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ABSTRACT

This report discusses numerical calculations of energy

distributions of ions and electrons in DCX in steady state after

"burnout". The d.c. plasma potential establishing quasi-neutrality

is also determined. It is found that the electron distribution is

Maxwellian but the ion distribution is not. For typical DCX

conditions, the plasma potential is an appreciable fraction of

the injected ion energy (tens of Kev). A discussion is given of

the code employed, ORACLE code EDDIE, which solves coupled, steady-

state Fokker-Planck equations governing the ion and electron

distributions in energy space.



ENERGY DISTRIBUTION OF IONS AND ELECTRONS

IN DCX AFTER BURNOUT: ORACLE CODE EDDIE

T. K. Fowler and M. Rankin

I. INTRODUCTION

Two measures of performance of the thermonuclear machine DCX,

in which a plasma is created by injecting high energy ions Into a

magnetic mirror geometry, are the mean energy E and density n

of trapped ions in steady state. After "burnout" in DCX, that is,

when the plasma is dense enough so that all neutrals penetrating it

are ionized at the surface, the ion density achieved for a given

injection rate is determined by the rate of scattering of ions out

of the mirrors. Neglecting radiation, the ion energy is determined

by the rate of energy transfer from the ions to cold electrons con

tinuously deposited in the plasma as neutrals bombarding the surface

are ionized. Since both of these mechanisms are energy dependent, it

is necessary in order to predict DCX performance to determine the

detailed energy distributions of ions and electrons in the machine

in steady state.

Previous simplified calculations have been reported in which

Maxwell distributions were assumed for both ions and electrons with

1 2
only the temperatures to be determined. ' In this report, we

A. Simon and M. Rankin, Some Properties of a Steady State High-Energy

Injection Device (PCX), ORNL-2354 (1957).
T. K. Fowler and A. Simon, Energy Transfer to Cold Electrons in PCX,

ORNL-2552 (1958).

T. K. Fowler, Effect of Plasma Potential on DCX Steady State,

ORNL-291^ (1960T.
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present numerical solutions of the Fokker-Planck equations governing

the ion and electron energy distributions in order to examine

expected departures from equilibrium conditions. Our code for

this purpose, Oracle code EDDIE, solves directly for the steady-

state distributions of interest to a d.c. machine like DCX, in

contrast with Killeen's more general code solving coupled, time-

dependent Fokker-Planck equations.-^ Our calculation includes a

determination of the d.c. plasma potential establishing quasi-

neutrality by limiting the escape of the electrons. Unimpeded,

electrons would be scattered out the mirrors much more rapidly

than ions.

In summary, we find that, because only electrons in the high-

energy tail of the electron distribution have the kinetic energy

requisite for escape over the potential barrier, most electrons be

have like isolated particles and assume approximately a Maxwell dis-

k
tribution. On the other hand, the ions, which can escape at any

energy, have a non-Maxwellian energy distribution.

II. EQUATIONS

In DCX, atomic H ions are injected into the magnetic mirror

geometry in the form of molecular Hr. ions subsequently dissociated

9
W. Heckrotte and J. Killeen, Bull. Am. Phys. Soc, Ser. II, _5,
311 (I960).

if
This result agrees with Kaufman's assumption employed by C. L. Oxley,

General Atomic Report GAMD-I363., April i960, but does not support very
well the model in Ref. 2 where E ~ 0, E defined by (l6) above.
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within the machine. Let I be the dissociation rate, the rate

at which H ions are deposited in the plasma. Electrons appear

in the plasma when neutrals are ionized. Let the electron injec

tion rate, equal to the ionization rate, be I . Since by defini

tion all neutrals entering a burned-out plasma are ionized, I_ is

just the rate at which neutrals bombard the plasma surface, area S,

N Sv

I = -2_° (1)
k

where v is the neutral thermal speed and N is the neutral density
o o

outside the plasma.

For simplicity, we assume the plasma components to be distributed

uniformly in space and, for the purpose of calculating various transfer

coefficients, isotropic in velocity. Then ions and electrons are

completely described by their kinetic energy distributions, f (E)

and f_(E), in terms of which densities n and mean energies E-

are given by

n+ = \ dE f+(E) (2)

E- - \ dE E f (E). (3)
av \ +



_k_

As a further simplification, we characterize the d.c. plasma poten

tial by one parameter, 0, the average potential difference from the

plasma interior to the walls of the machine. 0 > 0 corresponds to

a net positive plasma charge. We could supply an expression for

0 in terms of n and n . However, because 0 is proportional to

(n - n ), a small difference in large numbers, we choose to treat

0 itself as a variable to be adjusted to satisfy the neutrality

condition

dE f = i dE f . (if)

The distribution functions f and f satisfy steady-state

Fokker-Planck equations with particle source and loss terms,

-̂ [v±(E)fJ + 2JL K"(E)fJ-L±(E)ft U6(E- El) ,

df

+ - o. (5)^t

v is the plasma volume.

The f and f equations are coupled and non-linear. The

friction coefficient V, the diffusion coefficient D, and the leak

rate L, all representing effects of collisions, are integrals over

M. N. Rosenbluth, W. M. MacDonald, and D. L. Judd, Phys. Rev. 107,
1 (1957). =



f and f_. We employ the results of Chandrasekhar for isotropic

distributions written in terms of the energy, E:

V+(B) = 2 \ Wi + £ w (w/(>+ <w|> (6)

oo

27 1 \ dE'

(m_/m+)E

f+(E')

W = \™ <*l)=k2 +

00

f (E1) m
+ \ dE1 + —

mVe1
E

00

dE'

(m_/m+)E

dE' f (E')

m

(m_/m+)E
+ 1

m
dE' f (E')

E

27 3/2 ( dE' E' f+(E') (7)
an

(m_/m+)E

,3/2
dE' E' f (E')

m and m are the ion and electron masses. The coefficients V
+ -

and D are obtained from (6) and (7) by replacing every subscript

+ by - and vice versa. The quantity 7 is 2«e inA, xNA ^ 20;

Ibid.



7/E has cross section (cm ) dimensions. The dimensions of

V and D are (energy/time).

For the leak rate, L, we employ

L \ dE f
J + E' n

2E

m
+

P (8)

where P and P are factors expressing the effects of magnetic

mirrors. For electrons, we assume adiabatic confinement with

!-r t1-*;, (9)

0 E < 0.

R is the mirror ratio ( R = 2 in DCX-1 ). 7/E is the cross

section for 90-degree scattering, and P is the fraction of

particles so scattered which actually fall into the loss cone

as amended by the plasma potential. Note that electrons escape

only if their kinetic energy exceeds the potential barrier, 0.

For ions, we take two extreme assumptions for P . To treat

the case when the ion Larmor radius is small compared with

machine dimensions, we assume adiabatic confinement,

P 1 - -I 1 +
E / >

E>
R - 1

(10)

E<
R - 1
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To treat the case of orbits so large that ions are only confined

"absolutely" by the conservation of energy and canonical angular

7
momentum, we take

-1 U1 +i (1 +l , E>
R - 1

oo > e4
R - 1

Both adiabatic and absolute confinement are discussed in

Ref. 2. The principal difference between the two mechanisms is

that in adiabatic confinement only scattering which alters the

velocity component parallel to the magnetic field affects contain

ment, while for absolute confinement scattering in any direction

can lead to particle loss. Evidently, for E<^-j , (11) is an

overestimate for the ion leak rate, and (10) is an underestimate.

We have assumed monoenergetic sources of ions and electrons,

the 6-function terms in (15). Now, Eqs. (5) are meant to treat

particles after they enter and become part of the plasma. Thus,

the variable E is the particle kinetic energy inside the plasma;

similarly, the source energies E^ and E are the energies with

which particles begin their existence inside the plasma. Hence,

E+ and E~ must be corrected for the fall against the potential.

^A- Garren et al, "Non-Adiabatic Effects in Single Particle Orbits,"
Proc. Controlled Thermonuclear Reactions Conf., Berkeley Calif.,

1957 (TID-7536, Part 2, page 170).



If E is the molecular H^ ion energy, the energy of H ion;:

at dissociation is

E - 0

K - -^ (-)

For electrons, we make two extreme assumptions. If the

ionization events releasing electrons take place inside the plasma

sheath, electrons begin life inside the plasma with essentially

zero energy, and we would take E~ ~0. On the other hand, if

ionization occurs outside the sheath, electrons gain energy 0

in falling into the plasma, and we take E~ = 0. The latter choice

would also apply to external sources of cold electrons dragged into

the plasma by the field.

Slow ions produced with electrons in the ionization of neutrals

have been neglected. Their escape rate being large, by (9) or (10),

they contribute little to the ion density in the interior of a

burned-out plasma. Thus, their density is less than the electron

density. Since even for comparable densities the rate of energy

transfer to the slow ions would be much less than that to electrons,

energy transfer to slow ions by collisions with hot ions is

negligible.

The energy with which these slow ions actually emerge on

falling through all or part of the plasma potential in escaping

can be traced to energy transferred to electrons "by collision
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with hot ions. This transfer is taken into full account by our

transport equations (5) dealing with the plasma interior. In

steady state, all the particles released in an ionization event,

the ion and electron(s), escape from the plasma. However, because

their net charge is zero, they cannot remove a net energy from

the d.c. field. Nevertheless, the field can, however, act

to redistribute the kinetic energy, in this case from electrons

to ions.

III. CONSERVATION LAWS AND BOUNDARY CONDITIONS

We choose as boundary conditions on Eqs. (5) the following

conditions which, as we shall show, guarantee particle and energy

conservation:

f ?0 as E y0, 00. (13)
+

Since, for Coulomb interaction, D (E) falls off rapidly as E—>oo,

integration of (5) over E immediately yields particle conservation,

I+/v =
J

r

dE L (E) f (E). (1^)
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Energy conservation can be seen as follows. Multiplying E

times (5) and integrating over E gives

i r
-± (E± - E ) =

v s +'
dE V (E) f (E) (15)

+ +

where E and E are the mean energies of escaping ions and

electrons measured inside the plasma before the fall through

the potential, given by

dE E L (E) f (E)

*+ = ' : - (16)
dE L+ (E) f+ (E)

In Eqs. (15), the left hand side is the rate of energy loss or

gain by each species, E - E per particle. For ions, this is

a loss, E being C E ; conversely, for electrons E > E~.
+ s s

As this suggests, energy lost by ions is gained by electrons.

To see that the loss and gain are equal, that is, the conserva

tion of energy, we examine the equivalent expressions on the

right side of (15). First, these quantities do express an

energy transfer only between species. In V , for example,

the two terms involving f , representing ion-ion collisions,

are obtained by an integral operation on f having an antisymmetric

kernel. Consequently, the contribution of these terms to the

right hand side of (15) vanishes. There are left only the f

terms of V , representing ion-electron collisions, to account
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for energy lost by ions. The situation is analogous for V ,

the electron-electron terms making no contribution to electron

net energy gain. Further, examination of these energy transfers

from ions to electrons and vice versa shows them to have the same

magnitude but opposite sign. Consequently, adding the two equa

tions given by (15) yields

I _, - I
_t (E+ - E ) = — (E - E") (IT)

v s + s'
V V

which expresses overall energy conservation in the absence of

radiation.

IV. SCALING LAWS AND THE DIMENSIONLESS EQUATION

Because our sources are 6 -functions, we may regard (5)

as a homogeneous equation to be solved in the two regions

E > E and 0 < E < E with the matching condition that f ,
s s +

but not ( d f / 3E), be continuous at E = E . At E = En there
+ s s

ingular, a 0 -function, which cancels the 8 -function source

is a jump discontinuity in ( 3f /3E), and ( > f /^E^) is

in (5).

The reduction to a homogeneous equation effects two simple

scaling laws. First, because each term of the equation is quad

ratic in f and f , the normalization of these distributions is
+
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no longer tied either to I or to physical constants in the

problem. The one remaining constraint on normalization, the

neutrality condition (4), is easily met. We choose the

symmetrical procedure of multiplying f by the renormalization

factor (JjdEf/jdEf) wherever f appears in the f equa

tion and multiplying f by( J dE f / J dE f ) wherever f

appears in the f equation.

The second simplicity in the homogeneous equation concerns

the energy scale. The physical constants in the problem contain

energy units. However, because each term represents scattering,

the same constants, 27/ -v2m, appear in each term and factor out

of the homogeneous equation. Thus, the energy scale is not tied

to the physical constants. There are two energies which must be

specified in (5), namely 0 and E . (E also must be specified,

but, as we have noted, we choose either E = 0 or E =0).

Consequently, if we choose either 0 or E as the energy unit,

only their ratio is an arbitrary parameter. Of course, as we

have stated the problem, 0 is an unknown parameter fixed by the

neutrality condition. However, we have found it more convenient

in calculations to regard 0 as known, in which case, as we shall

see, the ratio I /i becomes the unknown parameter. We have

chosen 0 as the energy unit.
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The equations actually solved numerically are Eqs. (5)

without the I term. They are made dimensionless by deleting

from V , D , and L a factor 27/-j2nT . Also, 0 is set equal

to 1, so that the independent variable E is to be regarded as the

energy measured in units of 0. To satisfy (if), f_ and f+ are

renormalized as described above wherever they appear in V+ ,

D , and L

Specifying E+/0 fixes the solutions f and f_ of the

dimensionless equations to within an arbitrary normalization.

To relate these solutions to the physical problem, we note that,

once the arbitrarily normalized f and f_ are known, I_/l is

thereby determined by the ratio of the electron and ion conserva

tion equations (lif),

+ A

m

m

-3/2dE (^ dE f_) E"J'^ P_(E) fjE)
dEf

dE ( \ dE fJ ,-3/2

(18)

P+(E) f+(E) dEf

The final factor accomplishes renormalization.

An absolute energy scale is fixed by the molecular ion energy

E . From (12), E in units of 0 is Em/0 = 2Eg/0 - 1.

Absolute normalization is obtained by normalizing f and f_

to satisfy the particle conservation Eqs. (l^) for given I+.
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V. THE CODE

Our code, EDDIE (Energy Distribution of Ions and Electrons),

was written for the Oracle and computations reported here were

performed on that machine. To reduce the running time and cost,

the code is being transcribed for the IBM-7090. On the Oracle,

one iteration requires 2-1/2 minutes, and in some cases, as

many as 100 iterations were needed to obtain energy conserva

tion to within one or two percent.

We employ a grid of N-fl arbitrary points in energy space,

N = 127 in the present code. The grid was made arbitrary in

order to accomodate economically a large range in E and, at the

same time, a fine mesh over the tiny range of integration, 0 to

(m_/m )E, appearing in certain of the V and D terms. In

practice, we have generally employed N uniform cells to span

the range 0 to —(m /m )E and, thereafter, cells with width

increasing like -^ J - N , J being the grid point number.

Typically, N = 20 to 30. By varying the grid pattern and

testing against cases known to yield the Maxwell distribution,

we have assured ourselves that our results are independent of

the choice of grid.
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A schematic flow chart of the code operation is given

in Fig. 1. We solve the non-linear equations by iteration,

and the procedure is inherently quite straightforward. Given

f^ ' obtained from the previous iteration, (the initial dis

tribution is arbitrary), we compute V^ , D^ , and L^ ' at

each energy point E . Then, with these coefficients known,

the homogeneous counterparts of Eqs. (5) are solved as linear

equations to determine new distributions f^ .We monitor

both the energy conservation equations (17) and the convergence

of the distributions. The number of iterations needed for con

vergence increases as I /i becomes smaller. We also observe

that the ion distribution converges much more rapidly than the

electron distribution.

The integration scheme employed in computing V , D , etc.,

is:

E F —W TT F1

I(Ej)= [J dE T(E) =KEj^) + VJ_1 -i-Jli +fj _Oli . (19)
2 2

0

Derivatives are given by central differences:

V f - V f^-1 J+l VJ-1

>J -T- "I " E T 1
J+l J-l

^- [v(E)f] I_ = -i±2_i±l Jz^izi (20)
^E J E„ . - E
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<56

^ [ED(E)f\ ~
2

EJ+1 " EJ-1

(EDf)j - (EDf)J_1 )
EJ ' Sd-1 J/

(EDf) - (EDf)

ET1 -ET (^
J+l J

Substituting these definitions into our differential equation

gives a difference equation which, on collecting terms in f ,
J+i.

f , and f has the form
J J-1

Cl(J)fJ+l " Co<J>fJ + C-l^fJ-l =°' <22>

where the C's contain V, D, and L.

Equation (22) is integrated in two parts. To integrate

the range J > S, where S is the grid point corresponding to

the source energy E , we define r by
s J

fj= y/j-r (23>

From (22),

4
C-1<J> (24)

CQ(J) - C (J)J>J+1
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l) =Beginning with ^ = 0, which assures the boundary condition

f = Oj we solve for y from N-l down to S+l. Then, using the

1/' and starting at S with arbitrarily specified f , we solve
J s o

(23) for f n to f . Similarly, to integrate the range
S+f N —1

XCjC S, we define p by

•J " ^J J+l (25)

Then, we obtain from (22) a recursion relation in p's and solve

P to P beginning with the choice P = 0 consistentfor

with the boundary condition f =0. Finally, using the P's, we

solve (25) for f down to fn starting with the same value f

chosen above in order to guarantee continuity in f at J = S.

We mention a few numerical points. The difference equation

(22) does not exactly conserve particles and energy in the sense

that the integral relations analogous to (l^) and (17).> with

integration defined by (l9)j clo not hold exactly. After some

experimentation, we found it necessary to remedy this situation

in one important respect, namely, to insure particle conserva

tion at the boundary E = 0. Integrating (22) over all E to

test particle conservation gives two non-vanishing contributions

at the boundaries J = 0 and N.
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The contribution from the lower boundary is much the larger

quantity. It is

(26)

We have forced this quantity to vanish by setting D = + TT V

in the code. We have also made a less important change in

redefining V (j) to eliminate a failure to conserve energy due

to the fact that, with our arbitrary grid size, the numerical

integral operations yielding the ion-ion collision terms in V

and the electron-electron terms in V do not have exactly anti

symmetric kernels. The expressions for V (j) are corrected by

the subtraction of a term

f.(j)
+

(Vl- 2EJ + EJ-1}- (^
2-, EJ
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VI. DISTRIBUTIONS IN DCX

We have solved the coupled Eqs. (5) and (if) by the

numerical procedure just described for several cases pertinent

to DCX after burnout. Typical electron and Ion energy distri

butions are shown in Figs. 3-8. The amplitude scale (ordinate)

is arbitrary. The energy scale is the same for both ions and

electrons. The upper scale gives energy in units of 0. The

lower scale gives absolute energies for the case E = 600 kev,

the DCX molecular Ion injection energy. In Table I we give

pertinent averages over the distributions plotted and also for

other cases. All energies are measured in the plasma interior.

In order to bracket possibilities we have given results for

the various assumptions for E and P discussed in Section II.

The relation between I /l and E /0 is plotted in Fig. 2.

We wish to point out two features of our data. First,

as was mentioned in the introduction, the electron distribution

is Maxwellian to very good approximation, but the ion distribu

tion is not. The ion distribution does, however, tend to broaden

out as I /i increases. Second, an electron injection rate

comparable to, or less than, the ion injection rate amounts to

electron starvation and leads to quite high potentials. This

is the case in DCX-2. There, because the molecular ion beam

itself is the principal source of neutrals, I /i ^~> 1 to 2.
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Table I. Average energies as a function of the ratio of injection

rates I and I for various assumptions for E and the mode
+ s

of ion containment. + and - designate ions and electrons.

E is the source energy, E the average energy of parti

cles in the system, and E the average energy of particles

escaping. All energies are defined in the plasma interior,

as discussed in the text. 0 is the d.c. plasma potential.

The molecular ion energy, E , is 600 kev. The density
10

n = n is given for I /v = 6 x 10 , corresponding to 1 ma
"•" c r>

injection current and V = 10 cm . n varies as -J I /v.

I_/l+ E^(kev) f> (kev) Ejkev) E^ (kev) E+(kev) E+ (kev) n(l012cnf3)

(A) Adiabatic Confinement with E~ ~ 0
s

168 56 159 302 1.57
128 kk 1U5 276 1.56

62 23 106 210 I.36
50 19 93 192 1.25
38 15 80 Yfk 1.16

(B) Adiabatic Confinement with E™ = fi
S

.51 2k2 115

.87 256 87
2.7 280 Ul

3.7 z8h 32
5.6 288 2U

1.0 2i+2 115 179 69 170 '^28 1.68
5-7 280 1+1 66 29 118 233 1.50
7-U 2&k 32 53 2k 105 210 1-39

(C) Absolute Confinement with E~

1.3 280 kl 63 21+ 200 266
1.8 28U 32 51 20 187 250

(D) Absolute Confinement with E~ = 0

.81

2-3 280 1+1 67 31 215 285 .90
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