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ABSTRACT

An inline densimeter was fabricated and tested in the laboratory. When
operated in a range of 1.000 to 1.200 g/cc an accuracy of +0.2$ in the mid
point of the range was easily achieved. The instrument also measures pulse
amplitude and pulse frequency when used on a pulsating flow. A long life
with high reliability is expected because of the simple all-welded construc
tion and highly reliable electronic system.
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1.0 INTRODUCTION

An inline densimeter is described which measures the density of the
continuous phase at a selected point in a pulsed column used for extraction
of uranium from aqueous solution by an organic extractant. From the density
the degree of saturation of the solvent can be measured, and thus any shift
in column profile can be determined early and provision made to prevent
losses. Measurement of density of radioactive process solutions is difficult
because the presence of high radiation fields limits the selection of
materials of construction and increases the problem of properly servicing
the instruments. A special feature was designed into this model for pulse
amplitude sensing, but the instrument could be used in other types of
work, e.g., in ion exchange and process solution makeup.

Acknowledgments. R. W. Stelzner of the Analytical Chemistry Division
furnished the design for the electronic system and assisted in the laboratory
testing of the densimeter.

2.0 PRINCIPLE OF OPERATION

The principle of operation of the densimeter is: the position of the
float changes as the density of the liquid changes because of the change in
requirement of spring tension to balance the buoyant forces on the float.
The differential transformer precisely measures the change in position of
the float and provides a signal which, with proper electronic modification,
can be measured on the Brown recorder.

2.1 Description of the Densimeter

The densimeter (Fig. l) is composed of a stainless steel sensing float
which contains a soft steel armature, a flat piece of stainless steel l8_
gauge sheet metal 1 in. wide by 8 in. long which serves as a float guide
and spring, a differential transformer which senses the position of the

float, a float zero positioning mechanism which consists of the spring
support, a l6-gauge diaphragm through which the spring support passes and
four adjusting screws, and the housing constructed of l/8-in. thick stain
less steel and l-l/2-in. standard pipe sections. The housing was flanged
together to permit disassembly for changing spring and float design. The
solution entrance was directly beneath the float and the discharge directly
above.

2.2 The Electronic System

The electronic system (Fig. 2) consisted of the differential transformer,
a 0.33-Uf condenser to resonate the transformer, an M500 rectifier, two
resistors, one 10K and one 200-ft measuring resistor, and a 500-uf condenser
which was switched in and out to separate out the column pulse and density
measurements periodically. A Brown Electronik recorder completed the system.

2.3 Operation of the Densimeter

The range of the densimeter was set up as follows: a liquid of a known
specific gravity was placed in the instrument and then the float was positioned
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to give the proper readout. Care had to be taken that the range of density
measurements desired fell in the straight-line portion of the calibration

curve (Fig. 3)-

3-0 EXPERIMENTAL TESTING

The instrument was installed in a simulated pulsed column (Fig. h).
After the instrument range was adjusted with pure water, aluminum nitrate
was added in steps to give liquids of increasing density. The liquid
density was measured with laboratory hydrometers and this result was
plotted against the measurements read from the Brown Electronik recorder

(Fig- 5).

The tracing of the chart sections (Fig. 6) demonstrate the ability
of the instrument to respond to changes in density of the liquid and to
changes in the pulse amplitude and the time required for the system and
instrument to reach an equilibrium value. For density measurements, the
time required after the liquid density was changed until the system reached
equilibrium vas approximately 13 min. The instrument showed an increase in
density for the first 8 min and then a decrease before a steady-state
indication because the heavy solution entered at the bottom of the column
and the density profile of the column changed with recirculation of liquid
through the column. Also, the changes in pulse amplitude were readily
observed. The pulse amplitude was changed from the maximum value at full
piston stroke to 75 and 50$ of maximum. Stopping the feed pump during
the density measurement resulted in a drop of approximately 0.05 mv
in the readout.

Thus the accuracy of the instrument depends to a considerable degree
on design. If the instrument is designed to be flow-sensitive and indicate
pulse amplitude, some loss in accuracy occurs. If the instrument is designed
with baffles to decrease the sensitivity to flow rate, a much higher accuracy
can be expected. Since the instrument measures the difference in density
between the standard and the liquid in question, the density measurement is
more precise. If the range of the instrument is set up to operate between
1.000 and 1.200 g/cc and an error of + 1$ of full scale reading is made in
the detection and readout system, this amounts to only + 0.2$ in the overall
density measurement when read at this mid-range point. A further increase
in precision could be obtained by decreasing the range over which the measure
ments are made.

Additional test work on this instrument will be done to investigate
the problems encountered in an actual pulsed column installation.
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Fig. 5. Calibration curve of inline densimeter.

Instrument Flow Rate: 250 cc/min
Column Flow Rate: 500 cc/min
Pulse Frequency: 50 cycles/min

Temperature: 23°C
Height of Column (2 in. dia.): ~3 ft
Sequence of Timing: Density, ~50 sec

Pulse amp., ~40 sec
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Fig. 6. Densimeter performance test chart.
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