i n a l  count was present.  

each polishing were p lo t t ed  a s  a function of the cumulative penetration 

distances.  

of an equation applicable t o  the experimental procedure (constant poten- 

t i a l ,  semi-infinite system, i n i t i a l  t r a c e r  concentration zero, e t c  .) 
equation i s  

After salt  exposure, the specimens were counted, pol- 

The percentages of t o t a l  counts remaining a f t e r  

The experimental p lo t  was compared with a generalized p lo t  

The 

where y(x)  i s  percentage of o r ig ina l  a c t i v i t y  remaining, and w = ~ / 2 ( D t ) ' / ~ .  
Values of Eq. (14) a re  avai lable  i n  the l i n t e ra tu re .18  A de ta i led  

descr ipt ion of the apparatus and procedures used t o  perform the e lec t ro-  

polishing operation may be found elsewhere . l9 

Results 

Present Invest igat ion 

Electropolishing experiments were performed on duplicate specimens 

obtained from 13 separate experiments mentioned i n  the preceding section 

(see group V) . 
se r i e s  contained the l a rges t  amount of t r a c e r  a t  the deepest penetrations.  

The f i n a l  r e s u l t s  a r e  presented i n  Fig. 4 (open c i r c l e s )  immediately above 
the average curve, which represents the over-al l  coef f ic ien t  obtained w i t h  

the  same specimens. It was in t e re s t ing  t o  note t h a t  the  deviations ex- 

h ib i ted  by these data were f a i t h f u l l y  reproduced by the  over-al l  values 
on the  lower curve. 

Of a l l  the  constant-potential  specimens processed, t h i s  

Bat te l le  Data 

Electropolishing data submitted by Price2' are  shown on Fig. 5. In  
addition t o  the 800°C data shown, a meager amount of data was obtained 

18H. S. Carslaw and J. C,  Jaeger, Conduction of Heat i n  Solids,  p 
373, University Press,  Oxford, 1950. 

' 

"J. H. DeVan, An Evaluation of Electro-Machining f o r  the Analysis 
of Metal Surfaces, ORNL CF-59-6-109 (June 25, 1959). 

20R. B. Price e t  - -  al . ,  A Tracer Study of the Transport of Chromium 
i n  Fluoride Fuel Systems, INI-1194 (June 18, 1957) e 
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Chromium Diffusion Coefficients f o r  Inconel Based on Elec- 

fo r  700 and 60OoC.  

ments served a s  the electropol ishing specimens which l e d  t o  these r e su l t s .  
The rigorous p r o f i l e  equation for a depletion experiment i s  

The capsules used i n  the over-al l  depletion experi-  

C(x,t> = C O  erfc  at  1'2 + X 1 e X P ( 5  + a2t) (15) 
2 ( D t  ) ' 1  

Since the required re la t ionship  would involve in tegra t ion  of Eq. (15) 
with respect t o  x, a decision w a s  made t o  approximate the rigorous solu- 

t i o n  by means of Eq. ( 1 4 ) .  
t i ons  with respect t o  the over-al l  t r ans fe r  equations were acceptable. 
A s  it turned out, the approximate equation accurately described a major 

port ion of the  experimental p ro f i l e s  (see Fig. 5) 

Past  work had shown t h a t  analogous approxima- 

Coefficients based 

. 
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Fig. 5. Concentration P ro f i l e s  i n  800°C Depletion Capsules. 

on the 800°C data2* are  shown i n  Table 2. All the avai lable  Bat te l le  

data are  presented i n  Fig. 5. 

D i  scus s ion 

The 800°C data of Table 2 a re  of considerable importance, since the  
r e s u l t s  of two independent s e r i e s  of experiments a t  th i s  temperature 
es tabl ished the  equal i ty  of coef f ic ien ts  obtained from electropol ishing 
experiments and over-al l  measurements. 

equal i ty  of coef f ic ien ts  i s  a necessary condition f o r  a homogeneous d i f -  
f’usion process. 

It i s  present ly  thought t h a t  

The values given i n  Table 2 represent the  r e s u l t s  of three depletion 
experiments and s i x  e lectropol ishing experiments. 

f i c i e n t s  shown were obtained from the  average of three s imilar  experiments. 

The number of over-al l  coef f ic ien ts  avai lable  corresponded t o  the number 

of capsule experiments (involving several  capsules exposed f o r  various 

The two p r o f i l e  coef- 

19 



Table 2. Comparison of Diffusion Coefficients f o r  Cro* 
i n  Inconel a t  8 0 0 " ~  

a 
BY Cro* Concentration P ro f i l e s  

(See Fig. 4) 

S a l t  Exposure Time D 
(hr) ( cm2/sec) 

197 

768 

x 10-l4 

3.47 

4.75 

b 
By [Cr+*] Depletion 

[ ~ r + + ]  D 
(PPd  ( cm2/sec) 

ll 

700 

1080 

1380 

x 10-14 

4.25 

6.22 

4.21 

a 

bAverages of several  determinations with d i f f e ren t  exposure times 

Averages of curves f o r  700, 1080, and 1380 ppm Cr++ ( s ee  Fig. 5). 

a t  spec i f ic  [Cr++] ( see  Fig. A . 3 ) .  

t imes) t h a t  were performed, t h a t  i s ,  three.  It i s  important t o  note t h a t  

the i n i t i a l  [Cr*F2]/[CrF,] r a t i o  and the A/V r a t i o  were iden t i ca l  f o r  a l l  

experiments i n  the 800°C ser ies .  Thus, p r o f i l e s  f o r  capsules with ident-  

i c a l  salt  exposure times should be the same i f  the  over -a l l  d i f fus ion  equa- 

t i o n s  previously presented and the assumed constant-potential  boundary 
conditions were correct  . 
by the proximity of experimental points  t o  the  curves on Fig. 5. 

i n  the log  D vs 1 / T  p l o t s  were f i n a l l y  acquired through the p r o f i l e  ex- 
periments. A discussion of the difference between these p r o f i l e  curves 
and curves for the  companion over-al l  experiments w i l l  be given separately 
i n  the next sect ion of t h i s  report .  

It appears t h a t  these proposit ions a re  ve r i f i ed  

A s  indicated by the curves of Fig. 4, the  long an t ic ipa ted  "breaks" 

AJXALYSIS OF DIEi'FUSION DATA 

It i s  observed from Fig. 4 of the  preceding sect ion t h a t ,  a t  tem- 

peratures  l e s s  than 800°C, the  "diffusion coef f ic ien ts"  obtained from 
t r a c e r  concentration p r o f i l e s  are  higher than those which were based on 

the  t o t a l  amount of t r a c e r  t ransferred.  

of coef f ic ien ts ,  it i s  useful  t o  visual ize  a d i f fus ion  specimen, wherein 

I n  order t o  co r re l a t e  both kinds 
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the  e n t i r e  diffusion process occurs i n  intergranular  channels. If it i s  
assumed t h a t  all the  channels can be grouped together t o  give a ce r t a in  

f rac t ion ,  f ,  of the  bulk volume, Vb, then fV 

and (1 - f ) V  

cerns the se lec t ion  of a reference coef f ic ien t  f o r  the  act ive volume. 

One of two su i tab le  reference coef f ic ien ts  might be chosen; they 

w i l l  be the  "active" volume 
b 

w i l l  be the "inactive" or dead volume. The next s tep con- b 

a re :  a bulk coeff ic ient , .D r e su l t i ng  from steady-state  diffusion ex- 

periments, and a gra in  boundary (or channel) coef f ic ien t ,  D 

based on s tudies  of s ingle  grain boundaries. To prec ise ly  i l l u s t r a t e  

the  meaning of the  two hypothetical  coef f ic ien ts ,  a numerical example 
incorporating both coef f ic ien ts  w a s  prepared. The example involved 

steady-state d i f fus ion  of t r a c e r  M through a metal l ic  membrane 1.5 1-1 

thick,  1.025 em2 i n  cross-sect ional  area,  10 w t  $ M, and 0.1 volume 

f rac t ion ,  f .  

given i n  Table 3. 

a, as indicated by 

b' 
which i s  

g' 

The membrane contained four ac t ive  channels with dimensions 

Both coef f ic ien ts  a re  based on the  same dr iving force,  

since 

C b = C  a t x = O a n d L  , 
g 

and 

Table 3. Channel Parameters for Hy-pothetical Membrane 

Channel 
Number 

Length 
( P I  

3.0 

1.5 

2.0 

5.0 

x loo2 x 

2.50 7.500 83.3 

1.25 1.875 

1.75 3.500 

0.50 2.500 

83.3 

87.5 

10.0 

NA = 6.00 NV = 15.375 Z(A/L) = 264.1 
g €5 
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Subscript b r e f e r s  t o  bulk values; subscript  g r e f e r s  t o  channel o r  gra in  
boundary values. For the  example, D and E were assumed t o  be 2 x 
crn2/sec and (lo g/cm3) (0.1) (1.0 - 0.2) 
f rac t ions  were 1.0 X loo8 and 2.0 X lo-’ at  the  surfaces.  

ing r a t e  was 4.23 x g/sec. 
the re la t ionship  

g M 
respect ively.  The weight 

The correspond- 

The bulk coef f ic ien t  w a s  obtained through 

b 
with the assumed D m d  membrane dimensions given i n  Table 3; the  D 

value w a s  7.73 X lomL2 cm2/sec, which i s  considerably lower than the  

D value. 

g 

€5 
I n  many instances it w i l l  be very d i f f i c u l t  t o  obtain individual  

A/L values, which a re  necessary f o r  the  u t i l i z a t i o n  of a t r u e  Dp. How- 
U 

ever, a model D or (Dg)model m y  be estimated by v isua l iz ing  a p a r a l l e l  
s e r i e s  of channels with equal lengths and areas.  

g 
By using the  example 

g, %, f ,  and D values f o r  NA and the  equations b 

N A L  = f%L,, , 
g g  

which describe the  model, a (Dg)model value of 2.255 x loolo cm2/sec was 
obtained. 
of 2.0 x 1 0 - l O  cm2/sec. 

This value i s  i n  very good agreement with the  o r ig ina l  value 

The foregoing example demonstrates t h a t  u t i l i z a t i o n  of t he  model 
D would require information as t o  the  average in t e rna l  geometry of t h e  
diffusion media. This i s  not required for D Nevertheless, reasonable 
estimates of channel behavior (D ) can be made through D 

e r ro r s  a re  not introduced by the  model when reasonable channel-size d i s -  

t r i bu t ions  a re  involved. Accordingly, D w a s  se lected as the  reference 

coef f ic ien t  f o r  present in te rpre ta t ions  . 

g 
b o  

Q b y  since la rge  

b 

The active-volume concept implies t h a t  t r a c e r  does not accumulate 

Thus, F ick’s  l a w ,  from which equations describing i n  the  dead volume. 
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the  experiments a re  developed, must be modified such t h a t  

- = f -  d2C a C  
a t  Db ax2 

Applicable boundary conditions a re  

1i.m C(x,t)  = 0 , 
c(x,o) = 0 , 

x-+m 

which lead t o  a solut ion 

X C(x, t )  = fCo e r f c  . 
2 ( D b t / f ) 1 / 2  

a 

The corresponding equations f o r  over -a l l  t r a c e r  t r ans fe r ,  AM, and f r ac t ion  
of t r a c e r  r emin ing  a f t e r  electropolishing, y, a re  

1/2 

, 

y(x) = 100(fl)1/2 4m e r fc  w dw , 
X w =  . 

are  compatible with the  da ta  i n  t h a t  the  basic form of 

(22) and the  shape of the  

These equations 

the  time-dependence curves corresponding t o  Eq.  

polishing p r o f i l e s  of Eq. (23)  are  not a l t e r ed  by the  introduction of f . 
Furthermore, r'lowl' over -a l l  coef f ic ien ts  a re  predicted by D,f and "high" 

U 

Db/f. 
D /f were measured during the  experiments. 

From the  data and the  present interpre-  

Thus, b 

polishing coef f ic ien ts  by 
t a t ion ,  values of D f and 

b 

(Dover-al l  *D pol ish , 

i f =  
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The term "grain boundary diffusion," as it i s  generally used, r e f e r s  

t o  the  port ion of the  electropol ishing curves which have been ignored i n  

t h i s  invest igat ion,  t ha t  is, the  res idua l  5 t o  15% of the  t o t a l  t r a c e r  

t ransfer red  which undergoes comparatively deep penetration. 

This in te rpre ta t ion  appl ies  t o  85 t o  95% of the  mater ia l  normally 

c l a s s i f i e d  as l'volume'' d i f fusion.  We submit that t h i s  f r ac t ion  of the  

t ransfer red  t r a c e r  follows se lec t ive  d i f fus ion  paths given by fV Further, 

the  value of f i s  un i ty  at approximately 800°C f o r  chromium i n  Inconel and 
b *  

decreases markedly w i t h  temperature reductions below 800°C . 
CONCLUSIONS 

A s  a r e s u l t  of the  present invest igat ion the  following conclusions 
a re  apparent: 

1. Self-diffusion coef f ic ien ts  of chromium i n  Inconel i n  the  temper- 

a ture  range 600 t o  900°C were conveniently determined (a) by monitoring 
the  t o t a l  intake of C r 5 1  by the a l loys  exposed t o  salt solut ions containing 

Cr*F2 and (b)  by measuring the  t r a c e r  concentration p ro f i l e s  through 

successive electropol ishing of the  specimens. 

2.  The experimental precis ion of the  measurements w a s  k0.4 cycle, 
exclusive of e f f e c t s  r e l a t ed  t o  the h i s to ry  of the  specimen. 

3. The se l f -d i f fus ion  coef f ic ien ts  of chromium i n  Inconel were found 

t o  be strongly dependent on annealing conditions at  low temperatures. 
d i t i ons  leading t o  l u g e  grains  l ed  t o  low d i f fus ion  coef f ic ien ts  and vice 
versa within t h i s  temperature range. 

Con- 

4. A t  temperatures above 800°C the  magnitudes of the  se l f -d i f fus ion  

coef f ic ien ts  of chromium obtained by the  d i f f e ren t  techniques were the  
same . 
t he  concentration p r o f i l e s  were higher and had a lower temperatur? depend- 

ence than those obtained by d i r e c t  monitoring of the  intake of C r ?  

A t  lower temperatures the  diffusion coef f ic ien ts  calculated from 

5. Deviations exhibited by the  d i f fus ion  coef f ic ien ts  obtained by 
d i r e c t  monitoring of the  intake of C r 5 1  were f a i t h f u l l y  reproduced by the  

corresponding values obtained from the  concentration p ro f i l e s ,  showing 
tha t  specimen var ia t ions  were not completely overcome by annealing pre- 

treatment. 
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6. Fron the  determination of the  C r 5 1  concentration p ro f i l e s ,  it 
w a s  apparent t h a t  about 15% of the  t r a c e r  penetrated deeper than calcu- 

la ted ,  using a s ingle  diffusion coef f ic ien t .  

be due t o  "grain boundary diffusion." 

(85%) could be calculated i n  terms of a s ingle  coef f ic ien t .  

This e f f e c t  i s  believed t o  

The bulk of the  t r a c e r  penetration 

7. No change i n  the  time dependence of the  penetration relat ionships  
w a s  found a t  any temperature investigated.  

The change i n  the  temperature dependence noted for the  coef f i -  8.  
c ien t s  obtained from concentration p ro f i l e s  ind ica tes  a change i n  the  d i f -  

fusion mechanism at  about 800°C from homogeneous volume d i f fus ion  at high 
temperatures t o  d i f fus ion  along se lec t ive  paths a t  low temperatures. 
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a 

NOMENCLATURE 

depletion parameter, sec'1/2 
cross-sect ional  a rea  normal t o  diffusion,  cm2 

count r a t e  of depletion salt sample, counts/g-rnin 

crO* ( t r a c e r )  concentration, g/cm3 

crO* ( t r a c e r )  concentration i n i t i a l l y  at a l l o y  surface,  g/cm3 

chromous f luor ide  concentration i n  salt, ppm or weight f r a c t i o n  

chromium concentration i n  a l loy ,  w t  % or weight f r ac t ion  

se l f  -diffusion coef f ic ien t  f o r  chro,mium i n  al loy,  cm2/sec 

bulk se l f  -diffusion coef f ic ien t ,  cm2/sec 
channel s e l f  -diffusion coef f ic ien t ,  cm2/sec 

frequency fac tor ,  cm2/sec 

ac t iva t ion  energy, c a + n o l e  
f r ac t ion  of bulk volume engaged i n  d i f fus ion  process 

height or length of a l loy  specimen, cm 
thermodynamic equilibrium constant,  dimensionless 
equilibrium quotient i n  terms of weight f r ac t ions  of the  compo- 

length along path of flow, cm 
t o t a l  amount of C r O *  present i n  a l loy,  g 

number of channels involved i n  d i f fus ion  

amount of crO* per un i t  a rea  of surface, g/cm2 
radius  of cy l ind r i ca l  a l loy  specimen, cm 

gas constant, c a l  moleo1 ( "K)-~ 
a l l o y  density,  g/crn3 

salt density,  g/cm3 

d i f fus ion  time, see 

temperature, "K 

dimensionless diffusion time, 
salt volume, cm3 
dimensionless diffusion var iable ,  x /2 (Dt ) l l2  

d i f fus ion  coordinate along L, cm 

count r a t e  of a l loy  specimen, counts/min 
count r a t e  of constant-potent ia l  salt sample, counts/g-rnin 

nents, dimensionless 

A 

b 

C 

Db 
D 

g 
DO 
E 

f 

h 

Ka 
KW 

L 

M 

N 

QO 

r 

R 

'm 
pS 

t 

T 
U 

V 

W 

X 

Y 
Z 
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APPENDIX 

Materials 

Chromium Tracer 

Chromium t r a c e r  was introduced t o  the  a l loy - sa l t  systems as C r 5 1 -  

labeled chromous f luor ide  f o r  a l l  the  experiments mentioned i n  t h i s  r e -  

port .  This mater ia l  was prepared i n i t i a l l y  i n  s m a l l  mounts by a method 

described i n  d e t a i l  by Stumn. Brief ly ,  the  procedure involved adding 

1 t o  2 em3 of dissolved C r 5 I C l 3  (as received from the  OWL isotope f a c i l -  

i t i e s )  t o  a su i tab le  mount of C r C 1 ,  (approx 10 t o  20 g ) ,  fusing with 

NH4HF2, decomposing i n  a hydrogen atmosphere, and then reducing with hydro- 
gen; the  resu l t ing  CrF, w a s  found t o  contain metal l ic  chromium i n  var iable  
amounts with addi t ional  mater ia ls  whose i d e n t i t i e s  were not es tabl ished.  

To obtain a pure material ,  c r y s t a l s  from large batch preparations were 
carefu l ly  selected and analyzed by Sturm;” 

t o  pass 100-mesh screens and then subjected t o  neutron i r r a d i a t i o n  for 

one t o  two weeks. 
fu r the r  d i lu t ion  (with unlabeled chromous f luor ide)  f o r  the  experiments. 

A t  concentrations of 1500 t o  3000 ppm i n  the  base salt,  the  dissolved 
labeled mater ia l  resu l ted  i n  i n i t i a l  base salt count r a t e s  of 5 x lo5 to 
1 x 106 counts/g-nin. 

these c r y s t a l s  were ground 

The Cr*F2-CrF2 mixtures thus obtained were used without 

Molten Fluoride Solvent 

Continued use of Na;F-ZrF4 mixtures as the  molten salt solvent or 
base salt f o r  all experiments w a s  d ic ta ted  by several  considerations. 
Of p r i m y  importance were the  noncorrosive aad r e l a t i v e l y  nonhygroscopic 

propert ies  of the  so l id i f i ed  salt,  since it w a s  necessary t o  manipulate 
and s to re  the  a l loy  specimens a f t e r  salt exposure. Further,  the  zirconium- 

base salts scavenge oxygen which night  be inadvertently introduced t o  the  
system v ia  moisture or  s t r u c t u r a l  metal oxides; the  r e su l t i ng  HF can be 

rapidly removed through s t r ipp ing  with hydrogen, which a l so  represses the  

buildup of M i F ,  and FeF,. Alloy surfaces exposed t o  these solvents were 

’B. J. Sturm, MSR Quar. Prog. Rep. Oct. 31, 1958, Om-2626, p 107. 
2 ~ .  J. Sturm, ORNL, p r iva te  communication. 
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i n  excel lent  condition even a f t e r  two-week exposure periods. 

dens i t ies  as functions of temperature a re  given by the  equations3 
The solvent 

p (g/cm3) = 3.79 - 0.00093t ( " C )  

f o r  NaJ?-ZrF,+ (50-50 mole 4) and 

p (g/cm3) = 3.71 - 0.0008% ("c) 
for NaF-ZrF4 (53-47 mole 4). 

Alloys 

Information regarding the  chromium content, type of a l loy,  and pre- 

t e s t  treatments of the  a l loy  specimens studied m y  be found i n  the  main 
body of t h i s  report  (see Table 1 and Fig.  3) .  I n  addition, averages of 

several  analyses of the  a l loys  are  presented as nominal values i n  Table 

A.1.  Photomicrographs of t yp ica l  specimens of experimental groups 111, 
IV, V, and V I  a re  shown inFigs .A.1  and A.2; corresponding annealing 

conditions a re  repeated i n  the  t i t l e s  for t he  r eade r ' s  convenience. I n  
the  ca lcu la t ion  of the  r e su l t s ,  the  numerical values used f o r  the  a l loy  

. 

3S.  I. Cohen, W. D. Powers, and N. D. Greene, A Physical Property 
Summary for ANP Fluoride Mixtures, ORNL-2150 (Aug. 23, 1956). 

Table A.1. Nominal Composition of Alloys Used for Experiments 

Inconel INOR- 8 

C r  15.1% 7.0% 

Fe 8.4% 5.1% 

N i  75.6% 71.0% 

Mo 700 pprn 16.0% 

Mn 3200 pprn 3700 pprn 

S i  1800 ppm 3900 ppm 

T i  2800 ppm Trace 

A1 1500 ppm 200 pprn 

B Trace 

C 800 ppm 700 ppm 
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Fig, A.1. Photomicrographs of Typical Group 111 and Group IV Speci- 
mens, 
t o  4 hr  at  1150°C; (b)  group IV specimen 1-2: 
helium f o r  8 t o  12 hr at 1150'C. 

(a) Group 111 specimen H6 : Inconel annealed under hydrogen f o r  2 

Inconel annealed under 
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d e n ~ i t i e s ~ , ~  at 2OoC were 8.43 and 8.79 g/cm3 for  Inconel and INOR-8 re- 
spectively.  Correspondingly, the  coef f ic ien ts  f o r  themnal expansion em- 
ployed were 16.1 x and 13.7 X loo6 ("C)-'. 

Counting Technique s 

A well-type s c i n t i l l a t i o n  counter w a s  employed f o r  all count-rate 
determinations which involved the  gamma-emitting, 27.5-day-half-life C r 5 l .  

Undesirable geometry and shielding e f f e c t s  which might introduce counting 

e r ro r s  were minimized i n  the  capsule (deplet ion)  experiments, since the  

r a t i o  of t he  count r a t e s  of equal amounts of salt  i n  iden t i ca l  containers 

w a s  employed . 
Error considerations were somewhat more complex f o r  the  case of the  

c o n s t a t - p o t e n t i a l  experiments; here, the  measured coef f ic ien t  depended 

on the  count r a t e  r a t i o  of the  C r o *  embedded i n  a metal t o  the  Cr*Q 

present i n  1 g of salt. 
t o  contain the  metals and salts during counting, t h i s  w a s  not suf f ic ien t  
t o  cancel all t he  shielding and geometry e f f e c t s  present.  A s e r i e s  of 
metal specimens (1-in. lengths of 1/4-in. tubing) w a s  counted with and 

without c l o s e - f i t t i n g  nickel  and Inconel slugs i n  the  inside opening. 

No appreciable change i n  counts w a s  obtained. 

could be done t o  improve the  accuracy of the  measurement, such as increas-  
ing the  inner diameter or dissolving the  C r o *  p r io r  t o  counting. 

Although the  same type of g lass  tubes w a s  used 

It w a s  concluded t h a t  l i t t l e  

A n  experiment w a s  then performed t o  determine the  e f f ec t  of specimen 

height,  since the  r e l a t i v e  posi t ions and heights of the  sal t  samples and 
a l loy  specimens were not the  same while undergoing count-rate determina- 
t ions .  
obtained as the length w a s  decreased. 
respect t o  the  salt by addi t ion of salt .  

a t e  correct ion w a s  determined and applied t o  a l l  constant-potent ia l  data. 

Additional doubts as t o  the  effect iveness  of t h i s  correct ion were d ispe l led  

through comparisons of the  experimental coef f ic ien ts  f o r  s imi la r ly  annealed 

constant-potential  data and those for the  capsule data. 

Successive counts of an a l loy  specimen of uniform a c t i v i t y  were 

The same approach w a s  applied w i t h  

Based on these data an appropri- 

4Technical Bul le t in  T-7: Engineering Propert ies  of Inconel and In- 
conel-X. In te rna t iona l  Nickel Co., Inc. (June 1953). 

V 

5A. Taboada, ORNL, pr iva te  communication. 
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W a l l  Exchange Reaction 

Use of t he  w a l l  exchange react ion 

C r o  -I- C r * F 2  e C r F 2  + C r o *  

implies t h a t  no disproportionation such as 

3(CrF2 + C r * F 2 )  e2 (CrF3  + Cr*F3) + ( C r O  + C r o * )  

e x i s t s .  The l a t t e r  p o s s i b i l i t y  caused concern during the  e a r l y  s tages  

of t h i s  work and thus merits some discussion. Pr ior  t o  the  reported poly- 

thermal capsule experiment, a dummy run using t r a c e r  and welded n icke l  
capsules w a s  performed ostensibly t o  check manual procedures and the  tem- 

perature p ro f i l e  i n  the  p o l y t h e m l  block, with loaded capsules t o  obtain 

proper heat capacity,  conductivity, e t c .  A t  the  conclusion of t he  run 
it w a s  found t h a t  the  t r a c e r  i n i t i a l l y  present i n  the  salt had undergone 

s l i g h t  depletion i n  capsules which had been at 7 0 0 ° C  or higher,  
s i b i l i t y  of the  formation of insoluble chromium oxides w a s  re jec ted ,  since 
ZrF4 w a s  present i n  la rge  amounts. Thus the  observed depletion could have 

been due t o  the  disproportionation reaction; even though the  calculated 

s t a n d u d  f r e e  energy change f o r  t h i s  reac t ion  does not give evidence of 

disproportionation, the  f a c t  remains t h a t  the  i n i t i a l  C r o  content of the  

metal w a s  zero. 

a l loys  present lead t o  the  conclusion t h a t  disproportionation i s  completely 
repressed when chromium i s  i n i t i a l l y  present i n  the  w a l l s  and ZrF4 i s  pre- 
sent i n  the  solvent. For example, good agrewent  w a s  obtained between 
high-temperature over -a l l  and polishing coef f ic ien ts .  Also, the  chromium 
concentration i n  salts cont inual ly  exposed t o  f r e sh  a l loy  specimens and 

var iable  temperatures remained constant with time. This might not be 
t rue  i f  solvents other than those u t i l i z e d  were employed. 

The pos- 

I n  any event, other observations during experiments with 

Procedures f o r  Capsule Experiments 

Isothemnal Experiments 

A de t a i l ed  descr ipt ion of the  procedures u t i l i z e d  t o  perforrn the  

isothermal capsule (depletion) experiments i s  given by Price.' 
l i e n t  points  axe presented here f o r  t he  r eade r ' s  convenience. 

The sa- 

6R. B. Pr ice  e t  al . ,  A Tracer Study of the Transport of Chromium - -  
i n  Fluoride Fuel Systems, B41-1194 (June 18, 1957). 
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Equal amounts of a prepurif ied solvent containing iden t i ca l  concen- 

t r a t i o n s  of Cr*Fz and CrF2 were charged t o  several  Inconel capsules of 
the  same dimensions. A port ion of the  solvent w a s  re ta ined f o r  the  "time- 

zero" standard. 
placed i n  an isothermal furnace. 

sule  w a s  removed u n t i l  the  e n t i r e  s e r i e s  had been t ransferred.  The cap- 

sules  were opened, the  salt w a s  removed, and the  percentage o r  f r a c t i o n  

of the  o r ig ina l  counts which had been l o s t  w a s  determined. 

were presented i n  graphical form as percentage lo s s  vs  time at t e q e r a -  

t u re ,  
as shown i n  Fig. A.3; the  curves represent Eq. (9)  evaluated with the  

average coef f ic ien t  f o r  a given experiment. 

The charged capsules were then sealed by welding and 
A t  various time in t e rva l s  a s ingle  cap- 

These data 

The present invest igators  ca re fu l ly  t rmsposed these data t o  p l o t s  

It should be noted tha t  the  points  follow the  curves reasonably well. 

Thus Fig.  A . 3  demonstrates t h a t  the  time-dependence cha rac t e r i s t i c s  pre- 
dicted by Eq. (9) are  followed. 

creases i n  the  amount of unlabeled mater ia l  present r e s u l t  i n  decreased 

r a t e s  of depletion as predicted by the  de f in i t i on  of a and/or u [see Eq. 

Also, the  data of Fig. A.3 show t h a t  i n -  
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( 9 ) ] .  
experimental curves with a generalized p lo t  of f r a c t i o n a l  depletion vs 

u (see curve A, Fig. A.4) . This procedure w a s  repeated u n t i l  a satis- 

fac tory  f i t  w a s  obtained. 

presented i n  Fig,  1. 

The average d i f fus ion  coef f ic ien ts  were obtained by comparing the  

The average values of the  coe f f i c i en t s  a r e  
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Fig. A.4. Theoretical  Curves f o r  Depletion md Electropolishing 

Experiments , 

Polythermal Experiments 

The polythemnal depletion experiments were based on the  use of a 
t h e m 1  gradient block s imilar  t o  those described by Barton7 f o r  use i n  
molten salt phase s tudies .  With t h i s  device, over -a l l  d i f fus ion  coe f f i -  

c i en t s  a t  several  temperatures could be obtained from a s ingle  s e r i e s  of 

capsules. 
Approximately 250 g of prepurif ied solvent w a s  melted i n  an Inconel 

container,  the  labeled chromous f luor ide  w a s  added (approximately 1 g ) ,  
and the  melt w a s  then subjected t o  a stream of hydrogen at 700°C f o r  30 

min. Portions of t h i s  mixture were then withdrawn by means of hydrogen- 

f i r e d  copper f i l t e r  s t i cks .  

t o  pass a 100-mesh screen, and t ransfer red  t o  pretared g lass  containers;  

these operations were car r ied  out i n  an a i r - f i l l e d  dry box. 
counting and weighing, the  salts and capsules were placed i n  a helium- 

f i l l e d  dry box, wherein all caps were removed. 

The f i l t e r e d  mater ia l  w a s  removed, ground 

After  i n i t i a l  

The box w a s  evacuated 

7C. J, Barton e t  a1 J, Am. Ceram. Soc. 41, 63 (1958). - - 
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overnight, r e f i l l e d  with helium, and the  salt t ransfer red  t o  the  capsules, 
which were then sealed by means of 3/8-in. Swagelok f i t t i n g s .  A hydrogen- 
f i r e d  nickel  d i sk  w a s  placed on top of the  capsules (p r io r  t o  c losure)  t o  
avoid contamination of the  salt by removal of the  oxidized f i t t i n g s  a t  
the  end of the  experiment. 

furnace si,multaneously by means of an Inconel t r ay .  
dient  w a s  re-establ ished within 30 min without overheating any of the  

capsules. 
sules  were immediately quenched. 

counts and weighing were performed i n  the  g lass  tubes used a t  the  s tar t  

of the  experiment. 

material .  

content . 8 

All capsules were placed i n  the  preheated 
The temperature gra- 

A t  the  end of severalweeks,  the  t r a y  w a s  removed and a l l  cap- 
The capsules were opened and the  f i n a l  

Depletions were based on a port ion of t he  s t a r t i n g  

The salts and a l loys  were then analyzed f o r  t o t a l  chromium 

Before the  ac tua l  determination, a ca l ib ra t ion  run w a s  made f o r  de- 
termining the  temperature gradient within the block as a function of cap- 
sule  posi t ion f o r  a given s e t  of furnace conditions. Each capsule w a s  

charged with a d i f f e ren t  amount of salt  containing the same labeled and 
unlabeled chromium f luoride concentration. All capsules were exposed t o  

molten-salt temperatures over the  same time in t e rva l .  
was varied such t h a t  the fac tor  A p /M p 

the  temperatures of each capsule would be d i f f e ren t .  

equation could be used, with temperature act ing as the  independent var- 

iab le  . 

The mount charged 
would be constant, even though 

Thus the  depletion 
m m  s s  

The experimental points  a re  p lo t ted  i n  Fig. A.5.  The curve i s  based 

on a p lo t  es tabl ished on semilog paper. 

p lo t  of depletion (as per cent )  vs 1 /T  [ ( " K ) - l ]  w i l l  approximate a s t r a igh t  

l i n e  a t  low values of depletion (low temperatures), deviating s l i g h t l y  a t  
higher depletion values. 
D w i t h  respect t o  1 / T  and affords  a convenient method f o r  cor re la t ing  the  
experimental data. 

It can be shown t h a t  a semilog 

This r e s u l t s  from the  exponential var ia t ion  of 

Depletion values a t  the  experimental temperatures were taken from 

the  curve of Fig.  A.5 and compared with the  generalized p lo t  of Fig. A.4. 

The data,  thus smoothed, formed the  bas i s  f o r  the  group I1 coef f ic ien ts  

presented i n  the main body of t h i s  report .  
- 

'This work was performed by W. F.Vaughan of the Analytical  Chemistry 
Division. 
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Fig. A.5. Results of Polythermal Experiments with Inconel Cap- 

sules.  

Procedures f o r  Constant -Potent ia l  Experiments 

As mentioned previously, the  r e s u l t s  of experiments based on deple- 
t i o n  methods revealed t h a t  the  CrFz content of the  salt w i l l  remain essen- 
t i a l l y  constant i f  the  a l loy  container i s  f i r s t  equi l ibra ted  with respect  

t o  Eq. (1) f o r  several  hours a t  900°C, then subjected t o  lower temperatures. 

A smLl specimen of the  iden t i ca l  a l loy  subsequently imersed  i n  the  salt 
w i l l  pick up labeled chrorniwn under conditions of a constant surface po- 
t e n t i a l ;  t h a t  is, the  C r o  concentration a t  the  specimen surface, co,  i s  

constant with t i m e  . 
A diagram of the  constant-potent ia l  apparatus i s  shown i n  Fig.  A.6. 

The a l loy  specimens were isothermally exposed t o  the  salts i n  t h e  form 

of a closed, 1/4-in.-OD thermocouple well .  
i n  a standard 1- in .  tube furnace which w a s  control led t o  within +3"C of 

The container or "pot" resided 

the  desired temperature. 

measured with a standard P t  vs 9q0 Pt-lO$ Rh thermocouple and a K-2 poten- 

t iometer.  

ta ined when the  wel ls  were changed. 

for these manipulations and also created ag i t a t ion  during short-term 

experiments. The argon sweep w a s  discontinued during long-term t e s t s  

t o  m i n m z e  plugging by the  s l i g h t l y  v o l a t i l e  ZrF4.  

Teaperatures within the wel l  were per iodica l ly  

F i l t e r ed  salt samples for counting and CrF, analyses were ob- 

h argon sweep created a "blanket" 

Temperature gradients  

a 

c 
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thus introduced were negl igible .  
between runs kept t he  concentrations of corrosive N U 2  and FeF2 near t h e i r  

lower limit of detection. 

Periodic hydrogen reduction of t he  system 

The resul ts  of t yp ica l  experiments conducted under comparable condi- 

t i ons  axe shown graphically i n  Fig.  A.7. The curves indicate  t h a t  Eq. (12) 
UNCLASSIFIED 

ORNL-LR-DWG 34809 

'/4-in. INCONEL TUBING 
THERMOCOUPLE WELL 

TEFLON PACKING GLAND 

He OUTLET 

AMcr., = 2 ACcr., @ 
DIP LEG [ Cr "3 [cr ++ "1 

A'Cro* = 2APMET4L [ C r + + ~  

1 AMcro* -.- A [cr++f] = (2pMETAL e) z/T 
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METAL SPECIMEN FOR 7 

Fig. A.6. Apparatus and Equations f o r  a Constant-Potential 
Experiment. 
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Fig. A.7. Time Dependence Curves f o r  Constant-Potential Experi- 

ment s . 
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i s  followed, although the  in te rcept  of m y  of t he  curves d id  not occur 

prec ise ly  at the  or ig in .  I n  these cases the  slopes of t he  l i n e s  as shown 
were u t i l i z e d  t o  obtain the corresponding coef f ic ien ts .  

Pretreated wel ls  were stored i n  evacuated tubes before and a f t e r  salt 

exposure;caution w a s  exercisedduring removal of the  wel l  from the  salt 

t o  avoid surface oxidation. A t  a convenient t i n e  the  exposed wel ls  were 
cut  up t o  furn ish  specimens f o r  counting, e lectropol ishing,  and C r o  anal- 

yses. The generalized curve used t o  co r re l a t e  t he  electropol ishing data 
i s  shown as curve B i n  Fig. A.4. 
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