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Stability of Plasmas Against Electrostatic Perturbations

T. K. Fowler

Oak Ridge National Laboratory*
Oak Ridge, Tennessee

ABSTRACT

With the notation (df/dt) + Vf = 0 for the linearized self-consistent field

(Vlasov) equation governing "collisionless" plasmas, i't is shown that, if only

the Coulomb force between particles is taken into account, a sufficient (and

generally necessary) condition for stability of an equilibrium distribution

fo(x,v) against small perturbations f is that the linear operator V, a func

tion of f0, be anti-Hermitian in some representation. Using this symmetry

requirement, a class of stable functions is found, essentially by inspection,

which includes spatially-confined distributions which might represent a plasma

held together by gravitational forces. Also, some qualitative limits on the

nature of unstable perturbations in thermonuclear "mirror" machines are determined.

The stability criterion is shown to apply to other classical systems with central

two-body forces.

^Operated by Union Carbide Corporation for the U.S. Atomic Energy Commission.



I. INTRODUCTION

A highly-ionized gas, or plasma, is susceptible to instabilities in which

a small, localized imbalance in charge, once initiated, grows to macroscopic

proportions. In this paper, we shall treat the stability against such disturb

ances of a "collisionless" plasma, that is, a plasma of such density and

temperature that it may be regarded as a system of independent particles acted

upon only by the average self-electric field of the plasma, together with any

external forces.3- (We neglect the plasma self-magnetic field.) In that most

self-consistent field theories have similar mathematical structure, we shall

also be able to point out the applicability of our results to other classical

systems <•

The particles of our system having been assumed independent, their distribu

tion in space, velocity and time, F(x,v,t), satisfies a "single-particle" Liou-

ville equation made self-consistent, and non-linear, by including the self-field

force. A time-independent solution, f0(x,v), of this non-linear equation is

defined to be stable if every physically reasonable, small perturbation f remains

suitably bounded in time. In practice, introducing F = f0 + f into the equa

tion and linearizing in f with fQ fixed, f0 is regarded as stable if no real

solution f grows indefinitely in time. The linearized equation has the form

£+W-0, (1)

where V, a function of fo, is a time-independent, real linear operator, to be



referred to as the Vlasov operator. If fQ is stable, we shall also say that

V is stable.

Each of the two treatments of (l) in the literature, on the one hand the

Laplace transform method by Landau,2 and on the other normal mode expansions

by Van Kampen,3 has generally been restricted in practice to equilibrium dis

tributions spatially uniform and infinite.4 We shall present here a stability

criterion not restricted in this way, and, as an example of its use, we shall

prove the stability of a class of distributions isotropic in velocity space

which includes the well-known stable case of a spatially uniform and infinite

plasma with a Maxwell velocity distribution but which also includes spatially-

confined distributions which might represent stellar plasmas held together by

gravitational forces. Of course, our method also is limited In scope. Our

criterion, which calls for the existence of certain structural features in the

operator V, is most useful when, as In our examples, the structure requisite for

stability is evident essentially by inspection.

The paper is organized as follows. In Section 5 ^e develop a stability

criterion in analogy with Lyapunov's well-known stability theorem for a system

of first-order, ordinary, linear differential equations, discussed in Section

2. Then, after displaying the operator V in detail in Section k, we apply the

criterion to known stable cases in Section 5, said to new cases in Section 6.

Implications for thermonuclear mirror machines are discussed in Section 7«



2. AN ANALOGOUS PROBLEM

For guidance, we consider first an equation analogous to (l) in which f

is an n-dimensional vector function of t, V is an n x n matrix independent of

t, and d/dt -* d/dt. The stability of solutions of such equations was given

definitive treatment by Lyapunov.5 We shall specialize to real matrices whose

trace has zero real part,

Re(tr V) =0, (2)

which, as we shall show in Section k, holds also for the Vlasov operator if we

admit only electrostatic perturbations.

In consequence of (2), either V is imaginary, that is, all its eigenvalues

are imaginary, or there occur eigenvalues with real parts having both signs.

Certainly, then, a necessary condition for stability is that V be imaginary.

Otherwise, for some eigenvalue w., with corresponding eigenvector g., there

exists a solution f = g. exp(-w.t) of (l) which blows up in time, and, because

V is real so that f* is also a solution, there is in fact an unbounded real

solution, Re f.

If the eigenvectors of V were complete, so that every solution of (l) could

be written in the form f = ) a.g. exp(-w t), a constant, the necessary

i

stability condition that V be imaginary would also be sufficient, since then
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f(t) < ) |d!.g. |, all t. Now, it is well known that, if the eigenvectors are
i

not complete, or, equivalently, if V is not diagonalizable,6 no transformation

separates (l) into n independent equations; some variables remain coupled, driv

ing each other resonantly; and the result is that some solutions f of (l)

m -W-tt
contain terms with time dependence like t e , which, of course, blows up if V

is imaginary so that u. is imaginary.7 Thus, if V is imaginary, it is both nec

essary and sufficient for stability that V be diagonalizable. Since also it is

necessary that stable V be imaginary, V is stable if and only if it is imaginary

and diagonalizable.8 Such a matrix can always be given an anti-Hermitian

"representation," that is, for some non-singular matrix P the similarity trans

formation P 1VP is anti-Hermitian.9 It is this symmetry criterion which we wish

to exploit.

The analogy between the Vlasov equation (l) and the finite dimensional

vector differential equation we have discussed should be apparent. Such a vector-

matrix equation arises if in (l) we retain explicitly differentiation with respect

-> —•

to t but give a numerical approximation to the x and v dependence of f and the

-> ->

linear operator V in which x,v-space is represented by a grid of n points. If

V has the symmetry requisite for stability by the above criterion, this can be

retained in an n x n matrix approximating V and thereby assures stability of the

numerical solutions. In Section 3 we shall draw the converse conclusion that

the exact solutions of (l) are then also stable by direct proof rather than by

examination of the limit n -* °°. We shall only prove sufficiency, and simply

infer necessity, at least with large probability, from the vector-matrix analogy

together with, in Section k, the direct proof that stable V are necessarily



imaginary. In practice, it is the sufficiency of the criterion which would be

of most use, as it would be difficult to show instability by proving the non

existence of an anti-Hermitian representation of V. The necessity of the criterion

is desirable only because it would imply a wide scope of application. Fortunately,

in Sections 5 and 6, we are able to demonstrate by example, both for cases known

stable and for new cases, that the sufficiency criterion is at least sometimes

capable of satisfaction.

3. STABILITY CRITERION

We first must give some definitions. If S is a space of complex functions

of x and v square integrable over a volume u in x,v-space, we define as our basic

Hermitian scalar product of functions f and g in S,

(f,g) = /dx* dv f*(x,v) g(x,v). (3)

The volume of integration *lf may include all x,v-space or only a large but finite

volume. In the latter case, functions belonging to S will be required to satisfy

periodic boundary conditions at the surface of °\j.

Unless otherwise stated, we define Hermitian symmetry always with respect to

(3). C' is the Hermitian conjugate of the linear operator C if for all f, g in S,

(f,C+g) =(g,Cf)*. (h)

Then, for example, H = h' is Hermitian, as usual; a real integral operator is

Hermitian if its kernel is symmetric in x and v; d/cbc is anti-Hermitian, and

so forth.
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With these definitions, we are in position to discuss the following stability

criterion. If by A we mean "some anti-Hermitian operator, " by H "some positive

definite Hermitian operator," and by the superscript (-l) the existence of an

inverse, then it is sufficient for stability that V satisfy any one of the

relations:

A=H+V (or Vh"1) (5)

V=AH+ (or H^A) (6)

H+ = AV. (7)

The content of each of these equations is the same as that of the stability

criterion for the vector-matrix equation analogous to (l) discussed in Section 2;

namely, V satisfying one of these relations has an anti-Hermitian representation.

Returning to the matrix problem for a moment, if H is a positive definite

Hermitian matrix, there exists a non-singular matrix P such that H = p'p. Then,

for example, operating on H+V =A in (5) left by (p')"1 and right by p"1 shows

that V satisfying this relation is similar to the anti-Hermitian matrix

(P ) AP . In function space, we can more conveniently discuss "representations"

in terms of scalar products rather than similarity transformations. The most

general Hermitian scalar product over S is obtained from our basic product (3) by

introducing into (3) an Hermitian positive definite operator as a weighting. If

V satisfies one of the relations (5)-(7), which pair with V some Hermitian positive

definite H+, we define as a corresponding Hermitian scalar product [f,g] of func

tions f and g in S,

[f,g] = (f,H+g), (8)



where the weighting is the H paired with V. Then any one of the relations

(5)-(7) between V and an H implies that V is anti-Hermitian in the correspond

ing [, ]representation, which is to say V is anti-Hermitian by definition (k)

if the product definition [ , ] in (8) is substituted for ( , ) in (k)„ We shall

find, by the way, that V is never anti-Hermitian in our usual sense, that is,

with respect to (3) itself.

It follows that each of the relations (5)-(7) between V and an H+ Implies

that, for any real solution f(t) of (l), [f(t),f(t)] = (f(t),H+f(t)) is independent

of time. To see this, take the bracket-type scalar product of f with (l), which

gives i|r [f,f] =-[f,Vf] =0for real f. Therefore, if [f,f] constitutes a

suitable measure of f whose boundedness in time indicates stability, our criteria

(5)-(7) are, as claimed, sufficient conditions for stability.

The quantity [f,f] satisfies two of the three criteria for measures of

stability suggested by Backus.10 First, because of the required positive definite-

ness of H , this quantity is zero if and only if f is zero, which helps prevent

the possibility that f develops wild oscillations whose plus and minus excursions

cancel in taking the norm; and second, if [f(o),f(0)] is finite, f(o) should be

a meaningful initial condition for a solution of (l). Whether [f,f] satisfies

Backus' third requirement of possessing clear physical significance depends, of

course, on the weighting H in a specific case. We shall return to this point

in treating examples.

We wish to point out the relation between [f,f] and a norm defined by

(f,f)1 , which was suggested by Van Kampen3 but which also lacks an evident

physical interpretation. Since H is definite, there exists a real constant w

such that, for all f in S,



(f,H f)
-T¥-FTZ«>o. (9)

If V satisfies (5)-il), we have seen that the numerator is a constant, just

[f(0),f(0)j = (f(0),H f(0)), and in that case

(f(t),f(t)) <i [f(0),f(0)]. (10)

Thus (f,f)1'2 is bounded if [f, f] is and these norms are in fact equivalent if we

could impose one other constraint that [f(0),f(0)] be finite if (f(o),f(o)) is,

which expresses a boundedness on H . We shall find for the Maxwell distribution

and our other examples that H is so bounded if we restrict ourselves to physically

sensible perturbations.

We note in passing that a similarity transformation of some interest is one

effected by a transformation of coordinates x,v,t. Transforming x,v,t -+ x0,v0,t,

the natural Hermitian product in terms of the new variables, / dx0 dv0 f*g, which

is just (3) with the Jacobian of transformation, \t , omitted, could be obtained

from (3) by (8) with H_= Q ~x, which is Hermitian diagonal because \t is just

a real function and positive definite by the definition of \£ .

k. THE VLASOV OPERATOR

In a collisionless plasma composed of several species of charged particles,

the distribution function, F (x,v, t), one for each species, charge q.^ and mass

m., satisfies a self-consistent, single-particle Liouville equation, called in

the plasma literature the Vlasov equation, also the collisionless Boltzmann

equation, of the form3
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ext

Sx V
(J) = 0, (11)

where 5?" 1 is any external force and £ ., "the potential operator, is an integral

operator with symmetric kernel independent of v and v.

$. .(x,v;x* v') = q.q.
x - x'

Writing F^1' = f^ (x,v) +f^(x,v,t) and linearizing in fyields

^(i) +L.f(i).!i !^i.i_y j..f(j).0.
"ST

mi ov Sx ^ XJ

The operator L., to be called a Liouville operator and defined by

-+ o 1
LJ = v. — + —
i v-»- m.

ox i

3<i)
ext

c*
-h Ji^o(J)

1J

J
Sv

(12)

(13)

(HO

governs equilibrium; e.g., L.f = 0.

In addition to plasmas, Eqs. (ll)-(llr-) apply directly to a system with gravita

tional interaction with the replacement q. -* (-G)1'2 m., G being the gravitational

constant, or to a combination of gravitational and Coulomb forces with

q.q. -» q.q. - Gm.m.. With only a redefinition of 5). ., the equations apply also

to self-consistent field approximations to other classical systems with central

two-body forces if, as in the plasma case, a self-consistent potential linearly

related to the source distribution is adequate. The latter constraint means

that only single interactions contribute to the effective field, so to speak a

classical "Born approximation." Our results will not hold in general if (5

depends on velocity, which eliminates magnetic interactions.
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For a more concise notation, if there are n charge species we define vectors

and matrices

f \ / Li t °\ / Ki tr °

& \ .L. /
Ie \ / Ks

f = I r ' I , L
; K= / *. (15)

J(n)

with

r _.L i£L<L, (16)
i m. v* v-* ' v '

1 ov ox

and we define the complete potential operator, £, to be an n x n matrix with

integral operator components $ given by (l2). Then (13) assumes the form (l)

with the Vlasov operator V given by

V=L+ K$. (17)

Employing the property that for conservative forces, dq/dt is independent of

q if q is any component of x or v, which holds even if dv/dt contains velocity-

dependent terms like v x B(x), integration of (f,L.g) by parts yields the anti-

Hermiticity condition,

(f,L±g) = - (g,L±f)*, (18)

if f,g fall off fast enough so that the integrated term, an integral over the

surface bounding ^/, vanishes. If Uis a finite but large volume, (18) again

holds with periodic boundary conditions at the surface.

We shall, in fact, adopt (l8) as a boundary condition on functions in S,

that is, as a constraint on admissible perturbations, and thus hereafter L.,

hence L, will be regarded as an anti-Hermitian operator. We have thereby
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omitted certain integrable but not square integrable perturbations with

respect to which, according to Backus,10 even the Maxwell distribution is unstable.

We have also restricted somewhat the behavior of f at the surface of *y} that

is, at "infinity, " but we are guided by the fact that these restrictions are by

and large just those that promote the total conservation of particles under the

action of equilibrium forces. Also, we have shown elsewhere the compatibility

of (l8) with the customary restrictions on perturbations in that reducing (13)

to an integral equation by finding a Green's function (-A + L ) 1 satisfying (18)

as a boundary condition leads to dispersion relations agreeing with those in the

literature.11 Actually, there is little physical interest in the exact require

ments on f at infinite x and v in order that (l8) be rigorously correct, as the

behavior at infinity reflects back at most weakly to the bounded region of

x, v-space, call it *lf , where f , hence K(j), has appreciable magnitude, this being

the source region of any instability. Outside l/x, the Vlasov equation (13)

reduces to [(d/^t) + L] f = 0, a true Liouville equation which conserves particles

and will not of itself cause f to grow in time.

In a similar vein, we would assume that it is not important physically

whether, say, fQ vanishes exactly outside (J^ or whether this is only approximate

ly so. Thus, later, when the question arises whether such an f has an inverse

throughout u, we shall take the liberty to insure that this is so, and also to

smooth f in other ways which relieve non-essential mathematical difficulties.

We summarize this practical point of view in the following definition:

I. It is. sufficient for the stability of f0 that there exist for

arbitrary e > 0 a stable equilibrium distribution g(x,v) such

that [fp - gl < e, all x,v.

We would assume that, if there also exists a not-too-pathological, unstable g

arbitrarily close to f0, the rate of growth of instability approaches zero as

g •* fo.
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Having established (l8) as a boundary condition, we are now in a position to

prove Eq. (2) implying that stable V are necessarily imaginary. We note also

the fact, mentioned previously, that V is never anti-Hermitian in (3), which

follows from the anti-Hermiticity of L and the asymmetry of K(| with respect to

v and v . Equation (2) has been verified in the special cases in which disper

sion relations have been found.1 Our general proof will take two forms. First,

defining Q= K^_ and denoting the Hermitian part of an operator by superscript h,

we obtain from the theorem that the trace of a sum is the sum of the traces and

the fact that L has imaginary eigenvalues,

Re (tr V) =tr V*1 =tr Qh =\ tr q£±. (19)

Q is an integral operator whose kernel is obtained by symmetrizing the kernel

belonging to Q..,
11'

Qi.(x,v;x',V) ,^-^— °— ) .-±--±-. (20)
1 v ov dv' ' |x - x'J

Q.., a product of antisymmetric factors, has zero diagonal elements, hence zero

trace, and (2) follows. Difficulties arising from the singularity at x = x'

are avoided if the second factor, just -(d/dx) ^, is regarded as the electric
—> —>

field at x due to a unit charge at x' distributed over a sphere with small radius

-* -»

r and the limit x -* x' is allowed to precede the limit r -* 0.

We shall also verify the above conclusion by examining the eigenvalues of

S.i direc"tly* Introducing (20) into the following homogeneous integral equation,



where

Ik

<• -* hAi.(x,v) = /dx' dv' Q.i(x,v;x',v') ^UV),
'A

we see that, for A ^ 0, i|r, must have the form

,(1)
Ul

A "~
^(x,^ =i
A

cV

a-^(x) b^

-(J) =S- fdx"' dv' -^-1a.

Av 2m,
x - x

,|3 *A^(x^v')

(i)
q2 r dfn X - X"

X - X
,13 YA

i.(x',v')

(21)

(22)

(23)

(2U)

Since the second term of (22) is independent of v, it is necessary to confine our

system to a large volume Uin velocity space if \|r is to be normalizable and (23)

is to converge. Even so, as we have noted, with the boundary condition that

functions be periodic on the surface bounding ^J, L remains anti-Hermitian with

respect to (3), and it remains appropriate to examine only Q in order to estab

lish (2) at each stage of talcing the limit 1}-*• °°. (We simply assume that this

limit approaches the problem of physical interest.)

Introducing (22) into (23), the contribution from the first term of i(r, is

,(i) in V,seen to vanish if f is periodic in U, so that, in terms of b-,, a, is,

a^(x) = 1 <
A 2m.

dx' dv'
x - x

X - X'
3VX') (25)

Similarly, introducing (25) into (22) and the result into (2^) yields
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A2 bA(x) =Vf<&" bA(x") {/<£' dv'

< x' - x- ^ V ^ "^ - U±)
2m. i->, ->i3 " ;,-♦, y x 2m. i->. -»„.3 " v-*, y l ' ^ 'l |x' - x| dv' l |x' - x I dv'

The kernel in curly brackets, which could be written qT. Q... is by its form

Hermitian positive semi-definite, which is to say eigenvalues satisfy A2 > 0.12

Thus, A is real, as it should be if it is to be an eigenvalue of the Hermitian

operator Q . Again (2) follows, since to each solution b, of (25) with eigenvalue

A2, there correspond two eigenfunctions of Q given by (22) with eigenvalues

Our proof of (2) for the inverse square law force goes through for other

central two-body forces as wello In the second proof, for example, except for

properties promoting convergence of integrals, the only property of the potential

operator necessary is its lack of dependence on v and v'.

5- STABILITY OF THE MAXWELL DISTRIBUTION

Consider a one-species plasma of electrons neutralized by a uniform positive

background with no external forces, L = v.(d/dx), and in equilibrium let the

electron distribution at every point x be f0 = N exp(-OH0), a and N being positive

constants and H0 = (l/2)mv2. Then, the operator K appearing in V, Eq. (l6), can

be written K = - fQ'L = - LfG', where fQ' = (df0/dH0) and to obtain the factor L

we have used (dH0/dv) = mv. Since (-f0>) = a f0 > 0 for all x,v within an

arbitrarily large volume t/ of x,v-space, the real function (-f0') possesses an

inverse in II and may be regarded as a diagonal, positive definite Hermitian

operator. Factoring out of V first L, then (-f0'), we obtain

V= K [(-fo')"1 + J 1. (27)
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As it is the product of commuting Hermitian and anti-Hermitian factors, K is

anti-Hermitian. The factor in brackets is Hermitian in that both terms are.

(-fo')"1 is positive definite, because (-fo1) is, and we shall show that j),

defined by (12), is positive semi-definite (zero admitted), so that the bracket

is definite. Thus, V has the form (6), and f0 is stable.

For our electron plasma, (J) reduces to r |x - x' | , which, if it is semi-

definite, satisfies for all f in S,

(f,<j)f) =e2 Taj dv fdx"' dv' f*(x,^ -r^-T- f(x',v«) >0. (28)
J J |x - x'|

For a real perturbation f, $f is e times the perturbed electrostatic potential,

and (28), just the total potential energy, is positive. The conclusion remains

valid if f is complex. Defining R(k,p;x'v') = g(p) — exp(-ik.x') with g any

function of p such that / dp |g| = 4rt(2n) 3, then $ is Hermitian positive semi-

definite by virtue of the form,12

J=RtR =/dk dp (g*(p) §elS- )(g(p) fe"1^ ), (29)

whicti^ after integration on p^ is just the Fourier transform in space of

e2 |x -x'f1.
Now, recalling Section 3> what we have proved is that, for any real solution

f(t) of the linearized Vlasov Eq. (l) corresponding to a Maxwell distribution in

equilibrium, the quantity (f(t), [(-fo')"1 + f] f(t)), if finite at t= 0,

remains finite and is in fact constant in time. As was pointed out above, the

2-term is just the total potential energy in the distribution f, and should be

required, by choice of f(0), to be finite at t = 0. The physical significance of
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the other term is more obscure. We note, however, that for any square integrable

f(t) with (f,f) normalized to unity, (f,(-f0')~xf) has the same bounds as (-fo')"1

itself, and hence is finite unless f(o) falls off at infinite velocity more

1/2slowly than f*' . Even in the exceptional case, which could be avoided by keeping

"If large but finite, we would take the point of view, as in Section k, that in

the linearized stability theory there is no physical significance in such an

infinity due only to the nature of f(o) in the region of x,v-space outside the

bounded region in velocity space where f0 has appreciable magnitude. With this

limitation on allowed perturbations, the bracket in (27) is not only definite but

bounded, in which case we have also proved stability with respect to the norm

(f,f)l/2.
We conclude this section with another application to a known stable case,

the class of "single-humped" functions of velocity with no external force.13 We

shall treat just the one-species, one-dimensional problem, which generalizes to

infinite plasmas in three dimensions if f0 is isotropic in v.1'13 In one dimension

the appropriate potential operator, (j) = 2« e2 |x -x'|, is Hermitian positive

semi-definite by (29) with the replacement k«x -* ^x. Assuming first that fo(v)

has a single maximum at v = 0, we find

, df >. / _ _ df \ / v
1 od / 1 1 1 oi\/ d

K="m S7S=U TT'^U VSj- (50)

On the right, the second factor is L for the problem. The first factor, cor

responding to -f0' above, commutes with L, so that K is anti-Hermitian; and it is

1 hforeal, positive definite, since I•$— I cannot be zero at v = 0 if f has a
' I 1 ' dv '

m

maximum there (then ^ 0), and any zero for v ^ 0 can be handled by definition
dv2
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(i), Section k. Again, V factors as in (27), and f0 is stable by (6). Further,

this proof carries over to any distribution obtained from our case by Galilean

transformation, so that in the new variables f0 is maximum at v =/ 0, since such

a change of reference frames is a similarity transformation.

6. OTHER STABLE DISTRIBUTIONS

Consider a one-species plasma, like that of the previous example, but now

we include in L a force in equilibrium, F0 = - (d/dx) jt(x) + (q/c) v x B0(x),

where rt(x) and the external magnetic field B0 may have any spatial dependence

and the scalar potential -n may represent either an external interaction or a self-

consistent field, or both. Then, the equilibrium Hamiltonian is

H0 =Imv2 +it(x), (31)

which depends on it in FQ, but not B0.

Let f0 be a function of H0 only with the property that, for all H0 such that

(l/2) mv2 > 0,

df

fo'=^<0. (32)

Then, -fo' is an Hermitian positive definite operator, and, in exact analogy with

the previous proof for the Maxwell distribution, we shall show that fo is stable.

Because K in V, Eq. (Tj), acts on ^ ultimately the potential Jjf., which is

independent of v, we are free to add to K a term in d/dv. Defining

*--£ ^-^(-VjiJo.^, (55)
dv dx dv

We may redefine V = L +• Ki£. For fD a function of Ho only,
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Ki = (-fo')L = L(-fo'), (3^)

where commutation follows from the fact that H0, hence fQ and df0/dHo, Is an

equilibrium constant of motion. Ki is anti-Hermitian by (j>k). If f0 satisfies

(32), (-f0')_1 exists and K3. factors left out of V to give (27) with K replaced

by Ki, and f0 is stable by (6).

There are many f0 satisfying (32) which are also, properly, everywhere

positive and normalizable. Equation (32) need only be satisfied over the range

f\ of Hq covered by H0(x,v) in (31) as x and v take on all values. If tc(x) is an

attractive potential, n<0 and -»• 0 as x -* 00, the range ^ has afinite negative

lower limit at the minimum of rt(x), if there is a minimum. In any case, any

positive, monotonic decreasing function of HQ in ft satisfies (32). If « is an

attractive well of finite depth and if we cut off f0 at a negative upper limit

on H0, all particles have negative energy and f0 is spatially confined and

normalizable in x and v. By definition (i), Section k, in regions of V\ where f0

is constant or zero, we would approximate f0 by a function satisfying (32). If

the true f0 had a dip or a hump, this could not be done and our criterion would

not insure stability.

The above results apply to a plasma composed of electrons and any number of

species of ions. In that Ki and L are diagonal, the factorization of V goes

through, yielding

V = Ki [T + $], (35)

, df(i) n"1
where Talso is diagonal with components T =( rry J ,and T is surely

o

Hermitian positive definite if each T is (sufficient, not necessary). Finally,
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the general (j) remains semi-definite, for, if f is a vector function with one

component for each charge species, (f,£f) = /dx p*(x) |x -x'| p(x'), where

p(x) = ) q. /dv fJ is just the net charge when fis real. In (29) we have

already shown |x - x'| to be definite over complex functions of x, in that g(p)

played no essential role.

Since jt(x) could represent a self-consistent gravitational field, stable

distributions of the sort found here are of possible application to the stability

of stars. The distribution would have the reasonable property of approaching

colder "temperatures" nearest the surface of the star; any number of constituents

could be handled, each with a different equilibrium distribution; and a realistic

background galactic magnetic field could be assumed to be present, as it would

have no effect on the calculation.

7. APPLICATION TO MIRROR MACHINES

While by our method we have not yet found stable distributions confined in

space by a magnetic field, the stability of solutions discussed in the previous

section has some bearing on thermonuclear devices, particularly high-energy

injection mirror machines, such as the Oak Ridge DCX and Russian OGRA, in which

hot ions are injected as an organized beam. In most such machines, ion motion

can initially be well described by two constants of motion, the energy, H ,

and the canonical angular momentum,p^ =mr^O-Mq^/c) rA (r,z), in cylindrical

coordinates with z along the field axis, A being the only non-zero component of

the vector potential. Because collisions are infrequent, the development in

time toward the steady-state distribution f0 is essentially "adiabatic" with

respect to these constants, and thus, at least for ions, a function of H
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and PQ only is generally adequate to describe the plasma obtained.14 Introduc

ing besides the confining magnetic field a self-consistent equilibrium plasma

potential, also cylindricaHy symmetric,to limit the escape of electrons at the

ends of magnetic field lines, the electrons also are described by a function

(e) (e)just of the analogous quantities, HQ and p' .

As before, because Ki is diagonal, we can discuss ions and electrons

arately. Then, dropping the species subscri]

introduces into Kx In (3I+) just one other term,

separately. Then, dropping the species subscript, the dependence of f0 on p

K 1 fce d

•(• SfoVdpey3e '^0 m dv ^
(36)

Acting on any perturbation f such that the potential J)f is independent of ©, this

term vanishes. Thus, fQ would be stable against such perturbations, since its

dependence on H0 is almost sure not to cause instability. In v , f0 is "single-

humped" about v = 0. Further, a possible "two-stream" Instability15 between

circulating ions and the electrons is restrained by the fact that electrons

follow magnetic field lines. The known electrostatic instabilities in such systems,

derived by Burt and Harris for a cylindrical shell of plasma in a uniform magnetic

field,16 concern ion cyclotron resonance with electron plasma oscillations in the

z-direction, and, in agreement with (36), these are not excited by perturbations

with no 0-dependence. We would conclude that, even in realistic fields, any

electrostatic instabilities in mirror machines will almost surely arise from

©-dependent perturbations.

Similarly, in a linear "pinch," if f0 were a function only of H0 and

p = mv + (q/c) A (r.e), the p^ term in Ki is proportional to (d/dz). Again,

even for realistic spatial dependence of the self-magnetic field, one would

conclude that electrostatic instabilities would usually result from z-dependent

perturbations.
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8. CONCLUSIONS

We have investigated the applicability of Lyapunov's stability criterion

to the stability of plasmas against small electrostatic perturbations. Denoting

the linearized Vlasov equation governing perturbations f of the distribution in

space and velocity by (d/dt + V)f = 0, Eq. (l), we showed (Section 3) that it is

sufficient for stability (and likely necessary) that the linear operator V be

anti-Hermitian with respect to some Hermitian scalar product defined on the

space of allowed perturbations. This is so and V is stable if, for example, V

can be factored into a product of an anti-Hermitian operator and an Hermitian

positive definite operator [Eq. (6)]. After showing that the method gives cor

rect results for certain known stable cases (Section 5), we presented (Section 6)

a new class of stable distributions which includes f0 independent of x with a

Maxwell distribution of velocities, but also certain spatially-dependent functions.

In brief, this is the class of all plasmas composed of any number of species of

charged particles such that for each species, i, the equilibrium distribution

f^1' is amonotonic decreasing function of the equilibrium energy integral HQ

for that species, and f^ depends on H^ only. Such functions are, of course,

isotropic in velocity space. They may represent plasmas confined in space by a

scalar potential, such as that due to a self-consistent gravitational field, but

not those confined by a magnetic field, though a magnetic field with any spatial

dependence can be present. The solutions have possible application to the

stability of stars. In Section 7 implications for thermonuclear mirror machines

were discussed, with the conclusion that any electrostatic instabilities must

be excited by perturbations with azimuthal variation.
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