
r

. =

I

I I I I I 1 1 1 1 1 I l l I I
3 4 4 5 6 0 3 6 4 2 2 8 0

OR N L-3054
UC-34 - Physics and Mathematics

THE STRUCTURE OF A N ALGOL TRANSLATOR

A. A. Grau

TORY

U N I O N CARBIDE CORPORATION
for the

U.S. ATOMIC ENERGY COMMISSION

Pr inted i n USA. P r i ce $1 -50 . Ava i l ab le from the

Of f ice of Technica l Services

Department of Commerce

Washington 25, D.C.

ILEGAL
T h i s report was prepared a s on account of Government sponsored work.

nor the Commission, nor any person act ing on behal f of the Commission:

A. Makes any warranty or representation, expressed or implied, w i t h respect t o the accuracy,

completeness, or usefulness of the information contained i n th i s report, or that t he use o f

o n y information, apparatus, method, or process d isc losed i n th i s report may not in f r inge

pr ivate ly awned r ights; or

B. Assumes ony l i ab i l i t i es w i th respect t o the use of, or for damages resu l t i ng from the use o f
any information, apparatus, method, or process d isc losed i n th i s report.

A s used i n the above, "person act ing on behalf of the Commission" inc ludes any employee or

controctor of the Commission, or employee of such contractor. to the extent that such employee

or contractor of the Commission, or employee of such contractor prepares, disseminates, or

provides access to, any information pursuont to h i s employment or contract w i th the Commission,

or h i s employment w i th such contractor.

Neither the Uni ted States,

I

c

C o n t r a c t No. W-7405-eng-26

M a t h e m a t i c s Panel

THE STRUCTLTRF, OF AN ALGOL TRANSLATOR

A. A. Grau

DATE ISSUED

OAK RIDGE NATIONAL LABORATORY
Oak R i d g e , Tennessee

operated by
UNION CARBIDE CORPORATION

f o r the
U. S . ATOMIC ENERGY COMMISSION

h 4 A R l : h M A R l E l l A E.IERG* S Y S T E M S . I B R A R I E S

11,1ll111I11l,1llllllllllilllllllllll1IIIII1l1II
3 4456 0364228 0

8

The theory underlying a t rans la tor program, which is needed on a

1 ccsnputer whenever programs written i n the algorithmic language ALGOL 60[10]

a re t o be used on that machine, i s described. The approach followed i s

related t o the recursive sequential methods outlined by B u e r and Samelson

[93 .
subroutines based on syntactic skeletons defining the ALGOL language.

These methods have been simplified by the exp l i c i t use of recursive

Specifications for a t rans la tor based on these principles are given

i n machine-independent form.

used i n the design of the first ALGOL t rans la tor fox the ORACL;E[12].

They include substant ia l advances over those

The numbers i n brackets refer t o the corresponding items i n the
bibliography on page 53.

.
iii

8

t

CONTENTS

. Abstract ii

1

. 1 Introduction

1 . Preliminary Considerations .

2 Scope of the Translator .
Programming Languages . 5

Representation of ALGOL . 7

ProcessALGOL . 8

Representation f o r Process ALGOL 9

2 . Theory of Translation . 11

Recursive Definitions . 11

Effect on Translation . 12

Recursion vs . I te ra t ion . 14

Push-down L i s t s . 16

Translation and Syntax . 1.7

Summary . 19
3 . Specifications f o r the Translator 21

General Description . 21

Control Operations . 24

States . 25

Translation Matrix . 30

Target Language . 37

Notation i n Macros . 38

V

i

Macros 39 .
. 46 One Pass Translator

47

48

Detection of Syntactic Errors
Implementat ion of Blocks .

. 49 Procedures

Input and Output i n Target Programs 51.

4. References and Bibliography . 53

Appendix: ORACLE Hardware ALGOL . 55

Acknowledgements . 57

vi

c

THE STRUCWm OF AN ALGOL TRANSIATOR

A . A. Grau

- ---

1. Preliminam Considerations

1 Introduction.

speed stored-program computing machine, e i the r a t rans la tor program or an

in te rpre te r program must be constructed f o r that machine. A t rans la tor

program (more simply, t r ans l a to r) i s a machine program that converts programs

wri t ten i n ALGOL submitted t o it as input i n t o programs i n machine language;

these a r e then executed as any other machine programs would be.

p re te r program, on the other hand, is placed in to memory w i t h the ALGOL

program.

one a t a time, and t r ans l a t e s and executes each i n turn.

obviously results i n a r e l a t ive ly slow execution time.

other considerations, major emphasis i s placed almost universally on t ransla-

t i o n ra ther than interpretat ion.

In order t o use ALGOL [3,ld f o r programming a modern high-

An in te r -

Control i s given t o it, whereupon it takes the ALGOL instruct ions,

The l a t t e r process

Because of t h i s and

A t r ans l a to r f o r an algorithmic language such as ALGOL is r e l a t ive ly

camplicated. In recent years considerable e f f o r t s have been made t o develop

a systematic theory of t rans la t ion which permits a consequent s implif icat ion

of t h e t rans la t ion process.

eventually not only i n the t rans la t ion of a r t i f i c i a l languages such as ALGOL,

Some powerful pr inciples [9] , could f ind use

1 Numbers i n brackets re fer t o the corresponding items i n the l i s t of
references on p. 53.

-2-

but possibly a l s o i n the machine t r ans l a t ion of natural languages.

In t h i s report the theory of t rans la t ion and de ta i led plans f o r an

ALGOL t r ans l a to r are presented.

material dealing with programming languages and representations.

contains the general theory on which the plans are based, and sect ion 3

contains the specif icat ions f o r the t r ans l a to r wri t ten i n a language consist-

ing of A X O L , augmented by addi t ional primitive language elements.

of fami l ia r i ty with AWOL is assumed a t t h i s point. The self-explanatory

nature of AUOL i s such, however, that t h i s need not be cmprehensive.

The f i rs t sect ion i s devoted t o introductory

Section 2

A degree

The first AIGOL t r ans l a to r for the ONACLJ.3 is based on the pr inciples

discussed by Eauer and Sanelson.

on the same principles , a l s o benefi t frm experience gained i n the construction

of that t rans la tor . The refinements and simplifications which are included

w i l l be used i n the construction of any new t rans la tor .

The plans given i n t h i s report , while based

Scope of the Translator.

has been t o include the handling of as many features of ALGOL 60, insofar as

they a r e understood and unambiguous, as possible.

implementation on a machine wi th small memory such as the ORACJX has, however,

a l so had t o be considered. A further aim has been the c lear exposition of

I n the design of the t rans la tor presented, one goal

The p rac t i ca l i t y of

basic pr inciples .

These considerations have led t o the apparent use of a single ar i thmetic

mode i n t a rge t programs, except i n the autcaaatic handling of subscripted

variables.

point mode of operation. Since quant i t ies which have in t eg ra l values

In most machines, t h i s can be made t o coincide with a f loat ing-

-3-

tlutanaatically y i e ld i n most machines integer-valued r e s u l t s under floating-

point addition, subtraction, multiplication, and the e n t i e r function, t h i s

i s not a real r e s t r i c t ion .

No e s sen t i a l change i n the t rans la tor i s needed, however, i f real and

integer ari thmetic are t o be implemented i n the t a rge t program as floating-

point and fixed-point operation, respectively.

made part of i t s in te rna l i den t i f i e r .

the processing of type declarations.

w i l l be i n the macros EXU and EXB (p. 42) .

introduced, which tests the mode of each operand, which provides f o r conversion

frm fixed-point t o flcating-point form whenever the operands are of mixed type

or if the standard functions a r e applied t o integer-valued expressions, which

determines the proper mode of the ar i thmetic operation, and which tags the

address of the result with i t s mode.

The type of a variable i s

This information is supplied during

The pr incipal additions t o the t r ans l a to r

In these, addi t ional program is

Input and output i n the ta rge t program do not const i tute p r t of the

A U O L reports. Therefore, no provision for them i s included i n the description

of the t rans la tor . By way of i l l u s t r a t i o n , the handling of these i n the ORACLE

t r ans l a to r i s described separately.

The t rans la t ion table provides f o r the implementation of blocks.

Processing i s discussed i n a

The

macros needed are outlined, but not detailed.

supplementary paragraph. If it turns out that blocks are l i t t l e used i n ALGOL

programs outside of procedures, the e f f o r t needed i n implementation could w e l l

have been directed elsewhere. In the case of the ORACI.3, useful features of

the ORBIT system [5 , 6, 71 are tape f i les and provision f o r segmentation.

-4-

Provision f o r including these i n an ALGOL t rans la tor appear t o merit pr ior i ty .

The poss ib i l i t i e s of using the block concept f o r including sepen ta t ion i n

target programs i s being investigated.

The t rans la t ion of procedures involves the f a c t that the ALGOL 60

report permits the use of recursive procedures i n ALGOL programs.

procedures that may d i rec t ly or indirect ly slave themselves on a new l eve l with-

out loss of information on the old.

distinguishing these frm procedures which are not recursive and which can

therefore be handled i n a simpler way.

be recursive a cer ta in amount of manipulation and t ransfer of information is

necessary on entry and ex i t .

slower execution time.

These are

No provision is made i n the language f o r

If provision i s made f o r procedures t o

This r e su l t s for short procedures i n a considerably

ALGOL was primarily designed f o r use with numerical algorithms. In

numerical work, recursion i n a method i s usually replaced by i t e r a t ion i n the

program.

eas i ly done by programmers, while the mental processes they use cannot be f u l l y

simulated on a machine a t t h i s time.

do not seem t o be seriously needed.

The replacement of recursive concepts by i t e r a t ive algorithms i s

For numerical work recursive procedures

On the other hand, recursive subroutines a re useful i n the construction

of t rans la tors , as t h i s report w i l l show.

t ranslator , t ha t is , one t h a t can t rans la te i tself , is attempted, the imple-

mentation of recursive procedures is necessary.

If the design of a "bootstrapping"

Probably the A U O L language should eventually incorporate provisions

fo r specifying procedures t o be e i the r recursive or nonrecursive so that they

.

-5-

.

can be handled properly by the t ranslator , with a resul t ing increase i n

efficiency of the ta rge t program.

In t h i s report the implementation of procedures is limited t o those

whose parameters are r e s t r i c t ed t o names. This i s no real res t r ic t ion , since

it is possible t o program accordingly. If it i s desired t o use the value of

an expression as an ac tua l Parameter, the value may be assigned t o a new

variable before the procedure c a l l . In the procedure ca l l , the name of the

new variable i s then used as ac tua l parameter. The c a l l of arrays by value

may be circumvented by the same expedient. Functions, or procedures with

values, are not permitted t o change global variables.

A p a r t frm such considerations, the t rans la tor described by t h i s

report w i l l handle most features of ALGOL 60.

generali ty a11 types of ALGOL 60 statements, and the new features such as

This includes with complete

conditional arithmetic and designational expressions. The ordinary array

declaration i s f u l l y handled.

w h a t limited.

Switch and awn array declarations a re some- -

Programming Languages. For the discussion below, it is necessary t o make

precise the concepts of programming language and alphabet. A programming

language consists of a set of symbols, termed the alphabet of the language

and a set of rules which state the manner i n which sequences of alphabetic

symbols called strings, may be formed which consti tute valid instructions.

The computer-oriented and algorithmic languages generally used i n programm-

i n g a re , of course, examples of such languages.

Computer-oriented languages have as t h e i r distinguishing feature the

f a c t that i n t h e i r design primary consideration is given t o making available

-6-

the f a c i l i t i e s of the machine.

selves whose alphabets consist of the symbols 0 and 1 i n the case of a binary

machine, w i t h possibly the s p c e and a f e w other control characters added, or

the ordinary d e e m 1 d ig i t s i n the case of decimal machines. A t the present

time, no coding i s done i n the r a w language of a computer, since even so-

called "machine coding" i n the case of a binary machine i s done using e i the r

the oc ta l or hexadecimal d ig i t s . Even more canrmon are the use of "symbolic"

languages i n which the machine operations are represented by mnemonic

abbreviations using letters of the Latin alphabet and addresses are f loa t ing

or symbolic.

such a language.

Among these a re the machine languages them-

The ta rge t language used i n t h i s report may be considered as

Algorithmic languages have as t h e i r aim ease of application t o the

problem t o be presented t o the machine.

independent t o a considerable extent of the hardware of the computer on which

they a re t o be used, and so can be used on a variety of machines of d i f fe ren t

design. An ultimate ideal would be t o s t a t e problems t o a cmputer i n the

language of the technology involved i tself . A t t h i s % b e , however, t h i s appears

not soon attainable.

problems t h a t involve numerical algorithms, since much of the language re-

sembles the notation of ordinary algebra, includes the letters of the Latin

alphabet, the mathematical symbols (such as +, /, =, e tc .) , and cer ta in symbols

which are needed for s ta t ing the dynamic requirements of computation.

Generally these languages are

The alphabet of ALGOL, primarily useful for s ta t ing

In the t rans la t ion process, it is sometimes necessary t o treat a

language as if it had a basic symbol set d i f fe ren t from i t s own alphabet. I n

-7-

t h i s case, it is useful t o consider the language considered from t h i s new point

of view as ac tua l ly another language. An example of t h i s is process-ALGOL

discussed below.

Representation -- of ALGOL.

l a t ion , the hardware representation designed f o r that machine i s used.

be pointed out that the hardware language referred t o by the ALGOL report

necessarily deals with the language employed on peripheral equipment before

loading and not t o the representation that ultimately w i l l be used within the

machine during processing. An example of a hardware language used on the ORACLE

i s found i n the appendix.

ware languages fur ther .

For loading an ALGOL program i n t o a machine f o r t rans-

It may

It i s not our purpose t o discuss a t t h i s point hard-

The representation used during processing may be re la ted t o the in t e rna l

configurations induced by the l a d i n g of the hardware representation. It is

not necessary that t h i s be so , however, and i n some instances t h i s i s not even

desirable.

memory and i n the lat ter case on whether secondary storage is available.

Much depends on whether the machine has a large memory or a small

If a machine has adequate high-speed storage and no auxiliary storage

such as magnetic tape o r drum, it is usually advisable t o carry out the trans-

l a t i o n process i n one pass using the representation induced by the hardware

representation of ALGOL, or be t t e r , an in te rna l representation isomorphic t o

the reference, not hardware, ALGOL. That i s , there i s a one-to-one correspond-

ence between the symbols of reference ALGOL and t h e i r in te rna l representations,

so that one is able by t r ans l i t e r a t ion alone t o pass from one t o the other, one

-a-

ALGOL symbol a t a time, i n such a way t h a t it is not necessary t o consider the

context.

On mostmchines, secondary storage i n the form of tapes and drums is

available which permits the processing of programs i n as many passes as re-

quired.

memory.

hardware language or the reference language, but one which regards ALGOL fran

a simplified point of view.

carried out i n one pass.

The same can be carr ied out if there is a suf f ic ien t amount of in te rna l

In t h i s case it i s possible t o use, not a representation of e i t h e r the

The conversion t o t h i s representation is eas i ly

This w i l l be discussed i n the following paragraph.

Process ALGOL.

have individual meaning.

and numbers.

considers the alphebet t o consist of the ALGOL delimiters and, instead of

let ters and d ig i t s , a set of possible in te rna l ident i f ie rs .

process A W L is ident ica l w i t h ALGOL.

Letters and digits, though alphabetic symbols i n ALGOL, do not

They are always parts of strings forming iden t i f i e r s

Process ALGOL (p-AIGOL f o r short) is a view of the language which

In other respects

The t r ans i t i on fran ALGOL t o process ALGOL is accmplished by replacing

each A W L iden t i f i e r string, each number string, and each t r u t h value by a

uniquely corresponding in te rna l i den t i f i e r .

encountered are converted i f necessary and stored.

they w i l l appear as a l is t of constants.

are not needed f o r the subsequent t rans la t ion process or for the t a rge t program.

They may be saved f o r use i n diagnosis and print-out.

Numbers and t r u t h values when

I n the f i n a l t a rge t program

The or ig ina l external iden t i f i e r s

The use of process ALGOL as the primary vehicle of processing solves

the problem a l so of w h a t is t o be done with identifiers of a rb i t r a ry length.

-9-

No r e s t r i c t ion is made i n ALGOL on the number of l e t t e r s and d i g i t s which may

be used f o r a given ident i f ie r .

these permits the l a t t e r t o be of fixed formatl

strings of a rb i t ra ry length is therefore r e s t r i c t ed t o the replacement pass.

The use of internal ident i f ie rs t o replace

The necessity of handling

Representation - f o r p-ALGOL.

representation f o r p-ALGOL can be used t o simplif'y and f a c i l i t a t e the t ransla-

t i on process. Since pract ical ly a l l cmputers handle information most

conveniently i n units of machine words, w e w i l l l i m i t the representation

immediately t o one i n which each alphabetic symbol of p-ALGOL (that is, each

ALGOL delimiter and each ident i f ie r) i s assigned a specif ic and unique machine

word.

The la t i tude permitted i n an actual choice of a

The differences between different ident i f ie rs do not have any affect

on the flow of control i n the t rans la tor , though ident i f ie rs w i l l not be

treated l i k e operations and relat ions.

s imilar i ty and the d is t inc t ion immediately available when needed. *rations

likewise f o r the most mrt are t reated alike, though there are times when the

difference between two operations o r re la t ions does a f f ec t the flow of control

i n the t ranslator .

The representation can make the

The Latter i s t rue f o r instance i n the handling of algebraic ex-

pressions.

frm context.

x + y < a * 2 means (x + y) < (a * 2) .

generally summarized i n the statement that an otherwise ambiguous expression

involving binary operations and relat ions is rendered well-defined by the

I n algebraic formulae, part of the bracket structure is understood

Thus a + b * c means a + (b * c) and not (a + b) * c. Also,

The convention observed here is

-10-

rules of precedence governing the operations and relat ions.

each re la t ion has a precedence level ; i n the otherwise ambiguous expression, the

operation or re la t ion with the higher precedence is executed first.

precedence l eve l of an operation or re la t ion, since it w i l l influence the flow

of control of the t ranslator , should be apparent i n the representation.

Each operation and

The

A t t h i s point therefore we adopt the fo l la r ing representation f o r p-

Each symbol of p-ALGOL i s represented by a machine word, which f o r ALGOL.

convenience i s subdivided in to three parts, P1, E, and P3.

c lass of symbol t o which a given character belongs:

of ident i f ie rs , the class of operations and re la t ions considered as a single

class , and other classes each containing fo r the most part one or a t most a few

elements

P1 w i l l denote the

the classes are the c lass

P2 w i l l be used t o d i f fe ren t ia te subclasses. In the case of opera-

t ions and relat ions t h i s w i l l denote the set of elements having the same

precedence, f o r i den t i f i e r s the type of arithmetic.

P3 i s used t o mke the representation of a given element unique within

a c lass or subclass.

For most of the classes of symbols, the class consists of a single

subclass and i n f a c t a single element.

word P2 and P3 are l e f t blank and not used i n the translation.

In these cases, the portions of the

-11-

2. Theory of Translation

Recursive Definitions.

programming languages, include those of variable, ari thmetic expression,

statement, and the l i ke .

report na i s inductive or recursive.

l i s ts types of the s t ructure being defined which can be expressed en t i r e ly

i n terms of e n t i t i e s which have a separate def in i t ion and do not contain as

substructures s t ructures of the type being defined, another part of the

def in i t ion consists of ru les which govern the construction of more cmplex

examples of the s t ructure frm simpler ones.

The concepts of ALGOL, as those of other algebraic

The def in i t ion of many of these as given i n the

That is, while part of the def in i t ion

By way of i l l u s t r a t ion , "simple ari thmetic expression" has the syn-

t a c t i c def in i t ion (PO] , 3 . 3 .l) :

<simple ari thmetic expression> : : = <term> l edd ing operator> <ten01

<simple ari thmetic expression> <adding operator> <term>

"Term" and "adding operator" are defined elsewhere i n the report .

or term preceded by an adding operator const i tutes a simple ari thmetic ex-

pression.

ari thmetic expression may be formed by appending an adding operator and a

term. Thus, simple ari thmetic expressions may contain as consti tuents other

simple ari thmetic expressions. It i s t h i s last feature i n the def in i t ion

that makes it inductive o r recursive.

A n y term

However, given any simple ari thmetic expression, a new simple

In any algebraic programming language, "arithmetic expression" must

necessarily be defined recursively. In ALGOL, the def in i t ion of "statement"

-12-

a l s o i s recursive ([81, 4.1).

statements, dummy statements, and (i n ALGOL 58) s top statements are state-

ments; a l l a r e defined separately. Other statements have statements as

consti tuents and are b u i l t up i n one of three ways frm them:

(2) forming a conditional statement, and (3) forming a - f o r statement.

I n t h i s case assignment statements, procedure

(1) compounding,

The use of recursive or inductive def in i t ions i s cammon i n ce r t a in

branches of mathematics. It is a t the heart of the postulat ional method.

The integer-valued function of integers, f a c t o r i a l of n (Fact (n) = n!) is

usually defined recursively:

If n = 0,

If n # 0,

Fact (n) = 1;

Fact (n) = n Fact (n-1) .

Effect - on Translation.

devising a routine t o t r ans l a t e a l l simple ar i thmetic expressions.

the problem i s t o decmpose the expression i n t o parenthesis-free assignment

statements.

an "atomic" expression.

which consis ts of a t most simple or simply-subscripted variables and a s ingle

ari thmetic operation. A means for i so la t ing such consti tuents i s devised.

Once one has been located and processed as an elementary assignment statement,

it i s replaced by a simple variable, and the process may be repeated.

f i n i t e character of the expression assures us that there i s always an atomic

consti tuent within it and that t rans la t ion may be completed.

It i s possible t o proceed i n many d i f fe ren t ways i n

Basically

In order t o do t h i s , it i s necessary t o scan the expression f o r

Izy t h i s w e mean a simple ari thmetic expression

The

The scan described above may be improved. Instead of using multiple

scans t o locate atomic expressions, a single scan w i l l su f f ice i f i n t h a t scan,

-13-

information t h a t cannot be handled immediately i s stored systematically fo r

subsequent use, and it can eas i ly be determined when an atomic e n t i t y has been

i so la ted .
It i s a t t h i s point tha t the e f f e c t of the recursive nature of the

Implicit ly there must concepts of ALGOL on t rans la t ion may be considered.

e x i s t within the t rans la tor subroutines corresponding t o the various types of

s t ructures present i n the language.

i t s function the processing of sFmple ari thmetic expressions.

now t o design exp l i c i t l y a subroutine f o r handling simple ari thmetic ex-

pressions a f t e r the syntactic skeletons given i n the report , the routine, if

it i s sequential as described above, a t the outset has a three-way switch.

In the first position, we encounter a term and control i s sent t o a correspond-

ing term subroutine.

term.

a r e faced with the problem of processing another simple ari thmetic elcpression.

It i s necessary a t t h i s point f o r the subroutine t o be able t o slave i t s e l f

on another leve l , without discarding the information s t i l l needed for final

processing on the old l eve l and remembering the point i n the subroutine t o

which control must be sent on e x i t from the new leve l . A subroutine which

can slave itself recursively on higher leve ls i s generally cal led a recursive

subroutine.

not only t o the processing of ari thmetic expressions, but a l s o t o such matters

as the processing of variables and statements.

Thus a subset of the t rans la tor has as

If w e attempt

In the second, we encounter a n adding operator and a

In the th i rd , neither a term nor adding operator i s encountered and we

It must be emphasized a t this point tha t our conclusions apply

-14-

Recursion - vs. I terat ion.

s i tua t ion a t t h i s point is advisable.

cursively, but it m y be canputed e i the r recursively or i t e ra t ive ly . The

camputation of f a c t o r i a l n may fran the def ini t ion be reduced immediately

t o the following recursive ALGOL procedure:

A digression t o a sanewhat analogous numerical

The f a c t o r i a l f’unction is defined re-

real procedure Fact (n); value n; integer n; - -
i f n = 0 then Fact : = 1 else Fact : = n Fact (n-1) . - - -

I n machine coding programmers universally sense the d i f f i c u l t i e s i n

implementing i n t h i s manner a function recursively defined.

ing of recursively defined mathematical functions the conversion t o the

i t e r a t ive program i s almost always made by them with l i t t l e d i f f i cu l ty and

usually r e su l t s i n a superior program. They write instead immediately the

equivalent of the following A W L procedure :

I n the programm-

real procedure Fact (n); value n; integer n; - -
begin

w: = 1;

Fact : = w

f o r k : = 1 step 1 u n t i l n do w : = w X k; - - -

e nd

This i t e r a t ive procedure is machine-wise def in i te ly preferable since it

minimizes storage.

The question naturally arises whether the t rans la t ion process which

by defini t ion a l s o c a l l s f o r recursive subroutines is a l s o be t te r handled

i te ra t ive ly . In the past , the point of view has often been adopted t h a t the

-15-

improvement that obtains i n the mathematical case a l s o holds here.

The s i tua t ion is def in i te ly smewhat different i n the case of trans-

Two drawbacks t o attempting t o reduce the programing of the trans- la t ion.

l a t i o n of e n t i t i e s recursively defined t o i t e r a t ive procedures are, first,

the processing is theref ore necessarily non-sequential, and, second, the

bookkeeping involved i n the analysis may became quite involved. In our

example, "term" is a l s o defined recursively i n terms of "arithmetic ex-

pression."

scanning problem.

least the same order of camplication as the recursive process t o be described.

A def in i te advantage of the latter is that multiple passes through the

or ig ina l information are avoided by i ts systematic storage of needed informa-

t ion.

Thus the probing f o r a t rue a t m i c e n t i t y may involve a cmplicated

It w i l l be seen that the i t e r a t ive handling w i l l have a t

In the recursive treatment, there w i l l be essent ia l ly a recursive

subroutine S t o handle simple ari thmetic expressions and a subroutine T t o

handle teras.

slave S.

l eve l required after the work of a slave is completed is stored before entry

in to the slave.

control w i l l be returned. The various subroutines may be constructed almost

immediately frm an analysis of the syntactic skeletons defining the

corresponding terms.

or iginal program is done sequentially. From the point of view of th i s method,

a t rans la tor consists of a s e t of mutually recursive subroutines each of which

S may, during t ranslat ion, slave S and T, and T may indirect ly

A t each stage, th i s is done i n such a way that information on one

This includes a record of the place i n the master t o which

!Be handling of the information contained i n the

-16-

takes i t s pat tern from a syntactic skeleton defining the language.

Push-Down L i s t s . The use of recursive subroutines i n the t rans la tor leaves

the problem of providing for the systematic storage of the information and

flaw of control required by the nesting of subroutines i n which the trans-

l a to r appears a t a given time.

L e t subroutine R1 slave a t some point i n the t ranslat ion process H2.

R 2 may be the same as R1 on another level .

effected in to R2, the information i n R1 that w i l l be needed by it a f t e r R2

has done i t s work may be added t o a l i s t i n which similar information has

been stored from routines slaving R1.

information w i l l be added by it t o th i s l i s t .

information needed by it and i ts slaves has been retrieved f rm the l i s t ,

and since the work of R 2 a t t h i s time i s finished, the last meaningful

material i n the l i s t i s precisely tha t stored before R2 was entered.

A t the point where entry i s

If R2 itself requires slaves, similar

On e x i t from R2, however, the

The type of l i s t thus induced i s called a push-down l ist . In it the -
information last stored w i l l be the first recalled. Between the t w o events

other information may have likewise been stored and retrieved. It is a l s o

clear that by t h i s device, information has been uncovered and becomes avail-

able a t the moment t h a t it again is needed. The contents of the push-down

l i s t a t any time consist of a l l information stored by a l l subroutines i n the

current nesting arranged i n the order i n which they a re slaved by each other.

In theory, only one push-down l i s t is required f o r the storage of

In practice, it i s

We divide the

information needed by a set of recursive subroutines.

generally desirable t o s p l i t the information in to several.

.
-17-

push-down information i n t o two l i s t s containing: (1) the information

associated with the point t o which control w i l l be returned i n each of the

subroutines of the nesting, and, (2) a l l other information. The former

l i s t we shall c a l l the control push-down - and the l a t t e r the auxi l ia ry push-

down. -

Translation and Syntax.

t a c t i c def ini t ions t o the t rans la tor .

A word i s necessary about the relat ionship of syn- -
The syntax of AWOL indicates how

val id statements and programs may be constructed i n the language. That is,

the syntax as given emphasizes synthesis. The problem of t ranslat ion, how-

ever, i s t h a t of decmposing a va l id ly wri t ten program i n t o i t s consti tuent

parts. In t h i s connection, syntax must be regarded fran a n ana ly t ica l point

of view.

In order t o apply the syntact ical rules t o t ranslat ion, we must

derive from them rules of analysis . In the design of an a r t i f i c i a l language

such as ALGOL the rules governing decomposition were involved, even though

the report is wr i t ten w i t h synthesis as the primary consideration.

l a t t e r , of course, alone concerns the user of the language for programming

The

h i s problem.

syntact ic rules, but the s i t ua t ion is much more complicated.

In the natural languages, the two aspects a r e a l s o present i n

It i s safe t o

say that one of the d i f f i c u l t i e s encountered i n autamatic machine t rans la t ion

of natural languages is the f a c t t h a t the ru les governing decmposition do

not always permit simple expression.

The contrast between the two aspects may be made c lear by means of

an example. Two important concepts of ALGOL a r e those of "variable" and

-18-

"functional designator" (PO] , 3.1 and 3.2). In the report the syntact ic

descriptions s t a t e how va l id s t r ings of symbols t o denote e n t i t i e s of these

types may be b u i l t up. In t ranslat ion, the problem becomes one of recogniz-

ing the two types of e n t i t i e s . In a sequential treatment, t o which we l i m i t

ourselves, e i the r may be present when an iden t i f i e r i s encountered; addi t ional

information is required before it i s def in i te ly known that the i d e n t i f i e r i s

t o be associated with a variable or a function. Accordingly, the ru les of

syntax lead t o an ana ly t ica l scheme f o r processing of the following type:

yes subscripted
=c variable Is the iden t i f i e r followed by [?

I
I no

Yes , functional
designator

v
Is the iden t i f i e r followed by (?

I no
I > simple variable

In essence, therefore, syntax hinges on " ident i f ie r" i n t rans la t ion while i n

writ ing programs f o r the machine i n ALGOL, "variable" and "functional

designator" are the primary concepts.

It i s apparent therefore that one of the first tasks i n designing

a t r ans l a to r i s the reorganization of the syntax f o r ana ly t ica l purposes.

When t h i s is done, among the more important concepts which determine the

course of processing statements a re found t o be:

1. Compound statement and block

2. Operand and iden t i f i e r

3. Expression

-19-

4. GO t o statement --
5 . Assignment statement

6. Conditional statement

For statement. 7. -
Corresponding t o each of these we w i l l construct w h a t amounts t o a closed re-

cursive subroutine.

In some cases an e n t i t y of the type indicated i s expected frm previous

considerations. I n par t icu lar , an ari thmetic or Boolean expression follows

necessarily any of the following symbols: (, [:= if. The expression sub-

routine may be entered on a new l eve l whenever one of these has been encounter-

ed and processed.

s implif icat ion of the t rans la tor .

entry t o the subroutine can only be made after an iden t i f i e r has ac tua l ly been

encountered i n the incaming information.

In these cases, the an t ic ipa t ion of a s t ructure permits a

In other cases, such as f o r an iden t i f i e r ,

Summary.

of t rans la t ion .

by Rutishauser [l] were essent ia l ly of t h i s type.

of recursive methods were overlooked i s not surprising i n the l i g h t of the

f ac t that f o r numerical processes, the i t e r a t i v e apprmch appeared always

def in i te ly the preferable one.

Histor ical ly , much a t t en t ion has been focused on i t e r a t i v e methods

The methods used i n FORTRAN [2] and the techniques outlined

That the t rue usefulness

Hmever, i n t ranslat ion, the reduction of recursion t o i t e r a t i o n i s

not simply counting and forming a loop as it often is i n the mathematical

recursions.

recursion and not i t e ra t ion .

The techniques developed by Bauer and Samelson [81 are based on

The relat ionship of the symbol push-down (which

-20-

is essent ia l ly OUT control push-down) t o the nesting of recursive subroutines

was not s ta ted, but was nevertheless implici t . Once the relat ionship of the

B u e r and Samelson techniques t o the e x p l i c i t use of recursive subroutines

based on syntactic skeletons i s recognized, it a l s o becomes apparent t h a t for

t ranslat ion, the important and useful methods a re those based on recursion

and not those on i t e r a t ion .

-21-

3 . Specifications for the Translator --

General Description. The t rans la tor , f o r which specifications a r e developed

below, uses as i ts source language process ALGOL. For the processing of ALGOL

i tself , therefore, an addi t ional program is required which f i rs t converts the

hardware adaptation of ALGOL used on a given computer i n to p-ALGOL.

program depends on the machine and the hardware language used.

r e l a t ive ly simple t o design so that it need not be discussed here.

This

However, it is

The t rans la tor is constructed following the theory outlined i n sect ion

2. It is, therefore, a col lect ion of recursive subroutines based on syntact ic

skeletons. Two push-down lists are used f o r the storage of information. The

problem of designing the t rans la tor reduces t o that of writ ing the subroutines.

A program f o r the t r ans l a to r is given below, which i s i n par t wri t ten i n ALGOL

i t s e l f augmented by addi t ional primitive elements. The basic switch is

described by means of a table o r matrix.

machine can be obtained by a t rans la t ion of the program by hand and sui table

coding t o provide f o r the switch.

A working t rans la tor f o r a given

The recursive subroutines are composed of other subroutines, a f e w

dozen i n number. I n order t o avoid confusion, we introduce the term "macro"

f o r any of these. They are essent ia l ly of three types:

manipulate the control push-down l i s t and so determine the flow of control

within the t rans la tor , (2) those t h a t produce t a rge t program, and (3) those

that provide f o r necessary bookkeeping and checking.

(1) those t h a t

Certain lists play a leading ro l e i n the t rans la tor . Consequently

notation is introduced t o permit reference t o them and t h e i r elements as

-22-

given i n the following table:

L i s t

Source program

Target program

Variable table

Control push-darn

-

Auxiliary push-down

Label table

Temporary push-down

Array control list

Name -
r
TI

4,

I t e m Nature of L i s t Element -
Character of process ALGOL Y

Machine word or symbolic instruction I[

Identifier and corresponding address 0

State d

Miscellaneous information (machine word) a

Label, associated address, use address

Address i n target program 0

In i t i a l address and dimensions K

A

Counter

g

P

The control push-down C t o which we have already referred may be used as an

example of the way i n which the notation introduced i n the table is used f o r

any of the lists.

are denoted by subscrizted symbols; s i s the length of the l i s t a t a given

point during processing.

S
C denotes the l i s t i tself , while i t s elements al, c2, ..., U

In terms of these lists, the function of the t r ans l a to r may be said

t o be t o produce frm the source program l i s t r the t a rge t program l i s t II of

machine or symbolic instruct ions. The remaining l is ts a re used f o r storage.

The l i s t H i s a push-down l i s t i n the t a rge t program which w i l l be referred

t o by the t rans la tor only through i ts addresses qh.

The control push-down determines the flow of control i n the t rans la tor .

It with incming information determines the macros which w i l l be executed and

the order i n which they w i l l be executed. That is, the last element of the

push-down cf and the current incoming symbol 7 together determine a set of
S g

macros which are

t o the syntax de

t o be

-23-

executed. The relat ionshiy of the e n t i t i e s used i n C

ermin ng the recursive subroutines which const i tute the

t rans la tor i s t rea ted below. The t rans la t ion process may be described by a

double entry- tab le i n which the column headings a re a l l possible s t a t e s as and

the row headings a11 possible incoming characters y .
t ab le determined by a given state and a given character a r e l isted the macros

In the f i e l d of the
g

which are t o be executed when the pair (as, yg) is encountered.

i s cal led the t rans la t ion table o r matrix.

This table

Most of the f i e l d s are empty, since

the corresponding canbinations of state and character cannot occur i n the process-

ing of a val idly wri t ten ALGOL program. If desired, an e r ro r subroutine may

be l is ted i n t h i s space. If t h i s i s done, a ra ther ccxnplete check of the

syntact ical correctness of an A W L program is possible.

The t rans la t ion program i s basical ly the following:

begin

next :

Frocess pair:

cormnent I n i t i a l i z e and set counters t o zero--this
includes a t least the ones mentioned here;

- if y[g] f 'begin' -- then e r ro r - e l se a[s] := <SO>;

g := g+l;

Execute the l i s t of macros l is ted i n the table
lJnder (d s l , y[gI) ;

go t o next

I n same cases the l ist of macros w i l l involve t ransfers not following t h i s normal

flow of control. This i s i n par t icu lar t rue of the macro EOB, which t e s t s f o r

the end of the program. If t h e end of the program is reached, f inal e x i t fram

-24-

t h i s loop i s effected, and the t rans la tor stops.

In some cases, a v a l i d canbination (as, y) w i l l not c a l l f o r the
g

execution of any macros, but the normal f l a w of control around the loop i s

continued. In such cases, the word "next" found i n the table denotes a stall.

The matrix given i n t h i s section is r e s t r i c t ed t o that needed fo r

processing statements.

principles may be used t o process declarations. However, since the la t ter

are i n structure re la t ive ly bracket-free, they may equally w e l l be handled

i n some other way.

An addi t ional part of the matrix formed on the same

Control Operations.

i n the t ranslator . These add to , delete fram, or otherwise a f f ec t the control

push-down.

There are f ive macros which perform control operations

They are given w i t h ALGOL-like code below.

1. Entry in to a recursive subroutine, Ent (w) :

s : = s + 1; a[s] : = 0

2 . Establish a new s t a t e within a subroutine, Ch(w):

a[s] : = c D

3. Exit frm a recursive subroutine, Exit:

s : = s - 1

4. Exit fram a recursive subroutine and save the incaming character

for processing on the preceding level, Rep:

s : = s - 1; g : = g - 1
5. Transfer t o processing of current character and s ta te , PP:

g : = g - 1

-25-

The l a b e l "process pair" is the point i n the t rans la tor a t which the

execution of the s e t of macros determined by the pair (os, yg) and given i n

the t rans la t ion tab le begins.

which i s furnished on entry t o the subroutine i n accordance with the s p c i f i c a -

t ions i n the table .

In the f i rs t two subroutines, w i s a parameter

Each time that one of the recursive subroutines i s entered, a state

is added t o the control push-down l i s t . Each time an e x i t i s effected, a

state i s removed. Thus the number of elements i n the control push-down a t any

time i s the number of subroutines which are currently nested.

States . The recursive subroutines used by the t rans la tor and the s t a t e s used

i n them are l i s t e d i n t h i s section.

1. Compound statement and block

States: SO, SI, S2, N

SO This s t a t e i s entered ,-it0 the control stack on encountering
a begin.
time there i s a t e s t for end of program.

It remains u n t i l terminated by an - end, a t which

s1 This s t a t e i s the block s t a t e . If a declaration is encounter-
ed i n the SO s t a t e , the s t a t e i s changed t o S1. It a l s o i s
terminated only by e, but a t that time there is a l s o carr ied
out the end of block manipulation.

S2 This indicates the statement s t a t e i n e i the r a compound state-
ment or i n a block. It remains, once it has been placed, for
a l l the statements i n a given block. It is removed by end
which then is processed against the underlying S O or S1.

-

N1 The neutral state i s needed for comments. It is terminated by
a following ; .

N 2 This i s a second neutral s t a t e for s t r ings following - end.
i s terminated by a following ; , - end, or e l s e , which i s tes ted
a l s o against the underlying s t a t e .

It

-26-

2. Iden t i f i e r and operand

States: 0, 11, 12, 13, 14, P

.

0 The operand s t a t e i s entered whenever an operand i s expected.
Operands are of two kinds: those beginning with an ident i -
f i e r , i n which case the s t a t e i s changed t o I1 and those beginn-
ing with a l e f t parenthesis, i n which case the s t a t e is changed
t o P and a state EO is added on the next leve l , since another
expression i s then expected.

I1

I2

13

I4

P

The state I1 is entered i n t o the control push-down whenever a n
iden t i f i e r is encountered i n the processing of a program.

This state indicates t h a t the canbination "I[' I has been en-
countered previously. It assumes control only through being
uncovered, a t which time it indicates t h a t an addi t ional sub-
s c r i p t has been placed i n the next avai lable temporary qh.
i s terminated on encountering a r i g h t bracket (I) .

It

This state indicates that the canbination "I(" has been en-
countered. When it assumes control (a f t e r uncovering) it
indicates that the value of a parameter has been placed i n t o
the next temporary qh.
) a t which time the procedure i s evaluated and the value of
function, i f any, stored i n a temporary, whose address i s placed
i n the auxi l ia ry stack.

It is terminated by a r i g h t parenthesis

This state indicates t h a t the address of the simple or subscripted
variable or value of the desired function has been stored. In
any case the last entry of the auxi l ia ry storage is d i r ec t ly or
ind i rec t ly the address of the quantity involved.

The state P serves merely t o keep t rack of parentheses within
expressions. It can be uncovered, i.e., made the control element
only when a r igh t parenthesis is encountered, a t which time it
i s deleted and the underlying state assumes control.

3 . Expression subroutine

The expression subroutine uses the following states, plus those of the
iden t i f i e r subroutine which it slaves :

EO El E2 E3 CEl CE2 CE3

.

-27-

3. Expression subroutine (continued)

These have the following meaning:

EO

E l

E2

E3

CE1

cE2

(333

This s t a t e i s added t o the control stack a t any point i n the
processing where an ari thmetic or boolean expression i s
expected.

When t h i s s t a t e becomes the control element (always after
uncovering another state) it indicates t h a t an operand has
been processed whose address i s d i rec t ly or ind i rec t ly stored
i n the uppermost c e l l of the auxi l ia ry stack.

When t h i s s t a t e becmes the control element (always after
uncovering another state) it indicates that k operands have
been processed whose addresses d i r ec t ly o r ind i rec t ly a r e
stored i n the k uppermost c e l l s of the auxi l ia ry s tack . The
k-1 operations t h a t have a l s o been processed are stored with
E2 states i n the control stack.
associated wi th each E2.

A binary operation is always

When t h i s s t a t e becmes the control element (always after
uncovering another s t a t e) it indicates that an operand has been
processed whose address is d i r ec t ly or ind i rec t ly stored i n the
uppermost c e l l of the auxi l ia ry stack.
operation i s stored with the s t a t e E3.

The associated unary

When t h i s s t a t e becmes the control (always after uncovering
another state) it indicates tha t the boolean expression follow-
ing an i f has been completely processed and its value i s stored
i n the ai?dress stored i n the uppermost c e l l of the auxi l ia ry
storage.

When t h i s state becomes the control (always a f t e r uncovering
another s t a t e) it indicates that the first ari thmetic expression
following - then has been processed, and i ts value i s stored i n
the address stored i n the uppermost c e l l of the auxi l ia ry storage.

When th i s s t a t e becomes control (always a f t e r uncovering another
state) it indicates tha t the second arithmetic expression follow-
ing - else has been completely processed and i ts value is s tored
i n the address stored i n the uppermost c e l l of the auxi l ia ry
storage.

-28-

4. G o t o subroutine

States: G LL L2 L3 CG

G The state G a s smes control (by uncovering other s t a t e s) when
a designational expression (e i ther a l abe l or a switch se t t i ng)
has been processed i n an unconditional t ransfer .
statement indicator terminates it, a t which time the ac tua l
t r ans fe r order i s wri t ten i n the t a r g e t program.

A n y end of

LL

L2

L3

CG

This s t a t e indicates that a designational expression is expected.
It is changed t o CG i f an i f i s encountered i n the designational
expression. If an i d e n t i f z r i s encountered it is changed t o L2.

If a bracket i s encountered i n t h i s state then a switch se t t i ng
i s being processed, otherwise the previously processed i d e n t i f i e r
i s a label, so that a t this point an end of statement indicator
i s encountered.

This is the switch se t t ing s t a t e . The setting of the switch is
determined when a r i g h t bracket is encountered.
ment indicator w i l l terminate t h i s state by repeat.

An end of state-

This state is entered when a conditional designational expression
i s encountered. It assumes control on encountering an - else.
th i s point a conditional t ransfer is wri t ten in to the program.
Then the s t a t e i s r e se t t o t h a t expected of an unconditional
t ransfer and the f i n a l label is t rea ted as such.

A t

5 . Assignment statement

States: Al, A2

A 1 The s t a t e A1 with EO is added t o the control push-down whenever
the character : = i s encountered when the t r ans l a to r is i n a state
S2. Since i n an assignment statement an e q r e s s i o n is normally
expected a f t e r t h i s symbol, the state EO is a l s o added.

A2 The state A2 is used fo r multiple assignments. Consequently, it
i s added only when the character : = i s encountered while the
t rans la tor control is s t a t e A 1 or A2. A s with A l , an expression
i s expected and thus the s t a t e EO is added immediately.
A 1 assumes control only by uncovering.
end of statement indicator.

A2, l ike
Both a r e terminated by an

- 29-

6. Conditional statement

States: C1, C2, and C3

c1 The state C1 i s added t o the control push-down when the t rans-
l a t o r i s i n s t a t e S2 and i f i s encountered.
followed by a Boolean e q F s s i o n , the s t a t e EO i s aaded a t the
same time.
t h i s can only happen a t the time the incaning character is then.

Since i f is always

C1 assumes control only when it i s uncovered and
-

When t h i s is encountered, the s t a t e C 1 is changed t o C2. Since
a statement i s expected, the state S2 is a l s o added t o the
control stack. C2 assumes control a f t e r the statement has been

- c2

processed and a character -, e l s e - end, or ; appears.

c3 The state C3 i s set when - e l s e i s processed i n s t a t e C2.
a statement i s expected and so S2 i s a l s o added t o the control.
The s t a t e is terminated by an end of statement indicator, a t
which time the code f o r terminating the condition i s wri t ten.

Again

For statement 7. -
States: FO, F1, F2, F3, F4, F5

This s t a t e is added i n the state S2 when a f o r i s encountered.
It is terminated after the variable has been processed and
s tored and the : = i s encountered. A t t h a t time the s t a t e i s
changed t o F1.

- FO

This state assumes control u n t i l e i t he r s tep, while or do i s
encountered.

-’ F1
An expression is processed during t h i s s t a G .

This state copies the increment i n a s tep-unt i l f o r element.
It i s terminated by un t i l .

-- F2

F3 This s t a t e i s terminated by , or - do and completes the processing
of a s tep-unt i l l i s t element.

This state completes the processing of a boolean expression
involved i n a while l i s t element. It i s a l s o terminated by ,
or do.

F4

-
F5 This state is induced by the processing of do. It i s terminated

recursively a t the conclusion of the processing of the statement
subject t o the - fo r clause by an end of Statement indicator.

-30-

Translation Matrix.

The column headings consist of all possible states, and the row headings of

possible incaning p-ALGOL symbols.

which cannot form a val id pair with any s t a t e on a par t icu lar p g e have been

m i t t e d on that page.

In the following pages is given the t rans la t ion matrix.

For the sake of brevity, incaning characters

The row heading OTHERWISE requires explanation. In some instances,

many of the en t r i e s i n a column are alike.

number of table en t r i e s by faking advantage of t h i s i n l i s t i n g such an entry

It i s possible t o minimize the

only once under OTHERWISE. It is understood then that if a pa i r (Us , Yg) is

encountered i n processing with no entry i n the column us, the entry l i s ted

under OTHERWISE applies.

rise t o an alarm.

device should not be used. I n that case, the matrix may be rewrit ten by

placing the entry now under OTHERWISE i n place of a l l as te r i sks occurring i n

the same column since only these canbinations should act ivate the OTRERWISE

entry.

i n the table.

Any column having an OTHERWISE entry w i l l not give

If a re la t ive ly complete check of syntax i s desired, t h i s

It i s then possible t o report an e r ro r whenever (us ’ yg) has no entry

Each of the en t r i e s i n the table consists of a l i s t of macros. Thus,

under the pair (S2, I) is found the entry

STID 1 Ent(I1)

Whenever t h i s canbination i s encountered, the macro STID is activated, followed

by the execution of the control instruct ion Ent(cu) (for w being Il).

c

Par t 1

x
begin

for

go t o

i f

-

-
stop

I

e l s e -
9

. _ . -

De clamto1

a l l other:

ccamnent

OTHERWISE

so

Ent (S2) I PP

Ent (S2 I PP

Ent (S2 I PP

Ent(S2) IPP

Ent (S2) I PP

Ent (S2) I PP

m(=)

Ent (S2)

*

m) Ent

BBLICh(S1) !PI

-31-

TRANSLATION MATRIX

Compound Statement and Block

s1

*
*
*
*
*
*

50B 1 ch (N2;

Int (S 2)

tnt(Dec)

tnt (~ 2) I PI

Assignment

s 2

Ent (SO)

CLO I Ent (FO)

Ent(G) IEnt(L1)

Ent(C1) IEnt(E0

STOP

STID I Ent (11)

Rep

Rep

Rep

Ent(A1) IEnt(E0

LAEEL

N N 1)

- -
N1

-
*
*
*
*
*
*
*
*
I X i i

*
*
*
*
*

-
iexl
- -

A 1

*
*
*

:h(A2) IEnt(A1) IEnt(E0:

E V l I Rep

A2

*
*
*

1V2 I Rep

-32-

TRANSLATION MATRIX

Operand and Ident i f ie r

Part 2

I

(

[

then -
step

while

until

do _.

w

. _ . -

OTHERWISE

-
P

Exit

-

3TIDICh(I1)

X(P) IEnt(E0)

I1

PROC I Ch(13) I Ent (EO
Zh(I2) IEnt(E0)

*
*
*
*
*
*
*
9

*
*
*
*
*
*
*

ch(14) IPP

I2

STVlEnt (EO)

STVI SUBS I Ch(14

I3

STV 1 Ent (EO)

STV I FUNC I ch (14)

- -
E4
-

*
*
*
*
*
*
*
*
*
*
*

*
*
*

iep .
- -

c

Part 3

x
if

I

-

(

then -
step

while

unt i l

do

-
-
9

1
1
end

else

-
-
9

0)

OTHERWISE

-33-

TRANSLATION MATRIX

Express ion

EO

Ch(CE1) IEnt(E0)

*
*

Ch(E1) IEnt(0) IPP

E l

*
*
*
*
*
*
*
*
*
*
*

Ch(E2,cu) IEnt(0)

*
*
*
*
*
*
*
*
*
*
*

COMPEX

EXB I Rep

*
*
*
*
*
*
*
*
*
*
*
*

EXU I Rep

-34-

TRANSLATION MATRIX

Go To Statement

if

I

-

then -
1
end

else

-
-
?

OTHERWISE

Ll

X (C G) IEnt(E0)

5 T I D l k (L 2)

L2

Ch(L3) IEnt(E0)

L3

SWITCH I Exit

*
*
*

CG

Ent (Ll)

CONTRA I m (u)

-35-

I
F3

c

I

. _ . -
step

until

- while

-

t

do -
3

else

end

aqy other

-
-

OTIEERWISE

Part 5

TRANSLATION MATRIX

For Statement

F1

W F 4)

A1 I C1
A 1 I B(Ch (F5) I Ent (S2'

*

-
F2

20py E2

A2 I C11 Ch(F1)
A21BICh(m) IEnt(S2

*

COPY E3

F4

*

Copy E2

-36-

TRANSIATION MATRIX

Conditional Eqres s ion

Conditional Statement

then -
step

while

unti l

do -
3

1

1
g l g

e&

3

CD

OTHERWISE

CE1

*

c1 c2 c3

-37-

i

.h

Target Language.

Some of the macros have as t h e i r function the production of such instruct ions.

In most instances, the instruct ions produced w i l l be highly machine-dependent

and so cannot be f u l l y described here. In order t o minimize the e f f ec t s of

t h i s , an essent ia l ly one-address machine i s assumed f o r the purposes of the

report . However, the ari thmetic operations produced i n macros EXB and EXU

a re l e f t i n three-address form; i n a one-address machine the single t a r g e t

instruct ion indicated i n the plans w i l l have t o be replaced by a more extensive

complex of instructions. For individual operations t h a t are not machine

operations, devices such as subroutine c a l l s may w e l l be used. In t h i s case

a final assembly program can incorporate the needed subroutines i n the machine

program.

The purpose of a t rans la tor is t o produce t a rge t program.

The t a rge t instruct ions produced by macros a r e placed always i n a pair

of braces ((,}). The functions that we assume can be performed by our

(f i c t i t i o u s) generalized machine are the following:

1. Arithmetic

A := (wB)

A : = B w C

The unary operation w is applied t o the contents of B and
the r e s u l t stored i n address A .

The binary operation or r e l a t ion w i s applied t o the
contents of B and C and the result stored i n address A.
I n the case of re la t ions , the result i s a Boolean value.

A := B The contents of B a r e placed i n A.

2. Non-arithmetic

STOP The machine equivalent of a stop order.

T R A Y Transfer t o the address stored i n y.

CIA y Clear the accumulator and add the contents of y.

-38-

ADD y Add the contents of y t o the accumulator, converting the
addends t o fixed-point i f necessary.
i n address se t t ing .

This i s used only

STA Y Set the address i n the t a rge t ins t ruc t ion with address y.

TIT Y Transfer i f value i n accmulator i s - t rue t o address i n
y; otherwise proceed.

TIF Y Transfer if value i n accumulator i s f a l se t o address i n
y; otherwise proceed.

STO y Store the accumulator i n address i n y.

NOP S t a l l .

Notation - i n Macros.

Description i n natural language i n the form of c m e n t s is added both t o clarif 'y

Where possible, ALGOL 60 is used t o describe macros.

the ALGOL program, where present, and a l s o t o describe the program needed i n the

case the lat ter has not been formulated because of machine dependence and other

considerations.

Some notation t o augment ALGOL 60 is used:

v := <a>

v := {a)

The value of a variable, whose address i s stored a t an
address which i s the current value of E. This permits
indi rec t addressing. An important case i s the assign-
ment

v := c(v2)

In t h i s case v i s assigned the value of the variable
whose address i s the current value of v2.

Here Q: i s a symbol such as a state or a character of p-
ALGOL. The statement means that the Lnternal representa-
t i o n of the symbol i n question i s assigned t o v as i t s
value. This i s machine dependent.

The string representing the t a rge t instruct ion 0 is
assigned t o v, which i n t h i s case i s a string variable.

-39-

.

A l i s t entry i n the label table, where Q i s a label ,
@ is the ta rge t program address associated with the
label i n the current block, and y i s a ta rge t program
address a t which the label i s used. When the entry
i n the table i s f i r s t made, e i ther f3 or y is blank.
The amount of space a l lo t t ed t o an entry is machine
dependent, and may be several words.

Indicates that part of the infomation is t o be
furnished a t a later time i n processing.

Two ALGOL-like delimiters have been added t o a id i n the processing of

- for statements and procedures. These are used i n corresponding statements:

SJ L

SSE L -

This statement i s eventually t ranslated in to the t a rge t
equivalent subroutine jump t o the address corresponding
t o the label L.

This statement is eventually t ranslated in to the ta rge t
instructions t o set a subroutine e x i t i n the address
corresponding t o the labe l L.

Macros. The macros required i n the t rans la tor , other than those that determine

control, are l i s ted below. They are grouped under headings corresponding t o the

subroutines i n which they f ind t h e i r primary use. Each i s ident i f ied by a label

consisting of a mnemonic abbreviation which is used i n the table. A s par t s of

an ALGOL program for a t rans la tor , they must be used as procedures, i.e.,

closed subroutines; i n the in te res t s of brevity, however, the necessary procedure

heading and the enclosing -- begin-end parentheses have been omitted.

1. Cumpound statement and block.

BBL: c m e n t This car r ies out the operations a t the beginning
of the processing of a block.
bookkeeping involved i n l i s ts containing loca l variables
and labels;

Much of t h i s deals with the

-40-

EOB: c m e n t This car r ies out the corresponding operations
a t the end of the processing of a block.
things, permanent (or symbolic) addresses can now be
assigned t o a l l labels within the block l o c a l t o it.
Certain counters a r e rese t . Final ly th i s t e s t s f o r the
end of the program;

Among other

s := s-1; if s = 0 then go t o end of program; - ---
STOP: c m e n t I r i t e a stop order i n ta rge t program;

p := p+l; x[p] := {STOP] ;

2. Designational.

LAEEL:

TFA:

SWITCH :

CONTRA :

camment Enter a l abe l and i ts associated address i n the
label table;

1 := !+l; h [1] := (a [a] , p+1, ---); a := a-1

camment Write instruct ion for t ransfer i n t a rge t program;

p := p+l; z[p] :=

if a[a] i s not sent inel led then begin

h[1] := 1+1; h [i] := (c (a [a]) , ---, p); g
- -

a := a-1;

comment
statement ;

p := p+l; n[p1 := jC,i c(n[a])} ;

!This computes and sets address i n a go t o switch -

p := p+l; n[p] := ; h := h-1;

p := p+1; ~ [p] := ; set sen t ine l i n a [a] ;

camment

i f a[a] is sent inel led then begin

This wri tes a conditional t ransfer ;

--

; h := h-1;

p := p+l; n[p] := {TIT --- L , ,
i f ~ [a] i s not sent inel led then begin

R := R + 1 ; h[I] := (C(a[a]), ---, p) ; end

a : a-1;

-
-

.

-41-

3 . Assignment.

EV1: p := p+1; fi[p] := ; h := h-1; a := a-1

EV2

EV2 : p : p+l;

- if a[&] is sent inel led - then begin

fi[p] := / STO C(qh)) ; h := h-1 - end

- else nfp1 := jsTo c (a [a]) } ; a := a-1

4. Operand and iden t i f i e r .
STJD : comment This s tores the incaming " ident i f ie r" i n the

auxi l ia ry push-down.

a := a+l ; a[a] := ~ [g] ;

SUBS:

PROC :

FUNC :

comment
cmputed here. This depends on the k subscripts whose
values are s tored i n q[h-k+l] , q[h-k+2], . . . , q[h] and
the infomat ion vector of the array A which i s s tored
beginning a t address m i n the t rans la tor (or more
generally i n the t a rge t program); m itself i s stored
i n a[a].

The locat ion of the element of an a r ray is

If the information vector consis ts of the k dimension m i and the (theore t ica l) location A[O, ..., 01, the address
may be cmputed i n the t a rge t program by the Horner
scheme :

address A[il, . . ., ik] := address A[O, ..., 01 +

(...((mi x il i- i) x c m2 + i-) x c(m) + . . .) ~ r n ~ , ~ + k; 2 5 3
This i s stored by the t a rge t program i n q[h-k+l] ; h := h-k+l;
a [a] i s sentinelled.;

ccinment
parameter l i s t that w i l l follow i n accordance with declara-
tions.;

This procedure may be designed t o deal with the

c m e n t
closed subroutine corresponding t o the cal led srocedure.
The ac tua l code w i l l depend on the method of subroutine
entry used i n the machine.
temporary l eve l and information covered i n declarations.;

A subroutine entry i s wri t ten a t t h i s point t o the

Linkage w i l l be i n terms of the

-42-

STV:

5 . Expression.

EXU:

EXB:

ccgmnent
temporary.
i s combined with an end of expression indicator;

if a[a] f < q[h]> -I__ then begin

Store value of expression i n the next available
This is required whenever an iden t i f i e r state

i f a[a] is sent inel led then begin - -
p := p+1; n[p] := { CLA [h] } ; h := h-1;

p := p+l; fi[p] :=

p := p+l; s[p] := { CLA ---)end
e l s e begin --

p := p+1; n[p] := [CLA C(a[a])} end h := h+l;

p := pcl; n[p] := ; a[a] := <q[h]> -’ end.

c m e n t This wri tes code i n the t a rge t program for the
execution of a unary (ari thmetic or boolean) operation;

if a[a] f <q[h] > - then h := ht-1;

p := p+l; n[p] :=

{ V[hl := (0 c(a[aI I)] ;
a[a] := <q[h]>

cmment This wri tes code i n the t a rge t program f o r the
execution of a binary (arithmetic or boolean) operation
or re la t ion ;

if a[a] # <q[h]> --- then begin i f cr[a-l] # < q [h] > -
then h := h+l end e l s e if a[a-11 = <q [h- l] > - ---
then h := h-1; -

L

-43-

COMPEX : This incoming arithmetic or boolean binary operation or
r e l a t ion i s t e s t ed for precedence against the one s tored
i n the control push-down ars]. If the lat ter does not have
lower precedence, it i s executed;

i f prec (a [s]) 2: prec (y[g]) then begin - --
EXB; Rep - end

e l s e begin Ent(E2, y[g]); Ent(0) end -- -

6. For statement. -
Copy v, Copy E l , Copy E2, Copy E3:

These building blocks have as t h e i r functions the copying
of the character y[g] i n t o a reserved space for four
s t r ings denoted by v, E l , E2, and E3. These are then
used t o construct s t r ings which const i tute ALGOL-like
statements which a re processed by the t rans la tor .

Clo :

A1 :

A2 :

A 3 :

comment This i s used t o c lear counters f o r the above sub-
routines and i n addition q := q+1;

comment
The following s t r ing i s constructed from the l is ts i n the
spaces a l l o t t e d for v and E l :

This processes a l i s t element of the type v := E l .

"V := E l ; SJ Mq;"

This i s then processed as i f it were pa r t of the ALGOL
program. ;

-

camment In the same manner, a l i s t element of type
v := E l s tep E2 u n t i l E3 leads t o an expression of the type
a f t e r u := u+l:

"v := E l ; Lu: i f (v-E3)*E2 5 0 then begin - --
- SJ M q ; v := v+E2; go t o Lu end;"

This i s then a l so processed as i f part of the program.

comment
v := E l while E2. The s t r i n g generated and processed i n
t h i s case a f t e r u := u+l i s

This processes a l i s t element of the type

"Lu: v = E l ; i f E2 then begin SJ M q ; go t o Lu end" - -- -

-44-

B:

C:

c1:

7. Conditional.

IF:

ELSE :

THEN :

c m e n t This constructs a t ransfer past the subroutine
f o r the statement subject t o the - f o r clause and a sub-
routine entry t o it;

u := u+l; p := p+l; x[p] := TFiA --- ; R := 1+1; i i
h[R] := (Lu, ---, p) ; a := a+l; a[a] := <Lu> ;

u := u+l; p := p+l; Jr[p] := [SSE - - - } ; a := 1+1;

h[a] := (M q , p, ---); I := I+ l ; h[R] := (Lu, --- p) ;

a := a+l; a [a] := <Lu>

comment This constructs the e x i t from the subroutine
enclosing the statement subject t o the - f o r clause.;

p := p+l; n[p] := { TRA ---I ; a := R + 1 ;

h[RI := (c (a [a]) , p, ---); a := a-1; p := p+l;

Jr[pl := (N O P I ; 1 := i+1; ~ [R I := c (a [a]) , p, ---I; a := a-1

c m e n t This c lears the counters fo r Copy E l , Copy E2, and
COPY E3;

comment

p := p+l; ~ [p] := {CIA r)[h]) ; h := h-1;

A t t h i s point, a t e s t i s made on the Boolean value;

p := p+1; ~ [p] :=

a [a] := <p> ;

comment The proper t ransfers a r e s e t following the first
statement or expression of a conditional statement;

p := p+l; Jr[p] := (TFiA --- 1 ; a := a + l ; h [l] := (---, p+1, ((aria]))

a [a] := <p>

comment This s tores information concerning t ransfer previously
coded in the ta rge t program;

a := I C ~ ; ~ [l] := (---, p+1, c (a [a])) ; a := a-1

.
-45-

cc :

cc1:

comment
auxi l ia ry counter i n the case of a conditional expression;

This serves merely t o ad jus t the temporary and

if a[a] = < %> then STV; - -
a := a-1; h := h-1

comment
counters. ;

h := h+l; a := a+l; a[a] := <q[h]> ;

This readjusts the temporary and auxi l ia ry

-46-

I C N C 1 NC2 0 A n y applicable
s t a t e l

le t ter I n i t I Copy I Ent (I C) Copy

d i g i t I n i t I Copy I Ent (N C 1) Copy COPY COPY I m(NC3)

10 I n i t I Copy I Ent (NC2) COPY I m(NC2)

+ * * Ch(NC3)

COPY I m(NC3) * * -

OTHERWISE IDT I Rep NUMT I Rep

-- One-Pass Translator.

desired and adequate memory s p c e is available, p-ALGOL w i l l not be used.

t ha t case, the matrix can be enlarged and macros added t o take care of the

operations otherwise executed i n a prepass.

the additional macros are summarized below.

In the case of a t rans la tor where only one pass i s

In

The additions t o the matrix and

A considerable number of additional

N C 3

COPY

*
*

NUMT I Rep

en t r ies i n the matrix w i l l be required.

Macros :

In i t : i := 0

copy: i := i+l; v[i] := y [g] ;

IDT: comnent Pack the ident i f ie r s t r ing ~ [l] , v[2], ..., v [i] .
Check the resulting ident i f ie r against the iden t i f i e r table .
If not there, assign an in te rna l i den t i f i e r or symbolic
(real or pseudo) address I, which by STID w i l l be placed
i n the auxi l iary push-down.; y[g] := <I>;

1 Any state which has an entry f o r (I, a[s]) i n the t rans la t ion matrix.

-47-

NUMT : comment Convert number s t r i n g v [l] , vf 21, . . . , v [i] t o
machine representation. Check against number table. If
not there, assign in te rna l i den t i f i e r or symbolic address
I, which by S T D w i l l be placed i n auxi l ia ry push-down;
y[gl : <I>;

Detection of Syntactic Errors.

processing is the one without the OTHERWISE feature, syntactic e r ro r s can be

If the form of the matrix that i s used f o r -

detected concurrently with the attempt t o t rans la te . Whenever a pair

(a[s] , y [g]) is encountered f o r which no en t ry is i n the table , there is a

syntactic e r ro r i n the propam. If , therefore, en t r i e s that diagnose and

report e r ro r s are placed i n a l l such otherwise vacant fields of the matrix a

ra ther complete e r ro r monitor is possible.

For a machine with a r e l a t ive ly flllallmemory, it may not be possible

t o have the addi t ional code required by the e r r o r monitor i n the memory a t

the same time as the processing portion.

wri t ten by a group consisting of more than one programmer, and it is advis-

I n other cases, t rans la tors a r e

able t o divide up the work in to independent parts that can be constructed

simultaneously.

syntactic e r r o r i n a separate pass independently of processing.

In e i t h e r case, it is advisable t o carry out the check f o r

This pass

should, of course, precede ac tua l t rans la t ion , and can be carr ied out i n

process ALGOL.

The s t ruc tc re and coding of such a pass can be patterned a f t e r the

main processing pass. The matrix without the OTHERWISE feature i s used. I n

the f i e l d s where there are en t r i e s i n the processing pass only the control

macros a r e kept. Care must be taken w i t h some other macros such as COMPEX,

IDT, and NUMT where control functions are carr ied out within the macro i t s e l f .

-48-

Here the control must be abstracted from the r e s t and retained. The control

push-down w i l l operate exactly as i n the processing pass.

down is not used.

function i s properly executed throughout.

The auxi l iary push-

A program w i l l be considered val idly wri t ten if the control

If such a diagnostic pass precedes processing, no lo s s of information

r e su l t s and considerable space is saved if the matrix used i n processing contains

the OTHERWISE feature.

Implementation - of Blocks. If a program consists of a single block, the fore-

going description of a t ranslator is ccsnplete. No declarations w i l l be found

beyond the heading of such a block.

Huwever, blocks w i l l naturally occur a l s o a t l e a s t i n the procedures

which are implemented i n the system. This language requires same addi t ional

planning. %e simplest case i s t h a t i n which no recursive procedures a re

permitted i n the program, and consequently blocks w i l l a l s o not be recursive.

In t h i s case it is necessary only t o provide f o r the storage of information

concerning the memory requirements of the variables of the containing blocks.

A subroutine within the ta rge t program may be used t o provide f o r storage

allotments t o arrays within the block which do not have fixed dimensions.

adjustment w i l l be needed on e x i t frcxn the block, so that the problem of

performing necessary operations on e x i t i n the case of recursive blocks does

not arise.

No

A block may be used recursively if it i s par t of a recursive procedure.

If the dimensions are fixed, the own array can adequately be handled.

dimensions are variable, complications a re introduced in to handling the arrays;

If the -

-49-

V

copy operations w i l l be called f o r whenever the dimensions change.

operations can be supplied, a t the cost of increased running time. Vhether

the trouble is merited depends very much on the use t o which the t rans la tor

w i l l be put i n a par t icular ins ta l la t ion .

Such copy

Tables which must be handled i n push-down fashion i n the t rans la t ion

are the label table, since labels are local , and the ident i f ie r table. Local

variable may be properly handled by the simple device of r e s t r i c t ing the search

of the iden t i f i e r table t o the portion t o which the loca l variable is local .

This can be done by making part of the iden t i f i e r a serial number which indicates

the depth of nesting of the block t o which the variable is local , and then

searching only t o t h i s level .

the table when an ident i f ie r is encountered so that the last entry with t h i s

ident i f ie r i s encountered f irst , t h i s being the loca l one.

An a l te rna t ive is t o search only from the end of

Labels are entered i n the order found. A t the end of the processing

of a block the f inal adbesses of a l l labels loca l t o t h a t block are known and

therefore a re assigned.

kept i n the tab le , but the table can be shortened a t t h i s point.

the assignment of unspecified t ransfer orders may be made i n the table , but

not i n the program.

or the assigmnent may be delegated t o a subsequent loading routine.

A n y labels t o which assignments cannot be made are

Alternatively

In a final pass the addresses are set i n the ta rge t program,

Procedures. We outline here i n brief the t ranslat ion of procedures and

procedure c a l l s which may be recursive, but which have only names as parameters.

A fur ther simplification can be made if arrays are considered always as global

t o the procedure.

The r e s t r i c t ion of parameters t o being only names is not severe. In

the case of simple mlues , it i s possible t o write ALGOL statements which assign

the values of the desired expressions t o new variables, whose names are then

used as parameters i n the procedure ca l l .

Basic t o the processing of procedures i s the use of a reserve push-

A t any procedure c a l l , the current contents dawn H* i n the t a rge t program.

of a l l c e l l s of H (~[l], ..., ~ [h]) a re copied in to the reserve push-down,

along with h and the address t o which control i s normally t o be returned a t

the end of the procedure execution.

I n e f fec t , therefore, a t the beginning of each procedure execution the

temporary push-down H i s empty, and therefore no special means f o r t rans la t ing

a re necessary within the body.

the contents of H a re restored. A n y remaining elements of H due t o the execu-

t i on of the procedure must be moved t o the end of the push-down l i s t i n t h i s .

In addition, h i s then s e t equal t o zero.

A t the conclusion of the procedure execution,

On an e x i t from the procedure other than the normal one, the re turn

address w i l l not be used. The contents of the temporary push-down must,

however, be restored.

The handling of procedures i n th i s way permits recursive subroutines.

Since recursion i n same cases can be of arbitrary depth, i n the case of

machines with small high-speed memory, it w i l l be desirable t o include i n the

manipulation of the reserve push-dawn H* the storage and r e t r i eva l of informa-

t i o n frm a secondary storage such as drum or tape. Corresponding t o each

formal p ime te r i n the procedure heading w i l l be a link-word and a c e l l of

the push-down H.

addresses of the ac tua l pzrameters a re placed i n the link-words.

l a t i on of a procedure heading and body, provision is first made for t ransferr ing

In the t ranslat ion of a c a l l , the addresses and pseudo-

In the trans-

.

-51-

the information i n the l i nk words in to fixed storage locations assigned i n H.

Then i n the rest of the t ranslat ion, the addresses indirect ly i n H a r e associated

with the formal parameters.

causes l i t t l e trouble even i n machines which do not d i rec t ly provide f o r it.

Whenever a formal parameter is encountered i n the body of the procedure, i t s

address must be set fram the contents of the corresponding def ini te c e l l of H.

I n the case of arrays, the information w i l l of course be removed one s tep

further, since the information stored i n H i n that case i s itself indirect .

Indirect addressing is necessary a t t h i s point, but

Some cmplicat ions s t i l l arise when the parameters are chained from a

procedure t o one that it slaves. This can be worked out on similar l i n e s i f

desired, or it can be prohibited.

Input - and Output - i n Target Programs.

f o r input and output statements, such f a c i l i t i e s must be designed t o be used

with the language by the group constructing a t rans la tor .

be useful. i n such a design. Two ways of handling simple input and output

suggest themselves m e d i a t e l y . The first uses the procedure approach; i n

th i s , cer ta in ident i f ie rs are reserved f o r use with input and output procedures,

whose bodies are not wri t ten i n ALGOL. The second uses additional A W L - l i k e

delimiters for input and output.

Since ALGOL 60 does not include provision

This paragraph may

The f i r s t ALGOL t rans la tor f o r the ORACE?, used a t Cak Ridge National

Laboratory uses the following additional delimiters:

1. read

2. read array

3 . punch

-
--

-52-

4. c r

The first three of these are used with a l i s t of variables, names of

arrays, or arithmetic expressions, respectively t o form a statement having

one of the following forms:

-

read VI, e, ..., vk

read array al , a2, ..., a k

punch E l , E2, ..., Ek.

-
--

The function of the f irst two i s t o assign the values appearing on a paper

tape under the paper tape reader t o the variables and arrays designated i n

the order written. Values a re assigned t o the elements of an array i n

lexicographic order of the subscripts.

The punch order t ransfers the current values i n order t o paper tape.

The delimiter - c r consti tutes a statement which punches on paper tape a

character that i n pr int ing act ivates the carriage re turn mechanism.

In general, more elaborate output format provisions a re def in i te ly

desirable w i t h an ALGOL system, but the simple output given here can 'be used

u n t i l such formats can be designed and programed. All of the output state-

ments (with the exception of - c r) are handled during t rans la t ion by a subroutine

entry w i t h sui table linkword.

cmpiled in to the target program.

In f inal cmpilat ion, a l i b ra ry subroutine is

,

.
-53-

References and Bibliography -

[11 H. Rutishauser, "her automatische Rechenplanfertigung bei program-
steuerten Rechenanlagen," Z. Argew. Math. Mech., 31 (1951), p. 255.

J. W. Backus, e t a L . , "The FORTRAN Autamatic Coding System," Proc.
Western Joint Ccanputing Conference, Los Angeles, C a l i f . , 1957-

[2]

[31 "Preliminary Report--International Algebraic Language ,I1 edited by
A. J. Per l i s and K. Samelson, Comnunic. Assoc. Cmp. Mach. 1 (1958),
no. 12, pp. 8-22.

c 43

[51

C61

[71

[81

[91

c 101

r 111

c 121

H. H. Bottenbruch, "ijbersetzung von algorithmischen Formelsprachen
i n die Programmsprachen von Rechenmaschinin, ' I Zeitschr f. math. Logik
und Grundlagen d. Math. 4 (1.958)~ pp. 180-221.

--

A . A. Grau, e t al . , "Programmer's Manual, ORACLE
Translator (ORBIT), ORNL C F - 5 9 - 9 - m p t . 22, 1959 -
A . A. Grau, Multi-Segment ORBIT Frograms, ORBIT Memo 2, ORNL (1959). -
A. C. Downing, Magnetic Tape Storage F i les ORBIT Memo 3 , ORNL (1959). -'
Structure of the first ALGOL t rans la tor a t the Ins t i t u t e fcur Angemndte
Mathematik, Mainz, Germany, 1959. Unpublished notes.

---- -- -
F. L. b u e r and K. Samelson, "Sequential Formula Trazslation,"
Cmunic . Assoc. 9. __. Mach. 3 (1960), no. 2, pp. 76-82.

"Report on the Algorithmic Language ALGOL 60," edi ted by Peter Naur,
Ccamnunic. Assoc. Camp. Mach. 3 (1960), no. 3 , pp. 290-314. -
- The Structure -- of ALCOR, I n s t i t u t f* Angewandte Mathemtik, Mainz,
Germany, 1960. Multilithed report.

ORACLE ALGOL Translator 1 Report). Multilithed Mathematics
Panel Report., OIt'FJL, SepT.

.

t

.

-55-

Appendix

ORACIX Hardware ALGOL

1.
indicator.
occupied by %.

The character apostrophe (') is reserved fo r use as a delimiter
It w i l l have the punch pat tern and keyboard location previously

2. Any delimiter given i n reference language by an English word or
phrase (underlined or i t a l i c i zed) i s represented by the same word or phrase
enclosed by apostrophes. Examples:

go t o
_.-

Reference : procedure fo r -
0RAcm: 'go t o ' 'procedure ' fo r '

3 . Five single-character delimiters of the reference Language which
These, with were previously not 0RACI;E characters have been made available.

the characters that they replace and whose punch patterns they assume, are:

ALGOL character : 10 c 1 T 9

Previous character: ' a B d A

4. For the following delimiters, substi tutions a re made:

Reference ORACLE Reference ORACE3

< 'Is ' A 'and '
5 ' lseq' v 'or'

> 'gr ' 7 'not

1 '€Tee ' -

f 'nteq' 3 ' implies '
'equiv' - -

Reference 0RACl;f;:

- 'div'

X *
c I 1

3 11

5 . Any single-character delimiter not included above is the same as
i n reference language.

6 . While ident i f ie rs may be of any length, only the first f ive
characters have meaning t o the ORACE3 t ranslator .

7. Number strings must be l imited t o ten d ig i t s .

- 56-

8. The upper and lower case punch characters are used as needed t o
change case. The reader stop character is used t o terminate each paper tape.

9. The ORACLE format characters, tabulator, backspace, carriage re-
t u r n , punch stop, and breakpoint, are ignored by the t ranslator .
be used as desired.
by a Fir of quotes (' I) .

They may
The space is likewise ignored except i n s t r ings enclosed

10. The ORACLE characters which a re not among those referred t o above
must not be used i n punching ALGOL programs.

- 57-

Acknowledgement.

recursive sequential methods outlined by Bauer and Samelson [7] by F. L.

Eauer while he was associated with the Laboratory i n the autumn of 1959.

The a t ten t ion of the author was first directed t o the

The unpublished specifications f o r a t rans la tor [g] designed a t Mainz,

Germany, by M. Paul were a source of valuable information soon thereafter.

Thanks and cred i t i s due a l s o t o H. H. Bottenbruch, with whoa were

heldmany stimulating and worthwhile conversations on a number of the

topics covered i n t h i s report, and t o E. J. Schweppe and D. R. Fitzwater,

Iowa State University, f o r t h e i r c r i t i c a l reading of a preliminary draft.

.

- 59-

ORNL - 30 54
UC-34 - Physics and Mathematics

TID-4500 (15th ed.)
INTERNAL DISTRIBUTION

1. C. E . Center
2. Biology Library
3. Health Physics Library

4-5. Central Research Library
6. Reactor Division Library

7-26. Laboratory Records Department
27. Laboratory Records, ORNL R.C.
28. A. M. Weinberg
29. L. B. E m l e t (X-25)
30. J. P. Murray (Y-12)
31. J. A . Swartout
32. E. H. Taylor
33. E. D. Shipley
34. A . S. Householder
35. C . P. K e i m
36. W. H. Jordan
37. S. C . Lind
38. F. L. Culler
39. R. S. Livingston
40. A. H. Snell
41. A . Hollaender
42. M. T. Kelley
43. P. M. Reyling
44. K. Z. Morgan

45. T. A. Lincoln
46. C. S. Harrill
47. H. E. Seagren
48. C. E. Winters
49. D. Ph i l l ips
50. M. L. Nelson
51. J . A. Lane
52. R. A . Charpie
53. M. J. Skinner
54. R. S. Cockreham
55. G. J. Atta
56. H. H. Bottenbruch
57. L. L. Bumgarner
58. H. P. Carter
59. E. C. Cooper
60. R. R. Coveyou
61. N. M. Dismuke
62. A . C. Downing
63. Manuel Feliciano
64. Walter Gautschi

85. ORNL - Y-12 Technical Library,
Document Reference Section

65-84. A . A . Grau

EXTERNAL DISTRIBUTION

86. Division of Research and Development, AEC, OR0
87-696. Given dis t r ibut ion as shown i n TID-4500 (15th ed.) under Physics and

Mathematics category (75 copies - OTS)

