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ABSTRACT

A first step in analyzing the stability of solutions of the Vlasov

equation governing hot plasmas of low density is to solve the linearized

equation for the perturbed space and velocity distribution function in

terms of the perturbed electric and magnetic fields. This report pres

ents an explicit Green's function solution for the distribution together

with two examples of its use. The Green's function is found by first

transforming to equilibrium constants of motion as variables, and thus the

method is similar to that of Bernstein,1 who employed constants of motion

in solving for the distribution by direct integration.

1. I. B. Bernstein, A Proposed Method for the Analysis of the Stability of
Highly Symmetric Hydromagnetic Equilibria via the Boltzmann Equation,

NYO-7996 (1957).
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INTRODUCTION

This report treats a mathematical device useful in the analysis of the

stability of solutions of the Vlasov equation, also called the collisionless

Boltzmann equation, which governs the behavior of hot, fully ionized gases,

or plasmas, at densities low enough that the effect of close collisions is

negligible in comparison with that of fields due to the net charge and cur

rents in the plasma. Methods of stability analysis have been reviewed by

Jackson.2 Here we shall present a variation of a method proposed by Bern

stein.1 By transforming from space and velocity to equilibrium constants

of motion as variables, we are able to give a simple and explicit Green's

function solution for the perturbed distribution function in terms of the

perturbed electric and magnetic fields.

I. STABILITY CRITERION FOR THE VLASOV EQUATION

The time-dependent distribution function in space and velocity, f ,

for each species of charged particles in the plasma, charge e. and mass m.,

is assumed to satisfy Boltzmann's equation without a collision term,

af(D _> Sf(l) ei ,* i- * af(l)
\rj + —

dx i dv

1 /-*• 1 -> -»\ OI / \_— + v . -- ^ + -i (E + i v x B) . UJ-_ = 0. (l)

This becomes Vlasov's equation if those parts of the electric and magnetic

fields, E and B, due to the plasma rather than external sources are required

to satisfy inhomogeneous Maxwell's equations with charge density

2. J. D. Jackson, Plasma Oscillations, Space Technology Laboratory Report
GM-TR-0165-OO535 (19587!



f - (i) V f --> (i)e. / dv f and current density ) e. / dv v f

As usual, a set of time-independent solutions, f , of (l), one for

each species, is regarded as stable if no small perturbation f^ grows in

time exponentially fast. Equivalently, f is stable if the Laplace trans

form of f , given by

41} = J dt e"^ f^ (x,v,t) , (2)

exists for all Re p> 0. If f exists, it is obtained approximately by

linearizing (l) in unperturbed quantities and taking the Laplace transform

of the result,

(p + L.) fU<> +-^ —2— .(1 4vxB) =fl} (0), (3)
l p mi ^ P c P 1

where f^ (0) is f^1' at t=0 and L. is the differential operator in (l),

excluding d/dt, with E and B replaced by the unperturbed fields, E and B ,

so that L f^1' = 0. Conversely, f^1' exists for all Re p>0if for such

p its solution obtained from (3) has no singularities.

II. DISPERSION RELATION

Because E and B depend only on the net charge and current



ppo. I el fa £>

V^-I'i/^'^15' w

the coupled system of (3) plus Maxwell's equation can, in fact, be reduced

to one equation for the four current, J , composed of the three components

-* -» / \ (i)3 plus p , which are functions of x only. Solving (3) formally for f ,
sr Sr sr

f(1) =- (p +Lj_i ^ —— .(f +i^xB>) +(P +L.r1 f^ (0). (5)
p * i m. >,-»• p c p VJ^ 1 1 v ' w/

Substituting (5) into (k) and noting that E and B result from linear inte-
P P

gral operations on J , we obtain a result of the form

J(x) =J dx*' K(x,x') •Jp(x') +J dx"' Q^(x,x') •J^O). (6)

Here J1(0) is the four-current perturbation at t = 0 given by (^4-) with f

replaced by f^_ (0), and the kernels K and Q. which shall be discussed in

more detail later, are h x k matrices containing the operator (p + L.)"1, etc.

Transcribed, the stability criterion now states that f^ is stable if

solutions of (6) for J are non-singular for all Re p > 0. Excluding J (O)

as a source of difficulty, singularities in the four current J satisfying (6)
Sr

correspond to solutions of the homogeneous counterpart of (6),



dx' K (x.x1) . J (x') = J (x), (7)
p ' P P

which we write symbolically as K J = J . Since K is a linear operator, (7)

has solutions if and only if

det (K - I) = 0, (8)

where the identity operator I is a k x h diagonal matrix, each diagonal

element being 5(x - x'). Regarded as an equation for p, (8) constitutes a

"dispersion relation" [for Re p^ 0 only unless singularities in (p + L.)"1

for Re p = 0 are handled carefully].

The simplest situation would be that in which K is known in the
P

representation of its eigenfunctions, its diagonal representation. The tract

able cases of infinite, spatially uniform plasmas, with or without an applied,

uniform magnetic field, are of this type, the eigenfunctions being simply

plane waves, exp ik«x, independent of p. Then the secular equation (8)

separates into one equation for each diagonal component (each k), which may

easily be found by substituting each eigenfunction into (7), operating by K
Sr

to give back the eigenfunction multiplied by a function of p, and finally

dividing the eigenfunction out of the result.

That plane waves, which are eigenfunctions of T2, are also eigenfunctions

of K in the case of infinite, homogeneous plasmas implies that Vz and K
p > p

for that case commute. This commutation requirement affords a convenient

criterion for determining whether other known orthogonal and biorthogonal sets,



being eigenfunctions of known operators, diagonalize K for more complicated
sr

plasma configurations. In this connection, we mention that choosing as

complete sets any of the other harmonic functions in preference to plane

—> -»

waves does not extend the method beyond uniform plasmas if E and BQ are

independent of x, since then the commutation of <72 with K requires also that

fQ be independent of x.

Lacking eigenfunctions, the next simplest cases would be those in which

K could be only partially diagonalized. For example, for cylindrically
sr

symmetric equilibria, eigenfunctions would be Fourier modes in 9 and z, so

that (7) would reduce to an integral equation in just the radial coordinate.

If all else fails, one may consider the various series expansions of the

secular equation,3 or, since the question is whether a single number, unity,

can be an eigenvalue of K , one might attempt to apply theorems bounding the

eigenvalues such as the "exclusion theorems" utilized in numerical analysis.4

However the dispersion relation may be handled once it is obtained, we

first must evaluate K explicitly. Evidently, from (5), a first step is
sr

finding the inverse of the differential operator, p + L.. When EQ, B0,

f^1' are independent of x, this can be accomplished by Fourier transformation

in space. For cases when these quantities depend on just one space coordinate,

Bernsteinx proposed first to transform from v to three equilibrium constants

of motion, solutions of L u = 0, whereupon (3) reduces to a differential

3- Besides the familiar Fredholm expansion, see also the general "optical
model" perturbation formulae of W. B. Riesenfeld and K. M. Watson, Phys.
Rev. 10k, i+92 (1956).

k. Ky Fan, Duke Mathematical Journal, 25, Ma (1958).
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equation in one variable to be integrated directly. As we shall show, our

variation of his method, employing six constants of motion, also reduces (3)

to quadrature but in what appears to be a more convenient form, essentially

a Fourier integral. In short, Bernstein integrates (3) directly, while we

seek a Green's function solution. Of course, as with Bernstein, employing

the equilibrium constants of motion as variables is convenient in that f^

must be a function of them, and, with our complete set, arbitrary equilibrium

states can be constructed.

III. TRANSFORMATION TO CONSTANTS OF MOTION

In situations of sufficient symmetry to admit three evident constants of

motion, say ui, vs., U3, independent of t, it is often not difficult to find two

more, U4 and us independent of t, plus another of the form t - vie. For example,

if the equilibrium force, -W, depends on x but not y, z, and t, besides the

three evident constants, v , v and the Hamiltonian function, H, which may

serve as ui, U2, and U3, we may construct other constants independent of these

as follows. Since v is constant, z/v measures time, t - z/v is constant,
z ' ' z ' ' z '

and thus z/v can serve as ug. Similarly, y - v t is constant, and, employ-

ing z/v as time, y - v z/v can serve as U4, independent of t. Finally,
z y z

we construct us from z - v t, now measuring time in terms of x-motion, to give

u = z - v / dx'
5 z ,/

^ [H - V(x')]- v2 - v2
m y z



To be a time-independent equilibrium distribution, f may depend on ui to

U5 but not Ug.

On transforming from x and v to the six u's, L. becomes simply

since L u = 0 for ui to 115, and L u = 1 in order that

^+L± )(t-u6) = 0.

Thus eigenfunctions of L are Fourier modes in Ug,

iwug h(ui ... us),

with arbitrary dependence on ui to U5 expressed by h. If we restrict our

selves to functions of the u's normalizable either in the equivalent of all

-»• —>•

x,v space or in a large box with periodic boundary conditions, we may take <*>

real, since L., analogous to i times the quantum mechanical momentum operator,

is anti-Hermitian over the space of such functions with respect to the scalar

product

(^,\[r) = / dui ... dug fal•

Then, eigenfunctions of L. are complete and orthogonal, and (p + L.) 1



8

exists in the positive real half of the p-plane where J must be examined for

singularities. Expanding (p + L.) x in the eigenfunctions gives

5 » i^Ug-Ug)

(p + L.)"1 = TT S(u. -u!) / du I-7 tt . (10)
i IJ- J 3 J 2it(p + iw) '

j=l -oo

If Uq has the nature of an angle, special precaution is required to guarantee

that eigenfunctions are single-valued in x and v space, w may then be dis

crete and the integral in (lO) becomes a sum.

We may return to the original coordinates by noting that the Green's

function G. (xv, x'v') representing (p + L.)""1 is given by (lO) expressed in

terms of x, v, and multiplied by the Jacobian

S(ui ... Us)

*(x,7)
(11)

However, as we shall see in the examples to follow, it is generally more

convenient to employ the u's if such a set is known. Because (p + L.)~1

contains five 5-functions in ui to U5, an integration over x', v1 in the

computation of K and Q is, in u-space, a line integral along a straight path

parallel to the us-axis, whereas in x, v-space the integration path has

complicated curvature. Furthermore, since the ug'-dependence of (p + L.)_1

is exponential, on Fourier analyzing the rest of the integrand with respect

to Uq', the vie' integration yields a sixth 5-function, in w, and thus the

complete x', v' integration is made trivial by the transformation, and K and

Q are reduced to integrals over all v-space.



IV. TWO EXAMPLES

In order to illustrate the use of our solution for (p + L ) """, we shall
—> —*

simplify the other parts of K by letting B = 0 and taking E to be electro

static,

Then

E = dx' -^JL* p (x«). (12)
P J ._> _ .3 P

Kp(x ,x") =

ef p r oT^x'v') -, ->„
-i /dv /dx"' dv' G, (x^,x'v') —^ • x "x , (13)
m, J J IP ' ^, _ 3 '

1 dv1

G. being (p + L.) x in x,v representation.
IP

We shall treat two well-known problems in which eigenfunctions of K are

plane waves. First, we consider the stability of an infinite, uniform, one-

dimensional plasma of electrons and a fixed positive background such that

2o = BD = 0. fo for electrons can depend only on v, the constant of motion

independent of t. We employ the transformation

ui = v

ite = x/v
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where U2, analogous to uq, above, measures time in terms of particle motion.

For one dimension, the kernel in (13) depending on x1 and x , which arises

from Maxwell's equation, is to be replaced by 2jt(x' -x") /|x' - x" |. Fourier

analyzing factor in order to get at x' and x" separately, and trans

forming from x', v' to ux, ug, we obtain from (7)

iw(u -u')

p(x) = - — / dv / dk / du' du' &(u - u') / dwm J J J1211J 2jt(p + ±u)

^o ^ 1^11^ P^" _ikx"
e / — e p(x ),^ t ik J 2it

where integration on x" has introduced p , the Fourier transform of p(x).

Integrating first over U2' to obtain o(w - ku ), and then on cj, yields

2 p p ikx df 1
p(x) = / dv / dk —•—-— ^— 77 p, •

m J J p + lkv ov lk k

Fourier transforming and dividing out p gives the well-known dispersion rela-

tion for unstable p/

00 O

mk J
kv - ip

Next, we consider a three-dimensional plasma of electrons and fixed positive



11

background, again with EQ = 0 but let B0 be a uniform field in the z-direction.

->. -* -* -* 3
As before, we shall Fourier analyze (x* - x")/|x' - x"| in order to get at

the x'-dependence, and we shall perform the x', v' integration by means of the

transformation

ui = v cos <J> - w r sin Q
-L x r c

up = v sin ^ + u r cos 9
^ x r c

U3 = v±

VU = V
^ z

us = p7 + wc (z/vz)

us = z/vz.

We have employed polar coordinates in the x - y plane of both ordinary space

-*• , -*

and velocity space, these being r, 0 in x-space and v , <p in v-space. The

first five u's can be found to satisfy Lu = 0, as they are essentially the

-»

initial values of x, y, and v, and the sixth is a proper measure of time,

since z is cyclic. These u's are evidently independent in the necessary sense

that no one is a function of the others. For the solvable case with f0

independent of x, fo can depend only on U3 and U4. Then, in terms of u's,

evaluation of two quantities we shall require to compute K gives
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,r* -*• rku k vl, k.u.
lk'X . J -1- 3 . ,n a J-^2 . J- 1

e = exp l i sin 0 - d>) + cosO - sin9 + k u u
^W r/U to Z46

^ c c c

df df df-^.k=kicos(0-5Zi) ^- +kz^- , (HO

where k = k cos9, k = k sinO, o in terms of u's is
x j_ y _i_

4 = S " wcu6 >

and w = eB/mc is the cyclotron frequency.

If we Fourier analyze the integrand of (13) with respect to 1%', then,

as in the previous example, integration on ug' yields a S-function in u.

Since (/> depends linearly on Ug, we may simply Fourier analyze with respect

to © - <j>, making use of the following relations involving Bessel functions:

k vl
j 3

i sin(9-cz0 00

•I -n(¥>in(M)
n=-oo

k^u
i sin(9-^) j»_

cos(0 -0 e "C = V ~^—J (-^ )ein^"^ • (16)
n=-oo

n

)
' kXU3 ^

' Uc '

\ in(0-$

v c '

)e

Then, introducing (l*0, (15), and (l6) into (13), transforming from x', v'

to u's and performing these integrations and that over w, we obtain from (7)



p(x) =

13

\\ _in(9-oO
w2 /

dk fl fdve1*'* y
Vn w

c

e

/
m J

k2 /̂ z_,
n=-oo

- ip + k v
z z

+ nu)c

00

•I
e-im(9-o0 j /

m v

' Vl >V
, wc ;

m=-°°

where or* is the Fourier transform of the density and

nw df Sf

Tl V CiV, Z Sv
J_ J- Z

(17)

k v

Once again a quantity exp [- i ^ "*" (9 - jzO ] which arises has been expanded
c

by (15). In carrying out / dv, the integration over (/> yields by ortho

gonality 2k is m = n, zero otherwise. Finally, Fourier transforming (17) and

factoring out p gives the dispersion relation

OD 00

/ k v

mk2 ^ J ZJ -L-U-ip + kv+nw
n=-°° -°° o z z c

which agrees with the result obtained by Harris.'

5, E. G. Harris, Unstable Plasma Oscillations in a Magnetic Field, ORNL-2728
(1959).
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