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Exact Relativistic Fokker-Planck Coefficients

for Plasma and Radiation: III

Albert Simon

Oak Ridge National Laboratory*
Oak Ridge, Tennessee

Abstract

Exact relativistic Fokker-Planck coefficients have been derived in a

previous paper for the case of a plasma composed of electrons and infinite

mass ions. In this paper, these results are generalized to the case of an

arbitrary number of finite-mass ion species.

I. Introduction

In two previous papers1'2 we have expanded the "Hierarchy" equations for

plasma and radiation by a generalization of the Rostoker-Rosenbluth technique.

To first order we obtained a pair of coupled integral equations for the

particle-particle and particle-oscillator pair correlation functions. We

then considered the case of a plasma which, in zero order, was static, uni

formly distributed in space and with no external magnetic or electric fields,

together with a zero-order oscillator distribution which was also static. We

were then able to solve the particle-particle pair correlation equation exactly,

by a generalization of the method of Lenard and Balescu, for the case of

plasma composed of electrons and infinite mass ions. The resultant time-

asymptotic solution immediately yields the Fokker-Planck coefficients for

the electron distribution.

•^Operated by Union Carbide Corporation for the U.S. Atomic Energy Commission.



In this paper, we will sketch the generalization of the above procedures

for the case of a plasma composed of electrons and an arbitrary number of

finite-mass ion species, and obtain the corresponding Fokker-Planck coef

ficients.

II. The Pair Correlation Equations for the

Multi-Ion-Species Case

The Liouville equation for plasma and radiation has been written down in

a very general form in I [see Eqs. (l) through (9)1- It was only in the

perturbation expansion, going from Eq. (9) to Eq. (10), that we specialized

to a plasma of electrons and infinite-mass ions. However, from Eq. (9) it

is quite obvious how to write down Eq. (lO) if this assumption is not made.

The resultant zeroth-order equation still has a solution which is a product

of one-particle and one-oscillator distribution functions and each of these

obeys an equation which is an obvious generalization of Eqs. (13a) and (13b).

Thus

^_ + v-. _— + -d.
ot *-j dq. m.

1

c %x(jx^ -vaK°° dvvx
A
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where the sums over £ denote a sum over all the species of particles in the

plasma (electrons and ions) each having its own total particle number N and

electric charge e .

Similarly, the first-order equation still has a solution which is a

product of a pair correlation function and one-particle and one-oscillator

distribution functions, summed over all possible pair correlations (excluding
\

1 two oscillator correlations since these are absent in first order in a classi-
I

cal problem). Thus the generalization of Eqs. (25), (26), (27), and (28) of

I are obvious; and we may then go through precisely the same procedure as in

I to obtain a set of four equations in four unknowns. Once again, these may

be reduced to two equations in two unknowns, the particle-particle pair corre

lation function g(i,j) and the particle-oscillator pair correlation function

g(i,A). The generalization of Eq. (38) of I is easily shown to be:
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where

P(i) =-A J ± ) / Jq [v. x (Vx A)] - vA\\fUv) dqdv
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and the generalization of Eq. (40) of I is also easily found to be:
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We shall not write down the multi-species generalization of Eqs. (4l), (42), and

(43) of I since these should be obvious from the form of the results obtained

above.



III. The Fourier-Laplace Transform of the Particle-Particle
Pair Correlation Equation

As in II, we now specialize to the case of a plasma which in zero order

is static, spatially uniform and with no external electric or magnetic fields.

The zero-order equations are then satisfied by

3<*) = fofe) (3-D

(3.2)

where the f are completely arbitrary functions of the indicated arguments for

each particle species and each oscillator, and are normalized to unity for

integration over the argument. Once again we may then take the Fourier trans

form in space and the Laplace transform in time of Eqs. (2.3) and (2.5).

Proceeding as in II, we obtain

[ip + k-(v, - v.)] g(v.v ) =
4it

v*i ^i^j

af0<x,>
nij av, Xvi/5*^ d\

e. af (v.)

m. av. Vi, ^iV d3vi
e, af(v.)
1 o *»i

m. av.
i v»i

[v. x (k x E*(v.))+ F*(v.)]

e. af (v.)

m. av.

4it[v. x (k x E,(v.))+ F,(v,)] + — k
~*v1 ^v /v~l ««1 w-1 *«•! . 2*~\] pk'

e4e. afn(v.) e.e. dfJv.)

m. ° **j av.
1 ° —a

m. ° v-i av.
(3-5)



4ite. 01 iv.; \—i n

(ip + k-v.) E.(v.) - F,(v) = k- a *"1 ) n.e. / E.(vJ d3v,
km. »i *

1 i

Arte, afn(v.)
- —~ -^- • [v. x (kx Qo)] (3-4)

p av. -v" i •*-'• ^

4ite OI0\Ji'' V1 P
(iP +i'Xi) li^i) ""kli^ =— £ -^7— Ivjli^ d3v

f 4.
/t r-i o lite. af (v.) lite

(3-5)

In the equations above, E and F have been defined slightly differently than

in II. Thus

J(v) =(*rtV)2 £ uK f^ g(v q^up dq^dv^ (3.6)
K

F(v) = (8itV)2 > iu /v g(v qvu)dq dv (3.7)
K

Equations (3-3), (3-4), and (3-5) above are the generalization of Eqs. (2.1l),

(2.12), and (2.13) of II. We now define the constant vectors

I Vi/ji(*J> d\-^ (5-8>

ViJ JiW d\=Z* (5'9)
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and solve Eqs. (3-4) and (3.5) for E and F in terms of C, and C_ just as

before. Then these results are substituted in Eq. (3-3) to give a single

integral equation for g(v.v.). As before we also consider only the time-
*~ 1 j

asymptotic value of g(v v.). As a result we obtain the following generaliza-

tion of Eq. (2.2l) of II:

/ \ lim 4it
g(V V J = ; \e~i-j p -> o ip + Hv± - v.) Lr2
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—1
Vi '%^] d\

*

m. av.
3 -J
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2^2(k-v.)2 - k2c
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e.e. afn(vj af (v.) r v..[C* + (k-v.)C*] v..[C + (k-vjc 1
1 i OVvi' Oi—i —1 -~2 \~. «~ -] ~»1 —i *-2 V^"-i'^lJ_ n

k2^m.m.
1 J

a^ av7 (k-v.)2 - k2c2 (k-v )2 - k2^
«^-*-l

V ^ fflrt
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e.e.

+ X -1 [(k.v.)(k-v.) - k2c2]k-
O *«v """"J. ^k* wi

af0(v.)
af0(v.) av •S

"aT
(k-v.)2 - k2c2

W OV

m.m.k'
i J

*<&!>
s l] • C,
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TJ

"57i (k-vj2 - k2c2
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*• l *-i
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(k-v.)2 - k2c2

3

e. -af0(v.)

m. av.
J -J

e.e.

,1 i

Xnjej/(I*.Z*> s(^i} d3yi
eiei fo(Xj)

(k-vj2 - k2c2

Vli) afo(vJ

m
i (k-v.)2 - k2c2

e.e.

^_i_ .i.v. _ _i^L
av. v~i m.m.

—5 -I'V.
av. ~j

m j (k-v,)2 - k-c2„2

[(k-v,)(k.v.) + k2c2]

'imj [(k-v.)2 _ k2c2][(k-vj2 - k2c2]
~ "~3 - ***i

*oW *oWi' , "Q^.r eiei afo(^i} ^oW
— av. ~*i ^° «~j m.m. dv. ^° dv

~i —j l j ~~i ~-j

e.e,

m.m.

i J

e.e.k
1 O^L

tm.m.k'1
i j

(k-v.)k- —5—x
v* *~i _ dv.

afn(v )
-uii-p t \ (k-vjk- —r-Of_(v.) j'*~ a

—i

(k-v.)2 - k2c2 ~Zi'^o- -5V.

3 (k.v.)2 - k2c

~aV^" afo<Zi>
(k-v.)2 - k2c2 dZi (k-vj2 - k2c2

2„2 ~~3 ° "57"

(3-10)



IV. Generalization of the Lenard Balescu Method

We can solve Eq. (3-10) in the same manner as in II if we generalize

our previous definitions as follows:

H(u) =k 2^ ViJ h(vt) 5(ku -k-v^) d3Vg (4.2)
I

ife) =X niei/(i-^} g(^i} -\ {k^

P(u) =k^n^/p^) &(ku -k.^) d3^ (4.4)
i

S(u) =k^n^/fl-v,) h(v^) 6(ku -k.^) d3v, (4.5)
i

T(u) =kXvi/^)(I^) &^- "*vV d3^ (4.6)

as well as those for the modified zero-order functions:

FQ(u) =k^ n^e2 ffQ(v£) 5(ku -k-^) d3^ (4.7)
Zn.e2 n afn(v.)

-iff ~-f- ^ -*?.> *\
-- n e2 p af (v )

5(u) -i-L-ifJ -%r (I^} 5(ku -^V dSv^ (M)

>(u) =kXv?/^ fo(^} 5(ku -~k^} d3vi u-io)

(4.8)
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i

Zn.eT p ai.^v.)

Zn.e? p af (v.)
— / S (l-v,)(v..l) S(ku - k-v,) d2

I £ ~£

MQ(u) =k£ n£e*ft0(vt)(l.Zi)(vt.l) 6(ku - k-v,) d3^

SfO^) , , 3— 5(ku -*.Zi) a\^^X^/^V1--^

(4.11)

(4.12)

(4.13)

(4.14)

We now proceed exactly as in II. The first equation is obtained by inte

grating Eq. (3.10) over d3v., multiplying by n.e. and summing over all j. We
J 3 3

obtain

h(v.) = lim du' 4rt ffi 1 afofe)
^ Im. k ""Sv^i'-.-oJ ie + u, -u- _-[m. k '~ie- [H*^> + Fo^')3

Fi(u') [h(v±) + e^v.)]* 2
e -k afQ(v.) v -P*(u')

'M.' ~i

m. k
1 *-•

~ar
i (u')2 - c2

*
p(v.)

-jA(u-) --1
2 2

tff - c^
(4.15)

where ku = k«v. and where we have written only the first few terms in the

equation since these are all that are necessary to illustrate the method of

solution and since the remaining terms may be readily obtained from Eq. (3.10)

Similarly, the first few terms of the equation for H(u ) are:*

*This definition of H(u) and its use in obtaining a solution for many-species
in the pure Coulomb case was first pointed out to me by N. Rostoker (private
communication).

* 5£TF e«m
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H(u.)V~,^0/ic +% -u> ?{W **(u') +V-')] "F>'>

^ • [E(m±) + F0{u±)] +2

and for S(u.), we have
v» X

Jo(uJ.
J>*(u')

(u1)2 - c2
MM*-. V^

P(u.)
v« 1

2 2
U7 - C^

S(u.) = lim
*~ 1 € -* 0 /1.+ uu'- ,• :f {i°K> «*<»'>+ Fo("')i - »;<»•>

u 1 k^ ^

^ •£(V +io(ui)] +2[*&(\)
P*(u')

(u')2 - c2
-j;cu.).

T(uJ

2 2

(4.16)

(4.17)

Note that Eqs. (4.16) and (4.17) are formally identical to Eqs. (3-l6) and

(3.17) af II except for small differences in n and m due to altered dimensions

in the definitions of FQ(u.), etc. Of course, a similar set of equations

exists for p(v ), P(u,), and T(u.).
v— *~i ^*- 1 1

Once again, as in II, we reduce Eqs. (4.15), (4.l6), and (4.17) to a

single equation which no longer has an integral term in it by multiplying each

equation by a 3 by 3 determinant and adding. It 1b clear from the form of the

coefficients of H*(u') and 2 P*(u')/[(u*)2 - c2) that these determinants are:

I I T I

£ -

•fcSZt EWM

M.
12

1

l22
M.

(4.18)



d

£-

12

i V.
11 Ti2

k

k av.
«-»i

^ M'
ii «^

k af0(v.)
k av.

*»i

k afQ(v.)
k ' aV.

«~i

J2 M21 M2l22

J2

V, V,
ii i2

J2

Kx K*

1 V. V,
ii i2

F'

M.
ii

M.
12

(4.19)

(4.20)

(4.21)

which are identical to those used in II except that v. and u have subscripts

on them, and now F^, Jq, and Mg have their generalized definitions. It is

clear now that the entire procedure of solution goes through as before.

V. The Fokker-Planck Coefficients

Thus we obtain the final result for the Fokker-Planck equation for the

distribution of species i:

r.h.s.
a

SvT
A. f (v.) + B,
/-l OVvL i av.

(5-1)



where

where

"i ~ (2it)3 n.J k2

B. =
l

Y(u.)

or

_Ei_

bf

-Ei-

13

— lM(a, . i . a.) d3k
o /—l 1 —1

(2it)3 n.m. '
ii

k k G

^-^ lM(a. • ± • -r • a ) d3k
3 <v-~l ^ (_J ^>1

a, = (1, v v )
<v~l 11 21

X.

^+B0)12
2 2

^+Bo)2i V- + (0+Bo)22

Fo Ji

G(u.) = / Jx MX1 M12

J2 M21 ^22

G'(u.)

/Fo Ji J2

J, M,, M.
11 12

^2 M'
21

M*
22

- k 5zt &£fiT#

(5-2)

(5-3)

(5-4)

(5-5)

(5.6)

(5-7)
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,, ,, p F'(u') du*
*(u.) = lim -- j j-- r (5-8)i e -* o v2j ie + u. - u' w '

X(u.) = llm -- /^£ . (5.9)
k^ u i

•h™ l* r Mo(u') du'

B0-JJ\,Udu
r-^ u2. p af„(v )

X

and FQ, F^, etc. are defined in Eqs. (4-7) to (4.l4).

The reduction to the isotropic case is as direct as before and we obtain

h'^tj -{ ?+ z s M3* (5.12)
i k v t ., ,/ \ i uf - c

lw<VI |!L_^+(e+So)lll

OJ2* v-d^ffi-^* ^-;fw }d3, (,13)

Of course, the entire right hand side of Eq. (5.1) vanishes when all species

are in a Maxwell-Boltzmann distribution with the same temperature.
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