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ABSTRACT

A two-Tluld hydrodynamic thecry is shown to describe certain electrostatic
ion-cyclotron plasma instabilities of the Harris?! type in a semiquantitative
way. The ions (electrons) are described by the first three (two) moment equa-
tions of the collisionless Boltzmann equation, implying zero electron tempera-
ture. Only purely longitudinal ("electrostatic") oscillations are considered.
If the electron plasma frequency mp is greater than the lon ecyclotron frequency
QC and if the icn pressure is sufficiently anisotropic, unstable oscillations
occur with |Re(m)| R~ Qc. Owirngto the limitations of the model, only the cases
in which the wavelength of the oscillation mode i1s large compared to the ion
cyclotron radius can he treated., Instabilities at higher harmonics of the
ion cyclotron frequency are also excluded. Quantitative agreement with the
results of Harrls' exact treatment of the infinite plasma 1s found only for k
nearly parallel to E?, whereas otherwise our equations contein stabillizing
extra terms not obtained from the rigorous thecry. DIstimates of the critical
pressure anisotropy, at which instability sets in, are given. The critical
anisotropy is smallest for the "resonance" case wp ) QC with X lying nearly
parallel to @P. Short-wavelength modes are less stable than long-wavelength
modes, The two-fluid hydrodynamic model allows a pictorial understanding of
the unstable oscillation mocdes and of the fact that geometric boundaries have

little influence on the conditions for instability.

1. E. G. Harris, Phys. Rev. Letters 2, 34 (1953); Oak Ridge National Laeboratery
Repcrt ORNL-2728 (1959); Proc. Conf. Theor., Aspects Contr. IFusicn Res.,
Catlinburg, Tennessee [TID-7582 (ORNL-2805), 19591, p. 131; P. B. Burt
and E. G. Herris, Bull. Am. Phys. Soc., Series II, 6, %00 (1961).
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I. INTRCDUCTION

It has been shown by E. G. Harris®t

that a static homogensous plasma in a
uniform external magnetic field E? may exhibit utnstable longitudinal plasma
oscillations (electrostatic ion-cyclotron instabilities) with |Re(w)]| nearly
equal to the ion cyclotron freguency Qc or a multiple therecf. These
instabilities occur 1f the electron plasma frequency wp is greater than the
rertinent multiple of QC and if +the ion pressure is sufficlently anisotrepic.
Harris uses the Vlasov eguations, with the equlilibrium distribution functions
chosen as two-temperature Maxwellians with Tinite T , but T, = C. (The
denotations "perpendicular” and 'parallel" refer to the direction of E?.) The
cagse of IL and T, both being finite has been studied numerically by Drummond,
Rogenbluth, and Johnson.® The electrostatic ion~-cyclotron instabilities in a
cylindrical plasma shell have been investigated by Burt and Harris.>

Remarkably, the results in this case are very similar to those obtained for the
infinite plasma. Experimental evidence that such instabilities may exist in the
Oak Ridge DCX mirror machine has been reported by Barnett.?

In ths present paper we should like to approach the problem of these
instabilities with the aid of a two-fluid hydrcdynamic medel. In plece of the
collisionless Boltzmann equation we use its first three, respectively two,
moment equations, in order to describe the lons, respectively the electrons.

The electron eguation of motion and the lon pressure equation are decoupled

from the higher moment equations by putting the electron pressure and the ion

pressure diffusion term equal to zerc. As Bernstein and Trehan® have indicated,

2. W. B, Drummond, M. N. Rosenbluth, M. L. Johnson, Bull. Am. Phys. Soc.,
Series II, 6, 185 (1961).

%. C. F. Barnett, Bull. Am. Phys. Soc., Series II, 6, 196 (1961).

4, TI. Be Bernstein and S. K. Trehan, Nucl. Fus. 1, 3 {1960).



such an approximstion is obvicusly Justlfied whenever the phase velocity of

an oscillation mode is much greater than the average thermal particle velocity.
1t is, however, not evident that thec approximation is innocuous, iT it is applied
to a stabllity problem, In cases of overstabllity, as are being considered

here, very often |Im(w)| << |Re(w)]|; hence, the use of approximate equations
could very well cause appreclable errors in the results. We thought that this
question might best be decided on the basis of a concrete calculation.

The hydrodynamic approach restricts us to frequencies near to or smaller
than the ion cyclotron frequency, and to wavelengths large compared to the ion
gyration radiusg. In spite of these restrictions, testing a hydrecdynamic ap-
proach seemed interesting in view of the mathematical difficulties connected
with Vlasov-type investigations of instabilities, especislly in spatially
inhomogenecus plasmas. One would hope that a hydrodynamic theory, if
applicabkle, might simplify matters considerably.

I7. MOMENT EQUATIONS

From the ccllisicnless Boltzmann equation
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=
1
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the following moment equations are easily derived:
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Here N, V

v, £ are the ion density, average velocity, and pressure, defined in the

usual way, while the pressure diffusion tensor g is defined as

MU {(w -~ V){w - V)(w - V)).

o
i

The symbol T, used as an upper index, stands for the transposition of a tensor.
A similar set of equations holds for the electrons.

We consider the case that a small time-dependent perturbation is imposed
on a homogeneous static plasma in a uniform external magnetic field EP. By

linearizing our equations accordingly, and neglecting the spatial variation of

Q, we obtein, with scme glight change in notation, for the ions:
= ’ )
g%—+N0divy-:O (5)
ov o
- e 1 oy
iy (E + . Vv x B°) Div x (&)
on i
e I Sl SR A (7)
+ %Z { (r®%xB -Bxn® + (xx38° -8B x E)}



If E? is & parallel to the z-direction of a cartesian coorcinate system,

(8]
T, o] o]
o _ o}
g = ﬂ; o] . (8)
0 o n°
Z

1° =—P% =n= L p,

Again a similar set of equations describes the electrons. We now assume that

all perturbed guantities wvary as

iksr-iwt
e == s

[Re(w) Z 0],

in time and space. We Turther simplify the problem by considering longitudinal

Perturbations only:
curl E = 0 (9)

E = - grad §; A¢ = - Lhre(N - n). (10)

According to Harris! and Bernstein®

this approximation is justified Tor
{w] << ke.  On assuming zero electron pressure, and using the symbols n and v

for the electron density and average velocity, the electron equations read:

n = EQ (kev) (11)

in = ), (12)

5. TI. B. Bernstein, Phys. Rev. 109, 10 (1938),




where e, is the unit vector in z-direction. The equations for the ions are

(W° = ng assumed):

N == (k¥ (13)
- 1wV = ﬁ E + QC(E x Ez) - i(g-g) (1)
Wy = ke (V E? + g?y) + (Efﬁ?E)T + iﬂc(g xe, -g, X 1). {15)

Here, as throughout the paper, e symbolizes the lon charge (singly charged 1lons
are assumed for convenlence), and w, and QC designate the angular electron and

ion cyclotron frequency:

Furthermore
k2$ = hxe(l - n) (16)

By eliminating n and v from Egs. (11), (12), and (16}, the electric potential

can he expressed in terms of lon variables only:

d = B 6w (x.v) (27)
ek®
with
a2 - 72 -1
Glw) = 02 [P - = w21 (18)
P 1 -



where QP and wp are the fon and eleciron plasma frequencies (angular frequencies):

he®ng baefrg
\Q,E - ——— LL)E = —
j Mo 7 m ’

and dz = e 8 [e is the unit vector in Eudirecticn]; the gquantity vy = wfw

A
will be put equal to zero in the remainder of this paper, since only w ® {Q

will be considered, and chwc << 1.

After inserticn ol Eg. (17) into Eq. (14), the eguations for E and

E!

form a closed set. On using the following abbreviations:

W w Qc

— Y - -

WE s U T, U=
w Q

and measuring all velocities in units of UC (i.e., putting Ué = 1), we obtaln

- o [T 0 - T - =r - — (=]
R S L L 20)
with
U= U

G(a) = - ~ L [y << 1], (21)

af - 72 @ - u

S ui v

1 72 =

end nCgiven by Eq. (8).




It is convenient to assune tiat k lie in the x-z plane; consequently

e, e = 4
~k = ’ T = %’ pid

Equations (19} and (20}, when written in components, assume now the following

Tormz:
)
uv —uG(u)(CcEV + G V) -1V -G x -G 7 = 0
X KX ¥z 7z ¥ wUHH 7 X7 g
uv +iV -G ~0ax_ =0 (22)
v x XXy 7y
W~ (e o v + v ) -Gt =CGn =0
i X 7 X E Z ¥ Xz A
\
ur, - 12(F V. + V) -2ix =0
XX LTROR 77 Xy
. -2V o+ 0 V) +2in =0
NN X X Z Z Xy
o , -
un, - nZ(OﬁXVX + BOLZVZ) = 0
> (22)
u - % v + i{x - ) =0 ;
Xy TRy plo'e vy :
ur = (1% VvV + 1% v ) -ix =0
X7 i+ Xz Z Z X Nz
wun - % Vv + In =0
v 7 Zy %z

Selving Eqs. (23) for the ., and inserting the solutions in Fg. (22) finally

1k

leaves us with the following set of three equations only:

[ o :
2o - o X - o&r© ‘
LS —Oéxsb(s) wf{ﬂ.LJr T -5 %"z & -l}vx (k)
2 0 z 0
+ 1—2&}{“}+azﬂzly+aa’ - sg(s) - #9 - = 1t Vv =20
L-s s-1] P = i s =11 zZ ’



J- 20270 2 #° ai jf ai 7° -
S P S

with 5 = u2, v o=~ iuV , and
Es .
S(S)E—"‘—‘—P‘—,S %u2, gzﬁ,
s - 0fg D P
VA

(27)

In order to obtain the condition Tor instability, we must put the determinant

D of the above eguations equal to zero and solve for s:
b= HDik” = 0.
It is convenient to consider instead the equation

with
oo(g - 1){L

a
o(s) > e P P

1
on
~—

F(s) =

(28)

(29)



We shall write ¢, respectively dik’ as polynonials in x =8 - 1, e.2.,

(n)
TSI M SO (50)

For w = QC we have {x| << 1 and may find an approximate sclution of d = 0

by neglecting higher powers of x. With the further abbreviations
o7 = —Q'E H o = _a2 . = -2
1=1 zsp’ o) C1 023 O, =01 - & 0z, {(31)
the elements dik assune the form:
( _ B 3 _ 4
d11(x) = ﬁlx+f(34-2i)xg—k(2 %)x x

+ aiﬁf [- 501x + (=5 + 309)x° + 3x°]

+ Giﬂ: [- 30, + (=3 - 201)x + (=2 + 01)x% + x°]

¢l2(X) = 301X + (% - Ul)xz - X2+ aiﬂ? [- 201x - ox= ]

+ aiﬂg [301 + (3 = o1)x = ¥°]

G - -22+13
a. o, Oz [- 3x X X

dla(x)

+ o&qzn? [- 301 + {~3 -501)x + (-5 + 2o1)x® + 2x°]

¢21(X) ¢12(X)
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doa(x) = a o 7% [3o1 + (5 - o1)x - %3]

ga:(x) = GXQZUE [- 2x - 2x% + ¥°]

+ anzﬁg [~ 301 + (-3 - Sa1)x + (=5 + 201)x% +2:°]

; . o = =
Gaz(x) = Qxazﬂz (201 + (5 - a1)x ]
¢33(x) = BUZX + (j + EGZ)XE + (2 - GZ)XS - x*

+ 0Zx% [- 301 + («3 = 201)x + (-2 + 01)x® + 7]

+ o:?;:cf [- 9o1x + {- 9 + 20.):® + 57]

From these cxpressions for the ¢, Uhe polynomial form of d(x) can be obtained
I
by stralghtiorward, il somewhat tedious, calculaticns., A certain simplitica-

tlon arises Irom the fact that the quantitics og, ﬁ?, ﬁS are all small

coupared to L in the cascs o7 intercst and/or within the expected range of .

=)

uselulness of the hydrodynanic approach. To lkeep Op small we must restrict

wD sucn that

£
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Since x°

[

measured in wnils ol Uc’ is of the masnitude (i RC)E, Rc being the

ien cyclotron radius, KT << 1 restricts us to wavelengths large corpared to

R . For u= UC Wwe nave (k R )2 =4 (V fu)2 beirg the thermal ion
C

] W
c therm’ 2 Ttherm

veloeity. Since in the hydrodynamic approximetion we assume W << U,

therm

o}

the smallness of T,

also assume

J'EO

T 1
ﬁ << 1 << 1:
a1 ? oy ’

this implies that Qi - aiw%] should not become too small, i.e., in ordinary

units:

0% - 0Buf| >> max 02, k%q° 1‘.
c Z P T =)

This excludes the "resonance' case mp - QC from our consideration.

We now obtaln the following Taylor coefficients Tor ¢: ol0) = ¢'(0) = C
_ 1 _ 2_0 2 o2 2 G 2_0( o 2
% T3 9 (0) = UfgégxﬁL(QTIX - 5+Qz) T 1080?&an - Gigﬁxzﬂz( 210 (52)
Y 3 2
+ lOS}i} - Qciagﬁqlgno + 55103Q (ﬂ?) + O[(ﬂj) P {ﬂ ) 02],
DY Z Al 2

- é(fligl.— 2702 + 0(g_, n%) {2h)
82 = T = @10] 2’7 4

1s no new restriction. For further simplification we shall
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{s)
O 3 2 _
Qg = "Q—E‘T'(—'—')—z —lgﬁl - 951 + 9601 + 0(02} ng) (36)
L]
The coeificients of the terms of higher order have not been calculated. The
determinant D can now be written as:
¥
~ -3 -3 ! n
D=x *(3 - x) {x+ o1) a ¥ . (37)
n=0

In the next section we shall discuss the cccurrence of complex-valued roots of

the eguation D = 0 and the unstable osclllations assoclated with them.

III. UNSTAZLE TOL-CYCLOTRON OSCLLLATIOLLS

Urstable plasma oscillations occur, whenever the equation D = O has

corplex raoots % (and vice versa). In the Tollowing we restrict ocurselves to
Let us look Teorr the zeros ol the poly-

small values of %, i.e., to w & QC.

nonials

avi
5
il
\
=
v

with ¥ = 2 or 3. It will ©we shown that this approximation is reasonable under

a Tairly wide range ol conditions.
e 0. The roots ol the equation

He start by discussing the case ng

Po{x) = ag + a;x + azx= = 0

are complex For negative discrilminant,
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2
— )
== - 4 <
Ag al a 5.2 0

i.e., for

2
@i(ﬂlﬂi-— 0s) + SGlﬁggiﬂ? < 0. {L0)

It follows immediately that instablility 1s possible only for negative o, i.e.,

Tor OPw® >>Qf. In the special case ai - 0 this is also sulTicient for instability,

2D

The propajation vectors k of the unstable modes 1ie inside a double-cone about

Lhe direction ol EP, the maximum inclination ansle being siven by the implicit

n
eguation:

c \ 2 ~80105n°
tggg = = = JH2 .
Z (O’l‘ﬂii - Ug)

The right-hend side is always smaller than 2; thilis corresponds To an angle

6 ~ 559
It must be shown yet that it is sufficient to use conly Pol{x). Consider,
then, the eqguation

Pa(x) = ag + a1x + apx® + agx® = 0, (11)

Two of 1ts rocts are complex, 11 the discriminant 1g negative:

2.2
Ny =e8° - ha®a -lhae® + 18 aaaa - 272585
12 3 o2 o123 o

° < 0. (L2}

The discriminant can also be written in the form
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K . 2 1 -
AV (32 - ‘A ag (al - 4aoa2) + aoas(calag - 27a0a3)

= (ag - bajag) Op + aja,(2a,8, ~ 27aa,)

By substituting the expllcit expressions Tor the coefficients, one sees that

approximately

2
ABma2ﬂ2;

the other terms being of higher order in either oo or ﬁ?. Hence, as long as

01 is nct too small, the use ol PE(X) is Jjustified.

The gsolutions ong(x) = O turn out to be

5 B
2( . .0 , N/ o _ 50 o 0
Cf,x(alﬂl + 0a) o ai(ngL gn) + &UlagdiﬂL

¥ = +
20, - 201

In order Tor this to be a good approximation for the solution oi the original
determinantal egualion, D{x) = 0, ¥ must be small compared to 1. The case

¢ - 0 is of special Interest. If o; <0 and a{ - O

(1)

In ordinary units this reads

or
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WA+ Q4 Ied lw _ . (L5)
© A e’ 0B

-

We want to compare our results with those ol E. G. Harris.® He obtains,

in our notation (ordinary units):

/
-q
te 1T (o)
w:tﬂciia’zwﬁ - . (46)
PCal aePuP - P
Z P e

with A ~ 1 and

- S (W)

We are only interested in the case where a, << 1, whence Eq. (L6) reduces to

En®
w4+ 0+ 100 kw {(48)
T T X2 PN o(cfuP - 02)
z p c

It is seen that our results, as given in Egs. (40), (43}, and (45), agree with

Harris' {formula for Cix - 0 (CdZ -+ l). For nonvanishing ax our equations con-

3

we obtaln always stability in contradiction to Harris' result. Ye must infer

tain stabilizing terms not found in Herris' formulae, such that for Qi >

from this that the neglect of pressure diffusicn, which was used in order to
chtain a closed set of hydrodynamic equations, becomes less satisfactory, as
the angle between the propagation vector k and the magnetic Tield EO increases.
This efTfect persists for non-zero rtg;however, the possibility exists that this

L]
peculiar stability for o > -i— may not Tfollow, 1if one solves fcr the unabridged
-

b
[l

determinant without use of the above approximations.
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Finally, we present a discussion of the case of nonvanishing ﬂg, agaln
in second-order approximation with respect to x., The discriminant associsted

with En. {39) now assumes the Corm

2
by ® BTEUi {:oi(oln? - s} + 8@102aia§n9 + léalaing (43)

+ (12 + 20y) [gai(clﬁ? + op) + (12 + QUl)aiﬂg] aing }—,

or

2
Oy ® 2720i {:a;(clﬂ? - 0p) + 80102a§ﬂ37+ 16Ula§ﬂg }-, (50)

where terms ol higher order in ﬁo, ﬁg, and gz have been dropped, since these
quantities are asswmed to be small. It is secn thet a non-zero ﬂg has a

stabllizing effcct and that ¢y <0 1s a necessary condition for instability,

as hefore.

Written as a condition for ﬂg, the instability condition A < O reads:
"
— < P(a,p,2) (51)
1T
with
(1 - 2) ]
1l 1 -z 1 {1-7z A -
#{h,p,2) 2 z~p 16 zA < . > ¢ (52)
where
£ 1
A':‘-'—'_, pzs—, ";C{‘.y_J (53)
- 0 z
end only the range p <1, 2z 2 max (p ) is oF interest.

3




L7

We are interested in the maximum of F, since this determines the onset of
instability. Notice that p has a fixed value Tor a given homogeneous plasma
and Tor specified mapgnetic field E?, whereas z and A are variables. (A depends
on the wavelength through Ti.) We obtain the following results:

a. With respect to A the Tunctlion F has a single maximun (A > 0) at
A=z - p:

31 - 2)(z - =)
F(a_ ) = — (54)

max bz (z -_p)

b. With respect to z, the function F(Amax} has a single maximum in the

range

LN

S 7 S 1 at

SR T (55)

“hax T W - Zp

provided p < % ; Tor p = L the z-derivative cf F(Amax) 1s always negative, and

3

P = .
(Amax) -+ ®atz=p+ O

c. Forp < % we obtain the following maximum of F:

. 3. 1.
F(Amax’ max) B PRI [p < % IF (56)
(2z )
MaX
. . 1
th ff‘ . ) - = = Yo
witnh z . Slven by Eq. (55). Ferp Coex = 3 0 F agssumes the largest value
e . 1 . 2 .
within this range (p < & ), i.e., F = 5 . Correspondingly
ng - )
—>Z &~ 0.817 x 10 2 (for protons) (57)
o
T
A

provides for stability in the range p < 3%, l.e., (wp/nc) > /3. The result,

AN
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of" course, refers only to oscillation modes with w = Qc’ not to higher

harmonics of the ion cyclotron frequency.

. 1
d., The divergence ofFforp)‘g, z>p+ 0, A=2 -p~>0, is -~

physical, since this limit contradicts our assumptions

: o
® << 1; << 1 << 1,
L Z - P Z -~ D
the latter two conditions belng equivalent to
O ]TO
—E— << 1 << 1.
o] o]

It is easy to see that Eq. (54) is useT™vl only as long as
z -p >+/108 = 0.0735 (for protons),

and particulariy:

W
A
O
e
P
(o]
N1

Hence we ought to choose, instead of =2 =p+ 0,

or something ol sinilar nmarnitude. From this we cbtain

F(A

z
max’ “max

)

10.2xp " (1 ~pi(p -

2

)

W

with a maximum F « 1.82 at p 1ﬁ4/5: Consequently

(58)
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> 1,82 ¢ (60)

\;—ﬁo IN‘;\O

will provide for stability in the range % <p <0.9265 [1.0389 < (wp/gc) <A/§},
and z > p + 0.0735.

e. Another estimate of the critical pressure anisotropy can be cobtained
in the following way: For fixed values of z and A the function F(A,p,z) has

a single maximuwn with respect to p at p = pway’ with

1 .+ 5z -1 (61)
Z =P A1 -2z
max
and
1
F(p ) =55 3z ~ 1), (62)
The meximum with respect to z of the latier expression occurs at zm = 1
: -1
(pmax = 1), with F = A", Consequently
e
2 > g (63)
7© L
1

provides for stability in all cases in which the assumptions (¥) are valid.
Since Ti stands, in ordinary units, for (kgﬁf/ﬂi) ~ keRi, we see that Tor smal-
ler wavelength a greater value of (ﬂg/ﬂi) is regquired for stabilization.

'+ The above results are limited in two respects. First, the case
mp - Qc’ which probabily is most unstable, has not been ireated, since in
evaluating the coefficlents ai use was made of the assumptions (¥), Secondly,
the case of large k (wavelengths comparable with or smaller than the ion gy-

ration radius) had to be left cut of consideraticon as a consequence of the

hydrodynamic approxination.



20

V. DISCUSSTON

The two-Tluld hydredynamic theory presented above has been shown to
describe certain unstable modes of the Harris type in an approximate Taghion.,
Generally, greater stability is predicted than on the basis of the Vliasov
equations. Harris' necessary and sufficient condition Tor instability, viz.,
nzﬂi < aiwg, with n = an entire number, occurs in our model merely as a nec-
ecsgary conditlion, with the restriction n = + 1. Harris' result saying that
w A2 nﬂc, whenever (a§w§ - ngﬂi) is sufficlently large, also Tollows Ifrom the
present model (again with the restriction n = 1). Somewhat disturbingly, a
fixed range of propacation directions permitting stable oscillation modes
only, exists in our model. This might actually cast some doubt upon the
usefulness for stabllity problems ol the two-fluid hydrodynamic model. Still,
the model reproduces the main features of Harris® regults.

Several rough estimates of the critical pregsure anisotropy required for
instability have been derived in this paper. These critical values are In
general too small as compared to Drummend, Rosenbluth, and Johnson's results.®
According to their report, values of (ﬁf/ﬁ%) creater than 8 or 9 cause in-
stability. The only estimate of ours that approaches their result, when
evaluated for wavelenpsths somewhat larger than the ion cyclotron radius, is
ziven in Eq. (63).

For the convenlence oI the reader the approximations that have been used
in our paper are listed once nore:

l. Hydredynamic spproximation, neglect of ion pressure diffusion

variation @ . Conscequences: Validity expected only for

Il
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2 2
12 <k _|£J_]__ s < _|£J_]__ ;
]TO TfO

£ Z

which for w % Q , 1§ < x} implies KRS << 1 (in reduced units: =) << 1,
ﬂg << 1). Probably there exists also an upper frequency limit of valldity
ol the order QC or EQC (see end of this Section IV). Cold electrons assimed
Tor convenience.

2. ILinearization, Fourier decomposition in space, time variation like
exp(-iwt) assumed.

5. Purely longitudinal oscillationg agsumed, i.e., B = 0O, éw ] << ke,

The assunption has been used by’Harrisl end BRernstein.

b, (w/wc) —~ 0, i.e., electrons tied to magnetic field lines. Un-
problematic Tor the case considered (w = QC).

5. Evaluation of dispersion relation to second order in
W - 02
-

92
C

Hence limitation to small growth ceonstants.

6. Small ion plasma freguency:

2 - B

= = = << 0F
P M3 c ’

this provides an upper limit for the elcctren plasma frequency gp. In

reduced units: oz << 1.

~o

T. Exclusion of the case azwp o QC. Specifically

02 - 0202] >> max(02, ¥2x°, 2x°)
e Z P T + z

or, in reduced units,

[Ull > max(cg, J'l:i, J'II(ZD)-
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This excludes the case o strong rcescnance belween ilcon cyclotron motion and
eiectron plas:;a oscillations with 1ts possible conscquence of stron~ instabllity.
Usc ¢of the assumptions 1, 6, and 7 is made 1n evaluating the digpersion
relation. Thesc assumpltions provide for validity of approximation 5 and alliow
the use of simplified coeiTicients in the polynomials PN(X).

The two-fluld hydrodynamic theory contributes to ocur qualitative under-
standing of the unstahle oscillation modes. We consider IMirst the motion of

the electrons., In the limiv used, i,e., for @ - oo, electron density and
y 1sSey, o )

veloelity are given by:

As one expects, the electrons (more properly: their gulding centers) are tied
to the margnetic field lines and respond only fto the z-component of the electric
Tield. ©One cbtains equally easily the following important relation between

ion density K and electron density n (again Tor wC - a)):

C - (65)

If w iz real, electron and ion densiiy arc either in equal or in opposite

2

phase, depeanding on whether w <:a§w§ or W > aiwz. In the first instance,

the electron density generally covercompensates for the ion charge density,

while 1n the gecond instance the lon charge density is added to by the electrons.

When w is not purcly rcal, but possesses a small imaginary part, 1,e.,
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w= w4 oiw'y ju'| << Jut, (66)

with w', w" real, and

-1

wr2 _ wlt2 e TrLITN
== ( 1 - - (67)
oE oEw®
Zp z

then n and N are still nearly in egqual or opposite phase as before, as long
as

2wtw

Pu? - w'?
2 p

<< 1;

vhile otherwise apprecizble phase-shifts will ocecur. The ftransition from
efTective charge overcompensation to charge additlion occurs for Re(an) = oo,

Qr

Bl - w2+ "2 X PR - w'e = 0. (68)
Zp 2 p

Ve note that this coincides with Harris' instablility condition

oriw; - 0702 > 0, (69)

as w' = i_nﬂc. Apparently

Re (1%> >0, (70)

i.e., eflective charge (over) compensation, is necessary for the Harris

instability tc occur.
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e now consider the motion of the ions. On using the same approximations
ag in Chapters IIT ana IV, especlally w = Qc’ we obtain the Tcllowing result

for the macroscopic len velocity V (veloeitles In wnits of U ):

1.2 / 2 1), 1 _os 2 .0
?\V =1 - = o . — = + = .
y 1 z xﬂ + % L \ - + 3 / > Ulﬂo ] + O(X ,XﬁL, ete )
L
-1/2 o2 / 1l c2 . T o
?\Vy = i sgn(w)(l + X) -1+ %\ Gl -U—l+ '6— il

(74)

7 C. . 1 a
V oo oooxe | —— P2 X[ = 0 = 2 i .
N xe | = -+ 5Tt + o(x S EI etc. ),

}__
Ol
a
|_r

where A is an aroltrary constant and x is givern by Eq. (MB). The inverse of

2
the square roct, {1+ x) , should be taken with positive real part., Ue

soc that a rough avproximalbion for V is

VX:Vy:vZ =~ 1: [1 sgn(w)]:0, (75)

i.e., V is nearly perpendlcular to the magnetic fleld BY., This is Just what
one would obtaln by dropplng the electric field and pressure terms in the ion
equation of motion [Zq. (14} ], in agreement with cur exclusion of stron:

resonance between ion and electron motion (Approximation 7 on P. 21). Hence
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it follows that in the limit of infinite wavelenpsth and zere ion-electron coupl-
ing there exist collective ion nodes with w = i_ﬂc.

It is plain, from cur assumption of cold electrons, that the Harris in-
stabilities are associated with the transTormation of kinetic energy of the
random ion cyclotron motion into electric field energy and macroscoplc kinetie
energy of° ion and electron fluids. Our equations fail to reveal the "cause,”

or "mechanism,"

for this process, but lend themselves to the Tollowing
tentative interpretation.

A. Under the right conditions (pressure anisotropy, ilon=-electron coupli-
ing), kinetic energy cf random ion motion can be converted to "macroscopic”
energy at freguencles w = nﬂc. As a frequency {resocnance) condition, this
would be insensitive to plasma geometry.

B. Proper ion-electron coupling, such as to cause instability, can be
provided only if charge compensation obtains (in the sense explained ghave) .
The equation (69}, expressing this condition, depends only on the propagation
direction, not on the wavelensth; hence, agaln, plasma geometry seems to be
unimportant. The expectation that the stability conditions for Harrls in-
stability will be insensitive to plasma geometry 1s borne cut by a study by

Burt and Harris?

of Harris instabilities in a cylindrical plasma shell.

A final remark concerns Harris instabilities at higher harmonics of QC.
The eguations (2L) to (26) contain singularities at w = + 0, and v =+ 20 .
Further singularities at higher harmonics of Qc would arise, 17 we Included
higher-order moment equations. Since this wowld sipnificantly alter cur equa-

tions for w= nﬂc, n >3, it is not possible to study Herris instabilities at

the higher harmonics of QC by our simple set of hydrodynamic equetions.
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