

Contract No. W-7405-eng-26

MATHEMATICS PANEL

STRUCTURE AND USE OF ALGOL 60

Hermann Bottenbruch

DATE ISSUED

JUL 1 21961

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee

operated by
UNION CARBIDE CORPORATION

for the

U. S. ATOMIC ENERGY COMMISSION

ORNL-3148

MARTIN MARIETTA ENERGY SYSTEMS LIBRARIES

3 husl Q3bMmi i

CONTENTS

Abstract iv

Introduction]

A Sample Program in ALGOL 60 2

Detailed Discussion of Some Simple ALGOL Concepts 5

Declarations and Blocks 20

Procedures 28

Examples of ALGOL Procedures 43

Acknowledgment 5]

Literature Cited 5]

ABSTRACT

ALGOL 60 is a universal, algebraic, machine-independent programming

language. It was designed by a group representing computer societies from

many different countries. Its primary aims are:

1. Simplification of program preparation.

2. Simplification of program exchange.

3. Incorporation of the important programming techniques presently known.

The ALGOL 60 language is defined in Communications of the ACM 3, 299-314

(1960). The present report is an elaboration of the concepts of ALGOL 60,

mostly with the help of illustrative examples. It is intended for people who are

familiar with the general ideas of programming and mathematical notation.

STRUCTURE AND USE OF ALGOL 60

Hermann Bottenbruch

INTRODUCTION

ALGOL was designed as a language to be used for the description of

computing processes in a machine-independent way, and in this respect

it resembles other languages such as FORTRAN, MATHE-MATIC,

and IT. ALGOL is an international effort, and we hope that it will be

come the main vehicle for communication of algorithms in publications

and reports. The same aims which governed the design of the afore

mentioned systems governed the design of ALGOL. The following is

cited from the ALGOL 58 report (l):2

1) The language should be as close as possible to standard mathe
matical notation and be readable with little further explanation.

2) It should be possible to use it for the description of computing
processes in publications.

3) The new language should be mechanically translatable into ma
chine programs.

However, in ALGOL, ease of expressing a computational process and

consistency with existing mathematical notation were stressed more

than in other systems, and so ALGOL is somewhat further away from

"thinking in terms of a computing machine" and closer to "thinking in

terms familiar to human beings" than other systems. This difference

shows up more in the elaborate parts of the language than in the simple

parts.

The ALGOL 60 language is defined in a very precise and concise

way in "Report on the Algorithmic Language ALGOL 60" by Peter

Naur (editor), et al. See (2). The present paper is an elaboration of

the concepts defined in this report. It is not a definition of the lan

guage, because it does not give all the composition rules. It explains,

rather, the meaning and proper use of the devices provided by ALGOL

60. The main vehicle in accomplishing this task is the discussion of

illustrative examples. Some of the concepts, especially "block,"

"procedures," "local or own quantities," are useful only in programs

On leave of absence from Institute fur Praktische Mathematik, Technische
Hochschule, Darmstadt.

o

Numbers in parentheses refer to the corresponding items in the bibliography.

3ALGOL 58 (i) was a preliminary language. ALGOL 60 is the ALGOL
language, which was based on the ALGOL 58 report and discussions of it in
the Communications of the ACM and in the ALGOL Bulletin.

which are so large that the explanation of the logic of the program

would overshadow the explanation of the language. Therefore the

examples are sometimes oversimplified so that they are not practically

useful except for the purpose of explanation, and some of the examples

are only skeletons, in that they leave out certain parts of the program,

showing only those which are pertinent to the explanation.

Although it is the main aim of this paper to explain ALGOL as far

as writing correct programs is concerned, some effort is made to show

how efficient programs may be written. The remarks concerning storage

allocation in blocks (see p 25) fall into this category.

A SAMPLE PROGRAM IN ALGOL 60

The following program computes the expression

10 i /„\ 2-s+n

*- L

This expression, by the way, represents the first 11 terms of the power

series expansion for the modified Bessel function of integer order ^0.

This fact is not important in order to understand the example. The

expression cannot be evaluated for x ~ n = 0, because for s = 0 we get

the undefined expression 0°. In the case x = n = 0 the program will

give the result 1.

The program given below will serve to give a rough impression of

the features of the language, and by comparing the program with the

formula, some of the notational peculiarities become clear. The program

is not complete, insofar as it does not contain "declarations" (see

pp 20 ff.).

The program given is in no way an efficient formulation for the

computation of this expression, and many refinements are possible by

eliminating unnecessary computational steps. Such refinements, how

ever, would not serve our present purpose of showing some of the

features of the language.

The program reads in four values from an input medium and assigns

these values to the variables named xO, deltax, xmax, n. Then it

computes E for x = xO, xO + deltax, xO + 2 x deltax, . . . , xmax, and

punches x, n, and E on an output medium:

Line

M : read xO, deltax, xmax, n ; 1

x := xO ; 2

nfac := 1 ; 3

for i := 2 step 1 until n do nfac := nfac x i ; 4

ifx = 0 /\n = 0 then begin sz/ot := 1 ; go to P end ; 5

L : denom •= nfac ; 6

sum := 0 ; 7

for s :=0 step 1 until 10 do 8

begin sum := swot + (x/2) } (n + 2 x s)/denom ; 9

denom := denom x (s + 1) x (s + 1 + n) 10

end ;

P : punch x, n, sum ; 11

x := x + deltax ; 12

if x ^ xmax then go to L ; 13

go to M ; 14

Notes

1. The program is a succession of statements, which are normally

executed in the order in which they are written down. Some of the

statements have labels in front of them (line 1, 6, 11) which serve as

marks and which are used in go to statements (line 5, 13). Go to state

ments interrupt the normal sequence of execution of the statements and

indicate the next statement to be executed.

2. The symbols M, L, P are used as names of statements. The

symbols xO, deltax, xmax, n, x, nfac, denom, sum, s, i are used as

names of variables. These names are chosen arbitrarily, and replacing

a name consistently throughout the program by a name different from

all the other names used does not change the meaning of the program.

The names are, however, somehow suggestive of the quantities which

they denote. In contrast to these free names there are certain other

words used in the program like read, step, until, go to, begin, end,

punch. These are fixed constituents of the language. These fixed

words are always printed in bold face and in the discussions below are

treated as a single symbol, such as +, -, etc.

3. The meaning of the statement in line 1 is obvious from the

description preceding the program.

4. The statements in lines 2, 3, 6, 7, 9, 10, 12 are assignment

statements. The value of the expression on the right side of the

symbol := is computed and assigned to the variable at the left side of

that symbol. Assignment statements are also part of the conditional

statement in line 5 and of the for statement in line 4.

5. The statement in line 4 is a for statement, which has as one

of its constituents another statement (nfac := nfac x i), which in this

particular case is an assignment statement. This constituent statement

is executed for certain values of the loop variable i which are obvious

from the for list element 2 step 1 until n. If the upper limit n of this

for list element is less than 2, the loop will not be executed at all.

The net result of statements 3 and 4 together will be that the variable

nfac has the value n\ . The phrase "for i := 2 step 1 until n do" is

called a for clause.

6. The statement in line 5 is a conditional statement. It contains

as one of its constituents another statement, which in this case is the

compound statement: begin sum := 1; go to P end. Execution of a

compound statement means execution of all the statements constituting

the compound statement. The statement is, however, only executed if

the condition following the if of the conditional statement is true.

Otherwise the complete conditional statement is void. The condition

itself is compounded of the two conditions x = 0 and 72 = 0 by means of

the Boolean operation /\ (logical and), which means that the compounded

condition is true if both the constituent conditions are true. In the

sequel, we will use the word Boolean expression instead of condition.

7. The three lines 8, 9, and 10 together form a single statement

(a for statement, see note 5), where the statement governed by the for

clause is again a compound statement, since in this case the two state

ments in lines 9 and 10 are to be executed for the designated values

of s.

8. (For purists and puristic critics).4 ALGOL 60 does not contain

any statements for input and output. Such statements, of course, have

to be added to the language if one wants to write any useful programs.

9. The concepts of notes 1 to 8 which are printed in italics are, in

addition to others, more fully explained in the following sections.

A puristic critic is somebody who criticizes ALGOL on the fact that a
translator is useless which fulfills ALGOL to the last atom of printer's ink.

DETAILED DISCUSSION OF SOME SIMPLE ALGOL CONCEPTS

The definition of an ALGOL concept consists of the syntactic part

and the semantic part. In the syntactic part we describe which se

quences of ALGOL symbols may represent the concept. In the semantic

part we describe what the meaning of this concept is.

The ALGOL 60 report gives the syntactic part in a very rigorous

form. We do not aim at such rigor. One way of "defining" a concept

which is used in the present exposition is simply to give examples of

strings which do represent a concept and of those which do not.

Although this sometimes leaves some doubt, it is hoped that examples

and counterexamples make the general idea sufficiently clear. Clarifi

cations are added in common language wherever this is desirable.

Even so, some exceptional cases may not be covered by the description

given here, and for completeness the reader is referred to the ALGOL 60

report. For the "normal" user of ALGOL, however, it should not be

necessary to go through the painstaking process of disentangling the

definitions in the report after reading this introduction, which stresses

the more frequent and useful concepts while treating the less important

features with less care.

As far as the "semantic part" of the definition is concerned, we

have omitted it if the meaning is obvious from common usage.

Arithmetic Expressions and Their Constituents: Numbers, Variables,
Operations, Special Functions

Arithmetic expressions are formed in almost the usual way, with a

few notational peculiarities. The quantities involved in forming an

expression are numbers, simple or subscripted variables, and functions

(see Table 1).

Simple variables are denoted by identifiers.

An identifier is any string of letters and digits of any length

beginning with a letter. Capital and lower-case letters may be used.

Subscripted variables are denoted by an identifier followed by a

list of expressions enclosed in brackets.

There are no restrictions on the expressions used in subscript

positions. Subscripted variables are defined only for integer sub

scripts. However, even the evaluation of a simple expression like

(ra)x(n - l)/2 may yield a noninteger number due to round-off. There

fore the following convention was adopted:

arithmetic expressions

numbers

s imp le variables

identifier

subscripted variables

If the value of an expression used in a subscript position is not an

integer, then this value is changed to the nearest integer in the sense

of proper round-off. Thus; a[0.6] = a[l.4] = a[l.479] = a[0.5] =
atl], a[l.5] = a[2], a[- 1.5] = a[- l] .

noninteger subscript expressions

Table 1. Examples and Counterexamples of Arithmetic Expressions and Their Constituents

Examples

1 2 -4.8 -0.38 0.38

-io-4a -io4 io4 io+5 +io5

Counterexamples

3x4 tt a 127. v^6"

127.104 io0.5 io2.8

Structure

Numbers

a Soup a] dl A\ A2

alpha alpha] astar pi

a 41] a[i[]]] a[i[l] + 3xB]

6[1, 2] bin x ;'[z] + a, r + 2 x pi]

a[sin (2 x pi x //3)]

77 a[l] a1 2 2a a a] ax Identifiers

3x4 3.]x4xsin(3xpi/5) a] (-2)

a\2 a T2 + b } 2 a } (2 + b } 2) sqrt(6)

a | 2 | 3 meaning (a2)

a | (2 | 3) meaning a* '

See identifiers

T-2 V6 277 2 pi

Simple variables

Variables, simple
or subscripted

Arithmetic expression

aThe symbol 10 has the meaning x 10 }, for example, 104 = 104; 0.41 10-2 = 0.41 x 10~2 = 0.0041; it is
used in almost the same way that the letter E is used in FORTRAN numbers.

b For an extension of the notion of expression, see "Functions," p 37. For conditional expressions, see
"Peculiarities," p 22.

The totality of subscripted variables denoted by the same identifier is

called an array. See array declarations, p 21. Permissible operations

in forming arithmetic expressions are: the binary operations addition,

subtraction, multiplication, division, exponentiation, and integer divi

sion, denoted by +, -, x, /, j, and * ; the unary operations + and -;

and the special functions abs, sign, sqrt, sin, cos, arctan, In, exp,

entier. The definitions of sign and entier are given below.

The exponent part of the operation j stands on the same line as the

base number and must therefore be enclosed in parentheses if it is an

expression containing an operation. See p 21 for integer division.

arrays operations

special functions

Precedence of operations is understood in the usual way; that is, x,

"=• , and /are "stronger" than binary plus and minus; | is stronger than

all other binary operations; unary operations are stronger than binary

operations. If precedence is not specified by these rules, the operation

farther to the left is stronger. Examples are:

a + b x c means a + (b x c)

a + b —c means (a + b) —c

a —b + c means (a - b) + c and not a - (b + c)

a + b 1" c + d means a + (b f c) + d

b\ —c is not permissible

a / b x c means (a / b) x c and not a/(b x c)

—a \ b means (—a)] b and not —(a f b)

Expressions which are ambiguous in usual notation, such as the paren

theses-free form of the last two examples, should be avoided by proper

placement of parentheses.

It should not be overlooked that the associative law does not hold

in rounded-off computations. In some cases it may be important whether

the expression a —b + c is executed as (a —b) + c or as a —(b —c),

for example, if c is small compared with a and b, and a and b are almost

equal and contain almost equal errors. If it is important that the ex

pression be evaluated as (a - b) + c, this should be indicated by paren

theses despite the fact that ALGOL implies this interpretation.

The meaning of the special functions apart from sign and entier is

obvious. The function sign is defined by

+ 1 if £>0

sign (E) = 0 if E = 0

-1 if £<0

The function entier (E) is defined to give the largest integer not greater

than E. Thus entier (1) = 1, entier (—1) = —1, entier (—1.1) =—2,

entier (1.1) = 1.

Arithmetic Assignment Statements

An arithmetic assignment statement is of the form

V:=E,

where V stands for a variable and E stands for an arithmetic expression.

precedence of

operations

sign and entier

arithmetic assignment

statement

Examples are

a :=1

i := i + 1

a :=b

q[j] := r[s + t/2]

A statement in general is a rule to perform some action. The action

denoted by an arithmetic assignment statement is (1) the computation

of the value of an expression and (2) the assignment of that value to

the variable. The "value associated with a variable" is the last value

assigned to that variable.

The formula "V := E" accompanied by the qualifying remarks

"where V is a variable and E is an arithmetic expression" is an ex

ample of what will be called a syntactic skeleton. In particular,

V := E is the syntactic skeleton for an arithmetic assignment statement.

If, in this skeleton, V is replaced by a variable and E by an arithmetic

expression, the result is a syntactically correct arithmetic assignment

statement.

The bold-face capital letters V and E are variables5 which stand

for ALGOL structures. In general, a syntactic skeleton is a formula

which is made up from ALGOL symbols [except digits and (italic)

letters] and bold-face letters. In most cases such a formula is followed

by remarks that identify the structures for which the bold-face letters

stand. If one replaces each bold-face letter by any ALGOL structure

for which it stands, the result will be an ALGOL structure of the type

designated by the skeleton. Since the structures variable, arithmetic

expression, and statement occur so frequently in syntactic skeletons,

we introduce the following convention:

Whenever the bold-face letters V, E, or S, with or without sub

scripts, appear in a syntactic skeleton, they stand for the

structures variable, arithmetic expression, or statement re

spectively.

Boolean Expressions

Boolean expressions are used to form a truth value, that is, an Boolean expression

entity which is either true or false. A Boolean expression is formed

In order to distinguish these variables from ordinary ALGOL variables,
they are sometimes called "meta-variables." They never appear in ALGOL
programs; they are only used when talking about ALGOL programs. Sometimes
they are called "syntactic variables."

with the following quantities: (a) the truth values true and false,

(b) Boolean simple or subscripted variables (see "Declarations and

Blocks, p 20, and (c) arithmetic comparisons. Each of these quanti

ties designates a truth value, which is obvious in case (a). In case

(b) it is the last truth value assigned to the variable (see Boolean

assignment statement). In case (c) it is determined by the result of

the comparison.

An arithmetic comparison is of the form

ERE,

where R stands for any of the six relations =, ^, >, ^, <, £. Some

examples are:

1 =2, a + b^cx(d+e-fxg),

1.34 £ 2 x sqrt (3.12) .

The truth value, of comparisons 1 and 3 is always true, whereas the

truth value of comparison 2 depends on the values of a, b, . .. , g.

Out of these constituents, Boolean expressions can be formed

according to the rules of Boolean algebra. The permissible Boolean op

erations are "not," "and," "inclusive or," "implies," "equivalent,"

denoted by '/ A/ V; 3, =. The rules of precedence are given by the

order in which the operations are listed. Thus p v 1 A r means

P V (l A r)i °nd p ^ q y r means (p a l) Vr. If precedence is not de

termined by parentheses and the above mentioned rules, operations are

carried out from left to right. Thus a = b = c means {a = b) = c, which

sometimes has a truth value different from a = (b = c). A few examples

for Boolean expressions are:

x^-2 v x = -2, true, —, true = false, a-^b jc £ d jc ,

—,{a^b = -a^-b), A[i + 3] g B[i, 2] ,

a <; b Ab^c=a^c.

The last expression is equal to

l(a^b) A(b^c)] = (a£c) .

Some of the Boolean expressions given in the example are true regard

less of the values of the variables appearing in them. The identifiers

The result of the Boolean operation "and" is true if both operands are
true. The result of the Boolean operation "or" is true if one of the operands
is true. The result of the Boolean operation "implies" is true either if the
second operand is true or if the first operand is false. The result of the
Boolean operation "equivalent" is true either if both operands are true or if
both operands are false. In the cases not mentioned the result is false.

arithmetic comparison

precedence of opera

tions in Boolean

expressions

10

a, b, c, d, i, x, denote real or integer variables (see "Declarations and

Blocks," p 20). The identifier e denotes a Boolean variable.

The most common form of Boolean expressions are arithmetic com

parisons. The program on p 3 contains in line 5 an expression com

posed of the two comparisons x = 0 and n - 0. The program on p 29 con

tains in line 5 a Boolean expression composed of three comparisons.

Another example is in the merge procedure on p 45 in the line labeled

Q. More complicated Boolean expressions occur in programs with a

complicated structure, for example, compilers.

Boolean variables are useful for "storing" the,results of arithmetic

comparisons in a readily accessible way.

Boolean Assignment Statements

Boolean assignment statements are denoted by

V:=B,

where V is a Boolean variable and B is a Boolean expression. This

statement assigns the truth value of B to the variable V.

Conditional Statements

A conditional statement is denoted by

if B then S ,

or alternatively by

if B then S, else S2 ,

where B is a Boolean expression and S, S1# S2 are statements. Ex

ecution of a conditional statement of the first form means execution of

statement S if the truth value of B is true. Otherwise the statement is

void. Execution of a conditional statement of the second form means

execution of S, if B is true and execution of S2 if B is false. The

statement following the then must not be a conditional statement. The

statement following the else may be a conditional statement, thus

allowing constructions of the kind:

if B, then S, else if B2 then S2 else if B3 then S3 ,

where S3 may again be a conditional statement.

Compound Statements

A sequence of one or more statements, separated by semicolons,

and enclosed in the so-called statement parentheses begin and end is

Boolean assignment

statement

conditional statement

compound statement,

begin end

11

called a compound statement. A compound statement is also a state

ment, and may therefore be a constituent of another compound state

ment. An example of a compound statement is:

begin a \- b ; x ;- y ; n := v end

Examples of conditional statements, each of which has a compound

statement as one of its constituents are:

if a ^ 2 then begin a := b ; x := y end else u := 0

if a £ 2 then a := b else begin x := y ; u := 0 end

In the first conditional statement the statements a := b and

x := y are executed if a £ 2. Otherwise the statement u := 0 is ex

ecuted. In the second conditional statement the statement a := b is

executed if a £ 2. Otherwise the statements x := y and & := 0 are

executed.

Use of compound statements in conditional statements can always

be avoided by means of go to statements and labels. For example, the

first conditional statement above is equivalent to

if a £ 2 then go to L ;

u :- 0 ; go to M ;

L : a := b ; x := y ;

M : (next statement) .

This explicit form is bad ALGOL style.

Loops

A loop is a device which facilitates the repeated execution of a loop

statement for different values of a distinguished variable, the so-called

loop variable. A simple example of a loop is:

for z := 1 step 1 until 10 do a[i\ := i | 2 .

This loop assigns the value 1 to the variable «[1], 4 to the variable

a[2], ... , 100 to the variable a[10]. The values which are assigned

to the loop variable are in general determined by so-called "for list

elements" (see below). A loop is a statement, and the ALGOL term

for this is for statement. A for statement has one of the two forms: for statement

for V := FL do S

forV:=FL1; FL,,..., FL do S

12

where FL, FL,, ... , FLn designate for list elements. A for list ele- for list elements

ment has one of the three forms:

E, step E2 until E3

E while B

E

Each for list element designates a sequence of values to be as

signed to the loop variable V. The first element, for example, de

signates those elements ofthe sequence E1# E, + E2, E, + E2 + E2, . ..

which lie between E, and E,, inclusive. A loop may be expressed

equivalently by a sequence of ALGOL statements not containing loops.

The following examples make this sufficiently clear:

1. for i := a step 1 until b do c[i] := d[i] is equivalent to

i :=a;

L : if i £ b then begin c[z] := d[i]; i := i + 1; go to L end

Note that the loop is void in case b < a. In for list elements
with negative step-expression the comparison must use ^ in
stead of ^.

2. for i :- i + 1 while a[i - 1] > d do a[i] := a[i - l]/z is equivalent
to

L : z := z'+ 1 ;

if a[i —1] > d then begin a[i] := a[i -]]/i ; go to L end

3. for i := a + b do x[z] := y[z] is equivalent to

i := a + b ;

x[z]:=y[z]

Loops with more than one for list element are equivalent to a sequence for statements with

of loops with only one for list element. Thus: several for list

for V := FL,, FL2, FL3 do S is equivalent to

for V := FL, do S;

for V:=FL2 do S ;

for V := FL3 do S

Conditional statements and for statements are both structures which may be

parts of other statements and which have statements as their constituents. In

order to indicate the logical dependence of these statements, one should use

statement parentheses even where they are not indispensable. In the example

on p 43, one would not need the begin and end because only one statement is

governed by the for clause. If this statement were part of another conditional

elements

13

statement the begin and end are necessary in order to show the if clause to

which the else belongs. Example:

P:=l ;

if e > 2 then

for pi := (e + p) + 2 while e —p£ 1 do

begin if a[pl] < b then e := pi else p := pi end

Without the statement parentheses this program could be interpreted in the

following way:

P:=l

if e> 2 then

for pi .= (<? + />) -r 2 while e - p ^ 1 do

begin if a[pl] < b then e ;— p\ end ;

else p := pi

Labels, go to Statements

Any identifier and any unsigned integer may serve as a label. labels, go to state

Labels and go to statements are described in the example, p 3, note 1. ments

See also "Designational Expression,' p 27.

Dummy Statement

A dummy statement is represented by "no symbol." A dummy state- dummy statement

ment executes no operation. It may serve to place a label. An example

is the statement with label L in the following program to find the maxi

mum of <z[l] to a[n] :

imax := 1 ; M := a[l] ;

for z := 1 step 1 until n do

begin if a[i\ < M then go to L

else begin imax := z ;

M := a[i]

end ;

L : end

Input and Output of InJormation

There are no statements for input and output of information in the

ALGOL language. The statements described below are used to supple

ment the language in this respect. They are, along with others, used

for input and output of information in the Oracle ALGOL Translator (3).

The statements given below constitute a bare minimum of input-output.

14

commands and thus are not intended as a proposal for general accept

ance. Such a proposal must contain some means for format designation

and input and output of alphameric information. Some practically useful

minimal set of statements would be desirable as a general standard.

The statement read V means: Read the next number from input read

tape, convert it to internal representation, and assign it to the variable

V. The number read in is supposed to be punched in ALGOL form on

an input medium. Any ALGOL symbol not compatible with the structure

of an ALGOL number terminates the number.

The statement read V,, V2, .. , , V is equivalent to the sequence

of statements:

read V, ; read V2 ; ... ; read Vn

The statement punch E has the meaning: Compute the value of the punch

expression E and punch it on the output medium.

The statement

punch E,, E2, . . . , E ; is equivalent to

punch E, ; punch E2; ... ; punch En

The statement carriage return activates the punching of a carriage carriage return

return and line feed symbol (or equivalent) on the output medium.

For further remarks on input-output see strings, p 15, and machine

code procedures, p 39.

Comment

There is the possibility of inserting into a program comment, or comment

text, which does not affect the meaning of the program, but which helps

to make the meaning of a program clear to the (human) reader. The

comment rules are:

1. The symbol comment and any character between this symbol and the
first semicolon after comment are text.

2. Any character between the symbol end and the first semicolon or
end or else following this end is text. Some examples are:

comment a + b - c is positive at this point ;

comment if the program ever gets to this point there is a
mistake in the input data. Do not worry ;

if a = b then begin x := g ; y := z end . This is a very ex
ceptional case else x := g + 1 ;

In the last example the symbols beginning with the period after the end

and ending with the word "case" are text.

15

The second comment convention is often used to "mark" an end in a way ways of indicating

which facilitates finding the matching begin. In case an end terminates a loop, matching begins and

one can repeat the loop variable after the end. If the compound statement has ends

a label, one can repeat the label of this statement after the end. It has been

the experience of this writer that the following way of writing compound state

ments displays the structure of long compound statements more effectively:

Write matching begins and ends either in the same row or in the same column

of the program. Subordinate begins and ends are indented farther to the right.

Strings

An ALGOL string is either a sequence of ALGOL symbols enclosed string quotes

in the opening and closing string quotes ' '; or it is a sequence of

ALGOL symbols and ALGOL strings enclosed in these string quotes.

Examples are:

'abed'

'ah 'cde' fg'

Strings cannot be used in ALGOL 60 proper. Strings are useful in

input-output operations. With strings in mind it would be useful to

interpret output operations in the following way: Whenever a string

appears in an output statement at the place of an expression, this

means that the elements of the string are put on the output medium.

With this general interpretation the statement

punch M=', 1.34, '##B=', B;

would place the following symbols on the output medium:

/4 = 1.34, B =,

where stands for the value of the variable B at the time of ex

ecution of this statement. In order to make strings really useful, one

would need string variables, string assignments, and some string opera

tions. String operations can be introduced into ALGOL by means of

procedures written in machine code (see p 39).

Punctuation

Proper use of punctuation symbols hardly represents any difficulties, with

the possible exception of the semicolon. In using the semicolon one should semicolon

have the following facts in mind; A semicolon is used only to separate the

different statements of a compound statement. It is not part of a conditional

statement or of a for statement, except when these have a compound statement

as one of their constituents. From this it may be seen that the sequence

The #is the ALGOL representation of "blank." Blanks are normally dis
regarded in ALGOL, but they are meaningful in strings.

16

"; else" can never occur in an ALGOL program, and that in the sequence

" ; end" the semicolon is redundant. Example 1:

if a^ b then x := y else x := z

Insertion of a semicolon after the y would terminate the conditional statement,

leaving the else without an if clause. An "intelligent" translation program

would be prepared for that mistake which results from the assumption that a

statement must be terminated by a semicolon, and it would simply eliminate

the semicolon, giving an appropriate error message. Example 2:

if a£ b then begin x ;— y ; y := z ; end ;

The semicolon after the z is redundant.

Statements

Thus far we have discussed the following types of statements:

1. assignment statements (arithmetric and Boolean),

2. go to statements,

3. for statements,

4. conditional statements,

5. read, punch, and carriage return statements,

6. compound statements.

The notion of statement is recursive insofar as some of the constituents

of for statements, conditional statements, and compound statements are

themselves statements.

Any statement may be preceded by one or several labels, each

followed by a colon. A statement together with its labels is again a

statement of the same type. For example, a conditional statement

preceded by a label is still a conditional statement.

A conditional statement enclosed in the statement parentheses

begin and end is no longer a conditional statement. The first symbol

of an unlabeled conditional statement is always if.

There are only two more types of statements in addition to those

discussed so far, namely, procedure statements and blocks. They are

discussed in subsequent sections.

Examples of ALGOL Programs

1. The reader is referred to the example given on p 3.

2. Multiplication of a matrix A by a matrix B to form a matrix C:

for i := 1 step 1 until n do

for k := 1 step 1 until n do

begin S := 0 ;

labeled statements

conditional statement

enclosed in begin end

blocks and procedure

statements; see p 20

and 28

17

for / := 1 step 1 until n do

S :=S+ A[i,j] xB[j,k] ;

C[i,k] :=S

end ;

3. Sorting a one-dimensional array of numbers N[l], N[2], ... , N[k]
according to size by successive interchanges.

Note: This method is slow if k is large. Sorting methods for large

arrays are considered in later parts of this report, after the discussion

of procedures:

for i := 1 step 1 until k — 1 until k —1 do

if N[i + 1] < N[i] then

for 7 := i + 1, / - 1 while N[f - 1] > N[j] A/ ^ 1 do

begin h := n[j - 1] ;

N[j - 1] := N[j] ;

N[j] := h

end ;

It may be of interest to write the last loop in this program in a form not

containing for statements:

/ := i + 1 ;

h := N[j - 1]; Nlj - 1] := N[/]; N[j] := h

L :/:=/- 1 ;

if Nlj - 1] > A/[/] A7 ^ 1 then

begin h := /vt/ - 1]; N[; - 1] := A/[/]; A/[;] := h ;

go to L

end ;

Recursive Definition of ALGOL Concepts

The concepts of ALGOL 60 are defined recursively: A concept C,

which is used as a constituent in defining C2 may itself require C2 as

one of its defining constituents. Examples of this are the two concepts

subscripted variable and expression. An expression is formed according

to the usual rules of arithmetic from numbers and simple and subscripted

variables. A subscripted variable, on the other hand, may be formed by

means of arithmetic expressions in the subscript positions; see the

examples on p 6. Other examples are the concepts statement and

18

conditional statement: To form a conditional statement requires that

one or more statements be formed first. On the other hand, since a

conditional statement is a statement, these constituent statements may

themselves be conditional.

This recursive definition causes some trouble in describing the

language and in understanding a description of the language. Thus, in

the present description, we introduce the concept of conditional state

ment on p 10, using the notion of statement only in so far as it has

already been explained. Up to this point, the only statements which

may be used to construct a conditional statement are arithmetic or

Boolean assignment statements and conditional statements. Later we

add rules for constructing statements, and without explicitly mentioning

it we imply that the expanded notion of statement may be used in all

those construction rules which were previously given. In order to get a

clear picture of these recursively defined structures, one should read

the construction rules several times forward and backward, forming

examples of these structures and using these examples in forming other

structures according to the construction rules.

This recursive definition of the ALGOL concepts accounts for

much of the thought required for building a translator: From a given

structure one has to find the rules according to which it is constructed.

In defining the ALGOL language there is only one thing which

must be clearly defined, and that is the concept of program; that is,

which construction rules lead to ALGOL programs, and what is the

meaning of the program. All the other concepts, such as expressions,

are auxiliary, and the language might well be defined by using some

other auxiliary concepts. In this presentation we use many of the

auxiliary concepts introduced in the ALGOL 60 report. Some of the

concepts which we do not find of sufficient significance (such as

basic statement, compound tail, Boolean factor, simple Boolean) are

not explained or used. Some of the auxiliary concepts are used without

explanation, if their meaning is sufficiently clear from ordinary grammar

(e.g., unlabeled statement).
Peculiarities

1. Multiple Assignment Statement. - This type of statement may be multiple assignment

illustrated by examples:

a := b := c := d + e means c := d + e ;

b := c ;
a := b

statement

ili] i := 2 means j := z ;
i := 2 ;

*[;] :=2

19

The "sneaky" point in this last example lies in the fact that the

variable a[i] is determined by the value which i had before the execu

tion of the assignment statement [see the ALGOL 60 report (2),

Sec 4.2].

2. Conditional Expressions. - Example:

if a = b then 3 else 4

The value of this expression is 3 if a = b; otherwise the value will be

4. Conditional expressions, if used as operands of other expressions,

must be enclosed in parentheses:

a + (if a = b then 3 else 4) + 6

The following construction is possible:

a[if x = y then 3 el se 2, if x <; y then 2 el se 3]

3. Designational Expressions. - These are treated in connection

with switches; see p 26. See also the ALGOL 60 report, Sec 3.5.

4. Dynamic Interpretation of Expressions in For List Elements. —

The expressions appearing in a for clause may contain the loop vari

able, or other variables, the value of which is changed in the statement

governed by the clause. Whenever the evaluation of such an expression

is called for in the execution of the for statement, the present values

of these variables will be used for the evaluation. This means that in

general these expressions must be evaluated each time the statement

governed by a for list element is executed. If the value of these ex

pressions remains constant during execution of the for statement, their

values need be computed only once. It is not easy for a translator to

determine in which category a for statement belongs. The programmer

can "help" the translator in producing an efficient machine program by

using single variables or constants in for list elements where this is

possible.

Example 1:

for i := 1 step 1 until sin (pi x a) do b[i] := 0 ;

Optimized version:

n := sin (pi x a) ;

for z := 1 step 1 until n do b[i] := 0 ;

conditional expression

designational expres

sion

expressions in for list

elements

20

Example 2:

for z := 1 step 2 x i until 101 do b[i] := 0 ;

No optimization is possible here because the expression 2 x z changes

its value during the execution of the for statement. It should be noted

that this "optimization" is "translator dependent." In example 1,

most translators will produce a better machine program from the second

or optimized version of the computing process. Very efficient trans

lators might give better programs from the first version.

5. Value of Loop Variable on Exit from For Statement. — The

execution of a for statement may be terminated in two ways: (a) ex

haustion of the for list; [b) execution, inside the for statement, of a go

to statement leading out of the for statement. In case (a) the value of

the loop variable is not defined. In case (b) it is defined to be the

value of the loop variable at the time of execution of the go to

statement.

6. Go To Statement Leading into a For Statement. — Such a go to

statement is illegitimate.

DECLARATIONS AND BLOCKS

Type and Array Declarations

For every simple variable which appears in an ALGOL program

there must be a type declaration, and for every array there must be an

array declaration. A type declaration determines the range of values

which a variable may assume. There are the three types: real, integer,

and boolean.

A boolean variable may assume only the values true and false. An

integer variable may assume those integer values which are represent-

able in a particular machine (ALGOL does not attempt a standardization

in this respect). A real variable may assume every real value repre-

sentable in a particular machine (ALGOL does not attempt a standardi

zation, but it is tacitly understood in all ALGOL programs written so

far that the numbers are represented in floating-point form, with a

decimal exponent range of about -50 to +50 or an equivalent binary

exponent range). A type declaration has one of the following three

forms:

value of loop variable

go to into for statement

types

21

boolean V, , V2 V„ ;

integer V,, V2 V„ ;

'ed V1,V2 V„;

It is permissible to mix variables or numbers of types integer and mixed expressions

real in arithmetic expressions. The result of a mixed operation is of

type real. The result of a division of two integers is of type real. The

integer division operation -=-, however, is only defined if a and b are of integer division

type integers. If a/b is positive, then a + b = entier (a/b). Otherwise

a * b = - entier (—a/b). Thus

fl+ &= (-«) + (-&)=-(«+ (_fc)) =-((_„)* 6).

It is not permissible to use a Boolean variable or constantas an operand no Boolean values in

of an arithmetic operation. No number, real or integer, is associated arithmetic operations,
and con versely

with the truth values true and false. Conversely, no truth value is

associated with numbers.

The assignment of a noninteger value to an integer variable is always mixed assignment
understood in the sense of proper round-off; that is, the value assigned to the statements
integer variable will be the integer closest to the noninteger value. If a is of

type integer the following pairs of statements are equivalent:

a ;= 1.4 and a := 1

a ;= 1.5 and a := 2

a •= 1.7 and a •= 2

a := —1.1 and a •= —1

a ;— -1.5 and a := -1

(Note; There is a slight distinction between an integer number of type real and

an integer number of type integer with respect to the operation "=". The operation
a ~ b is not defined if one of the variables a or b is of type real, even if the

values of a and b are both integer at the time when the operation a * b is to be
executed.)

The type of numbers is inherent in the string of characters by which they

are represented. Every number made up from the symbols +, —, 0, 1, ... , 9 is

of type integer. Every other number is of type real, although its value may be
integer, for example, the numbers 3.0 and 0.4 lOl. The reader is referred to the

examples and counterexamples for numbers in Table 1. The distinction between

numbers of type integer and type real matters only in connection with the

operation "=" . Otherwise it is immaterial.

The assignment of a truth value to an arithmetic variable or the

assignment of an arithmetic value to a Boolean variable is not defined.

An array declaration gives bounds for the values which the sub- subscript bounds in

scripts of an array may assume. In addition, the type of the array may array declarations

22

be given in an array declaration. If no type is given, the array is type of arrays

understood to be real. (Note: No such declaration is implied for simple

variables; their type must be declared.) All elements of an array are of

the same type. The following examples make the structure of array

declarations sufficiently clear.

array a, bV\ : 10], c, d, e[l : 14, 6 : 9], /[-I : +2] ;

This declaration means: The arrays a and b are one-dimensional arrays,

and the subscript ranges between 1 and 10. The arrays c, d, e are two-

dimensional arrays, with the first subscript ranging from 1 to 14 and

the second from 6 to 9, etc. All these arrays are real.

The lower bound for a subscript must be written before the upper. lower bound comes

Thus array a\A : 1] is not a valid array declaration. References to a

subscripted variable outside the range of the subscript bounds are

invalid. A program with the given array declaration which uses the

subscripted variables a[0] or c[— 1, 18] would be incorrect. Other

examples for array declarations are:

integer array d[] : 14] ;

real array g[\ : 14, 8 : 9, -3 : -1], h, f[] : 2]

A program may be constructed from one or several blocks. A block position of declarations

is, roughly speaking, a compound statement that contains declarations

about the variables which are "local" to the block. Such local vari- local quantities

ables must not be used by a statement not contained in the block. The

declarations for a block have to follow immediately the begin which

indicates the beginning for the block; the statements, of which the

block is composed, follow the declarations, and the block is terminated

by the end which matches the block-begin.

A block is also considered to be a statement, and thus may be a

constituent statement of another block.

Two blocks B, and B2 may be related to each other in three

different ways:

1. B, is a subblock of B2,

2. B2 is a subblock of B,,

3. B, and B2 are independent blocks.

For case 1 to be true, B, either is a constituent statement of B2, or

B, is a subblock of a subblock of B2. For case 3 to be true, B, and

B2 are either constituent statements of a block B, or they are sub-
blocks of different constituent statements of B.

Example:

L : begin real a, b, c ;

Al : begin integer a ;

23

N : begin real a, b ;

end

O : begin real c, d ;

end

end

P : begin real d;

end

end

In the example given, the blocks labeled M, N, O, P are subblocks of

L; the blocks labeled N, 0 are subblocks of M. The blocks M, N, 0

are independent of P, and P is independent of M, N, 0. The block N is

independent of 0 and vice versa.

Those statements of block L which are not contained in one of its

subblocks may refer to the variables a, b, c. The statements of block

M which are not contained in one of its subblocks may refer to the

variables a, b, c. Notice, however, that the a of block M is different

from the a of block L, whereas the variables b and c used in M are

the same as those used in L. Or to put it another way: A variable

24

which is declared in a block B, is valid for all those statements and

subblocks of B, which do not contain a declaration for a quantity with

the same name. It is not valid in any of those blocks which are inde

pendent of B, and, outside B,, in those blocks of which B, is a sub-

block.

There are, however, the possibilities, which are to be differentiated,

that a variable of a block B, becomes invalid because control is trans

ferred to a subblock B2, where a variable with the same name is de

clared, and that a variable becomes invalid as a result of leaving the

block B, where it is declared. In the first case, the value of the
invalid variable is retained and available after exit from B2. In the

second case, the value of the invalid variable is lost, and is not

available on re-entering B2.

There are consequently three possibilities for the "state" of

variables:

1. valid,

2. invalid, value defined,

3. invalid, value not defined.

Table 2 gives the state of each variable in the program on p 23 as a

function of the block.

Table 2. State of Variables as Functions of Blocks

Variable Bloc k /. Block M Block N Block O Block P

a of block L Valid Not valid,
defined

Not val id,
defined

Not valid,
defined

Valid

b of block L Valid Valid Not valid,
defined

Valid Valid

c of block L Valid Valid Valid Not valid,
defined

Valid

a of block M Not vc

not de

.lid,
fined

Valid Not valid,
defined

Valid Not valid,
not defined

a of block N Not valid, Not valid, Valid Not valid. Not valid,
not defined not defined not defined not defined

b of block N Not valid, Not valid, Valid Not valid, Not valid,
not defined not defined not defined not defined

c of block 0 Not valid. Not valid, Not valid, Valid Not valid,
not defined not defined not defined not defined

d ol block 0 Not valid, Not valid. Not valid. Valid Not valid,
not defined not defined not defined not defined

d of block P Not valid, Not valid. Not valid, Not valid, Valid
not defined not defined not defined not defined

25

A quantity which is valid in a block B but which is not declared in

B is called a global quantity in B.

Storage Allocation in a Program with Block Structure

Here is one possible and easy way to allocate storage to the vari

ables in a program with block structure: Each variable declared is

allocated a unique storage location. In the program given above this

would amount to reserving nine different storage locations for the nine

different variables. This is wasteful, since it is possible to have

only six different locations in the following way:

Loc 1 : a of block L

Loc 2 : b of block L

Loc 3 : c of block L

Loc 4 : a of block Al, and d of block P

Loc 5 : a of block N, and c of block 0

Loc 6 : b of block N, and d of block 0

This saving of storage space is not important in the case of simple

variables; it may be decisive in the case of arrays. An ALGOL

translator can take advantage of this possibility given by the block

structure. The block structure gives among other things most of the

features of the "Common" and "Equivalent" statements of FORTRAN.

The discussion on "valid" and "defined" quantities just given for

simple variables also applies to arrays. The rather interesting feature

here lies in the fact that the size of a local array may depend on

quantities computed outside the array.

The subscript bounds in array declarations are arithmetic ex

pressions. They may contain variables and procedures (see below)

which are global to the block in which the array is declared. They

must not contain variables and procedures which are local to this

block. If one wants to make efficient use of this feature, one must

allow for "dynamic storage allocation" of the elements of an array.

This means that storage space for the elements of an array is allotted

at execution time, more specifically, at the time when control enters

the block where the array is declared.

Local Labels

Labels are, in the same way as variables and arrays, denoted by

"free names." There are no explicit declarations for labels. The

global quantities

subscript expressions

for arrays

26

fact that a name denotes a label is implied by the way in which the

name is used. A name or an unsigned integer which appears immediately

in front of a statement, separated from the statement by a colon, is a

label, and such an appearance of a name may be considered as a

"label declaration." There is of course only one declaration for each

label in each block. If L is a label "declared" somewhere, then the

statement "go to L" may be called a statement "using" that label.

All labels declared in a block are local to the block, and in this

sense the notions of validity apply to labels in the same way as to

variables. From this statement, it follows immediately that one cannot

jump to a label inside a block by means of a go to statement which is

outside the block. Also, if in block B, a label L is declared, and if

B2 is a subblock of B, where again L is declared, then any statement
go to L inside B2 refers to the label L in B2. Any statement go to L

in B, refers to label L in B,.

A compound statement which does not contain any explicit decla

rations is not a block, and labels of compound statements which are

not blocks are not "local" to that compound statement.

Switches

Assume that in an ALGOL program one has to write a statement

which transfers control to one of five different labels L, P, Q, L2, L,,

depending on whether a variable i is equal to 1, 2, ... ,5. One can

write the statement:

if ii = 1 then go to L else if z = 2 then go to P

else if i = 3 then go to Q else if z =4 then go to L2

el se go to L,.

One can greatly simplify this statement by combining the five labels

L, P, Q, L2, L, into a switch by means of a switch declaration:

switch s := L, P, Q, L2, L, ,

and replacing the lengthy conditional statement by:

go to s[i] .

The switch declaration in this example declares the label L to be the

first element of the switch with name s, label P to be second element

of this switch, etc. Reference to elements of a switch is made in a

label declaration

jump into a block not

perm is sible

labels of compound

statements which are

not blocks are not

local

example for use of a

switch

27

way analogous to referencing elements of one-dimensional arrays:

The name of a switch followed by a left bracket followed by an ex

pression E followed by a right bracket designates the &th label of the

switch, when k is the integer closest to the value of expression E.

A designational expression is defined to be designational expres
sion

(a) a label,

(b) a structure of the form S[E] ,

where S is the name of a switch.

Designational expressions are primarily used in go to statements

(see the example above). They may, however, also be used in defining

a switch.

If D,, D2, ... , Dn are designational expressions, and I is an switch declaration

identifier, then

switch I :=D,, D2, ... , Dn

is a switch declaration.

The statement go to l[E,] transfers control to the &th designational
expression of switch I, when k is the integer nearest to E,. If this

designational expression is a label L, the statement is equivalent to

go to L. If it is of the form s[E2], the statement is equivalent to go to

s[E2]; that is, it refers to the /th designational expression in the
declaration for switch s, where / is the nearest to Ej. This process of

referring to other switches within a switch may be repeated an arbitrary

number of times. Such recursive switches, however, are rarely used.

It might be mentioned that one can form "conditional designational conditional designa-

expressions." An example may suffice: tional expression

go to if a = b then L else if a ^ b then P else Q

The use of conditional designational expressions can and should be

avoided. The statement

if a = b then go to L else go to M

is better "ALGOL style" than the statement

go to if a = b then L else M .

A switch declaration may, within a program, occur in any place in

which type and array declarations may occur. The variables and labels

o

Switches may be considered as a kind of one-dimensional array; the
"values" of elements of this array are not numbers but labels.

28

used in switch declarations must be valid in the block in which the

switch is declared. A switch declared in a block is, of course, local

to that block in the sense described above in connection with simple

variables.

PROCEDURES

General Discussion

Procedures serve, in ALGOL, the same purpose which subroutines

serve in ordinary machine coding.

A piece of ALGOL program, which is used in several places of a

program or in several programs, with possibly different parameters,

may be declared a procedure by preceding it with a procedure heading.

A procedure heading may in some simple cases have the form:

procedure I(P,, P2, ... , P„);

where I is an identifier (the "name" of the procedure), and P,, P2, .. . ,

P are identifiers, which denote the formal parameters of the procedure.

More elaborate forms of the procedure heading are considered

below.

The piece of program associated with the name I is called a

procedure body. The procedure body is an ALGOL statement. Normally

it is a block, since most procedures use local quantities declared in the

procedure body. The procedure heading and procedure body together

form the procedure declaration.

Execution of the procedure body is initiated by a procedure call.

A procedure call is a statement. The procedure with name I is called

by the statement:

l(AP,, AP2 AP„),

where AP,, AP2, ... , APn denote actual parameters of the procedure

call.

An actual parameter may be:

1. an expression (arithmetic, Boolean, designational),

2. an identifier denoting a procedure, a switch, or an array,

3. a formal parameter, if the call appears in the body of a procedure.

Executing a procedure statement means execution of the procedure

body after the following changes have been made:

local switches

procedure heading,

simple form

formal parameter

procedure body

procedure declaration

procedure call is a

statement

actual parameters

29

1. The formal parameters of the procedure are replaced, in the sense copy rule
of copying, by the corresponding actual parameters of the procedure
call, after enclosing these in parentheses whenever this is syn
tactically possible.

2. The names of local quantities are changed so that they are different
from all names appearing in the actual parameters.

An addition to this rule is necessary if some of the parameters are for an addition to the

called "by value" (see below). coP" rule in case of
value parameters see

A Simple ALGOL Program Containing a Procedure Declaration

Read in a sequence of number quadruples a, b, c, d. Compute the

area of all triangles which can be formed with sides equal to any three

of a, b, c, or d, and punch these. The program uses a procedure which

computes, for three numbers x, y, z, the area a of a triangle with sides

of these lengths according to the formula a = \js(s - x) (s - y) (s —z),

where s = (x + y + z)/2. The result a is punched. The program also

tests whether a triangle can be formed of sides with lengths x, y, z:

Line

real a, b, c, d ; 1

procedure triangle area (x, y, z) ; 2

begin real s, a ; 3

s := 0.5 x (x + y + z) ; 4

ifs^x As^y As ^ z then 5

begin a •.- sqrt(s x (s-x) x (s —y) x (s —z)); 6

punch a 7

end 8

else punch -1 9

end triangle area ; 10

L : read a, b, c, d ; 11

carriage return ; 12

triangle area (a, b, c) ; 13

triangle area (a, b, d) ; 14

triangle area (a, c, d) ; 15

triangle area (b, c, d) ; 16

go to L ; 17

bel ow

30

Notes on the triangle program:

1. Line 1: These are declarations concerning the variables used in
the program.

2. Line 2: The identifier following the procedure is the name of the
procedure. Its parameters are x, y, z. Consistent replacement of all procedure names are
the identifiers used as formal parameters does not affect the meaning arbitrary identifiers
of the procedure or of the program in which it is declared. We could
even change x, y, z into identifiers which are equal to some identi
fiers used elsewhere in the program; for example, we could replace
x by b. We could of course not replace x, y or z by s or a.

3. Line 3: Declarations of variables local to the procedure, that is,
local in the sense described in "Declarations and Blocks."

4. Lines 4 to 10: The statements of the procedure body.

5. Line 13: This procedure statement is equivalent to the execution
of the procedure body after substituting a, b, c for x, y, z, and
after changing the local quantity a in the procedure body into some
other identifier.

The statement which results from the copying process described

above must be a valid ALGOL statement. There is no other rule or

restriction in forming the procedure body. For some difficulties which

may result in some cases, see "Recursive Procedures" and "Own

Variables."

Second Example of a Program with Procedures

Form:

10 10 10

£ z2 , £ sin / ' L pW ,
'=1 ;'=5 ;'=6

where the p[j] are to be read in, and punch these three sums:

begin real a, b; integer z, /, k; array p[0:10]

procedure sum (x, y, /, m, s) ;

begin s := 0 ;

for m •= x step 1 until y do s := s + /

end ;

sum (1, 10, i t 2, z, k) ;

sum (5, 10, sin /, /, a) ;

for i := 6 step 1 until 10 do read p[i] ;

sum (6, 10, p[j], /, b) ;

punch k, a, b ;

end

31

The copying process transforms this program into:

begin real a, b; integer z, j, k ; array p[0:10] ;

begin k := 0 ;

for i := 1 step 1 until 10 do k := k + z | 2

end ;

begin a := 0 ;

for / := 5 step 1 until 10 do a •= a + sin (/')

end ;

for i := 6 step 1 until 10 do read p[i] ;

begin b := 0 ;

for / := 6 step 1 until 10 do b := b + p[/]

end ;

punch k, a, b ;

end

Note that the third parameter of the procedure sum is replaced by an

expression. However, it is not the value of this expression which is

transmitted to the procedure; rather, the rule for computing an expres

sion is transmitted and replaces the formal parameter. This device is

at the same time powerful for ease of expressing algorithms and

troublesome for compiler builders. Techniques to handle this situation

are discussed in some of the papers in the January 1961 issue of the

Communications of the ACM.

General Discussion, Continued

It is, of course, not the intention of the copy rule that, before

translating an ALGOL program into machine code, all procedure calls

are replaced by the bodies of the called procedures. The copy rule is a

simple way of telling what a procedure call means. In actual trans

lation of a program one tries to have only one copy of the (translated)

procedure in the machine at the time of execution and transfer control

to this piece of program for each procedure call. The question of how

to do this is interesting, but it will not be discussed here.

A procedure declaration may be placed where a type, switch, or position of procedure

array declaration is permissible. A procedure is local to the block oc ara lon

where it is declared in the sense described for simple variables. This local properties of

means that a procedure cannot be called by a statement outside the proce ures

32

block in the heading of which the procedure is declared. And it cannot

be called by a statement inside a block which contains a declaration

for a variable, array, switch, or procedure which has the same name as

the procedure in question.

It also means that one may have two procedures with the same

name in different blocks of a program (e.g., two procedures with the

name "triangle area" which use different formulas for computing that

area).

Identifiers used inside procedures are either formal parameters, global quantities in
local quantities, or names of quantities defined outside the procedure. procedures

These latter quantities are global to the procedure. The following

example9 shows such a situation:

Line

begin real a, b; 1

procedure P(x, y, z); 2

begin real r, s; 3

a := x + y 4

end; 5

a := 6; p(\, 2, 3); punch a 6

end 7

The variable a appearing in the body of procedure P is not a parameter

and not a local quantity, so it is a global quantity. After execution of

the procedure statement in line 6, the value of a will be 3. Had there

been a declaration for a (e.g., real a) in the body of P, the value of a

after the procedure call would still be 6.

There are some cases where the interpretation of the copy rule is dubious.

Consider the following example:

Line

begin real a, b ; 1

procedure P(x, y) ; 2

begin real r ; 3

a := x + y 4

end ; 5

9 This ' program" does not make much sense, but it serves our purpose of
illustrating the properties of global quantities in procedures.

33

begin real a ; 6

a := 1 ; 7

P(l, 2); 8

punch a ; 9

end 10

end 11

The question here is the interpretation of the quantity a in the procedure

call of line 8. If the copy rule is taken literally, the procedure statement in

line 8 is equivalent to

begin real r ;

a := 1 + 2

end ;

This would of course mean that the value punched in line 9 is 3. One might

suspect, however, that all translators now under construction — except those
which actually make one copy for each procedure call - will punch the number
1 in line 9 of the program. This means that a procedure takes its global
quantities from the block where it is defined and not from the block where It is
called.

Specifications

A consequence of the use of the copy rule in the definition of

ALGOL procedures is that it is very difficult to translate a procedure

declaration independent of the procedure calls.10 Usually, a translating

program is guided by the declarations for the various entities occurring

in the program. There are, however, no declarations for the parameters.

Declarations for parameters are "inherited" from the declarations for

the actual parameters used in calling the procedure.

The following example shows a difficulty which arises from this:

begin real b, c, d, x ;

boolean A, B ;

procedure P(p, q, r, s, v) ;

if if p then q else r£ s then v := 1 else v := 2 ;

P(A, B, c, d, x) ;

P(A, b, c, d, x)

end

For a thorough discussion of the problems involved and a possible
(though not efficient) solution, see (4).

Discussed in similar form by H. Rutishauser in ALGOL-Bulletin, No. 10,
p 11, edited by Regnecentralen, Copenhagen-Valby, Denmark, 1960.

34

According to the copy rule, the first procedure call is equivalent to:

if if A then B el se c £ d then x := 1 el se x := 2

Using parentheses this may be written

if (if A then B else (c ^ d)) then x := 1 elsex := 2 ;

The second procedure call is equivalent to:

if ((if A then b else c) ^ rf) then x := 1 else x := 2

Thus, the scope of the second if in the procedure body depends on the
parameters. This means that it is not possible to translate the procedure
declaration for P without knowing which actual parameters are used in calls
of this procedure.

This example also suggests that one should use parentheses to

indicate the structure of conditional expressions, even though the

parentheses may not be necessary. Such redundant parentheses help in

writing, reading, and translating such expressions.

There are other, more difficult cases where a procedure can only be

translated after examination of parameters used in calling the procedure.

Many of these problems can be overcome by specifications. A specifi- specification

cation gives information about the formal parameters of a procedure

declaration. A specification is a specifier, followed by a list of identi

fiers. There are the following specifiers:

label

switch

string

real, integer, boolean

procedure, real procedure,12 integer procedure,12 boolean procedure12
array, real array, integer array, boolean array

Specifications have to be written immediately preceding the pro

cedure body. They are separated by semicolons from the parameter

list, the procedure body, and each other. For an example of a procedure

declaration with specifications, see procedure Bessel, p 35.

A specification restricts in an almost obvious way the actual

parameters which may be substituted for a specified formal parameter.

Thus, a parameter which is specified as real may only be replaced by

arithmetic expressions. Or a parameter which is specified as a label

may only be replaced by labels, or by a designational expression. In

the example on p 33, if the dubious parameter q is specified as boolean,

the second call of the procedure would be illegal, and the procedureP

12Concerning these specifiers compare p 38.

specifiers

35

could be easily translated in such a way that all legal procedure calls

would be executed correctly.

Value Parameters

Consider the example on p 3, for computing approximations to the

values of Bessel functions. We will write this program in procedure

form, making a few changes. The parameters of the procedure are x, n,

sum, and the procedure computes an approximation to ln(x) and assigns

that value to the variable sum. We omit from the example on p 3 the

loop which computes ln(x) for different values of x, and we omit the

read and punch statements. We then get the following procedure:

procedure Bessel (x, n, sum); real x, sum; integer n ;

begin integer nfac, i, s; real denom ;

nfac := 1 ;

for i := 2 step 1 until n do nfac := nfac x i ;

ifx = 0 a" = 0 then begin sum :- 1 ; go to P end ;

L : denom := nfac ;

sum := 0 ;

for s := 0 step 1 until 10 do

begin sum := sum + (x/2) \ (n + 2 x s)/denom ;

denom := denom x (s + 1) x (s + 1 + n)

end ;

P : end Bessel

A possible call of this procedure would be:

Bessel (n/(i + 4 x x), 4, /)

According to the copy rule this is equivalent to executing the

procedure body, replacing x by n/(i + 4 x x), sum by /, and n by 4, and

substituting a new name for z to make it different from the i in the first

parameter of the procedure statement.

During execution of the procedure the value of n/(i + 4 x x) would

be computed 12 times, always resulting in the same value, since neither

n nor z changes inside the procedure. An intelligent translator could

find out that n/(i + 4 x x) need be computed only once and would

program accordingly. However, in order to simplify efficient translation,

a formal parameter may be declared a value parameter in the procedure value parameters

heading. This means that whenever such a parameter is replaced by an

expression in a procedure call, the value of that expression is obtained

36

and assigned to that parameter before execution of the procedure. This

formal parameter is treated as a local quantity in the procedure body,

and the name of this parameter must possibly be changed in the same

fashion as the names of the other local quantities.

A value parameter must be specified in the procedure heading. In

the example above, if x is a value parameter, the procedure heading

would look as follows:

procedure Bessel (x, n, sum) ; value x ; real x ;

The value declarations must precede all of the specifications, even the

specifications for the nonvalue parameters.

With the extended rule for execution of a procedure statement, the

statement "Bessel (n/(i + 4 x x), 4, /)" is equivalent to the following

block:

begin integer nfac, istar, s ;

real denom, xstar ;

xstar := n/ (z + 4 x x) ;

nfac := 1 ;

for istar := 2 step 1 until 4 do

nfac := nfac x istar ;

if xstar = 0 a 4 = 0 then

begin / := 1 ; go to P end ;

etc.

Notes

xstar and istar are the names

substituted for x and i

assignment of the value to the
value declared parameter

n is replaced by 4

sum is replaced by /

P :

end

The reasoning given above for introduction of value parameters seemed

to imply that it affects only the efficiency of the procedure statements.

execution of a proce

dure with value

parameters

value parameters must

be specified

value part first, then

specifications

addition of value part

changes the meaning

of a procedure

37

But consider the example:

procedure A (x, y) ;

begin

x := .. .

y := ...

end

The procedure call A (a + b, 3) is invalid because it would involve

execution of the "statements":

a + b := ...

3 :=...

If one adds the value part, as follows:

procedure A (x, y) ; value x, y ; real x, y ;

begin

x := ...

y := ...

end ,

the above-mentioned procedure call will be executed as:

begin real x, y ;

x := a + b ; y := 3

x := . . .

y := .. .

end ;

This is a valid ALGOL statement, and thus the procedure call is valid.

The addition of the value declaration thus affects the class of actual

parameters which may be substituted for a formal parameter.

Functions

Let it be required to compute the expression

5

*=1

38

where the a^ are stored in an array. By using the procedure Bessel, E
can be computed by the following piece of program:

E := 0 ;

for k := 1 step 1 until 5 do

begin Bessel (k x x, k, f) ;

E := E + / x a[k]

end

It is desirable to use the "result"/ of the procedure Bessel immediately

in an arithmetic expression. For this purpose, functions have been

introduced as a special kind of procedure, namely, those with one

particularly interesting "result."

In the declaration of a procedure which is a function, this "result"

is denoted by a variable which has the same name as the procedure.

The type of this variable must be declared by placing the type immedi

ately in front of the word procedure. As an example we will write

procedure Bessel as a function. We use the name Besselfunction for

this procedure in order to distinguish it from the procedure Bessel on

P35:

real procedure Besselfunction (x, n);

value x, n; integer n; real x;

begin integer nfac, i, s; real denom, b;

nfac := 1 ;

for i := 2 step 1 until n do nfac :- nfac x z;

ifx = 0 a« = 0 then begin b := 1 ; go to P end;

L : denom :— nfac; b := 0;

for s :- 0 step 1 until 10 do

begin b := b + (x/2) f (n + 2 x s)/denom;

denom := denom x (s + 1) x (s + 1 + n)

end;

P : Besselfunction := b

end

In the body of the real procedure Besselfunction the name Bessel

function is used to designate the result. Note that "Besselfunction"

is not a local variable of the procedure body. There is no declaration

for such a variable. Also, the result may not be used in an arithmetic

expression inside the procedure. This is necessary if one wants to

functions

declaration of

functions

type of results of

functions

the name of a function

and the name of its

result are identical

result may not be

used in expressions

inside procedure

39

avoid confusion with recursive procedures; see p 40. This restriction

accounts for a minor deviation of the procedure Besselfunction from the

procedure Bessel: The quantity sum of the latter procedure is replaced

by the quantities b or Besselfunction, because we no longer can use

the same name for an intermediate quantity and for the result.

With this procedure Besselfunction the computation of the sum

5

*=1

can be described in the following way:

E:=0;

for k •- 1 step 1 until 5 do E := E + Besselfunction (k x x, k) ;

In general, a procedure which is a function is called by writing its name call of functions

in an expression and placing after the name a list of parameters enclosed

in parentheses. Some difficulties arise if a function changes the values

of global parameters, and the exact interpretation of this case was the

subject of much discussion since the appearance of the ALGOL 60

report. Since this difficulty, however, arises only in very rare cases

and can always be avoided by simple means, we will not discuss this

topic.

For an example of Boolean functions see p 44. Boolean function,
see p 44

Procedures in Machine Code machine code in

Certain operations or algorithms cannot be expressed efficiently in

ALGOL. In this class belongs manipulation of quantities which occupy

only a few bits of a computer word, or the double length accummulation

of a sum of products. Procedures to handle such computations can be

Written in machine code. ALGOL does not specify anything about the

form in which such machine code procedures should be written. How

ever, it is part of ALGOL that machine code procedures can be called

by an ALGOL procedure statement, with no restriction on the type of

parameters used in the procedure call. Therefore the writing of a

machine code procedure must take into account the way in which an

ALGOL procedure statement is translated.

Another area of application of machine code procedures is manipu

lation of auxiliary equipment such as drums, files, tapes, etc. Input

and output of information can be incorporated in an ALGOL translator

by means of machine code procedures.

ALGOL programs

40

Recursive Procedures

A procedure P which calls, in its body, itself, or which calls another

procedure P, which calls P, is said to be a recursive procedure. Con

sider the following example:

real procedure factorial (n);

if n = 1 then factorial := 1 else factorial := n x factorial (n —1);

This is a recursive procedure, because the execution of this procedure,

for example, in case n = 2 requires the execution of this same procedure

for n - 1. It is not a very good program for the computation of the

factorial, since it requires n procedure calls. Even on computers with

fast subroutine jump facilities, it will probably use more time for jumps

to the subroutine and back than it does for the actual computation. The

factorial should be programmed with a loop such as:

real procedure factorial (n) ; value n ; integer n ;

begin integer i, f ;

/:=1;

for i := 1 step 1 until n do / := / x i ;

factorial := /

end ;

The last program performs an "iterative" computation of the factorial,

as contrasted with the "recursive" computation given before. A large

part of many programming efforts consists in reducing recursive

processes to iterative processes. In some areas, however, this re

duction is either not possible or very cumbersome, and in such cases

recursive procedures should be used. One area for the application of

recursive procedures is translator construction (5).

Recursive Procedures and Copy Rule

The copy rule (p 29) allows us to eliminate procedure declarations and

procedure calls from a program by actually replacing each procedure call by

the body of the called procedure, with the changes required by the copy rule.

Although, as has been pointed out before, it is not desirable to actually make

this copy in a translator, the copy rule is a simple way of describing the

meaning of a procedure call. Evidently the copy rule does not work for recursive

procedures: Every copy produced would call for another copy, and the copying

would go on indefinitely.

The copy rule can be modified in such a way that a copy of the called

procedure is produced only after a call of the procedure has been encountered.

This interpretation of the copy rule still leaves the following question, which

is not answered by the ALGOL 60 report: Will the names of local quantities

be changed in the same way in the different copies of a single procedure, or

41

will these changes be made independently. In the first case, every level of a

recursive procedure acts on the same set of local quantities. In the second

case, every level has its own local quantities. At present the second inter

pretation seems to be most commonly accepted. It seems that in those cases

where recursive procedures are really important both kinds of quantities are

desirable. Most translators presently under construction will not handle

recursive procedures, so that the question raised above is at present not of

great practical importance.

Own Variables

The value of a variable is lost after exit from the block in which

this variable is declared. There are some cases where this is unde

sirable, and ALGOL provides for a special class of local variables, the

so-called own variables, which retain their identity throughout the

program. A simple variable or an array is declared own by preceding

the corresponding declaration with the symbol own. Example:

own real X, y ; own variables and

own integer array «[1 : 10] , b, c[4 : 17] ; arrays

For a precise interpretation of these declarations, consider the

following example:

n := 15;

R : go to L ;

L : begin real x ; own real y ; the behavior of the

array «[1 : n] ; own real array b[\ : n] ; own variabl« V°nd
the own array b of

thi s block will be

discussed below

x := 4 ; y := 6

end

M : begin integer a, b ;

array x, y[l : 5] ;

end ;

if n = 15 then n := 20 else n := 15;

P : go to L ;

42

During execution of this program, storage space is reserved for the

variable y of the block labeled L. Outside block L no reference can be

made to this variable. In the block labeled M the identifier y is used to

denote an array. This use of y does not, of course, interfere with the

variable y of block L. When block L is left in the normal way, that is,

after executing the statements "y := 6 ; x := 4," the value of the

variable y will still be 6 on re-entry to the block. The value of x,

which is not own, will be lost after block L is left, and the value of x

is undefined after re-entry to block L. The location of x could, for

instance, be used by the variable a of block M.

If the block L is entered from the statement labeled R, the value of

n is 15. On the first entry to block L, locations for a_X] to <z[15] and

&[1] to &[15] will be reserved. On re-entry to L from statement P, n

will be 20. At this stage, locations are still reserved for b\X\ to &[15]

(not necessarily the same ones as on the previous exit), and these

locations contain the values which b[\\ to &[15] had on the previous

exit. Before the first statement of block L is executed, locations for

a[\\ to a[20] and M16] to H20] will be reserved. The values of these

variables are, of course, not defined. Before the next entry to block L

from statement R, the value of n will be reset to 15. After entry to

block L and before execution of the first statement of this block,

storage reservation for array b will be restricted to &[1] to 6[15]. The

values of b[]6] to b[20] will be lost. They will not be recovered after

the next entry to block L, even if n is reset to 20.

A local variable must appear on the left side of an assignment

statement or in a read statement before its value can be used in an

arithmetic expression. This is also true for own variables of a block

when the block is executed for the first time. On subsequent entries to

the block the assignment of a value to an own variable may be by

passed. As a matter of fact, if the assignment of a value to an own

variable is not sometimes bypassed there is no sense in making the

variable own, because its value, although available at the beginning

of a block, will be recomputed before it is used.

Own Variables in Procedures

If the block which constitutes a procedure body contains own variables, the own variables in

question mentioned under recursive procedures, p 40, comes up again: Are the procedures

changes of names for own quantities which are made in the different copies

corresponding to different procedure calls identical, or are they made inde

pendently? In case of independent changes, each procedure call would have

its own "own variables" which are not affected by other calls of the same

43

procedure. In the other case, all calls of the same procedure act on the same
set of own variables. It should be noted that own variables are very awkward
to use, and are very awkward to handle by a translator when the first inter
pretation is made.

The question of identical vs independent changes does not arise in case of
local, nonown quantities in nonrecursive procedures. Their values are not

defined after exit from the procedure, so that there can be no relation between

the local quantities used in different procedure calls.

Special Parameter Delimiters for specia| pGrameter
delimiters, see p 48

EXAMPLES OF ALGOL PROCEDURES

In the remainder of this report we will give some ALGOL procedures

for internal sorting. It is sometimes contended that ALGOL, though it
may be adequate for expressing procedures which are mainly numerical,

is unsuited for nonnumerical algorithms such as sorting. We chose our

examples from the general area of sorting in order to show that these

"logical," rather than numerical, procedures can be adequately ex
pressed in ALGOL.

Program for Binary Search

The following procedure assumes that the elements of an array a are

arranged in descending order, that is, a[l] ;> a[2] ^ a[3], Given a

number b and a subscript / such that

a[]]>b^a[l]

the program determines in [log2 /] comparisons a subscript p for which

a[p] ;> b> a[p + 1] or a[p] = b= a[p + 1] .

procedure binary search (a, b, I, p) ; value /, b ; integer /, p ;

real b ; real array a ;

begin integer pi ;

P:=l ;

test for end : if / - p = 1 then go to M;

pi :=(/ + />) -2;

if a[p]] < b then / := pi else p := pi ;

go to test for end ;

M :

end ;

By using a for statement with an "E while B" element, this procedure

can be expressed a little more elegantly, though perhaps this is not so

44

easily understood by a reader not familiar with this type of for statement:

p := i ;

for pi := (/ + p) - 2 while / - p ^ 1 do

begin if a [pi] < b then I := pi else p := pi end ;

The Binary Search Program with a Boolean Function as a Parameter

The binary search procedure above works only if the elements «[1],

«[2], ... are arranged in descending order. If one needs, as part of a

larger algorithm, the binary search for some sequences which are ordered

in ascending order and for others which are ordered in descending order,

there are two possibilities: Either one writes the search procedure

twice, one for ascending and one for descending sequences, or one

writes a search procedure with a "variable" order relation, which be

comes a parameter of the procedure. In this particularly simple case, it

is probably best to take the first approach because it avoids the time-

consuming transmittal of a parameter procedure at a relatively low

penalty in storage space (for storing two search procedures). In large

procedures it might be worth while to introduce another parameter in

order to avoid duplication of instructions. We will show the use of a

Boolean function in the case of the binary search procedure:

procedure binary search with variable order relation (a, b, I, p, R) ;

value /, b; integer I, p; real b; real array a;

boolean procedure R ;

begin integer pi ;

p:=l ;

test for end: if / - p = 1 then go to M;

pi :=(/ + *,)+ 2;

if R(a[p\], b) then p := pi else / := pi ;

go to test for end ;

M :

end ;

The following procedures are examples for Boolean procedures which

represent order relations and thus are permissible parameters in the

5th position of the procedure binary search with variable order

relation:

45

boolean procedure geq (a, b) •

geq := a ^ b ;

boolean procedure leq(a, b) ;

leq := a £b ;

boolean procedure abscomp (a, b) ;

abscomp := abs (a) ^ a&s(b) ;

boolean procedure indirectcomp (a, b) ;

indirectcomp := D[a, 1] ^ D[&, 1]

The last procedure must be defined inside a block where array D is

valid; D is a global quantity for this procedure. The comparison of two

numbers a and b is here based on the comparison of the first elements

in row a and row b of a matrix D.

A Procedure for Merging Two Sequences of Numbers Arranged in As
cending Order

The procedure assumes that the numbers «[/l], a [f 1 + 1], ... ,

«[/2] are arranged in ascending order, and that the numbers a[gl],

a[g^ + 1], ••• , a [g2] are arranged in ascending order. The procedure

merges these two sequences into locations a [61], a[h] + 1], ... :

procedure merge (a, f\, /2, gl, g2, h]) ; value /l, /2, gl, g2, h\ ;

array a; integer/l, /2, gl, g2, hi ;

begin integer /, g, h ;

comment /, g, and h are "pointers" in the three sequences
of elements in the array a ;

/:=/l ;g:=gl ; h := h] ;

Q : if / > /2 Ag >g2then go to P ;

if / > /2 then

M : begin a[h] := a [g]; h := h + 1; g := g + 1; go to Q

end ;

if g > g2 then

N : begin a [h] := a [/]; / := / + 1 ; h := h + 1; go to Q

end ;

if a[f] £ a[g] then go to N else go to M;

P

end ;

46

Efficiency of the Merge Procedure

Strictly speaking, one cannot judge the efficiency of an ALGOL

program unless there is a translator. An ALGOL program which appears

to be poor may turn out to be almost optimum if translated by a good

translator; and a good ALGOL program may turn out to be very bad if

translated by a poor translator. This means, of course, that the

"machine independence" of ALGOL has its limitations as soon as

efficiency of the intricate kind discussed below becomes important.

One may, however, judge the quality of an ALGOL program under the

assumption that it is translated by a "simple-minded" translator, that

is, a translator which follows the instructions of an ALGOL program

very closely without looking for possible savings in instructions. Such

a simple-minded translator would produce a program for the procedure

merge which contains some inefficiencies. The program will make,

for example, the comparisons / > /2 and g > g2 twice, and for such a

translator the following program would be better:

/:=/l;g:=sl; A:=A1 ;

Q : if / > /2 then begin if g > g2 then go to P else go to M

end ;

if g > g2 then

N : begin a[h] := a[f] ;/:=/+ 1 ; go to R end

else if a[f] £ a[g] then go to N else go to M;

M : a[h] := a[g]; g := g + 1 ;

R : £ := A+ 1 ; go to g ;

P :

end

This program will still lead to inefficiencies, because for each com

parison between elements a[f] and a[g] which is made, it requires:

1. computation of the addresses of a[f] and a[g] ,

2. getting these elements from memory to the arithmetic unit,

3. computation again, after the comparison, of the addresses of a[/] or
a[g] for use in statements N or M, and finally transmittal of the
smaller element to its proper place a(h).

47

The following program avoids some of the inefficiencies:

/:=/l; g :=gl; b := h\; G :=a[g]; F:=a[/];

Q : if/>/2then

for z := 0 step 1 until g2 - g do a[h + i] := a[g + z]

else if g > g2 then

for z := 0 step 1 until /2 - / do a\h + z] := a[f + z]

else begin if G £ / then

begin a[h] := G; g := g + 1; G := a[g]; A:= A+ 1 end

el se begin « M := F ;/:=/+ 1; F := a [/]; &:= h + 1 end

go to Q

end;

The last program is about as good as one can get in "optimizing" an

ALGOL formulation for this computation process. Such things as

register assignment in the arithmetic unit, of course, lie beyond the

scope of ALGOL, and for some time to come the optimum use of special

registers will be beyond the scope of translators.

A Procedure for Sorting a Set of Numbers

The elements to be sorted are stored in a[f], a [f + 1], ... ,

a[f + n —1]. The sorting is done according to the now classical

procedure by von Neumann and Goldstine (6). Sequences of ordered

numbers of length 1, 2, 4, ... are merged to create ordered sequences

of twice this size. After, at most, [log2 n] sweeps, the original set is

sorted. The procedure uses n auxiliary storage locations, namely

a [aux], a[aux + 1], ... , where aux is one of the parameters of the

procedure. At the end of the program the ordered sequence is stored in

either a[f] and the following locations, or in a[aux] and the following

locations, depending on whether [log2 n] is even or odd. The Boolean

variable E contains the value true in the first case and the value false

in the second case. The procedure sort by merge uses procedure

Min(a, b), which is assumed to be declared somewhere else:

procedure sort by merge (a, f, aux, n, E) ;

array a ; integer / , aux, n ; boolean E ;

48

begin integer a\ , a.2, I, f , b ;

comment

al = / and a2 = aux if the merge works from the original loca
tions to the auxiliary locations

al = aux and a2 = / if the merge works from the auxiliary loca
tions to the original locations

/ is the length of the ordered sequences

/ counts through the set of ordered sequences;

comment

the actual program starts here. Note how short it is;

/ := 1 ; al := /; a2 := aux;

2 : for / := 0 step 2 x / until n —1 do

merge (a, al + ;, al + Min (n - 1, / + / - 1), al + 7 + /,
al + Min (n - 1, 7 + 2 x / - 1), 7 + a2) ;

/ :=2x/ ;

if / < n then begin b := al ; al :=a2 ; a2 := b go to Q end ;

P : if al / f then E := false else E := true

end ;

Use of Special Parameter Delimiters

The program sort by merge given above is straightforward and can be

easily understood if one knows the meaning of procedure merge, which

is called by the procedure sort by merge. The trouble in understanding

the call of procedure merge lies in its many parameters, the meaning of

which has to be retrieved from the description of procedure merge.

Although the reader of a program cannot be relieved of the task of

looking into the description of the procedures which are used in this

program, he may be given some help by the use of "special parameter

delimiters." A special parameter delimiter is a string beginning with a

closing parenthesis, followed by a string of letters, a colon, and an

opening parenthesis. Examples of a parameter delimiter are:

) this is a parameter delimiter : (

) the next parameter must be a positive integer : (

All such special parameter delimiters are equivalent, and they are

equivalent to a comma. They may be used to separate parameters in

procedure declarations and/or in procedure calls. If a special parameter

delimiter is used in the declaration of a procedure, the call may yet use

49

a comma, or even a special parameter delimiter with a different letter

string.

With these special parameter delimiters, the call of the merge

procedure can be made in the following more readable way:

merge (a)

merge the elements from position : (al +/1)

to position : (al + Min(n - 1, / + / - 1))

and the elements from position : (al +;* + /)

to position : (al + Min (n —1, ; + 2 x I —1))

into positions upwards from : (a2 + /) ;

comment the second set of numbers is void in case n —1 < j + I ;

A Sorting Procedure Based on Uniform Distribution of the Numbers to be
Sorted

The following procedure is useful only if the numbers to be sorted

are almost uniformly distributed between the numbers / (= lower limit)

and u (= upper limit). The interval from / to u is divided into / + 1

intervals of equal length. In a first "sweep" over the elements a[i]

(i =], 2, ... , n), one determines the numbers C[;], C[/] = number of

elements in /th interval (/ = 0, 1 , . .. , /). In a second sweep, the

elements a[i] are transmitted into an auxiliary storage region in such a

way that for all / and ;1, if / > ;1, the elements belonging to interval j

are stored after those belonging to interval ;'l. If ;' = ;'l, the elements

are arranged in the original order. In a third sweep, the elements in the

different intervals are sorted.

Since the amount of work to be done per element increases in the

sort by merge process as log2 n, the saving which results from this
procedure may be substantial if n is large:

procedure sorting by distribution counting (a, n, I, u, I, aux) ;

value n, I, u, I; integer n, I; real u, I, real array a ;

comment the elements to be sorted are «[1],«[2], ...«[»] .

/ + 1 is the number of intervals

/ and u are lower and upper limits for the a [z] respectively ;

begin integer array C[-2, /] ;

comment C[j] will be first used to store the number of
elements in the /th interval ;

for / := 0 step 1 until / do C[j] := 0 ;

for i := 1 step 1 until n do

50

begin j := entier (I x (a [z] - I)/(u - I)) ;

C[j] :=C[/] + l

end ;

C[-1]:=0;

for 7 := 1 step 1 until / do C[/] := C[j] + C[j - 1] ;

comment at this place C[; —1] contains the number of
elements in intervals below / from here on
C[j - 1] will be used as a pointer for the
position of the elements in interval ; ;

for i := 1 step 1 until n do

begin / := entier (I x (a [z] - l)/(u —I)) —1 ;

a[aux + C[j]] :- a[i] ;

C[/] :=C[/] + l

end ;

comment at this point C[j —1] contains the position
relative to a[aux\ which is occupied by the
last element in interval / ;

C[-2] :=-l ;

for 7 := -1 step 1 until / - 1 do

sort the elements from position : (aux + C[; —1] + 1)

to position : (aux + C[f] - 1)

so that the sorted sequence appears

in positions upwards from : (C[; —1] + 1) ;

end of procedure sorting by distribution counting

comment this is a call of a procedure which is not de
clared in this paper, but which could easily
be constructed from the procedure sort by
merge ;

The sorting procedures given here can be generalized, by the addi

tion of a Boolean function as a parameter, to be valid for any order

relation.

51

CHECKLIST OF IMPORTANT ALGOL CONCEPTS

page page

actual parameter 28 label 16

ALGOL strings 15 local 22

ALGOL structure 8 machine code 39

arithmetic assignment 7 "metavariables" E, S, V 8

statement
number 5

arithmetic comparison 9 own 41

arithmetic expression 5 procedure body 28

array declaration 21 procedure call, 28

Boolean assignment 10 procedure statement

statement procedure heading, 28

Boolean expression 8
simple form

comment, text 14 recursive procedure 40

compound statement 10 simple variable 5

conditional expression 19 special functions 6

conditional statement 10 specifications 34

designational expression 27 specifier 34

dummy statement 13 statement 8,16

for list element 12 statement parentheses 10

for statement 11 string quotes 15

formal parameter 28 subscripted variable 5

functions 38 switch 26

global 25 switch declaration 27

go to statement 16 syntactic skeleton 8

identifier 5 type declaration 20

input output 13 value parameter 35

52

ACKNOWLEDGMENT

Tom Sobasky prepared notes from my talks about ALGOL 60 at the

1960 summer session on "Advances in Programming and Artificial

Intelligence," Chapel Hill, North Carolina. An earlier version of this

report was published in the proceedings of this summer session. A. A.

Grau and L. L. Bumgarner helped in preparing this first version by

making valuable comments and corrections. The present version

incorporates further suggestions and corrections by W. Borsch-Supan,

A. S. Householder, F. L. Bauer, K. Samelson, and W. R. Busing. I wish

to thank all of these gentlemen.

LITERATURE CITED

(1) A. J. Perlis and K. Samelson, "Preliminary Report - International
Algebraic Language," Communications of the ACM 1(12), 8—22
(1959).

(2) P. Naur (ed.), "Report on the Algorithmic Language ALGOL 60,"
Communications of the ACM 3, 299-314 (1960).

(3) Math. Panel Ann. Progr. Rept. Dec. 31, 1960, ORNL-3082, pp 6-20.

(4) J. Jensen and P. Naur, "An Implementation of ALGOL 60 Pro
cedures," Nordisk Tidskrift for Information — Behandling 1(1),
38-47 (1961).

(5) A. A. Grau, The Structure of an ALGOL Translator, ORNL-3054
(Jan. 23, 1961).

(6) H. H. Goldstine and J. von Neumann, Planning and Coding for an
Electronic Computing Instrument, Institute for Advanced Study,
Princeton, N. J., 1947/48.

53

ORNL-3148

UC-32 —Mathematics and Computers
TID-4500 (16th ed.)

INTERNAL DISTRIBUTION

1. Biology Library
2. Reactor Division Library

3-4. Central Research Library
5. ORNL - Y-12 Technical Library,

Document Reference Section

6-200. Laboratory Records Department
201. Laboratory Records, ORNL R. C.
202. N. B. Alexander

203. D. E. Arnurius

204. G. J. Atta

205. S. E. Atta

206. S. R. Bernard

207. N. A. Betz

208. F. T. Binford

209. H. M. Bottenbruch

210. L. L. Bumgarner
211. H. P. Carter

212. C. E. Center

213. E. L. Cooper
214. A. H. Culkowski

215. F. L. Culler

216. N. M. Dismuke

217. A. C. Downing
218. M. B. Emmett

219. M. Feliciano

220. B. A. F lores

221. J. H. Frye, Jr.
222. W. Gautschi

223. A. A. Grau

224. M. T. Harkrider

225. A. Hollaender

226-250. A. S. Householder

251. R. G. Jordan (Y-12)
252. W. H. Jordan

253. M. T. Kelley
254. J. A. Lane

255. J. G. LaTorre

256. M. P. Lietzke

257. T. A. Lincoln

258. S. C. Lind

259. R. S. Livingston
260. E. C. Long
261. M. J. Mader

26Z K. Z. Morgan
263. J. P. Murray (K-25)
264. M. L. Nelson

265. J. J. Rayburn
266. H. E. Seagren
267. E. D. Shipley
268. M. J. Skinner

269. A. H. Snell

270. J. A. Swartout

271. E. H. Taylor
272. D. J. Wehe

273. A. M. Weinberg

EXTERNAL DISTRIBUTION

274. Division of Research and Development, AEC, ORO
275-813. Given distribution as shown in TID-4500 (16th ed.) under Mathematics and Computers category

	image0001
	image0002
	image0003

