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ABSTRACT

This report discusses numerical calculaticns of energy
distributions of ions and electrons in DCX in steady state after
"burncut". The d.c. plasma potential establishing quasi-neutrality
is also determined. It is found that the electron distrivution is
Maxwellian but the ion distrivution is not. For typical DCX
conditions, the plasma potential is an appreciable fraction of
the injected ion energy (tens of Kev). A discussion is gilven of
the code employed, ORACLE ccde EDDIE, which solves coupled, steady-
state Fokker-Planck equaticons governing the lon and electron

distributions in energy space.




ENERGY DISTRIBUTION OF ION5 AND ELECTRONS
IN DCX AFTER BURNOUT: ORACLE CODE EDDIE

T. K. Fowler and M. Rankin

1. INTRODUCTICN

Two measures of performance of the thermonuclear machine DCX,
in which a plasma is created by injecting high energy ions into a
magnetic mirror geometry, are the mean energy Eav+ and density n+
of trapped ions in steady state. After "burnout™ in DCX, that is,
when the plasma is dense enough so that all neutrals penetrating it
are ionized at the surface, the ion density achieved for a given
injection rate is determined by the rate of scattering of ilons out
of the wirrors. Neglecting radiation, the ion energy is determined
by the rate of energy transfer from the long to cold electrons con-
tinuously deposited in the plasma as neutrals bombarding the surface
are ionized. Since both of these mechanisms are energy dependent, it
is necessary in order to predict DCX performance to determine the
detailed energy distributions of ions and electrons in the machine
in steady state.

Previous simplified calculations have been reported in which
Maxwell distributicons were assumed for both ions and electrons with

only the temperatures to be d.etermined.l’2 In this repert, we

lA. Simon and M. Rankin, Some Properties of a Steady State High-Energy
Injection Device (DCX), ORNL-2354 (1957).

T. K. Fewler and A. 3imon, Energy Transfer to Cold Electrons in DCX,
ORNL-2552 (1958).

2T. K. Powler, Effect of Plasma Potential on DCX Steady State,
ORNL-2914 (1960).
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present numerical sclutions of the Fokker-Planck equations governing
the ion and electron energy distributions in order to examine
expected departures from equilibrium conditions. Our code for
this purpose, Qracle code EDDIE, sclves directly for the steady-
state distributions of interest to a d.c. machine like DCX, in
contrast with Killeen's more general code solving coupled, time-
dependent Fokker-Planck equations.3 Our calculsation includes a
determination of the d.c. plasma potential establishing quasi-
neutrality by limiting the escape of the electrons. Unimpeded,
electrons would be scatiered out the mirrors much more rapldly
than ions.

In summary, we Iind that, because only electronsg in the high-
energy tall of the electron distribution have the kinetic energy
requisite for escape over the potential barrier, most electrons be-
have like isolated particles and assume approximately a Maxwell dis-
tribution.J+ {n the other hand, the ions, which can escaps at any

energy, have a non-Maxwellian energy distribution.

I1T. EQUATICHS

. + . L. . . .
In DCX, atomic H ions are injected intc the magnetic mirror

geometry in the form of mclecular H; icns subsequently dissociated

SW. Heckrotte and J. Killeen, Bull. Am, Phys. Soc., Ser. IT, 3,

311 (1960).

uThis result agrees with Kaufmen's assumption emplcoyed by C. L. Oxley,
General Atomic Report GAMD—13631_April £960, but does not support very
well the model in Ref. 2 where § ~ @, B defined by (16) above.

Bar e O
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within the machine. Let I+ be the dissociation rate, the rate

at which H+ ions are deposited in the plasma. Electrons appear

in the plasma when neutrals are lonized. Let the electron injec-
tion rate, equal to the ionization rate, be 1 . OSince by defini-
tion all neutrals entering a burned-out plasma are ionized, 1_ 1s
just the rate at which neutrals bombard the plasma surface, area S,

NOSVO
1 = (1)

where v is the neutral thermal speed and NO 1s the neutral density
cutside the plasma.

For simplicity, we assume the plasma components to be distributed
uniformly in space and, for the purpose of calculating various transfer
coefficients, isotropic in velocity. Then ions and electrons are
completely described by their kinetic energy distributions, f+(E)
and f_(E),1in terms of which densities n, and mean energies Egv

are given by

n = ngf+(E) (2)
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As a further simplification, we characterize the d.c. plasma poten-
tial by one parameter, ¢, the average potential difference from the
plasma interior to the walls ¢f the machine. ¢ » 0 corresponds to
a net positive plasma charge. We could supply an expression for

$ in terms of n, and n_. However, because ¢ is proportional to

(n

, - n ), & small difference in large numbers, we choose to treat

¢ itself as a variable to be adjusted to satisfy the neutrality

condition

The distribution functions f+ and f satisfy steady-state

Fckker-Planck eguations with particle source and loss terms,5

a I
J , . ;
- % {Vt(E)ft] + 2 pwy: EDf(E)ffJ' - Lt(E)ff + = 5(E - EE) =
of,
7 =@ (5)

v is the plasma volume.
The f+ and f  equations are coupled and non-linear. The
friction coefticient V, the diffusion coefficient D, and the lesak

rate L, all representing effects of collisions, are integrals over

M. N. Rosenbluth, W. M. MacDonald, and D. L. Judd, Phys. Rev. 107,
1 (2957). —
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f‘+ and f_. We employ the results of Chandrasekhar for isotropic
6

distributions written in terms ¢f the energy, E:

v (E) = %m+ <wﬁ> + 2 w“ <wr> + <wi> (6)
I

+
00
.z U G’ 7, (E')
Ey)E T
E O
co (m /m )E
m ag' £ (E') m, 1 Tt :
N _— - Z = dg' ¢ (E')
My NEn o JE S B
(n_/m,)E 5 )
E
1 2 1 2y 1 o '
D (E) = =m <:w > == =L — = dE' E' £ (B') (7)
Z o+ il 3 ’Jgaf E3/2 g‘ +
o
[o]e] (m_/m+)E
I+(E') m 1
N B =+ T =7 dR' E' £ (B')
VE! 7 E B
E o
m o £ (E')
+ | — AR’
"t AR
(], )

m, and m are the ion and electron masses. The coefficients V
and D are obtained from (6) and (7) by replacing every subsecript

. L
+ by - and vice versa. The gquantity ¥ is Zxe Ann, Inn = 20;

Ibid.
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P . z . . . .
7/E” has cross section (em”) dimensions. The dimensicns of

v, and D, are (energy/time).

For the leak rate,l, we employ

P ; (8)

n4w
Blm
(&3

1+

o - (fas)

=
=
1+

where P+ and P are factors expressing the effects of magnetic

mirrors., For electrons, we assume adiabatic confinement with

P = K 1 - 1 - % (1 - %-)) E » ¢ (9)

o E < ¢.
L ¢

R 1s the mirror ratio ( R = 2 in DCX-1 ). 7/E2 is the cross

section for 90-degree scattering, and P_ is the fraction of

particles so scattered which actually fall into the loss cone

as amended by the plasma potentlal. Note that electrons escape

only if their kinetic energy exceeds the potential barrier, §.
For ions, we take two extreme assumptions for P+. To treat

the case when the lon Larmor radius 1s small compared with

machine dimensions, we assume adlabvatic confinement,

!
i 1 g
L - fl-ﬁ (1+E/,, E>;R_l (10)




-

To treat the cazse of orbits so large that ions are only confined
"absolutely" by the conservation of energy and canonical angular

momentum,7 we take

(11)
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Both adiabatic and absclute confinement are discussed in
Ref. 2. The principal difference between the two mechanisms is
that in adiabatic confinement only scattering which alters the
velocity component parallel to the magnetic field affects contain-
ment, while for absclute confinement scattering in any direction
can lead to particle loss. Evidently, for E< E?I , (11) 1s an
overestimate for the ion leak rate, and (10) is an underestimate.

We hsve assumed monoenergetic sources of ions and electrons,
the & -funetion terms in (15). Now, Egs. (5) are meant to treat
particles after they enter and become part of the plasma. Thus,
the variable E is the particle kinetic energy inside the plasma;
similarly, the source energies Ez and E; are the energies with
which particles begin their existence inside the plasma. Hence,

Eg and. E; must be corrected for the fall against the potential.

TA. Garren et al, "Non-Adiabatic Effects in Single Particle Orbits,”

Proc. Controlled Thermonuclear Reactions Conf., Berkeley Calif.,
1657 (TID-{536, Part 2, page 170).
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Tf Em is the moleculsr H; ion energy, the energy of HJr ions

at dissociation is
B o= S (12)

For electrons, we make two extreme assumptions. I the
lonization events releasing electrons take place inside the plasma
sheath, electrons begin life inside the plasma with essentially
zero erergy, and we would take E; = 0. On the other hand, if
ionizaticon cccurs outside the sheath, electrons gain energy ¢
in falling into the plasma, and we take E; = ¢. The latter choice
would also apply to external sources of cold electrons dragged into
the plasma by the field.

Slow ions produced with electrons in the iocnization of neutrals
have been neglected. Their escape rate being large, by (9) or (10),
they contribute little to the ion density in the interior of a
burned-cut plasma., Thus, their density is less than the electron
density. Since even for comparable densities the rate of energy
transfer to the slow lons would be much less than that to electrons,
energy transfer to slow ions by collisicns with hot icns is
negligible.

The energy with which these slow ions actually emerge on
falling through gll or part of the plasma potential in escaping

can be traced to energy transferred to electrons by ccllision
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with hot ions. This transfer is taken intc full account by our
transport equations (5) dealing with the plasma interior. In
steady state, all the particles released in an ionization event,
the ion and electron(s), escape from the plasma. However, because
their net charge is zero, they ceannot remove a net energy from
the d.c. field. HNevertheless, the field can, however, act

to redistribute the kinetie energy, in this case from electrons

to ions.

ITI. CONSERVATION LAWS AND BOUNDARY CONDITIONS

We choose as boundary conditions on Egs. (5) the Tfollowlng
conditions which, as we shall show, guarantee particle and energy

conservation:

f —70 as E ——0, oo. (13)

Since, for Coulomb interaction, D+(E) falls off rapidly as E-—o0,

integration of (5) over E immediately yields particle conservation,

I, /v = aE L, (B) 7 (E). (1L)
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Energy conservation can be seen as follows. Multiplying E

times (5) and integrating over E gives

T
= (Eg -~ E) = ®v_(F) f_ (E) (15)

where E+ and E are the mean energies of escaping ions and
electrons measured inside the plasma before the fall through

the potential, given by

(E)

+

kjdE B L (E) 1
= . ! I
+

) JndE L, (E) £ (E)

+

(16)

In Egs. (15), the left hand side is the rate of energy loss or
gain by each species, ES -F per particle. For ions, this is

a loss, E+ being <.E;; conversely, for electrons E_ d Eg.

As this suggests, energy lost by ions is gained by electrons.
To see that the loss and gain are equal, that is, the conserva-
tion of energy, we examine the equivalent expressicns on the
right side of (15). First, these quantities do express an
energy transfer only between species. In V+, for example,

the two terms involving f+, representing ion-icn collisions,
are obtained by =n integral operation on f+ having an antisymmetric
kernel. Consequently, the contribution of these terms to the
right hand side of (15) vanishes. There are left only the T

terms of V+, representing ion-electron collisions, to account
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for energy lost by ilons. The situation is analogous for V ,

the electron-electron terms making no contribution to electron
net energy gain. PFurther, examination of these energy transfers
from icns to electrons and vice versa shows them to have the same
magnitude but opposite sign. Consequently, adding the two egua-

tions given by (15) yields

(€] - B) = ~=(E_-E) (17)

which expresses cverall energy conservation in the absence of

radiation.
IV. SCALING TAWS AND THE DIMENSIONLESS EQUATION

Because our sources are 5 -functions, we may regard (5)
as a homogenecus equation to be solved in the two regions
E > ES and 0 < E <-ES with the matching condition that f+,

but not ( & f+/ JE), be continuous zt E = E_. At B = E_ there

oo

is & jump discontinuity in ( 2T /3E), and ( 3 r /3R is
singular, 2 ¢ -function, which cancels the 4 -function source
in (5).

The reduction to a homogenseous equation effects two simple
scaling laws. First, because each term of the equation 1s quad-

ratic in f+ and £ , the normalization of these distributions is
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no longer tied either to I+ or to physical constants 1n the
problem. The one remaininé constraint on nermalization, the
neutrality condition (4), is easily met. We choose the
symmetrical procedure of multiplying f by the renormallzation
factor ( S dE f+/§;dE f_) wherever ' appears 1n the f+ equa-
tlon and multiplying f by | 5 dr f_/ 5 de f+) wherever f
appears in the f equation.

The second simplicity in the homogeneous eguation concerns
the energy scale. The physical constants in the problem contain
energy units. However, because each term represents scattering,
the same constants, 27/*{55; appear in each term and factor cut
of' the homogenecous eguation. Thus, the energy scale is not tied
to the physlcal constants. There are two energies which must be
specified in (5), namely ¢ and E:. (E; also must be specified,
but, as we have noted, we choose either E; = 0 or E; = @).
Consequently, if we choose either ¢ or E; as the energy unit,
only thelr ratio 1s an arbitrary parameter. Of course, as we
have stated the problem, ¢ is an wnknown parameter fixed by the
neutrality conditlion. However, we have found 1t more convenient
in calculaticns to regard ¢ as known, in which case, as we shall

see, the ratioc I /I+ becomes the unknown parameter. We have

chosen ¢ as the energy unit.
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The equations actually solved numerically are Eqs. (5)
without the I+ term. They are made dimensionless by deleting

fromV,, D, and L = factor 27/455; . Also, § is set egqual
te 1, ;o th;t the in&ependent variabl; E is to be regarded as the
energy measured in units of . To satisfy (4), £ and f are
renormalized as described above wherever they appear in V+ 5

D ,and L .
+ +
Specifying E;/ﬁ fixes the sclutions f+ and f_ of the
dimensionless eguations to within an arbitrary normalization.

To relate these solutions to the physical problem, we note that,
once the arbitrarily normalized f+ and f are known, I_/I+ is

thereby determined by the ratio of the electron and ion conserva-

ticn equations (1Lk),

%]

aw (| amr) EY% p(8) £ (R) [ aar

- Ty +
— . (18)

+ - ae ( § az£) g3/ 2 p (E) T (E) gdﬂf-

ey

The final factor accomplishes renormalization.

An absclute energy scale is fixed by the mclecular ion energy
E . From (12), E_ in units of § is B /ff = 2 /P - 1.

Absolute normalization is obtained by normalizing f+ and I_

to satisfy the particle conservation Egs. (14) for given I,-
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V. THE CODE

Our code, EDDIE (Energy Distribution of Ions and Electrons),
was written for the Oracle and computations reported here were
performed on that machine. To reduce the running time and cost,
the code is being transcribed for the IBM-7090. On the Oracle,
one iteration requires 2-1/2 minutes, and in some cases, as
many as 100 iterations were needed to cbtain energy conserva-
tion to within one or two percent.

We employ a grid of N+l arbitrary points in energy space,

N = 127 in the present code. The grid was made arbitrary in
order to accomodate economically z large range in E and, at the
same time, a fine mesh over the tiny range of integration, 0 to
(m_/m+)E, appearing in certain of the v, and D terms. In

practice, we have generally employed N, uniform cells to span

1
the range 0 to hJ(m_/m+)E; and, thereafter, cells with width

increasing like d J - Nl,

Typically, N1 = 20 to 30. By varying the grid pattern and

J being the grid point number.

testing against cases known to yield the Maxwell distribution,
we have assured ocurselves that our results are independent of

the choice of grid.
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A schematic flow chart of the code operation is given
in Fig. 1. We solve the non-linear eguations by iteraticn,
and the procedure is inherently quite straightforward. C(iven

the initial dis-

J)

fil) obtained from the previcus iteration,
and L(J) at
+

(
tribution is arbitrary), we compute ViJ), Di

each energy point E Then, with these coefflclents known,

I
the homogenecus counterparts of Eqgs. (5) are solved as linear
(i+1)
N .

equations to determine new distributicns f We monitor

both the energy conservation equations (17) and the convergence
of the distributions. The number of iterations needed for con-
vergence increases as 1 /I+ becomes smaller. We also observe

that the ion distribution converges much more rapidly than the

electron distribution.

The integraticon scheme employed in computing V+ P D+ » etc.,

E E -E E_-E
— Jd _ J J-1 Jd J-1
WGE jf“ aE Y (E) = HE ) + WV, ——= ¢ )
2 z
9]
Derivatives are given by central differences:
V. .T -V f
J+17J+1 J=-1"J-1 -
2 wmd |, - (20)
=)o J E - E

(19)
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Substituting these definitions into our differential eguaticon
gives a difference equation which, c¢n collecting terms in fJ+l’

i and fJ—l has the form

JJ

cl(J}fJr+l - CO(J)fJ + C_l(J)fJ_l = 0, (22)
where the C's contain V, D, and L.

Equation (22} is integrated in two parts. To integrate
the range J > S5, where 35 is the grid point corresponding to

the source energy Es’ we define )/.I by

r = M (23)

From (22},

¢,(5) (24)
l)J - o

Co(J) - Cl(J}VJJrl
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Reginmming with )JN = 0, which assures the boundary condition

fN = (0, we solve Tfor lé from N-1 down to S+1. Then, using the

Lﬁ‘s and starting at S with arbitrarily specified fS’ we solve
(23) for fS+l to fN-l' Similarly, to integrate the range
14745, we define eJ by
Iy = eira (25)

Then, we cbtain from {22} a recursion relation in CD'S and solve
for el to 65“1 beginning with the choice (B = 0 consistent
with the boundary conditicn fo = 0. Finally, using the G”s, we

solve (25) for f down to f, starting with the same value T

5-1 1 S

chosen above in order to guarantee continuity in fJ at J = 5.

We mention a few numerical points. The difference equation
(22) does not exactly conserve particles and energy in the senze
that the integral relations analogous to (14) and (17), with
integration defined by (19), do not hold exactly. After some
experimentation, we found it necessary to remedy this situation
in one important respect, namely, to insure particle conserva-
tion at the boundary E = 0. Integrating (2%z) over all E to

test particle conservation gives twe non-vanishing contributions

at the boundaries J = 0 and NH.
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The contribution from the lower boundary is much the larger

quantity. Tt is

1
z
We have foreced this quantity to vanish by setting Dl = + % Vl
in the code. We have alsc made a less important change in
redefining V+(J) to eliminate a failure to conserve energy due
to the fact ;hat, with our arbitrary grid size, the numerical
integral operations yielding the ion-ion collision terms in V+
gnd the electron-electron terms in V_ do not have exactly anti-
symmetric kernels. The expressions for V+(J) are corrected by

the subtraction of a term

£, (J)
(E;,, - 2E; + E__,). (27)

i}
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VI. DISTRIBUTTONS TN DCX

We have solved the coupled Egs. (5) and (4) by the
numerical procedure Just described for several cases pertinent
to DCX after burnout. Typical electron and ion energy distri-
butions are shown in Figs. 3-8. The amplitude scale (ordinate)
is arbitrary. The energy scale is the same for both icns and
electrons. The upper scale gives energy in units of @. The
lower scale gives absolute energies for the case Em = 600 kev,
the DCX molecular ion injection energy. 1In Table I we give
pertinent averages cover the distributions plotted and also for
other cases. All energies are measured in the plasma intericr.
In order to bracket possibilities we have glven results for
the various assumptions for E; and,P+ discussed in Section II.
The relation between I /I and E;/Q is plotted in Fig. 2.

We wish to point ocut two features of our data. First,
as was mentioned in the introcduction, the electron distribution
is Maxwellian to very good approximation, but the ion distribu-
tion 1s not. The ion distribution does, however, tend to broaden
out as I_/I+ increases. Second, an electron injection rate
comparable to, or less than, the ion injection rate amounts to
electron gtarvation and leads to quite high potentials. This
is the case in DCX-Z. There, because the molecular ion beam

itself is the principal source of neutrals, I_/I+ ~ 1 tc 2.
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Table I. Average energies as a function of the ratio of injection
rates T_ and I+ for various assumptions for E; and the mode
of ion contaimment. + and - designate lons and electrons.
ES is the source energy, Eav the average encrgy of parti-
cles in the system, and % the average energy of particles
escaping. All energies are defined in the plasma interior,
as discussed in the text. ¢ is the d.c. plasms potentisl.
The molecular ion energy, E , is 600 kev. The density
n=mn is given for I+/V =6 x lOlo, corresponding to 1 ma
injection current and V = lO5 cm3. n varies as J_E:7;j

I_/I+ E;(kev) ¢ (kev) E (kev) Ef-w(kev) -E_+(kev) E-;v(kev) n(lOlzcm_B)
{A) Adiabatic Confinement with E; ~0
.51 zhe 115 168 56 159 302 1.57
.87 256 87 128 L 145 o76 1.56
2.7 280 L1 62 23 106 #10 1.36
3.7 284 3z 50 19 83 152 1.25
5.6 288 2h 38 15 80 174 1.16
(B) Adisbatlc Confinement with E; =g
1.0 2h2 115 179 69 170 328 1.68
5.7 280 L1, 66 29 118 £33 1.50
7.b 284 3z 53 2h 105 210 1.39
(C) Absclute Confinement with E_ ~ 0
1.3 280 41 63 24 200 266 .85
1.8 o84 3z 51 20 187 250 .81
(D) Avsolute Confinement with E; = ¢
2.3 280 41 67 31 215 285 .90
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