MARTIN MARIETTA ENERGY S STEMS. LIBRARIES

LA .

3 yy5k D3k42DLT D

ORNL-3042
UC-34 - Physics and Mathematics

RESONANCE SCATTERING OF LINEARLY
POLARIZED GAMMA RAYS ON NUCLEI

G. Felsner
M. E. Rose

OAK RIDGE NATIONAL LABORATORY
operated by

UNION CARBIDE CORPORATION
for the

U.S. ATOMIC ENERGY COMMISSION

B R T R Y
r ¢ T e . . ¢

e ?
P

B Rl TN
e : - A A
- 8 - 13 ey A S
T et - o



Printed in USA. Price ionso . Available from the

Office of Technical Services
Department of Commerce
Washington 25, D.C.

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States,

nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy,
completeness, or usefulness of the information contained in this report, or that the use of
any information, apparatus, method, or process disclosed in this report may not infringe
privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of
any information, apparatus, method, or process disclosed in this report.

As used in the above, ‘‘person acting on behalf of the Commission'' includes any employee or

contractor of the Commission, or employee of such contractor, to the extent that such employee

or contractor of the Commission, or employee of such contractor prepares, disseminates, or

provides access to, any information pursuant to his employment or contract with the Commission,
or his employment with such contractor.

'\!*

4



ORNL-3042
Physics and Mathematics

Contract No. W-TL405-eng-26

PHYSICS DIVISION

RESONANCE SCATTERING OF LINEARLY POLARIZED GAMMA RAYS ON NUCLEI

G. Felsner
M. BE. Rose

DATE ISSUED

EER 10 1961

OAK RIDGE NATIONAL LABORATCRY
Oak Ridge, Tennessee
operated by
UNION CARBIDE CORPORATION
for the
U.S. ATOMIC ENERGY COMMISSION

AT ng

3 4456 034219 1



-

— W—y

RESONANCE SCATTERING OF LINEARLY POLARIZED GAMMA RAYS ON NUCLEI

G. Felsner and M. E. Rose

ABSTRACT
The resonance scattering of linearly polarized gamma rays on nucleil
is calculated with angular correlation methods. Hyperfine splitting is assumed.

57

The result is discussed for the Mgssbauer nuclei Fe and Ni6l with a simple
geometry (the magnetic field and the directions of the absorbed and the re-
emitted quantum are mutually perpendicular). The geometry optimizes the coherent
contribution to the resonance scattering. The dependence of the scattering
probability on an external magnetic field implies under favorable circumstances

a measurement of the magnetic moment of the excited state and of the internal

field at the nucleus.
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RESONANCE SCATTERING OF LINEARLY POLARIZED GAMMA-RAYS ON NUCLEI
G. Felsner* and M. E. Rose
A. INTRODUCTION

Interference effects in case of crossing atomic levels have recently
been discussed by Franken and co-workersl and by Rose and Carovillanoe. In
atomic systems one can cause crossings of levels (of the excited state) by
applying external fields. This gives rise to precision-measurements of atomic
properties like fine structure splitting and hyperfine splitting.

We wish to consider the possibility of applying these methods to nuclear
energy levels in order to obtain information about excited states. With only
a magnetic dipole coupling, however, it is not easy to get accidental degeneracy
of nuclear levels. The fields necessary are very strong. But one really does
not need complete or even near degeneracy. It is enough to have a sufficiently
broad line of the incoming radiation, which covers different levels of the
excited state and to be able to alter the level spacings so that they overlap
within the level widths.

We consider a nucleus for which the Mossbauer scattering can occur**
and calculate the incoherent and the coherent resonance scattering of linearly
polarized gamma rays. The measurement of these quantities and their dependence
on an external magnetic field yields a determination of the magnetic moment of
the excited state and of the internal magnetic field at the nucleus if the life-
time of this state is known. This is often the case.

B. TFORMAL THEORY

The probability for the resonance scattering 152

*
On leave from Physikalisches Institut der Universitgt Erlangen.
**
Our considerations would also apply to angular correlation of two cascade gamms
rays. Indeed the formal theory applicable here is identical with the theory
of angular correlation.
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TW is the line width of the transition j-?‘jl. We assume hyperfine splitting

in a ferromagnet and get

—_ . sHe. _m! =
B = &My H (m-n') My = oM
The magnetic field strength at the nucleus may have an internal and an external
part:
z z‘Eint +;Eext'
Both absorption and emission interaction energy are given by a scalar

product of radiation vector potential and nuclear current density:

He,a ='éplane wave 2

The vector potential will be expanded into spherical waves and we take only the
dipole parts. Circular polarized dipole radiation propagating in the z-direction

has a vector potential

A Lone vave™ ~1};(:11) + 4 Pii(e). (2)

Here and in the following we omit all irrelevant constant factors because we
want to know only the relative magnitudes of W. In (2) P describes the circular
polarization of the radiation: P = + 1 is right handed, P = - 1 is left handed.
The incoming radiation is linear polarized and the difference between electric
and megnetic dipole transitions shows up only in a phase of n/2 between the
polarization of both. The polarization of the resonant scattered radiation

will not be measured and so we have to treat this radiation as unpolarized. It

will therefore be sufficient to take only magnetic dipole radiation.
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In order to get linear polarized incoming radiation we must sum (1)

coherently over the circular polarization.
P
2 Al(m) = A(0). (3)
P~ e

A(0) describes the linear polarized radiation but only in a coordinate system
where the z axis is given by the propagation of the radiation. The direction
of the polarization (electric vector) is the x axis.

It is convenient to have the direction of the magnetic field as the
Z axis in our scattering system. Therefore we must rotate our coordinate
system, in which the radiation is described, until the z axis points in the
direction of the magnetic field.

oy ST (¢, % a) al(n) (%)

o MP 11 1

P M o~
The angles -63 @l give the direction of propagetion in the new coordinate system
(magnetic field in z direction) and a gives the direction of the polarization
A

in a plane to which k, is perpendicular and measured from the plane given by
A . ~ 9
&l and the magnetic field (kl = l\Pl)' (See Fig. 1). The vector potential

of the outgoing radiation is given by

AUt % DD],'rP (¢, -\920) Ai(m) (5)

O

with the implication, that, in order to describe unpolarized outgoing radiation,
the scattering probability has to be summed incoherently over the circular
polarization P of the emission part.

We write the resonance scattering probability

. d(82 d(?)
W = .2__ _mm  mm (6)

mm ' 11 + i Emm’

-¢
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with the following expressions

*

e)' - 5 ZP: <j]_m2, 5 Aout| Jm><(,l 2| out' >
i

(a) EL_ {im }J At l Jlml> { m' , J A ' J1 177

Only the angular part of the matrix elements is relevant for our considerations.
We use the Wigner-Eckart theorem and leave out the reduced matrix elements
together with other constant factors.

L3 3313 *
1 1 1 1 ,
C D QA «920) Dmg_m, P (lfg'l%o)

- - ' -
m m m2 m m2 m P

d.lg;?:Z_

'vb/i

o

(8)

il

a L
d;'i %§» %;; m, m—m1 mi m' —ml m—m1 P (\pl la) D m1 P! (lpldifl)

1

The main difference between d( 2 and d(a) is the incoherent summation over P
in the first and the coherent summation over P in the second.

The procedure, as usual, is to couple the rotation matrices (Clebsch-
Gordan series) and to recouple the Clebsch-Gordan coefficients (Racah recoupling).

(e) (a)

Then the summations over m_ and P in 4 and over my in dm'm can be done.

2 1
d(e)~ — ()J_m 11lv, jj)fg ( g
' - 2 ) o1 Cp - W33y VRL5L) D o (Y0
\E (even) M
(9)
— VARSI v—
(a) s~ j+,u-mlllJJl

Here‘/A stands for m - m'. We introduce another abbreviation g.z g/MNH/r1

and write:
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mpa l+1%/4,

The summation index m occurs in drguiz and d(ran?m only in two C-coefficients and

we can therefore immediately do this summation. This gives us:

/{\

= E;—_. Ci WE(JJl\)l 13) 21 — (11)
V=0,2 /oL +ifm
where
m vV
(S RO ST ORI

Since |P -P'| has to be O or 2, and since
L MM L
Dy (0B7) = (=) Dy _y (0B7)
the /{/:‘ have the property

1 -4 (13)

M1+ i /M MZ0 ™M l+1§/u, l-1§lu
-3 (-4 (S +2i§2(4"\“ %) (1)
/IA.ZO /A l+§ /‘,

In the following we look separately at the incoherent ( /l,¢= 0) and at the

coherent part ( /l.f 0) of the nuclear resonance scattering.

C. THE INCOHERENT RESONANCE SCATTERING

For the incoherent resonance scattering probability we have to evaluste
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with
; = v -
12) - DO"O (LFE&EO) 2. CiLJ lP' Dy popr ((F f'}o‘) (16)

PP’

We can write f

0 easily in terms of spherical harmonics or Legendre polynomials

with the relations

of,y (-7-8-0) = Dk, (087)

and
'——————v

\0’90) 2L+l 7 “9’?)'
Using these we get:

To"'(f::ullvo("g)l’(‘&)*' 1120(,9)P($,)c052a

1 -1 4 ' V2 l 1 2
(17)
and this gives
Wine = 3 #(33,00519) + 2 P(55,20500) 50 (T) X
x [Pg (V) + L8 (},) cos 2a . (18)

This result is for magnetic dipole radiation. We get the result for electric

1
dipole radiation when we replace a by o + >-

D. THE COHERENT RESONANCE SCATTERING

For the coherent resonance scattering we have to evaluate

_ €0
%fz—%fﬁMNMZﬂ,({+g @) )
V=0,2 J30 1+ £0
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where we have now /LL> 0 in
LMV | S Jl1Vv.V &
r@»" ()" Do (Po:0) %5, %ppr Bwpp (10 (20)
In order to evaluate this expression, we have to write down the sum

over P and P' explicitly and we have to use

3o () =™ ad | (s) e

This gives us

1T - ei/“(kpe' ¢,) . A ei/"'(‘Pe“ ¥,)-21a A ei/"*(tfz‘ f))+eia (21) v

Vo 1 2 3

o L -M)e llv‘PM('g')PM(’l?’)

Al - ( U‘+/d.)! l -1

e m O LR 1 (5 o, 8 (22
—

Ay = (-)’*Jﬁ A ARMINCS

Since the azimuth angles comes in only as the dihedral angle LP2 - (’Pl , as

expected, we call \PE - Lpl =\P . Then we get

’({;‘ ff = 24, cos/wf + 2(A2+A5) coslu!( cos 2a+2(A2-A3) mn//lPsin 2a

*
1("6} "/‘_‘ = 2A) 81n/u\( +2(A2+A3) 51n/4,f cos 205-2(A2-A3) coslq,\(f sin 2x
(23)
Since we are interested only in coherent resonance scattering /441)0 s

we have always \r> 0. Therefore we have only one value, V= 2. In order
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2 3 2 o )
to get A, + A5 and A, A3 we have to evaluate %2( l) and n _2( l). With

the expression given by Rose5 for the d;le'm(a) we find

‘ o+
dﬁe(&l) g2 a91) =\l (Ew)ﬁ‘{g_m! Kcos 35_2‘_;_) ™M (Sin 12__)2/*
+ (cos —19'—];)2_” (- sin -\-9‘—1-)24-/‘A (24)

- 2 2

Now we can write down the coherent scattering probability

W = W(3,21518) X

x(% P;(“}e) Ry() @I(@’g) + 15 (%) Pg('sl) (b;(\‘)’g)
+ cos Ea{: PJE'('S'Q) P;('&'l)q) (¢, §)+ (’s)l_ (’9)]4) @§ }

Ol

com e f- 2 20R) 208 G100 + 1) Rey) 4>;< ¢.$3)
(25)
where
+ _ cos/atp + pimn,v\‘p
Cbl“(p’g) L+ M §
- sing - ,u§c s P
b (p,§) - = et (26)

1+ m §
In discussing our results we have to distinguish between two cases:
(a) the incoming radiation perpendicular to the magnetic field,
(b) the incoming radiation in direction of the magnetic field.
We will discuss case (a) a little more explicitly, but before doing so we have

to meke a remark concerning case (b). In case (b) there is no angle ‘Pl defined,
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but our results remain true when we put \P1.= 0. It turns out that the final
result in this case depends only on the difference \P2 - «¢. Indeed, the only
physical relevant angle is kPQ - ¢, the angle between the direction of the
polarization of the incoming radiation and the plane, given by the magnetic
field and the outgoing radiation. (See Fig. 2).

Case (a) gives us the following scattering probabilities:

e (D)= B) = 292035,01519) + 3 W(33,21519) (5 cos 2a - 1) B3(A)

coh

(V=5 - wz(jslﬂ;lj)(% Pﬁ(&)@;(tpﬁ ) [2 + cos 2] - £ BL()x

«$1(§,8) et za) (27)

When we further restrict ourselves to two directions of the polarization, we get

=
o
]
Qha
Q
I

0) = 3 W(35,01315) +2 W (35,21;19) B3(H)

inc 17

W (% =3, @ =5 = 25,0151 - 2 W(55,2519) B3

(28)

Hoon (V7 = & = 0) = W(35,21515) 3 P(W) CAY

Wop (V=5 a=2) =0

The last result in (28) shows that radiation with a linear polarization
perpendicular to the magnetic field (o = g) will not be scattered coherently.
This is a direct consequence of the polarization properties of the Zeeman effect.
There we have for magnetic dipole radiation the following selection rules:

[anz O for polarization perpendicular to the magnetic field

and

An

+
- 1 for polarization parallel to the magnetic field.
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Here [l m refers to the change in magnetic quantum number in the absorption

process. Since ’9’ = n/2 implies M= 2 only and ,b\ = 2 requires A m = M 1

1
the result,that a radiation process wherein.g, EJ and the polarization are
mutually perpendicular is forbidden,follows at once.
E. APPLICATION AND EXAMPLES

In the previous considerations we have assumed nuclei with magnetic

splitting but with no quadrupole splitting of the energy levels. and

.6
i

N L both in metallic form are examples for such systems.

If the dependence of the scattering probability ¢ W ) on an external

v

magnetic field is measured, and if in order to have a normalization, £ Winc
is determined by an absorption measurement, then one can find the magnetic
moment of the excited state and also the internal magnetic field. This method
will be practical provided the internal field is not too large and in any case
it is necessary that we know the life time of the excited state.
. : é} 4} Eis X . ;
Using a convenient geometry 1= 5 = o7 the linear polarization

< wcoh)

by a factor of 2.2
< ine

of the incoming radiation increases the effect

for Ni, 2.4 for Fe compared to unpolarized incoming radiation. Of course, the
radiation must be polarized in direction of the magnetic field, since radiation
polarized perpendicular to the magnetic field is not scattered coherently at
all.
We call
LWy - W,

c
< winc ?




1= J}é = g, \e = g, i.e., incoming and outgoing

radiation both perpendicular to the magnetic field and perpendicular to each

and get for a geometry, 3

other,
57y _ 2 1
X(Fe’') = - 2 ————
7l+l+§2
.61 7 1 H
X(NiT7) = = o ———5 , = g M = . (29)
511+4§2 g /‘NF‘

Both of these results apply for linear polarization of the incoming radiation:
o = 0.
Instead of plotting X versus the external masgnetic field, it will be

convenient to plot

\ % - L= ggrf\"m (Hint + Hext) (30)
where
o 3W (33,21313)
sty P920)
because this gives a straight line when plotted versus Hex‘c' The numerical

values of a for Fe and Ni are the numerical coefficients in (29). The slope
of this line gives the magnetic moment (when I_' is known) and one can get the

internal magnetic field at the nucleus Hin from the intercept.

t

o



O

UNCLASSIFIED
ORNL-LR~DWG 54028

Fig. 1. The Euler rotation through angles ¢,
0, a/\in reading order, brings the propagation
vector &, of the photon from coincidence with the
z-axis (magnetic field direction) into the direction
b1, g, where the azimuth ¢, is measured from the
arbitrary x-z plane. Also, @ is the angle between
the electric field of the photon and the H ——:/5\,1
plane.

UNCLASSIFIED
ORNL-LR—-DWG 54029

Fig. 2. The special case in which the propa-
gation vector ‘/E,] of the absorbed quantum coin-
cides with the magnetic field corresponds to an
angle ¢, — o between the electric vector of the

. N
first photon and fheﬁ ~ %, plane.
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