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Page 6 - Replace 8x by Lx everywhere in Egs. (3.4), (3.5), (3.6), and
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(3.7)-

7 - Delete the factor of 2 on the third line and sixth line of the

equation.

& - Change 8x to 4x on the third line of the equation, and delete
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the 2 in the last line.

Delete the factor 2 on the second line of Eq. (4.15).

Delete the factor 2 on the second line in Egs. (4.16) and (L.17),
and also on the last line of print bvefore the P*(u').

Delete the 2 in (u§ - c®)/2 in Eq. (5.5).

Delete the 2 in (u§ - c®)/2 in BEq. (5.13%).
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Exact Relativistic Fokker-Planck Coefficients
for Plasma and Radiation: III

Albert Simon
Osk Ridge National Laboratory*
Oak Ridge, Tennessee
Abstract

Exact relativistic Fokker-Planck coefficients have been derived in a
previous paper for the case of a plasma composed of electrons and Infinite
mass ions. In this paper, these results are generalized to the case of an
arbitrary number of finite-mass ion species.

I. Introduction

172 ye have expanded the "Hierarchy" equations for

In two previous papers
plasma and radiation by a generalization of the Rostoker-Rosenbluth technique.
To first order we obtained a pair of coupled integral equations for the
particle-particle and particle-oscillator pair correlation functions. Ve
then considered the case of a plasma which, in zero order, was static, uni-
formly distributed in space and with no external magnetic or electric fields,
together with a zero-order oscillator distribution which was also static. We
were then able to solve the particle-particle pair correlation equation exactly,
by a generalization of the method of Lenard and Balescu, for the case of
plasma composed of electrons and infinite mass ions. The resultant time-

asymptotic solution immediately yields the Fokker-Planck coefficients for

the electron distribution.

*Operated by Union Carbide Corporation for the U.S. Atomic Energy Commission.




In this paper, we will sketch the generalization of the above procedures
for the case of a plasma composed of electrons and an arbitrary number of

finite-mass ion species, and obtain the corresponding Fokker-Planck coef-

ficients.
IT. The Pair Correlation Equations for the
Multi-Ion-Species Case
The Liouville equation for plasma and radiation has been written down in I
a very general form in I [see Egs. (1) through (9)]. It was only in the l

perturbation expansion, going from Eq. (9) to Eq. (10), that we specialized
to a plasma of electrons and infinite-mass ions. However, from Eq. (9) it
is quite obvious how to write down Eq. (10) if this assumption is not made.
The resultant zeroth-order equation still has & solution which is a product
of one-particle and one-oscillator distribution functions and each of these
obeys an equation which is an obvious generalization of Egs. (13%a) and (13b).

Thus
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where the sums over £ denote g sum over all the species of particles in the
plasme (electrons and ions) each having its own total particle number Nz and
electric charge e,
Similarly, the first-order equation still has a solution which is a

product of a pair correlation function &nd one-particle and one-oscillator
distribution functions, summed over all possible pair correlations (excluding
two oscillator correlations since these are absent in first order in a classi-
cal problem). Thus the generalization of Egs. (25), (26), (27), and (28) of

I are obvious; and we may then go through precisely the same procedure as in

I to obtain a set of four equations in four unknowns. Once again, these may
be reduced to two equations in two unknowns, the particle-particle pair corre-

lation function g(i,j) end the particle-oscillator pailr correlation function

g(i,7\). The generalization of Eq. (38) of I is easily shown to be:
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and the generalization of Eq. (40) of I is also easily found to be:
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We shall not write down the multi-species generalization of Egs. (Ll.l), ()-1.2)’ and

(hj) of T since these should be obvious from the form of the results obtained

above.



|
III. The Fourier-Laplace Transform of the Particle-Particle
Pair Correlation Equation

As in II, we now specialize to the case of a plasma which in zero order
is static, spatially uniform and with no external electric or magnetic fields.

The zero-order equations are then satisfied by

5(1) = £5(y,) (3.1)
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where the fo are completely arbltrary functions of the indicated arguments for
each particle species and each oscillator, and are normalized to unity for
integration over the argument. Once again we may then take the Fourler trans-
form in space and the Laplace transform in time of Egs. (2.3) and (2.5).

Proceeding as in II, we obtain
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In the equations above, E and F have been defined slightly differently than

in II. Thus
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Equations (3.3), (3.4), and (3.5) above are the generalization of Eqs. (2.11),

(2.12), and (2.13) of II. We now define the constant vectors .
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and solve Egs. (5.&) and (5.5) formlﬁi‘. and_f‘ in terms of 91 and£2 Jjust as
before. Then these results are substituted in Eq. (3.3) to give a single
integral equation for g(yixj) . As before we also consider only the time-
asymptotic value of g(mvi
tion of Eq. (2.21) of II:

Y-j) . As a result we obtain the following generaliza-
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We can solve Eq. (3.10) in the same manner as in II if we generalize

Iv.

our previous definitions as follows:

as well as
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n,e2 of (v,)
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We now proceed exactly as in II. The first equation is obtained by inte-

grating Eq. (3.10) over davj, multiplying by njej and summing over all j. We

obtain
iy - M [ e b 005 %) ]
- € >0 ie + u, - u' k2 Lmg k §~i v ot
) e, "k of.(v,) v,-P*¥(u)
SR () +egty(y)] v 2| 2B SEE SLE
o i 170 m, k ov, (u')2 - o2
' E(Xi)
% - Jglu) - S }}+ ........ (4.15)
uf - ¢

where kui = k-vi and where we have written only the first few terms in the

equation since these are all that are necessary to illustrate the method of

solution and since the remaining terms may be readily obtained from Eq. (3.10).

Similarly, the first few terms of the equation for H(ui) are:”

*This definition of H(u) and its use in obtaining a solution for many-species
in the pure Coulomb case was first pointed out to me by N. Rostoker (private
communication) .
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and for S(ui), we have
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Note that Egs. (4.16) and (4.17) are formally identical to Egs. (3.16) and
(5.17) of II except for small differences in n and m due to altered dimensions
in the definitions of Fo(ui), etc. Of course, a similar set of equations
exists for P(X

),éE(u ), and T(ui).

i i
Once again, as in II, we reduce Egs. (4.15), (4.16), and (4.17) to a
single equation which no longer has an integral term in it by multiplying each

equation by a 3 by 3 determinant and adding. It is clear from the form of the

1 coefficients of H*(u') and 2 P*(u')/[(u’)2 - c2] that these determinants are:
1 1 1
Fo J, Iy
1 1 H
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which are identical to those used in IT except that A and u, have subscripts

i
on them, and now Fc'), Eé, and Mc'> have their generalized definitions. It is
clear now that the entire procedure of solution goes through as before.
V. The Fokker-Planck Coefficients
Thus we obtain the final result for the Fokker-Planck equation for the

distribution of species 1i:
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Of course,

the entire right hand side of Eq.

[1+\uu)l

are in a Maxwell-Boltzmann distribution with the same temperature.

A
¥ gl

and
Fo(u') au’
lim  L=x 0
W(ui) T e-o ;;L/\ ie + u, - u' (5.8)
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and F, F(;, etc. are defined in Egs. (L4.7) to (Lk.1k).
The reduction to the isotropic case is as direct as before and we obtain
Folu') (v - u®) Mpy(u.)
A, = f { + = i’ 1t }dsk (5.12)
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I 1 + \II )l I i + (e+ B I2
) 11
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(5.1) vanishes when all species
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