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ABSTRACT

The theory underlying a translator program, which is needed on a
computer whenever programs written in the algorithmic language ALGOL 60[10]l
are to be used on that machine, is described. The approach followed is
related to the recursive sequential methods outlined by Bauer and Samelson
[9]. These methods have been simplified by the explicit use of recursive
subroutines based on syntactic skeletons defining the ALGOL language.

Specifications for a translator based on these principles are given
in machine-independent form. They include substantial advances over those

used in the design of the first ALGOL translator for the ORACLE[12].

The numbers in brackets refer to the corresponding items in the
bibliography on page 53.
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THE STRUCTURE OF AN ALGOL TRANSLATOR

A. A. Grau

1. Preliminary Considerations

Introduction. In order to use ALGOL [5,]121 for programming a modern high-

speed stored-program computing machine, either a translator program or an
interpreter program must be constructed for that machine. A translator
program (more simply, translator) is a machine program that converts programs
written in ALGOL submitted to it as input into programs in machine language;
these are then executed as any other machine programs would be. An inter-
preter program, on the other hand, is placed into memory with the ALGOL
program. Control is given to it, whereupon it takes the ALGOL instructions,
one at a time, and translates and executes each in turn. The latter process
obviously results in a relatively slow execution time. Because of this and
other considerations, major emphasis is placed almost universally on transla-
tion rather than interpretation.

A translator for an algorithmic language such as ALGOL is relatively
camplicated. In recent years considerable efforts have been made to develop
a systematic theory of translation which permits a consequent simplification
of the translation process. Some powerful principles (9], could find use

eventually not only in the translation of artificial languages such as ALGOL,

1 Numbers in brackets refer to the corresponding items in the list of
references on p. 53.



P

but possibly also in the machine translation of natural languages.

In this report the theory of translation and detailed plans for an
AIGOL translator are presented. The first section is devoted to introductory
material dealing with programming languages and representations. Section 2
contains the general theory on which the plans are based, and section 3
contains the specifications for the translator written in a language consist-
ing of ALGOL, augmented by additiomal primitive language elements. A degree
of familiarity with AILGOL is assumed at this point. The self-explanatory
nature of ALGOL is such, however, that this need not be camprehensive.

The first ALGOL translator for the ORACLE is based on the principles
discussed by Bauer and Samelson. The plans given in this report, while based
on the same principles, also benefit from experience gained in the construction
of that translator. The refinements and simplifications which are included

will be used in the construction of any new translator.

Scope of the Translator. In the design of the translator presented, one goal

has been to include the handling of as many features of ALGOL 60, insofar as
they are understood and unambiguous, as possible. The practicality of
implementation on a machine with small memory such as the ORACLE has, however,
also had to be considered. A further aim has been the clear exposition of
basic principles.

These considerations have led to the apparent use of a single arithmetic
mode in target programs, except in the autamatic handling of subscripted
variables. In most machines, this can be made to coincide with a floating-

point mode of operation. Since quantities which have integral values



autamatically yield in most machines integer-~valued results under floating-
point addition, subtraction, multiplication, and the entier function, this
is not a real restriction.

No essential change in the translator is needed, however, if real and
integer arithmetic are to be implemented in the target program as floating-
point and fixed-point operation, respectively. The type of a variable is
made part of its internal identifier. This information is supplied during
the processing of type declarations. The principal additions to the translator
will be in the macros EXU and EXB (p. 42). 1In these, additional program is
introduced, which tests the mode of each operand, which provides for conversion
from fixed-point to floating-point form whenever the operands are of mixed type
or if the standard functions are applied to integer-valued expressions, which
determines the proper mode of the arithmetic operation, and which tags the
address of the result with its mode.

Input and output in the target program do not constitute part of the
ALGOL reports. Therefore, no provision for them is included in the description
of the translator. By way of illustration, the handling of these in the ORACLE
translator is described separately.

The translation table provides for the implementation of blocks. The
macros needed are outlined, but not detailed. Processing is discussed in a
supplementary paragraph. If it turns out that blocks are little used in ALGOL
programs outside of procedures, the effort needed in implementation could well
have been directed elsewhere. In the case of the ORACLE, useful features of

the ORBIT system [5, 6, T] are tape files and provision for segmentation.
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Provision for including these in an ALGOL translator appear to merit priority.
The possibilities of using the block concept for including segmentation in
target programs is being investigated.

The translation of procedures involves the fact that the ALGOL 60
report permits the use of recursive procedures in ALGOL programs. These are
procedures that may directly or indirectly slave themselves on a new level with-
out loss of information on the old. No provision is made in the language for
distinguishing these from procedures which are not recursive and which can
therefore be handled in a simpler way. If provision is made for procedures to
be recursive a certain amount of manipulation and transfer of information is
necessary on entry and exit. This results for short procedures in a considerably
slower execution time.

AILGOL was primarily designed for use with numerical algorithms. In
numerical work, recursion in a method is usually replaced by iteration in the
program. The replacement of recursive concepts by iterative algorithms is
easily done by prograymers, while the mental processes they use cannot be fully
simulated on a machine at this time. For numerical work recursive procedures
do not seem to be seriously needed.

On the other hand, recursive subroutines are useful in the construction
of translators, as this report will show. If the design of a "bootstrapping”
translator, that is, one that can translate itself, is attempted, the imple-
mentation of recursive procedures is necessary.

Probably the ALGOL language should eventually incorporate provisions

for specifying procedures to be either recursive or nonrecursive so that they



can be handled properly by the translator, with a resulting increase in
efficiency of the target program.

In this report the implementation of procedures is limited to those
whose parameters are restricted to names. This is no real restriction, since
it is possible to program accordingly. If it is desired to use the value of
an expression as an actual parameter, the value may be assigned to a new
variable before the procedure call. In the procedure call, the name of the
new variable is then used as actual parameter. The call of arrays by value
may be circumvented by the same expedient. Functions, or procedures with
values, are not permitted to change global variables.

Apart from such considerations, the translator described by this
report will handle most features of ALGOL 60. This includes with complete
generality all types of ALGOL 60 statements, and the new features such as
conditional arithmetic and designational expressions. The ordinary array

declaration is fully handled. Switch and own array declarations are some-

vhat limited.

Programming languages. For the discussion below, it is necessary to make

precise the concepts of programming language and alphabet. A programming
language consists of a set of symbols, termed the alphabet of the language
and a set of rules which state the manner in which sequences of alphabetic
symbols called strings, may be formed which constitute valid instructions.
The camputer-oriented and algorithmic languages generally used in programm-
ing are, of course, examples of such languages.

Camputer-oriented languages have as their distinguishing feature the

fact that in their design primary consideration is given to making available
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the facilities of the machine. Among these are the machine languages them-
selves whose alphabets consist of the symbols O and 1 in the case of a binary
machine, with possibly the space and a few other control characters added, or
the ordinary decimal digits in the case of decimal machines. At the present
time, no coding is done in the raw language of a computer, since even so-
called "machine coding"” in the case of a binary machine is done using either
the octal or hexadecimal digits. Even more camon are the use of "symbolic"
languages in which the machine operations are represented by mnemonic
abbreviations using letters of the Latin alphabet and addresses are floating
or symbolic. The target language used in this report may be considered as
such a language.

Algorithmic languages have as their aim ease of application to the
problem to be presented to the machine. Generally these languages are
independent to a considerable extent of the hardware of the computer on which
they are to be used, and so can be used on a variety of machines of different
design. An ultimate ideal would be to state problems to a camputer in the
language of the technology involved itself. At this time, however, this appears
not soon attainable. The alphabet of ALGOL, primarily useful for stating
problems that involve numerical algorithms, since much of the language re-
sembles the notation of ordinary algebra, includes the letters of the Iatin
alphabet, the mathematical symbols (such as +, /, =, etc.), and certain symbols
which are needed for stating the dynamic requirements of computation.

In the translation process, it is sometimes necessary to treat a

language as if it had a basic symbol set different from its own alphabet. In



this case, it is useful to consider the language considered from this new point
of view as actually another language. An example of this is process-ALGOL

discussed below.

Representation of ALGOL. For loading an ALGOL program into a machine for trans-

lation, the hardware representation designed for that machine is used. It may
be pointed out that the hardware language referred to by the ALGOL report
necessarily deals with the language employed on peripheral equipment before
loading and not to the representation that ultimately will be used within the
machine during processing. An example of a hardwdare language used on the ORACILE
is found in the appendix. It is not our purpose to discuss at this point hard-
ware languages further.

The representation used during processing may be related to the internal
configurations induced by the lcading of the hardware representation. It is
not necessary that this be so, however, and in some instances this is not even
desirable. Much depends on whether the machine has a large memory or a small
memory and in the latter case on whether secondary storage is available.

If a machine has adequate high-speed storage and no auxiliary storage
such as magnetic tape or drum, it is usually advisable to carry out the trans-
lation process in one pass using the representation induced by the hardware
representation of ALGOL, or better, an internal representation isomorphic to
the reference, not hardware, ALGOL. That is, there is a one~to-~one correspond-
ence between the symbols of reference ALGOL and their internal representations,

so that one is able by transliteration alone to pass from one to the other, one



AILGOL symbol at a time, in such a way that it is not necessary to consider the
context.

On most machines, secondary storage in the form of tapes and drums is
available which permits the processing of programs in as many passes as re-
quired. The same can be carried out if there is a sufficient amount of internal
memory. In this case it is possible to use, not a representation of either the
hardware language or the reference language, but one which regards ALGOL fram
a simplified point of view. The conversion to this representation is easily

carried out in one pass. This will be discussed in the following paragraph.

Process ALGOL. Ietters and digits, though alphabetic symbols in ALGOL, do not

have individual meaning. They are always parts of strings forming identifiers
and mmbers. Process ALGOL (p-AIGOL for short) is a view of the language which
considers the alphebet to consist of the ALGOL delimiters and, instead of
letters and digits, a set of possible internal identifiers. In other respects
process ALGOL is identical with ALGOL.

The transition fram ALGOL to process ALGOL is accamplished by replacing
each ALGOL identifier string, each number string, and each truth value by a
uniquely corresponding internal identifier. Numbers and truth values when
encountered are converted if necessary and stored. In the final target program
they will appear as a list of constants. The original extermal identifiers
are not needed for the subsequent translation process or for the target program.
They may be saved for use in diagnosis and print-out.

The use of process ALGOL as the primary vehicle of processing solves

the problem also of what is to be done with identifiers of arbitrary length.



No restriction is made in ALGOL on the number of letters and digits which may
be used for a given identifier. The use of internal identifiers to replace
these permits the latter to be of fixed format. The necessity of handling

strings of arbitrary length is therefore restricted to the replacement pass.

Representation for p-ALGOL. The latitude permitted in an actual choice of s

representation for p-ALGOL can be used to simplify and facilitate the transla-
tion process. Since practically all computers handle information most
conveniently in units of machine words, we will limit the representation
immediately to one in which each alphabetic symbol of p-ALGOL (that is, each
AIGOL delimiter and each identifier) is assigned a specific and unique machine
word.

The differences between different identifiers do not have any affect
on the flow of control in the translator, though identifiers will not be
treated like operations and relations. The representation can make the
similarity and the distinction immediately available when needed. Operations
likewise for the most part are treated alike, though there are times when the
difference between two operations or relations does affect the flow of control
in the translator.

The latter is true for instance in the handling of algebraic ex-
pressions. In algebraic formulae, part of the bracket structure is understood
from context. Thus a +b * c means a + (b * ¢) and not (a2 +b) ¥ ¢c. Also,

x +y<a *2means (x +y) < (& * 2). The convention observed here is
generally summarized in the statement that an otherwise ambiguous expression

involving binary operations and relations is rendered well-defined by the
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rules of precedence governing the operations and relations. Each operation and
each relation has a precedence level; in the otherwise ambiguous expression, the
operation or relation with the higher precedence is executed first. The
precedence level of an operation or relation, since it will influence the flow
of control of the translator, should be apparent in the representation.

At this point therefore we adopt the following representation for p-
AIGOL. Each symbol of p-ALGOL is represented by a machine word, which for
convenience is subdivided into three parts, Pl1, P2, and P5. Pl will denote the
class of symbol to which a given character belongs: the classes are the class
of identifiers, the class of operations and relations considered as a single
class, and other classes each containing for the most part one or at most a few
elements.

P2 will be used to differentiate subclasses. In the case of opera-
tions and relations this will denote the set of elements having the same
precedence, for identifiers the type of arithmetic.

P3 is used to make the representation of a given element unique within
a8 class or subclass.

For most of the classes of symbols, the class consists of a single
subclass and in fact a single element. In these cases, the portions of the

word P2 and P3 are left blank and not used in the translation.
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2. Theory of Translation

Recursive Definitions. The concepts of ALGOL, as those of other algebraic

programming languages, include those of variable, arithmetic expression,
statement, and the like. The definition of many of these as given in the
report [LJ is inductive or recursive. That is, while part of the definition
lists types of the structure being defined which can be expressed entirely
in terms of entities which have a separate definition and do not contain as
substructures structures of the type being defined, another part of the
definition consists of rules which govern the construction of more complex
examples of the structure from simpler ones.

By way of illustration, "simple arithmetic expression" has the syn-

tactic definition ([LO], 3.3.1):

<simple arithmetic expression> :: = <term> |<adding operator> <term>|

<simple arithmetic expression> <adding operator> <term>

"Term" and "adding operator' are defined elsewhere in the report. Any term
or term preceded by an adding operator constitutes a simple arithmetic ex-
pression. However, given any simple arithmetic expression, a new simple
arithmetic expression may be formed by appending an adding operator and a
term. Thus, simple arithmetic expressions may contain as constituents other
simple arithmetic expressions. It is this last feature in the definition
that makes it inductive or recursive.

In any algebraic programming language, "arithmetic expression" must

necessarily be defined recursively. In ALGOL, the definition of "statement"
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also is recursive ([8], 4.1). In this case assignment statements, procedure
statements, dummy statements, and (in ALGOL 58) stop statements are state-
ments; all are defined separately. Other statements have statements as
constituents and are built up in one of three ways from them: (1) compounding,
(2) forming a conditional statement, and (3) forming a for statement.

The use of recursive or inductive definitions is common in certain
branches of mathematics. It is at the heart of the postulational method.
The integer-valued function of integers, factorial of n (Fact (n) = n!) is

usually defined recursively:

If n =0, Fact (n) =1;

I

If n £ 0, Fact (n) = n * Fact (n-1) .

t

Effect on Translation. It is possible to proceed in many different ways in

devising a routine to translate all simple arithmetic expressions. Basically
the problem is to decompose the expression into parenthesis-free assignment
statements. In order to do this, it is necessary to scan the expression for
an "atomic" expression. By this we mean a simple arithmetic expression
which consists of at most simple or simply-subscripted variables and a single
arithmetic operation. A means for isolating such constituents is devised.
Once one has been located and processed as an elementary assigmment statement,
it is replaced by a simple variable, and the process may be repeated. The
finite character of the expression assures us that there is always an atomic
constituent within it and that translation may be completed.

The scan described above may be improved. Instead of using multiple

scans to locate atomic expressions, a single scan will suffice if in that scan,
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information that cannot be handled immediately is stored systematically for
subsequent use, and it can easily be determined when an atomic entity has been
isolated.

It is at this point that the effect of the recursive nature of the
concepts of ALGOL on translation may be considered. Implicitly there must
exist within the translator subroutines corresponding to the various types of
structures present in the language. Thus a subset of the translator has as
its function the processing of simple arithmetic expressions. If we attempt
now to design explicitly a subroutine for handling simple arithmetic ex-
pressions after the syntactic skeletons given in the report, the routine, if
it is sequential as described above, at the cutset has a three-way switch.

In the first position, we encounter a term and control is sent to a correspond-
ing term subroutine. In the second, we encounter an adding operator and a
term. In the third, neither a term nor adding operator is encountered and we
are faced with the problem of processing another simple arithmetic expression.
It is necessary at this point for the subroutine to be able to slave itself
on another level, without discarding the information still needed for final
processing on the old level and remembering the point in the subroutine to
which control must be sent on exit from the new level. A subroutine which

can slave itself recursively on higher levels is generally called a recursive
subroutine. Tt must be emphasized at this point that our conclusions apply
not only to the processing of arithmetic expressions, but also to such matters

as the processing of variables and statements.
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Recursion vs. Iteration. A digression to a somewhat analogous numerical

situation at this point is advisable. The factorial function is defined re~
cursively, but it may be camputed either recursively or iteratively. The
camputation of factorial n may fram the definition be reduced immediately

to the following recursive ALGOL procedure:

real procedure Fact (n); value n; integer nj;

if n = O then Fact : = 1 else Fact : = n ¢ Fact (n-1) .

In machine coding programmers universally sense the difficulties in
implementing in this manner a function recursively defined. In the programm-
ing of recursively defined mathematical functions the conversion to the
iterative program is almost always made by them with little difficulty and
usually results in a superior program. They write instead immediately the

equivalent of the following ALGOL procedure:

real procedure Fact (n); value n; integer n;

begi

wi:=1; for k:=1step 1l until ndow : =wXkj;

end

This iterative procedure is machine-wise definitely preferable since it
minimizes storage.

The question naturally arises whether the translation process which
by definition also calls for recursive subroutines is alsc better handled

iteratively. In the past, the point of view has often been adopted that the
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improvement that obtains in the mathematical case also holds here.

The situation is definitely somewhat different in the case of trans-
lation. Two drawbacks to attempting to reduce the programming of the trans-
lation of entities recursively defined to iterative procedures are, first,
the processing is therefore necessarily non-sequential, and, second, the
bookkeeping involved in the analysis may became quite involved. In our
example, "term" is also defined recursively in terms of "arithmetic ex~
pression.” Thus the probing for a true atomic entity may involve a complicated
scanning problem. It will be seen that the lterative handling will have at
least the same order of camplication as the recursive process to be described.
A definite advantage of the latter is that multiple passes through the
original information are avoided by its systematic storage of needed informa-
tion.

In the recursive treatment, there will be essentially a recursive
subroutine S to handle simple arithmetic expressions and & subroutine T to
handle terms. S may, during translation, slave S and T, and T may indirectly
slave S. At each stage, this is done in such a way that information on one
level required after the work of a slave is completed is stored before entry
into the slave. This includes a record of the place in the master to which
control will be returned. The various subroutines may be constructed almost
imnediately from an analysis of the syntactic skeletons defining the
corresponding terms. The handling of the information contained in the
original program is done sequentially. From the point of view of this method,

a translator consists of a set of mutually recursive subroutines each of which
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takes its pattern from a syntactic skeleton defining the language.

Push-Down Lists. The use of recursive subroutines in the translator leaves

the problem of providing t'or the systematic storage of the information and
flow of control required by the nesting of subroutines in which the trans-
lator appears at a given time.

Let subroutine R1 slave at some point in the translation process R2.
R2 may be the same as Rl on another level. At the point where entry is
effected into R2, the information in Rl that will be needed by it after R2
has done its work may be added to a list in which similar information has
been stored from routines slaving Rl. If R2 itself requires slaves, similar
information will be added by it to this list. On exit from R2, however, the
information needed by it and its slaves has been retrieved from the list,
and since the work of R2 at this time is finished, the last meaningful
material in the list is precisely that stored before R2 was entered.

The type of list thus induced is called a push-down list. 1In it the
information last stored will be the first recalled. Between the two events
other information may have likewise been stored and retrieved. Tt is also
clear that by this device, information has been uncovered and becomes avail-
able at the moment that it again is needed. The contents of the push-~down
list at any time consist of all information stored by all subroutines in the
current nesting arranged in the order in which they are slaved by each other.

In theory, only one push-down list is reguired for the storage of
information needed by a set of recursive subroutines. In practice, it is

generally desirable to split the information into several. We divide the
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push-down information into two lists containing: (1) the information
associated with the point to which control will be returned in each of the
subroutines of the nesting, and, (2) all other information. The former

list we shall call the control push-down and the latter the auxiliary push-

down.

Translation and Syntax. A word is necessary about the relationship of syn-

tactic definitions to the translator. The syntax of ALGOL indicates how
valid statements and programs may be constructed in the language. That is,
the syntax as given emphasizes synthesis. The problem of translation, how-
ever, is that of decomposing a validly written program into its constituent
parts. In this connection, syntax must be regarded fram an analytical point
of view.

In order to apply the syntactical rules to translation, we must
derive from them rules of analysis. In the design of an artificial language
such as AIGOL the rules governing decomposition were involved, even though
the report is written with synthesis as the primary consideration. The
latter, of course, alone concerns the user of the language for programming
his problem. In the natural languages, the two aspects are also present in
syntactic rules, but the situation is much more complicated. It is safe to
say that one of the difficulties encountered in automatic machine translation
of natural languages is the fact that the rules governing decomposition do
not always permit simple expression.

The contrast between the two aspects may be made clear by means of

an example. Two important concepts of ALGOL are those of "variable" and
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"functional designator" ([10], 3.1 and 3.2). 1In the report the syntactic
descriptions state how valid strings of symbols to denote entities of these
types may be built up. In translation, the problem becames one of recogniz-
ing the two types of entities. In a sequential treatment, to which we 1limit
ourselves, either may be present when an identifier is encountered; additional
information is required before it is definitely known that the identifier is
to be associated with a variable or a function. Accordingly, the rules of

syntax lead to an analytical scheme for processing of the following type:

Is the identifier followed by [ ? —3S5 5 Subscripted
variable
¢ no
Is the identifier followed by ( 7 —3S2 = Tfunctional
designator

no

=» simple variable

In essence, therefore, syntax hinges on "identifier" in translation while in
writing programs for the machine in ALGOL, "variable" and "functional
designator" are the primary concepts.

It is apparent therefore that one of the first tasks in designing
a translator is the reorganization of the syntax for analytical purposes.
When this is done, among the more important concepts which determine the

course of processing statements are found to be:

1. Compound statement and block
2. Operand and identifier

3. Expression
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L. Go to statement
5. Assigmnment statement
6. Conditional statement

T. For statement.

Corresponding to each of these we will construct what amounts to a closed re-
cursive subroutine.
In scme cases an entity of the type indicated is expected from previous

considerations. In particular, an arithmetic or Boolean expression follows

Il

necessarily any of the following symbols: (, [ : if. The expression sub-
routine may be entered on a new level whenever one of these has been encounter-
ed and processed. In these cases, the anticipation of a structure permits a
simplification of the translator. In other cases, such as for an identifier,

entry to the subroutine can only be made after an identifier has actually been

encountered in the incoming information.

Summary. Historically, much attention has been focused on iterative methods
of translation. The methods used in FORTRAN [2] and the techniques outlined
by Rutishauser [1] were essentially of this type. That the true usefulness
of recursive methods were overlooked is not surprising in the light of the
fact that for numerical processes, the iterative approach appeared always
definitely the preferable one.

However, in translation, the reduction of recursion to iteration is
not simply counting and forming a loop as it often is in the mathematical
recursions. The techniques developed by Bauer and Samelson [8] are based on

recursion and not iteration. The relationship of the symbol push-down (which
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is essentially our control push-down) to the nesting of recursive subroutines
was not stated, but was nevertheless implicit. Once the relationship of the
Bauer and Samelson technigues to the explicit use of recursive subroutines
based on syntactic skeletons is recognized, it also becomes apparent that for

translation, the important and useful methods are those based on recursion

and not those on iteration.
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3. Specifications for the Translator

General Description. The translator, for which specifications are developed

below, uses as its source language process ALGOL. For the processing of ALGOL
itself, therefore, an additional program is required which first converts the
hardware adaptation of ALGOL used on a given computer into p-ALGOL. This
program depends on the machine and the hardware language used. However, it is
relatively simple to design so that it need not be discussed here.

The translator is constructed following the theory outlined in section
2. It is, therefore, a collection of recursive subroutines based on syntactic
skeletons. Two push~-down lists are used for the storage of information. The
problem of designing the translator reduces to that of writing the subroutines.
A program for the translator is given below, which is in part written in ALGOL
itself augmented by additional primitive elements. The basic switch is
described by means of a table or matrix. A working translator for a given
machine can be obtained by a translation of the program by hand and suitable
coding to provide for the switch.

The recursive subroutines are composed of other subroutines, a few
dozen in number. In order to avoid confusion, we introduce the term "macro"
for any of these. They are essentially of three types: (1) those that
manipulate the control push~-down list and so determine the flow of control
within the translator, (2) those that produce target program, and (3) those
that provide for necessary bookkeeping and checking.

Certain lists play a leading role in the translator. Consequently

notation is introduced to permit reference to them and their elements as
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given in the following table:

List Name Nature of List Element Item Counter

Source program r Character of process ALGOL v g

Target program hid Machine word or symbolic instruction b P

Variable table $ Identifier and corresponding address ¢ f

Control push-down z State o s

Auxiliary push-down A Miscellaneous information (machine word) « a )
Iabel table A Iabel, assoclated address, use address A i

Temporary push-down H Address in target program n h

Array control list K Initial address and dimensions K k

The control push-down 3 to which we have already referred may be used as an
example of the way in which the notation introduced in the table is used for
any of the lists. £ denotes the list itself, while its elements 012 Tps coes O
are denoted by subscripted symbols; s is the length of the list at a given
point during processing.

In terms of these lists, the function of the translator may be said
to be to produce fram the source program list I' the target program list I of -
machine or symbolic instructions. The remaining lists are used for storage.
The list H is a push-down list in the target program which will be referred
to by the translator only through its addresses nh.

The control push-down determines the flow of control in the translator.
Tt with incoming information determines the macros vwhich will be executed and
the order in which they will be executed. That is, the last element of the

push-down os and the current incoming symbol 7g together determine a set of
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macros which are to be executed. The relationship of the entities used in T
to the syntax determining the recursive subroutines which constitute the
translator is treated below. The translation process may be described by a
double entry table in which the column headings are all possible states o and
the row headings all possible incaming characters 7g’ In the field of the
table determined by a given state and a given character are listed the macros
which are to be executed when the pair (cs, 7g) is encountered. This table

is called the translation table or matrix. Most of the fields are empty, since
the corresponding cambinations of state and character cannot occur in the process-
ing of a validly written ALGOL program. If desired, an error subroutine may
be listed in this space. If this is done, a rather complete check of the
syntactical correctness of an ALGOL program is possible.

The translation program is basically the following:

begin corment Initialize and set counters to zero--this
includes at least the ones mentioned here;

pi=1:=0; g =8 1=1;
if y[g] # 'begin' then error else o[ s] :=<S0>;
next: g = g+l;

Process pair: Execute the list of macros listed in the table
under (o[s], 7[gl);

go to next

end

In some cases the list of macros will involve transfers not following this normal
flow of control. This is in particular true of the macro ECB, which tests for

the end of the program. If the end of the program is reached, final exit from
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this loop is effected, and the translator stops.

In some cases, a valid cambination (cs, 7g) will not call for the
execution of any macros, but the normal flow of control around the loop is
continued. In such cases, the word "next" found in the table denotes a stall.

The matrix given in this section is restricted to that needed for
processing statements. An additional part of the matrix formed on the same
principles may be used to process declarations. However, since the latter
are in structure relatively bracket-free, they may equally well be handled

in some other way.

Control Operations. There are five macros which perform control operations

in the translator. These add to, delete from, or otherwise affect the control

push-down. They are given with ALGOL-like code below.

1. Entry into a recursive subroutine, Ent (w):

s :=858+1;0[s] : = w
2. Establish a new state within a subroutine, Ch(w):

o[s] : =w
5. Exit from a recursive subroutine, Exit:

s : =85 -1
4. Exit from a recursive subroutine and save the incoming character

for processing on the preceding level, Rep:

s t=5-1;g ¢t =g -1

5. Transfer to processing of current character and state, PP:

g:=g -1
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The label "process pair" is the point in the translator at which the
execution of the set of macros determined by the pair (os, 7g) and given in
the translation table begins. In the first two subroutines, w is a parameter
which is furnished on entry to the subroutine in accordance with the specifica-
tions in the table.

Each time that one of the recursive subroutines is entered, a state
is added to the control push-down list. Each time an exit is effected, a
state is removed. Thus the number of elements in the control push-down at any

time is the number of subroutines which are currently nested.

States. The recursive subroutines used by the translator and the states used

in them are listed in this section.

1. Compound statement and block
States: &0, S1, 52, N

S0 This state is entered into the control stack on encountering
a begin. It remains until terminated by an end, at which
time there is a test for end of program.

Sl This state is the block state. If a declaration is encounter-
ed in the S50 state, the state is changed to Sl. It also is
terminated only by end, but at that time there is also carried
out the end of blocE—ﬁénipulation.

52 This indicates the statement state in either a compound state-
ment or in a block. It remains, once it has been placed, for
all the statements in a given block. It is removed by end
which then is processed against the underlying SO or Sl.

Nl The neutral state is needed for comments. It is terminated by
a following ; .

N2 This is a second neutral state for strings following end. It
is terminated by a following ; , end, or else, which is tested
also against the underlying state.
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Identifier and operand

States:

0]

I

I2

I3

Ih

0, 11, I2, I3, I, P

The operand state is entered whenever an operand is expected.
Operands are of two kinds: those beginning with an identi-
fier, in which case the state is changed to Il and those beginn-
ing with a left parenthesis, in which case the state is changed
to P and a state EO is added on the next level, since another
expression is then expected.

The state Il is entered into the control push-down whenever an
identifier is encountered in the processing of a program.

This state indicates that the cambination "I[ " has been en-
countered previously. It assumes control only through being
uncovered, at which time it indicates that an additiomal sub-
script has been placed in the next available temporary nh. It
is terminated on encountering a right bracket (]).

This state indicates that the cambination "I(" has been en-
countered. When it assumes control (after uncovering) it
indicates that the value of a parameter has been placed into

the next temporary nh. It is terminated by a right parenthesis
) at which time the procedure is evaluated and the value of
function, if any, stored in a temporary, whose address is placed
in the suxiliary stack.

This state indicates that the address of the simple or subscripted
variable or value of the desired function has been stored. In
any case the last entry of the auxiliary storage 1s directly or
indirectly the address of the quantity involved.

The state P serves merely to keep track of parentheses within
expressions. It can be uncovered, i.e., made the control element
only when a right parenthesis is encountered, at which time it

is deleted and the underlying state assumes control.

Expression subroutine

The expression subroutine uses the following states, plus those of the
identifier subroutine which it slaves:

EOC E1 E2 E3 CE1 CE2 CE3?
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Expression subroutine (continued)

These have the following meaning:

EO

El

E2

E3

CE1l

CE2

CE3

This state is added to the control stack at any point in the
processing where an arithmetic or boolean expression is

expected.

When this state becomes the control element (always after
uncovering another state) it indicates that an operand has
been processed whose address is directly or indirectly stored
in the uppermost cell of the auxiliary stack.

When this state becames the control element (always after
uncovering another state) it indicates that k operands have
been processed whose addresses directly or indirectly are
stored in the k uppermost cells of the auxiliary stack. The
k-1 operations that have also been processed are stored with
E2 states in the control stack. A binary operation is always
associated with each E2.

When this state becames the control element (always after
uncovering another state) it indicates that an operand has been
processed whose address is directly or indirectly stored in the
uppermost cell of the auxiliary stack. The associated unary
operation is stored with the state E3.

When this state becomes the control (always after uncovering
another state) it indicates that the boolean expression follow-
ing an if has been completely processed and its value is stored
in the address stored in the uppermost cell of the auxiliary
storage.

When this state becomes the control (always after uncovering
another state) it indicates that the first arithmetic expression
following then has been processed, and its value is stored in

the address stored in the uppermost cell of the auxiliary storage.

When this state becomes control (always after uncovering another
state) it indicates that the second arithmetic expression follow-
ing else has been completely processed and its value is stored
in the address stored in the uppermost cell of the auxiliary
storage.
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Go to subroutine

States:

G

L2

L3

CG

G L1 L2 I3 CG

The state G assumes control (by uncovering other states) when
a designational expression (either a label or a switch setting)
has been processed in an unconditional transfer. Any end of
statement indicator terminates it, at which time the actual
transfer order is written in the target program.

This state indicates that a designational expression is expected.
It is changed to CG if an if is encountered in the designational
expression. If an identifier is encountered it is changed to L2.

If a bracket is encountered in this state then a switch setting
is being processed, otherwise the previously processed identifier
is a label, so that at this point an end of statement indicator
is encountered.

This is the switch setting state. The setting of the switch is
determined when a right bracket is encountered. An end of state-
ment indicator will terminate this state by repeat.

This state is entered when a conditional designational expression
is encountered. Tt assumes control on encountering an else. At
this point a conditional transfer is written into the program.
Then the state is reset to that expected of an unconditional
transfer and the final label is treated as such.

Assigmment statement

States:

Al

A2

Al, A2

The state Al with EO is added to the control push-down whenever
the character : = is encountered when the translator is in a state
52. Since in an assigmment statement an expression is normally
expected after this symbol, the state EO is also added.

The state A2 is used for multiple assigmments. Consequently, it
is added only when the character : = is encountered while the
translator control is state AL or A2. As with Al, an expression
is expected and thus the state EO is added immediately. A2, like
Al assumes control only by uncovering. Both are terminated by an
end of statement indicator.
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Conditional statement

States:

Cl

c2

c>

Cl, €2, and C3

The state Cl is added to the control push-down when the trans-
lator is in state S2 and if is encountered. Since if is always
followed by a Boolean expression, the state EO is added at the
same time. Cl assumes control only when it is uncovered and
this can only happen at the time the incoming character is then.

When this is encountered, the state Cl is changed to C2. Since
a statement is expected, the state 52 is also added to the
control stack. C2 assumes control after the statement has been
processed and a character else, end, or ; appears.

The state C5 is set when else is processed in state C2. Again
a statement is expected and so S2 is also added to the control.
The state is terminated by an end of statement indicator, at
which time the code for terminating the condition is written.

For statement

States:

FO

Fl

Fe

F3

Fh

F>5

FO, Fl, F2, F3%, F4, F5

This state is added in the state S2 when a for is encountered.
It is terminated after the variable has been processed and
stored and the : = is encountered. At that time the state is
changed to FLl.

This state assumes control until either step, while, or do is
encountered. An expression is processed during this state.

This state copies the increment in a step-until for element.
It is terminated by until.

This state is terminated by , or do and completes the processing
of a step-until list element.

This state completes the processing of a boolean expression
involved in a while list element. It 1s also terminated by ,
or do.

This state is induced by the processing of do. It is terminated
recursively at the conclusion of the processing of the statement
subject to the for clause by an end of statement indicator.
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Translation Matrix. In the following pages is given the translation matrix.

The column headings consist of all possible states, and the row headings of
possible incaming p-ALGOL symbols. For the sake of brevity, incaming characters
which cannot form a valid pair with any state on a particular page have been
onitted on that page.

The row heading OTHERWISE requires explanation. In some instances,
many of the entries in a column are alike. It is possible to minimize the
nunber of table entries by taking advantage of this in listing such an entry
only once under OTHERWISE. It is understood then that if a pair (°s’ 7g) is
encountered in processing with no entry in the column O the entry listed
under OTHERWISE applies. Any column having an OTHERWISE entry will not give
rise to an alarm. If a relatively complete check of syntax is desired, this
device should not be used. In that case, the matrix may be rewritten by
placing the entry now under OTHERWISE in place of all asterisks occurring in
the same column since only these cambinations should activate the OTHERWISE
entry. It is then possible to report an error whenever (os, 7g) has no entry
in the table.

Fach of the entries in the table consists of a list of macros. Thus,

under the pair (S2, I) is found the entry
STID | Ent(I1)

Whenever this cambination is encountered, the macro STID is activated, followed

by the execution of the control instruction Ent{w) (for o being Il).
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TRANSLATION MATRIX

Compound Statement and Block

Assignment

Part 1

¢ SO s1 82 N1l | N2 Al A2
7
begin Ent(S2)|pP * Ent(S0) * *
for Ent(s2|pP * CLO|Ent (FO) * *
go _to Ent(S2|pp * Ent(G) |Ent(L1) | * *
if Ent(s2) | PP * Ent(Cl) |Ent(EO) * *
stop Ent(S2) | PP * STOP * *
I Ent(s2)|pp * STID|Ent(T1) * *
end ch(n2) EOB|Ch(N2) Rep * | Rep * *
else Rep * Rep * *
; Ent(S2) Ent(S2) Rep Exit| Rep * *
: = Ent(ALl) |Ent(BO)| * * |Ch(A2) |Ent (A1) |Ent (EO)
: LAREL * *
Declarator * Ent(Dec) * *
all others * *
comment Ent(N1) Ert{ N1) * *
OTHERWISE |BBL|Ch(S1)|PP|Ent(S2)|PP next|next EV1|Rep [EV2’Rep

A
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TRANSILATION MATRIX

Operand and Identifier

I1

I2

I3

Ih

~ =

end

else

Exit

STID|Ch(I1)

Ch(P)|Ent (EO)

PROC|Ch(I3)|Ent(EO)
Ch(12) |Ent (EO)

*

STV|Ent (EO)

STV|SUBS|Ch (I )

STV|Ent (EO)

STV|FUNC|Ch(Ik)

OTHERWISE

Ch(Ik)|PP

Rep.
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TRANSLATION MATRIX

Expression

EO

El

(E2,w)

(B3 ,0)

end

else

Ch(CEL) |Ent (EO)
*

*

Ch(ELl) |Ent(E3,0) |Ent(0)

*

*

Ch(E2,w) |Ent(0)

COMPEX

OTHERWISE

—_—— —

Ch(ELl) |Ent(0)|PP

Rep

EXB|Rep

EXUIRep
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TRANSIATION MATRIX

Go To Statement

IAR

L2

L3

CcG

then

Eed

end

else

-e

Ch(CG) |Ent (EO)

STID|Ch(I2)

Ch(L3) |Ent (EO)

SWITCH|Exit

*
*

*

Ent(L1)

CONTRA | Ch (L1)

OTHERWISE

TRA | Rep

Rep

Rep
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TRANSIATION MATRIX

For Statement

FO

Fl

F3

Fl

F5

Ch(F1)

Ch(F2)

Ch(F4)
Al|c1

Al|B|Ch(F5)|Ent(S2)

Ch(F3)

A2|C1l|cn(F1)

A2|B|Ch(F5) |Ent(s2)

A3|c1l|cn(F1)

A3|B|Ch(FS) |Ent(s2)

C|Rep
C|Rep

C|Rep

OTHERWISE

Copy V|

Copy El1

Copy E2

Copy E3

Copy E2




-36-

TRANSIATION MATRIX

Conditional Expression

Conditional Statement

Part 6
(o]
CEL CE2 CE3 c1 ce c3
ya
then IF|Ch(CE2) | IF|cn(c2) |
Ent (EO) Ent(s2)
step *
vhile *
until *
d_O *
R *
] »*
) *
end * THEN| Rep THEN | Rep
else CC|ELSE|Ch(CE2) | * ELSE|ch(c3)|
Ent (EO) Ent(S2)
; * THEN| Rep THEN | Rep
w
cc|maEN| cc1 |
OTHERWISE Ch(EL)| PP

==—_——___—_—_=-—_—_—____————==_——_———=im
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Target language. The purpose of a translator is to produce target program.

Some of the macros have as their function the production of such instructions.
In most instances, the instructions produced will be highly machine-dependent
and so cannot be fully described here. 1In order to minimize the effects of
this, an essentially one-address machine is assumed for the purposes of the
report. However, the arithmetic operations produced in macros EXB and EXU
are left in three-address form; in a one-address machine the single target
instruction indicated in the plans will have to be replaced by a more extensive
complex of instructions. For individual operations that are not machine
operations, devices such as subroutine calls may well be used. In this case
a final assembly program can incorporate the needed subroutines in the machine
program.

The target instructions produced by macros are placed always in a pair
of braces ({,}). The functions that we assume can be performed by our

(fictitious) generalized machine are the following:

1. Arithmetic

A := (uB) The unary operation o is applied to the contents of B and
the result stored in address A.

A:=BwC The binary operation or relation w is applied to the
contents of B and C and the result stored in address A.
In the case of relaticns, the result is a Boolean value.

A =B The contents of B are placed in A.

2. Non-arithmetic

STOP The machine equivalent of a stop order.
TRA ¥y Transfer to the address stored in y.

CIA y Clear the accumulator and add the contents of y.
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ADD y Add the contents of y to the accumulator, converting the
addends to fixed-point if necessary. This is used only
in address setting.

STA y Set the address in the target instruction with address y.

TIT ¥y Transfer if value in accumulator is true to address in
y; otherwise proceed.

TIF vy Transfer if value in accumulator is false to address in
y; otherwise proceed.

STO y Store the accumulator in address in y.

NOP Stall.

Notation in Macros. Where possible, ALGOL 60 is used to describe macros.

Desecription in natural language in the form of camments is added both to clarify
the ALGOL program, where present, and also to describe the program needed in the
case the latter has not been formulated because of machine dependence and other
considerations.

Scme notation to augment ALGOL 60 is used:

C(E) The value of a variable, whose address is stored at an
address which is the current value of E. This permits
indirect addressing. An important case is the assign-
ment

v = C(v2)

In this case v is assigned the value of the variable
whose address is the current value of v2.

v 1= <a> Here o is a symbol such as a state or a character of p-
ALGOL. The statement means that the internal representa-
tion of the symbol in question is assigned to v as its
value. This is machine dependent.

v o= {a] The string representing the target instruction o is
assigned to v, which in this case is a string variable.
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(a, B, 7) A list entry in the label table, where ¢ is a label,
B is the target program address associated with the
label in the current block, and ¥y is a target program
address at which the label is used. When the entry
in the table is first made, either B or y is blank.
The amount of space allotted to an entry is machine
dependent, and may be several words.

—— Indicates that part of the information is to be
furnished at a later time in processing.

Two ALGOL-like delimiters have been added to aid in the processing of

for statements and procedures. These are used in corresponding statements:

SJ L This statement is eventually translated into the target
equivalent subroutine jump to the address corresponding
to the label L.
SSE L This statement is eventually translated into the target
instructions to set a subroutine exit in the address
corresponding to the label L.
Macros. The macros required in the translator, other than those that determine
control, are listed below. They are grouped under headings corresponding to the
subroutines in which they find their primary use. Each is identified by a label
consisting of a mnemonic abbreviation which is used in the table. As parts of
an ALGOL program for a translator, they must be used as procedures, i.e.,

closed subroutines; in the interests of brevity, however, the necessary procedure

heading and the enclosing begin-end parentheses have been omitted.

1. Compound statement and block.

BBL: cament This carries out the operations at the beginning
of the processing of a block. Much of this deals with the
bookkeeping involved in lists containing local variables
and labels;



EOB:

STOP:

Designational.

IABEL:

SWITCH:

CONTRA:
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comment This carries out the corresponding operations
at the end of the processing of a block. Among other
things, permanent (or symbolic) addresses can now be
assigned to all labels within the block local to it.
Certain counters are reset. Finally this tests for the
end of the program;

s := s-1; if s = O then go to end of program;

cament Write a stop order in target program;

p = p+l; n[p] := {STOP} 3

camment Enter a label and its associated address in the
label table;

£ = 2+1; N[£] := (ofa), p+l, ~-=); a := a-l

coment Write instruction for transfer in target program;
p :=p+l; «lp] := {TRA ---} ;

if ofal] is not sentinelled then begin
A 2] = 2415 ML) := (C(ofal), ---, D); end
a := a-l;

conment This computes and sets address in a go to switch
statement;

P :=p+l; n{p] := {CLA C(a[a])} ;
p := p+l; n{p] := {ADD nh} ; h :=h-1;
p :=p+l; nlp] := {S’I]A p+l} ; set sentinel in ofa];

cament This writes a conditional transfer;
if afa) is sentinelled then begin

np] := {STA p+2} ; end;

I

p = ptl; nfp] := {CIA nh} ; h = h-1;

i

p = p+l; n[p] := {TIT -—-} 3
if ofa] is not sentinelled then begi
L = g+1; N 2] := (c(cfal), ---, p); end

a ! a-1;
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Assigmment.

EvVl:

EV2:

41

p := p+l; #[p] := {CLA nh} ; h := h-1; a := a-1
EvVe
P : pHl;

if ofa] is sentinelled then begin
w[p] := {STO C(nh)} 5 h := h-1 end

else n{p] := {STO C(a[a])} ; a 1= a=1

Operand and identifier.

STID:

SUBS &

PROC :

FUNC :

comment This stores the incaming "identifier" in the
auxiliary push-down.

a :=a+l ; aofa] := y[g] ;

comment The location of the element of an array is
canputed here. This depends on the k subscripts whose
values are stored in n{h-k+l], n{h-k+2}, ..., n[h] and
the information vector of the array A which is stored
beginning at address m in the translator (or more
generally in the target program); m itself is stored
in ofal.

If the information vector consists of the k dimension m,
and the (theoretical) location A[O, ..., O], the address
may be computed in the target program by the Horner
scheme:

address A[il, ceey ik] := address A[O, ..., 0] +

(...((mi X i + i) X Cm, + i3) X C(mB) + ...)ka_l+-ik5

This is stored by the target program in n[h-k+l]; h := h-k+l;
ofa] is sentinelled.;

cament This procedure may be designed to deal with the
parameter list that will follow in accordance with declara-
tions.;

comment A subroutine entry is written at this point to the
closed subroutine corresponding to the called vrocedure.
The actual code will depend on the method of subroutine
entry used in the machine. Linkage will be in terms of the
temporary level and information covered in declarations.;
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STV: cament Store value of expression in the next available
temporary. This is required whenever an identifier state
is combined with an end of expression indicator;
if ofa] # < n[h]> then begin
if ofa] is sentinelled then begin

p := p+l; n[p] := {CLA [n] } ; h :=h-1;

il
il

p := p+l; wlp] : STA p+l} H

il

{
p := p+l; =l p] {CLA ---} end

else begin

p = p+l; nlp] {CLA C(a[a])} end h := h+l;

p :=p+l; xp] := {STO n[h]} ; o[al := <n[h]> end;

5. Expression.

EXU: camnent This writes code in the target program for the
execution of a unary (arithmetic or boolean) operation;

if ofal # <nn}> then h := h+l;
p :=p+l; ofp] :=
{n[h] = (o C(a[a]))} ;
afa] := <nf[hl>
EXB: cament This writes code in the target program for the
execution of a binary (arithmetic or boolean) operation
or relation;
if ofa] # <n[h]> then begin if ofa-1] # <n[h]>
then h := h+l end else if ofa-1] = <n[h-1]>

then h := h-1;

p+l; alp] :=
{n[h] := C(ofa]) o C(Ot[a-l])} ;

a :=a-1; ofa] :=<nhl]>

]
i
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COMPEX: This incoming arithmetic or boolean binary operation or
relation is tested for precedence against the one stored
in the control push-down o[s]. If the latter does not have
lower precedence, it is executed;

if prec (o[s]) = prec (y[g]) then begin
EXB; Rep end

else begin Ent(E2, y[g)); Ent(0) end

For statement.
Copy v, Copy El, Copy E2, Copy E3:

These building blocks have as their functions the copying
of the character y[g] into a reserved space for four
strings denoted by v, El1, E2, and E3. These are then
used to construct strings which constitute ALGOL-like
statements which are processed by the translator.

Clo: comment This is used to clear counters for the above sub-
routines and in addition q := gq+l;
Al: coment This processes a list element of the type v := El.

The following string is constructed from the lists in the
spaces allotted for v and El:

"v := El; 8J Mg;"

This is then processed as if it were part of the ALGOL
program. ;

A2: coament In the same manner, a list element of type
v := El step E2 until E3 leads to an expression of the type
after u := u+l:

"v := El; Lu: if (v-E3)¥E2 = O then begin
SJ Mg; v := v+E2; go to Lu end;"

This is then also processed as if part of the program.

A3: comment This processes a list element of the type
v := El while E2. The string generated and processed in
this case after u := u+l is

"Lu: v = El; if E2 then begin SJ Mq; go to Lu end"



Cl:

Conditional.

IF:

ELSE:

THEN:

=il

coment This constructs a transfer past the subroutine
for the statement subject to the for clause and a sub-
routine entry to it;

u i= u+l; p = p+l; nlp] := {TRA ——-} 3 & o= b4l

A 2Y = (lu, ===, p); a :=a+l; afa] :=<Lu> ;

u :=u+l; p = ptl; w(p] := {‘SSE ~——} 3 £ o= 241

A 2] := (Mg, p, ===); £ := £+1; M 2] := (Lu, --- D);

a := a+l; qfa] :=<Lu>

comment This constructs the exit from the subroutine
enclosing the statement subject to the for clause.;

p := p+tl; w[p] := {TRA -—-} ; L oi= 1+1;

n 2] (c(ofal), p, ---); a :=a-1l; p := p+l;

1l

[ p] {NOP} ;3 L o= 2+1; A[2] :=C(afal), p, ==--); a = a-1

comment This clears the counters for Copy El, Copy E2, and
Copy E3;

comment At this point, a test is made on the Boolean value;

p = p+l; n{p] := {CLA n[h]} s h := h-1;

i
Il

p := p+l; nlp] {TIF -——} ;
odfa] :=<p> ;

cament The proper transfers are set following the first
statement or expression of a conditional statement;

p :=p+l; «p] := {TRA ---} s L o= 2+l N[ 2] = (===, ptl, ((afal))
afal] = <p>

comment This stores information concerning transfer previously
coded in the target program;

£ = 2+1; N[ L] = (-==, p+l, C(cfal)); a := a-1
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CC: comment This serves merely to adjust the temporary and
auxiliary counter in the case of a conditional expression;

if ofa] = <n, > then STV;
a :=a-13; h = h-1

CCl: comment This readjusts the temporary and auxiliary
counters.;

h := h+l; a := a+l; ofa]l := <n[h]>;
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One-Pass Translator. In the case of a translator where only one pass is

desired and adequate memory space is available, p-ALGOL will not be used. In
that case, the matrix can be enlarged and macros added to take care of the
operations otherwise executed in a prepass. The additions to the matrix and

the additional macros are summarized below. A considerable number of additional

entries in the matrix will be required.

) ° Anysigﬁiicable IC NCL NC2 NC3
letter Init|Copy|Ent(IC) | Copy

digit Init|Copy|Ent(NC1)| Copy Copy Copy | Ch(NC3) Copy
1 Init|Copy|Ent(NC2) Copy|Ch(NC2)

+ * * Ch(NC3) *
- * * Copy | Ch(1C3) *
OTHERWISE IDT|Rep NUMT| Rep NUMT| Rep
Macros:

Init: i:=0

Copy: i = i4l; v[i] := y[gl;

IDT: coment Pack the identifier string v[1], v[el, ..., v[i].

Check the resulting identifier against the identifier table.
If not there, assign an internal identifier or symbolic
(real or pseudo) address I, which by STID will be placed

in the auxiliary push-down.; y[g] := <I>;

1 Any state which has an entry for (I, o[s]) in the translation matrix.
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NUMT: cament Convert number string v[1], v[2], ..., v[i] to
machine representation. Check against number table. If
not there, assign internal identifier or symbolic address
I, which by STID will be placed in auxiliary push-down;
ylgl: <I>;

Detection of Syntactic Errors. If the form of the matrix that is used for

processing is the one without the OTHERWISE feature, syntactic errors can be
detected concurrently with the attempt to translate. Whenever a pair

(o[s], 7[gl) is encountered for which no entry is in the table, there is a
syntactic error in the program. If, therefore, entries that diagnose and
report errors are placed in all such otherwise vacant fields of the matrix a
rather complete error monitor is possible.

For a machine with a relatively small memory, it may not be possible
to have the additional code required by the error monitor in the memory at
the same time as the processing portion. In other cases, translators are
written by a group consisting of more than one programmer, and it is advis-
able to divide up the work into independent parts that can be constructed
simultaneously. In either case, it is advisable to carry out the check for
syntactic error in a separate pass independently of processing. This pass
should, of course, precede actual translation, and can be carried out in
process ALGOL.

The structure and coding of such a pass can be patterned after the
main processing pass. The matrix without the OTHERWISE feature is used. In
the fields where there are entries in the processing pass only the control
macros are kept. Care must be taken with some other macros such as COMPEX,

IDT, and NUMT vhere control functions are carried out within the macro itself.
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Here the control must be abstracted from the rest and retained. The control
push-down will operate exactly as in the processing pass. The auxiliary push-
down is not used. A program will be considered validly written if the control
function is properly executed throughout.

If such a diagnostic pass precedes processing, no loss of information
results and considerable space is saved if the matrix used in processing contains

the OTHERWISE feature.

Implementation of Blocks. If a program consists of a single block, the fore-

going description of a translator is complete. No declarations will be found
beyond the heading of such a block.

However, blocks will naturally occur also at least in the procedures
which are implemented in the system. This language requires some additional
planning. The simplest case is that in which no recursive procedures are
permitted in the program, and consequently blocks will also not be recursive.
In this case it is necessary only to provide for the storage of information
concerning the memory requirements of the variables of the containing blocks.
A subroutine within the target program may be used to provide for storage
allotments to arrays within the block which do not have fixed dimensions. No
adjustment will be needed on exit from the block, so that the problem of
performing necessary operations on exit in the case of recursive blocks does
not arise.

A block may be used recursively if it is part of a recursive procedure.
If the dimensions are fixed, the own array can adequately be handled. If the

dimensions are variable, complications are introduced into handling the arrays;
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copy operations will be called for whenever the dimensions change. Such copy
operations can be supplied, at the cost of increased running time. Whether
the trouble is merited depends very much on the use to which the translator
will be put in a particular installation.

Tables which must be handled in push-down fashion in the translation
are the label table, since labels are local, and the identifier table. Local
variable may be properly handled by the simple device of restricting the search
of the identifier table to the portion to which the local variable is loeal.
This can be done by making part of the identifier a serial number which indicates
the depth of nesting of the block to which the variable is local, and then
searching only to this level. An alternative is to search only fram the end of
the table when an identifier is encountered so that the last entry with this
identifier is encountered first, this being the local one.

Iabels are entered in the order found. At the end of the processing
of a block the final addresses of all labels local to that block are known and
therefore are assigned. Any labels to which assigmments cannot be made are
kept in the table, but the table can be shortened at this point. Alternatively
the assigrment of unspecified transfer orders may be made in the table, but
not in the program. In a final pass the addresses are set in the target program,

or the assigmment may be delegated to a subsequent loading routine.

Procedures. We outline here in brief the translation of procedures and
procedure calls which may be recursive, but which have only names as parameters.
A further simplification can be made if arrays are considered always as global
to the procedure.

The restriction of parameters to being only names is not severe. In

the case of simple values, it is possible to write ALGOL statements which assign
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the values of the desired expressions to new variables, whose names are then
used as parameters in the procedure call.

Basic to the processing of procedures is the use of a reserve push-
down H* in the target program. At any procedure call, the current contents
of all cells of H (nf{1], ..., n[h]) are copied into the reserve push-down,
along with h and the address to which control is normally to be returned at
the end of the procedure execution. In addition, h is then set equal to zero.
In effect, therefore, at the beginning of each procedure execution the
temporary push-down H is empty, and therefore no special means for translating
are necessary within the body. At the conclusion of the procedure execution,
the contents of H are restored. Any remaining elements of H due to the execu-
tion of the procedure must be moved to the end of the push-down list in this.

On an exit from the procedure other than the normal one, the return
address will not be used. The contents of the temporary push-down must,
however, be restored.

The handling of procedures in this way permits recursive subroutines.
Since recursion in some cases can be of arbitrary depth, in the case of
machines with small high-speed memory, it will be desirable to include in the
manipulation of the reserve push-down H* the storage and retrieval of informa-
tion from a secondary storage such as drum or tape. Corresponding to each
formal parameter in the procedure heading will be & link-word and a cell of
the push-down H. In the translation of a call, the addresses and pseudo-
addresses of the actual parameters are placed in the link-words. In the trans-

lation of a procedure heading and body, provision is first made for transferring
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the information in the link words into fixed storage locations assigned in H.
Then in the rest of the translation, the addresses indirectly in H are associated
with the formal parameters. Indirect addressing is necessary at this point, but
causes little trouble even in machines which do not directly provide for it.
Whenever a Tormal parameter is encountered in the body of the procedure, its
address must be set fram the contents of the corresponding definite cell of H.
In the case of arrays, the information will of course be removed one step
further, since the information stored in H in that case is itself indirect.

Some camplications still arise when the parameters are chained from a
procedure to one that it slaves. This can be worked out on similar lines if

desired, or it can be prohibited.

Input and Output in Target Programs. Since ALGOL 60 does not include provision

for input and output statements, such facilities must be designed to be used
with the language by the group constructing a translator. This paragraph may
be useful in such a design. Two ways of handling simple input and output
suggest themselves immediately. The first uses the procedure approach; in
this, certain identifiers are reserved for use with input and ocutput procedures,
whose bodies are not written in ALGOL. The second uses additional ALGOL-like
delimiters for input and output.

The first ALGOL translator for the ORACLE used at Oak Ridge Natiomal
Iaboratory uses the following additional delimiters:

1. read

2. read array

5. punch
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L. cr
The first three of these are used with a list of variables, names of
arrays, or aritlmetic expressions, respectively to form a statement having

one of the following forms:

read vi, v2, ..., vk
read array al, a2, ..., ak

punch El, E2, ..., Ek.

The function of the first two is to assign the values appearing on a paper
tape under the paper tape reader to the variables and arrays designated in
the order written. Values are assigned to the elements of an array in
lexicographic order of the subscripts.

The punch order transfers the current values in order to paper tape.
The delimiter cr constitutes a statement which punches on paper tape a
character that in printing activates the carriage return mechanism.

In general, more elaborate output format provisions are definitely
desirable with an ALGOL system, but the simple output given here can be used
until such formats can be designed and programmed. All of the output state-
ments (with the exception of cr) are handled during translation by a subroutine
entry with suitable linkword. 1In final compilation, a library subroutine is

compiled into the target program.
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Appendix
ORACIE Hardware ALGOL

1. The character apostrophe (') is reserved for use as a delimiter
indicator. It will have the punch pattern and keyboard location previously
occupied by %.

2. Any delimiter given in reference language by an English word or
phrase (underlined or italicized) is represented by the same word or phrase
enclosed by apostrophes. Examples:

Reference: go to procedure for
ORACLE: 'go to! 'procedure’ ‘for!

3. Five single-character delimiters of the reference language which
were previously not ORACLE characters have been made available. These, with
the characters that they replace and whose punch patterns they assume, are:

ALGOL character: 1 [ ] 7 ;

Previous character: ! o B c A

4. For the following delimiters, substitutions are made:

Reference ORACLIE Reference ORACLE Reference ORACLE
< '1s! /\ 'and' + ‘div'
= 'lseq! \/ Tor! X *
> tgr' — 'not’ ¢ "
= 'greg' = 'equiv! 7 "
# "nteq’ o) 'implies'

5. Any single-character delimiter not included above is the same as
in reference language.

6. While identifiers may be of any length, only the first five
characters have meaning to the ORACLE translator.

T. Number strings must be limited to ten digits.
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8. The upper and lower case punch characters are used as needed to
change case. The reader stop character is used to terminate each paper tape.

9. The ORACIE format characters, tabulator, backspace, carriage re-
turn, punch stop, and breakpoint, are ignored by the translator. They may
be used as desired. The space is likewise ignored except in strings enclosed

by a pair of quotes (").

10. The ORACIE characters which are not among those referred to above
must not be used in punching ALGOL programs.
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