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ABSTRACT

A two-fluid hydrodynamic theory is shown to describe certain electrostatic

ion-cyclotron plasma instabilities of the Harris1 type in a semiquantitative

way. The ions (electrons) are described by the first three (two) moment equa

tions of the collisionless Boltzmann equation, implying zero electron tempera

ture. Only purely longitudinal ("electrostatic") oscillations are considered.

If the electron plasma frequency to is greater than the ion cyclotron frequency

Q and if the ion pressure is sufficiently anisotropic, unstable oscillations

occur with |Re(w)| « ft . Owing to the limitations of the model, only the cases

in which the wavelength of the oscillation mode is large compared to the ion

cyclotron radius can be treated. Instabilities at higher harmonics of the

ion cyclotron frequency are also excluded. Quantitative agreement with the

results of Harris' exact treatment of the infinite plasma is found only for k

nearly parallel to B_°, whereas otherwise our equations contain stabilizing

extra terms not obtained from the rigorous theory. Estimates of the critical

pressure anisotropy, at which instability sets in, are given. The critical

anisotropy Is smallest for the "resonance" case w ~ ft with k lying nearly
p c

parallel to B°. Short-wavelength modes are less stable than long-wavelength

modes. The two-fluid hydrodynamic model allows a pictorial understanding of

the unstable oscillation modes and of the fact that geometric boundaries have

little influence on the conditions for instability.

1. E. G. Harris, Phys. Rev. Letters 2, ^h (1959); Oak Ridge National Laboratory
Report ORNL-2728 (1959); Proc. Conf. Theor. Aspects Contr. Fusion Res.,
Gatlinburg, Tennessee [TID-7582 (ORNL-2805), 1959]; P- 151; p- B. Burt
and E. G. Harris, Bull. Am. Phys. Soc, Series II, 6, 500 (1961).
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I. INTRODUCTION

It has been shown by E. G. Harris that a static homogeneous plasma in a

uniform external magnetic field B° may exhibit unstable longitudinal plasma

oscillations (electrostatic ion-cyclotron instabilities) with |Re(w)| nearly

equal to the ion cyclotron frequency 0. or a multiple thereof. These

instabilities occur if the electron plasma frequency to is greater than the

pertinent multiple of 0, and if the ion pressure Is sufficiently anisotropic.

Harris uses the Vlasov equations, with the equilibrium distribution functions

chosen as two-temperature Maxwellians with finite T , but T. = 0. (The

denotations "perpendicular" and'parallel" refer to the direction of B°.) The

case of T and T both being finite has been studied numerically by Drummond,

Rosenbluthj and Johnson.2 The electrostatic ion-cyclotron instabilities in a

cylindrical plasma shell have been investigated by Burt and Harris.1

Remarkably, the results in this case are very similar to those obtained for the

infinite plasma. Experimental evidence that such Instabilities may exist in the

Oak Ridge DCX mirror machine has been reported by Barnett.3

In the present paper we should like to approach the problem of these

instabilities with the aid of a two-fluid hydrodynamic model. In place of the

collisionless Boltzmann equation we use its first three, respectively two,

moment equations, in order to describe the Ions, respectively the electrons.

The electron equation of motion and the ion pressure equation are decoupled

from the higher moment equations by putting the electron pressure and the Ion

pressure diffusion term equal to zero. As Bernstein and Trehan4 have indicated,

2. W. E. Drummond, M. N. Rosenbluth, M. L. Johnson, Bull. Am. Phys. Soc,
Series II, 6, 185 (1961).

5. C. F. Barnett, Bull. Am. Phys. Soc, Series II, 6, 196 (1961).
h. I. B. Bernstein and S. K. Trehan, Nucl. Pus. 1, 5 (i960).
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such an approximation Is obviously justified whenever the phase velocity of

an oscillation mode is much greater than the average thermal particle velocity.

It is, however, not evident that the approximation is innocuous, if it is applied

to a stability problem. In cases of overstability, as are being considered

here, very often |lm(to)j « |Re(w) j; hence, the use of approximate equations

could very well cause appreciable errors In the results. We thought that this

question might best be decided on the basis of a concrete calculation.

The hydrodynamic approach restricts us to frequencies near to or smaller

than the ion cyclotron frequency, and to wavelengths large compared to the Ion

gyration radius. In spite of these restrictions, testing a hydrodynamic ap

proach seemed interesting In view of the mathematical difficulties connected

with Vlasov-type investigations of Instabilities, especially in spatially

inhomogeneous plasmas. One would hope that a hydrodynamic theory, if

applicable, might simplify matters considerably.

II. MOMENT EQUATIONS

From the collisionless Boltzmann equation

|I+W. |£+|.|£=0; KSe(E +=xB) (1)
o t — o r M dw — — c —

the following moment equations are easily derived:

|| +div(NV) =0 (2)

Sv P , V i
sr + V-GradV = ^ (E + = x B) - ~ DivP (5)
dt - - M - c — MN = w/



^(NY_Y_+ir)= "|V'(N XXI) +̂ v.(v p+pv) +i(v.p v)T }- (4)

+ — 1 (EV+VE)+-(VVxB-BxVV)
M c — —

+— (PxB-BxP) -^V-Q
M2c "~ ~ =

Here N, V, P are the ion density, average velocity, and pressure, defined in the

usual way, while the pressure diffusion tensor Q is defined as

Q = MN <(w - V)(w - V)(w - V) ).

The symbol T, used as an upper index, stands for the transposition of a tensor.

A similar set of equations holds for the electrons.

We consider the case that a small time-dependent perturbation is imposed

on a homogeneous static plasma in a uniform external magnetic field B°. By

linearizing our equations accordingly, and neglecting the spatial variation of

Q, we obtain, with some slight change in notation, for the ions:

||+ N° div V= 0 (5)

dV

5t =|(E +iVxB°) -Div, (6)

J =-v-(v *° +f V) -(V-£° V)T (7)
dt

+ Mc~ iU° xB -Bx it0) + U xB° -B° x or.



If B° is a parallel to the z-direction of a cartesian coordinate system,

it° 0 0

«° = (8)0 it° 0

0 0 IT0
z

The symbols without an upper index now indicate perturbation increments, and

,r° 1 po. _. 1 pjr = r_ ; jt = r.

~ MN° " " MN° ~

Again a similar set of equations describes the electrons. Vfe now assume that

all perturbed quantities vary as

Ik-r-ioJt r„ / % > _n
e , [Re(w) < 0],

in time and space. We further simplify the problem by considering longitudinal

perturbations only:

B ^ 0, curl E = 0 (9)

E = - grad $; A|, = _ W(N - n). (lO)

According to Harris1 and Bernstein5 this approximation is justified for

|wj « kc. On assuming zero electron pressure, and using the symbols n and v

for the electron density and average velocity, the electron equations read:

n= Sa (k.v) (11)

iwv = -E + w(vxe), (12)
— m — c — —z '

5. I. B. Bernstein, Phys. Rev. 109, 10 (1958).



where e Is the unit vector in z-direction. The equations for the ions are
—z

(N° = nQ assumed):

n0

N = — (k-V) (15)
oj — —

- icoV = ^ E + fi (V x e ) - i(k.n) (ik)

°°ZL = l£- (V jt° + jt°V) + (k-£°V)T + iSl (£ Xe - e x at) . (15)

Here, as throughout the paper, e symbolizes the ion charge (singly charged ions

are assumed for convenience), and w and fi designate the angular electron and

ion cyclotron frequency:

Furthermore

eB
o

oj ~ fi = —
c mc 7 c Mc

k2$ - ^e(W - n) (16)

By eliminating n and v from Eqs. (ll), (l2), and (l6), the electric potential

can be expressed in terms of Ion variables only:

Mco

ek£

with

G(a))(k.V) (17)

«2 - 72 -1
G(u) ^ fi2 [to2 - -2 u2] (18)

P ! _ 2 P



where fi and to are the ion and electron plasma frequencies (angular frequencies):

^ite2n0 ^Jte2n0
f)2 = — , to2 = — ,

p M ' p m J

and (X - e_, -e [e_ is the unit vector in Indirection]; the quantity 7 ^ oj/oj

will be put equal to zero in the remainder of this paper, since only to ~ fi

will be considered, and fi /w « 1.
J c c

After insertion of Eq. (17) into Eq. (l'+), the equations i'or V and n

form a closed set. On using the following abbreviations:

to a

U = " , U = , U = : ,
k J c k ' c k '

OJ fi

p /, 3 p k '

and measuring all velocities In units of U (i.e., putting U = l), we obtain

uV - u G(u)(V-e^)e - i(V x e ) - e .jt = 0 (19)

uit - e •(V Jt° + Jt°V) - (e -£°V)T - i(it x e - e x it) = 0 (20)

with

U2 U2
G(u) = 2 ~ _J2 [7 « x] (21)

a2 - 72 u2 - c^u2
u2 - -^ u2 S P

1-72 P

and it°given by Eq. (8).



It is convenient to assume that k lie in the x-z plane; consequently

e -e =0, e. -e = a , a2 + a2 = l.
j£ Y ' !' "V -V' V V-X X' X Z

Equations (19) and (20), when written in components, assume now the following

.onn:

uV - uG(u) (c^V + a o; v ) - iV - a jt - a * = 0
x xx xzz y xxx zxz

uV
y

uV - uG(u)(a a V + o^v ;
z x z x z z

+ IV - c: it ~ a jt = 0 >
x x xy z yz

- a it -ait =0
x xz z zz

uit - Tt°(5a v + a v ) - 21* = 0
xx --xx z z xy

ujt - x°(a V + a V ) + 21* = 0
yy j_ x x z z xy

UJT - %
ZZ

(a V + 5a V )
Z XX z z

= 0

uit - at°a V + i(* - jt ) = 0
xy - x y xx yy

uit - U°a v + it°a v ) - lit = 0
XZ -L X Z Z Z X yz

Tt°a VUJt
yz z z y

+ lit - 0
xz

J

22

23)

Solving Eqs. (23) for the it and inserting the solutions in Eq. (22) finally

leaves us with the following set of three equations only:

ha2*0
s - a2sg(s) - 3a2*? + H^ - a2*° —2— I V

Xto X J- 4-S ZZS-ll X

+ i 1 -

2a2it° a2 tt°
x J- z z

- s s ~J
y + a a
^ x z

- ss(s) -
i- s - 1

V = 0,
z '

(2k)



r 'durn~ ur vi~ ~\ r or rtw or vr
_, X_LZZT7nXJ-ZZi <•

J 1 " 11 ~ + Z 7 V + 1 + t - —-T- Yy (?_>
2Q2jt° Q2 IT0 ^ r Q2 at0 02 Tt°

X_L Z Z „ ^ XJ- ZZ

\ "- " inr^ •*- iTT J vx " \ x " FV7 " ^rr

7t°
+ a a ~ v = 0,

x z s - 1 z '

Tt° S 1 Jt°
a a -j- Sg(s) - -^—r - it0 \ V + a a £- y (26)
xzs-l z x xzs-1

i s - o2 sg(s) - a2*0 —^—- - 3a2*0 [ v =0
[_ z to ' xxs-1 ^zzjz

with s = u2, v = - iuV , and

z p

In order to obtain the condition for instability, we must put the determinant

D of the above equations equal to zero and solve for s:

D e= II D II =0.II -,^1 I

It is convenient to consider instead the equation

4= Nikll - 0, frf,v =FD,V (28)

with

a2(s - l)(k - s)
F(s) = r^r— , cr2 = |s = U2. (29)

g(s) > P P



We shall write <p, respectively 0.., , as polynomials in x = s - 1, e.g.,

n

For to ~ fi we have |x| « 1 and may find an approximate solution of <p - 0

by neglecting higher powers of x. With the further abbreviations

cii = 1 - a?s ; a^ = a± - a2ff2; o^ = ax - a2cr2, (51)

the elements d.. assume the form:
rik

0il(x) = 5axx + (3 + 2o^)x2 + (2 - a Jx3 - x4

+ Q2*0 [~ 5^ix + (-5 + 50i)x2 + 5x3]

+ a2it0 [- 5c?! + (-5 - 2cr1)x + (-2 + ajx2 + x3]
Z Z

^12(x) = J^x + (5 - ajx2 - x3 + a2*? [- 2axx - 2X2

+ a?it° [501 + (3 - ajx - x2]

0i3(x) = a a a2 [- 3x - 2x2 + x3]

+ a a it0 [- 501 + (-3 -5tTi)x + (-5 + 2ai)x2 + 2x"

»i(x) = 5^12 (x)
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=2£(x) = 3rJ!X + (3 - C7i)x2 - X3 + a2Jt° [c^X + X2 ]

a2*0 [- 3^1 + (-3 + o±)x + x2]
Z i-j

^3Cx) = a a tc° [3CT1 + (^ - ai)x - x2]
X. ZJ

>31 (x) = 0; a a2 [- 3x - 2x2 + x3]
X z

+ G ex ir° [- 3^i + (-5 - 5ai)x + (-5 + 2ai)x2 +2x3]
A (li ii

%s(x) = a a it0 [30"! + (3 - a2)x - x2

^ss(x) = 3a x + (3 + 2o )x2 + (2 - ajx3 - x4
Zj Zj Zi

+ a2*0 [- 30! + (-5 - 2a1)x + (-2 + ctOx2 + x3]

+ a2rt° [- 9CT3.X + (- 9 + 5°i)x2 + 5x3]

From these expressions for the 0.v the polynomial form of o(x) can be obtained

by straightforward, if somewhat tedious, calculations. A certain simplifica

tion arises from the fact that the quantities cr2, tt°, ^° are all small

compared to 1 in the cases 0." interest and/or within the expected range of

usefulness of the hydrodynamic approach. To keep o2 small we must restrict

w such that
P

S"2^2 «fi2.M p p c

•—•WW—'Will
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Since it0, measured in units of U , Is of the magnitude (k R )2 R being the
!•' C C 7 C

ion cyclotron radius, Tt° « 1 restricts us to wavelengths large compared to

R . For u ~ U we have (k R )2 - (w,n /u)2 W,n being the thermal Ion
c c c therm' ' therm

velocity. Since in the hydrodynamic approximation we assume VI,. « u.
j j j therm '

the smallness of rt° is no new restriction. For further simplification we shall

also assume

r^ « 1; tA « i;
kil Ioil

this Implies that |fi2 - Qr'w2 I should not become too small, i.e., in ordinary
1 c z p1 J

units:

!U2 - OrVM » max 1 fi2, k2jt° , .
• c z p1 I v' - J

This excludes the "resonance" case w = fi from our consideration.
P c

We new obtain the following Taylor coefficients for p: p(0) = p'(0) = 0

aD -| p'"(0) =^^^x -5^) -108(^0^° +^a£a2^(-27o2 (

+10&a2) - 9^g?k%«° +35l^(at°)£ +0[(«°)3, <*?)%2],

.(3), ,
%^ ^_J0)_ = _^^ _ 27o3a2*° - 52^cr>° - 5^*?

+ 0 [a|,a2Jt?, (*?'

o

i' i

a^^T^27^0^'^ (?V

a3. 5^^= 8lo^ +0(0.,,*°;
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a4 ^06,(0) =-12a? -3c\ +36ax +o(a2,rt°)

The coefficients of the terms of higher order have not been calculated. The

determinant D can now be written as:

N
—3 ™3 \ '

D=x"x(5 -x) (x +ffx) ^ V^"* ^
n=0

In the next section we shall discuss the occurrence of complex-valued roots of

the equation D = 0 and the unstable oscillations associated with them.

III. UNSTABLE ION-CYCLOTRON OSCILLATIONS

Unstable plasma oscillations occur, whenever the equation D = 0 has

complex roots x (and vice versa). In the following we restrict ourselves to

small values of x, I.e., to to ^ fl . Let us look for the zeros oi? the poly

nomials

yx). J %A oe)
n=6

with N = 2 or 5- I"t will be shown that this approximation is reasonable under

a fairly wide range oT conditions.

We start by discussing the case jt° - 0. The roots of the equation

P2(x) ~ a0 + aix + a2x2 = 0 (59)

are complex for negative discriminant,



i.e., ior

13

ZV> = a2 - ^a a < 0
^ 1 0 2

2

0^(0-1 jt° - o2) + 8a!a2a2Tt0 < 0. (hO]
X J_ ZJ_

It follows immediately that instability is possible only for negative o±, i.e.,

for Ci2co2 > fi2. In the special case o:2 -> 0 this is also sufficient for instability
z p c - x

The propagation vectors k of the unstable modes lie inside a dcuble-cone about

the direction of B°, the maximum inclination angle being given by the implicit

equation:

(a \2 -8oia2Tt0

a 10 \2 "\ z/ (ai^ - °s)

The right-hand side is always smaller than 2; this corresponds to an angle

Q ~ 55°.

It must be shown yet that it is sufficient to use only P2(x). Consider,

then, the equation

P3(x) = a0 + aix + a2x2 + a3x3 = 0. (Ul]

Two of its roots are complex, if the discriminant Is negative:

A3 = a2a2 - M-a3a - k& a3 + 18 a a a a - 27a2a2 < 0. (k2)
12 13 02 0123 03

The discriminant can also be written in the form



Ik

2 2A3 = (a2 - '+a1a3)(a1 - ^aQa2) + aQa3(2a1a2 - 27aQa3)

= (a| - 4aza3) A^ + aQa3(2a1a2 - 27aQa3)

By substituting the explicit expressions for the coefficients, one sees that

approximately

the other terms being of higher order in either a2 or rt°. Hence, as long as

o± is not too small, the use of P2(x) is justified.

The solutions of P2(x) = 0 turn out to be

In ordinary units this reads

or

°v(°i*° + os) a JcPia^ - c2) + Qa^soFjP
X -*• X ji. -»- Z J-

2o±

In order for this to be a good approximation for the solution of the original

determlnantal equation, D(x) = 0, x must be small compared to 1. The case

d^ -> 0 is of special interest. If o"i < 0 and 0: -» 0:

?a2JT°
x -> + la / (kk)

ac V oj2 - fi2
P G

a kto / 2£jt°
x p

x -> -1- 1 ^
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/ ^1u) rj + a + i.a ktj / • . (45'
" C ~ X P V 2(^ - fi2)

p c

We want to compare our results with those of E. G. Harris. He obtains,

in our notation (ordinary units):

with A ~ 1 and

w = + fi + i G u fl / • — (46)

a2k2Tt°
X -L

a ^

J- fi2
c

(hi)

We are only interested in the case where q « 1, whence Eq. {kb) reduces to

/ ^w^+fi + i a a kw / (US)
" c" xz pJ 2(0^ -fi2)

z p c

It is seen that our results, as given in Eqs. (ho), (hj)f and (k^), agree with

Harris' formula for a -+ 0 (& -*• l). For nonvanishing (X our equations con-
X Z X ^

o

tain stabilizing terms not found In Harris1 formulae, such that for a2 > ^
' x - 3

we obtain always stability in contradiction to Harris' result. We must infer

from this that the neglect of pressure diffusion, which was used in order to

obtain a closed set of hydrodynamic equations, becomes less satisfactory, as

the angle between the propagation vector k and the magnetic field B increases.

This effect persists for non-zero Tt°;however, the possibility exists that this

p 2
peculiar stability for (X > — may not follow, if one solves for tne unabridged.

x — J

determinant without use of the above approximations.
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Finally, we present a discussion of the case of nonvanishing jt , again
Li

in second-order approximation with respect to x. The discriminant associated

with Ea. (39) now assumes the form

t^ ~ 272a4 < 0^(0^° - a2) + Qoxc2cfa2x° + loc^a2*0 (k9)
IX — xz„ zz

+ (12 + 2aa) [2a2(o-1ir° + a2) + (12 + 2a1)o2*°] a2*° r ,

or

A> * 272a4 -I c**(cti*0 - o-2)2 +Sa^a2^ + le^a2*0 ^, (50)

where terms of higher order in Tt°, jt°, and cr2 have been dropped, since these

quantities are assumed to be small. It Is seen that a non-zero rP has a

stabilizing effect and that o"i < 0 is a necessary condition for instability,

as before.

'Written as a condition for jt , the instability condition /\q < 0 reads:

rt°

— < I F(A,p,z) (51)
Tt°

with

^>4 ^'k^C^T^) > (52)Z - p

where

A ^ — , P ^ — , - ^ a2 , (53)
JT° P

and only the range p < 1, z > max (p, —) Is of interest.
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We are interested in the maximum of F, since this determines the onset of

instability. Notice that p has a fixed value for a given homogeneous plasma

and for specified magnetic field B°, whereas z and A are variables. (A depends

on the wavelength through n°.) We obtain the following results:

a. With respect to A the function F has a single maximum (A > 0) at

A ~ z - p:

5(1 - z)(z -i)
F(A nJ - ^— <^)

maX 4z(z - p)

b. With respect to z, the function F(A ) has a single maximum in the
* ' max

range — < z < 1 at

1 [1+ /l - p(4 - 3p) ] (55)
Jmax h - 3P

provided p < — : for p > — the z-derivative of F(A ) is alwavs negative, and
- 3 5 max " D '

F(A )^+co at z = p + 0.
max

c. For p < — we obtain the following maximum of F:

F(A ,z )= ^ I; \x<\h (^)
max' max / %2 4 — 3

max

with z given by Eq. (55)« For p = z - —, F assumes the largest value
max max 3

within this range (p < —), i.e., F = ~ . Correspondingly

— > £ | " 0.817 x 10 3 (for protons) (57)
Tt0 2

provides for stability in the range p <— , i.e., (w /fi ) > */), The result,
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of course, refers only to oscillation modes with w ^ fi , not to higher

harmonics of the ion cyclotron frequency.

d. The divergence of F for p > — _, z -» p + 0, A=z-p-»0, Is un-

physical, since this limit contradicts our assumptions

^u << x —^ <<c ± _ <<; -, , ,

i z-p z-p ' ^ I

the latter two conditions being equivalent to

*°
q2 -L

« 1; « 1.

kil

It Is easy to see that Eq. (5^) is useful only as long as

z - p > V10| = 0.0735 (for protons),

and particularly:

p < 0.9265.

Hence we ought to choose, instead of z = p + 0,
3 max r '

W*1'*'^' (58)

or something of similar magnitude. From this we obtain

F(JWZmJ «10-2-P_1 (l-p)(p-f), (59)

with a maximum F ~ 1.82 at p = 1,6/ 3- Consequently
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-^ > 1.82 | (60)

-I

will provide for stability in the range - < p < O.9265 [I.O389 < (oj /n ) </5],
3 P c

and z > p 4- 0.0755.

e. Another estimate of the critical pressure anisotropy can be obtained

in the following way: For fixed values of z and A the function F(A,p,z) has

a single maximum with respect to p at p = p , with
max

and

1 5z - 1

z-p A 1 - z '
max

(61)

^.nax^k^-15- (62)

The maximum with respect to z of the latter expression occurs at z
max

(p =l), with F = A i. Consequently
max

-*• > «° (63)

provides for stability In all cases in which the assumptions (*) are valid.

Since rP stands, in ordinary units, for (k2at(°/fi2) ~ k2R2, we see that for smal

ler wavelength a greater value of (jt°/:t0) Is required for stabilization.
/a —L

f. The above results are limited in two respects. First, the case

oj -+ fi , which probabily Is most unstable, has not been treated, since in

evaluating the coefficients a. use was made of the assumptions (*). Secondly,

the case of large k (wavelengths comparable with or smaller than the ion gy

ration radius) had to be left out of consideration as a consequence of the

hydrodynamic approximation.
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IV. DISCUSSION

The two-fluid hydrodynamic theory presented above has been shown to

describe certain unstable modes of the Harris type in an approximate fashion.

Generally, greater stability is predicted than on the basis of the Vlasov

equations. Harris' necessary and sufficient condition for instability, viz.,

n2fi2 < a2^2 with n - an entire number, occurs in our model merely as a nec-
c z pJ ' J

essary condition, with the restriction n = + 1. Harris' result saying that

w ~ nfi , whenever (o2^2 - n2fi2) is sufficiently large, also follows from the
cJ z p c J '

present model (again with the restriction n = l). Somewhat disturbingly, a

fixed range of propagation directions permitting stable oscillation modes

only, exists in our model. This might actually cast some doubt upon the

usefulness for stability problems of the two-fluid hydrodynamic model. Still,

the model reproduces the main features of Harris' results.

Several rough estimates of the critical pressure anisotropy required for

instability have been derived in this paper. These critical values are In

general too small as compared to Drummond, Rosenbluth, and Johnson's results.2

According to their report, values of (n°/3T°) greater than 8 or 9 cause In

stability. The only estimate of ours that approaches their result, when

evaluated for wavelengths somewhat larger than the ion cyclotron radius, is

given in Eq. (63).

For the convenience of the reader the approximations that have been used

in our paper are listed once more:

1. Hydrodynamic approximation, neglect of ion pressure diffusion

variation Q . Consequences: Validity expected only for
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2 2

| CO J
k2 «

jco |

-1 z

which for oj ~ fi , it0 < it0 implies k2R2 « 1 (in reduced units: ix° « 1,
cJ z -J- ^ C -U '

jt° « l) . Probably there exists also an upper frequency limit of validity

of the order fi or 2fi (see end of this Section IV). Cold electrons assumed
c c

for convenience.

2. Linearization, Fourier decomposition in space, time variation like

exp(-icot) assumed.

3- Purely longitudinal oscillations assumed, i.e., B = 0, Ico j « kc.
The assumption has been used by Harris1 and Bernstein.

h. (w/lo ) -* 0, i.e., electrons tied to magnetic field lines. Un-

problematic for the case considered (to ~ fi ).

5. Evaluation of dispersion relation to second order In

to2 - fi2
_ _c_

fi2
c

Hence limitation to small growth constants.

6. Small ion plasma frequency:

p2 = g ^2 « fl2 .
p M p c

this provides an upper limit for the electron plasma frequency a) . In

reduced units: o2 « 1.

7. Exclusion of the case aw ~ fi . Specifically
1 z p c

!fi2 - a2w2| » max(fi2, k2*°, k2*0)
• c z p1 V — z

or, in reduced units,

°i I -^ max(a2, jt°, it°).
_j_ z
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This excludes the case of strong resonance between Ion cyclotron motion and

electron plasma oscillations with its possible consequence of strong instability.

Use of the assumptions 1, 6, and 7 ^-s made in evaluating the dispersion

relation. These assumptions provide for validity of approximation 5 &nI allow

the use of simplified coefficients in the polynomials P (x) .

The two-fluid hydrodynamic theory contributes to our qualitative under

standing of the unstable oscillation modes. We consider first the motion of

the electrons. In the limit used, i;e., for to -> co, electron density and

velocity are given by:

^a v
u z z

le _, e t
v rj - — E = - — a d>: v ~ v ^ 0.
z into z mu z1 x y

(6)

As one expects, the electrons (more properly: their guiding centers) are tied

to the magnetic field lines and respond only to the z-component of the electric

field. One obtains equally easily the following Important relation between

ion density K and electron density n (again for co -> co ):

t--V (65)
Q^U)'
Z p

If oj Is real, electron and ion density are either In equal or In opposite

phase, depending on whether to2 < a2w2 or to2 > o^to2. In the first instance,
' z p z p '

the electron density generally overcompensates for the ion charge density,

while in the second instance the ion charge density is auded to by the electrons,

When to is not purely real, but possesses a small imaginary part, i,e.,
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to = to' + ito"; Jto** | « | uj *|,

with w'j to" real, and

1 -
to'2 - co"2

a2to2
z P

21uj'co"

a2to2
z P

-1

(66)

(67)

then n and H are still nearly in equal or opposite phase as before, as long

as

Ir.i"2u)'oj

O^to2 - to'2
z p

«15

while otherwise appreciable phase-shifts will occur. The transition from

effective charge overcompensation to charge addition occurs for Re(n/N) = co,

or

c^w2 - w'2 + u"2 ~ a2^2 - to-2 = o.
z p z p

We note that this coincides with Harris' instability condition

as to' = + nfi . Apparently

C^to2 - n2fi2 > 0,
z p c 7

Re f >°>

i.e., effective charge (over) compensation, is necessary for the Harris

instability to occur.

(68)

(69)

(70)
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We now consider the motion of the ions. On using the same approximations

as in Chapters III and IV, especially to — fi , we obtain the following result

for the macroscopic ion velocity V (velocities in units of U ):

AV = 1 - i a2jt° + x.
x 6 x _ - +3> 2 alrto

+ 0(x2,X7t°, etc.)

AV = i sgn(<o) (l + x]
-i/2 - l +a2 ( i Ha +1 „<

x V 2 ai 6 J

AV =
z

x*

a
X

-x. I f^+§ )+± -22-

cr2 x

2a o az ctut^ z

1 <rO ^ X 02— It. + y
2 -l 6 ai

+ 0(x2,xit°, etc,

,2 „_0,xit° etc.),

(7*0

where A is an arbitrary constant and x is given by Eq. (^3) • 1h-e inverse of

"1/2

the square root, (l + x) , siionld be taken with positive real part. We

sec that a rough approximation for V is

V :V :v ~ 1: [i sgn(w)]:0,
x y z ' (75:

i.e., V is nearly perpendicular to the magnetic field B . This is just what

one would obtain by dropping the electric field and pressure terms In the ion

equation of motion [Eq. (iM-)], in agreement with our exclusion of strong

resonance between ion and electron motion (Approximation 7 on p. 2l)• Hence
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it follows that in the limit of infinite wavelength and zero ion-electron coupl

ing there exist collective ion modes with to = + 9, .

It is plain, from our assumption of cold electrons, that the Harris in

stabilities are associated with the transformation of kinetic energy of the

random ion cyclotron motion into electric field energy and macroscopic kinetic

energy of ion and electron fluids. Our equations fail to reveal the "cause,"

or "mechanism," for this process, but lend themselves to the following

tentative interpretation.

A. Under the right conditions (pressure anisotropy, ion-electron coupl

ing), kinetic energy of random ion motion can be converted to "macroscopic"

energy at frequencies to ^ nfi . As a frequency (resonance) condition, this

would be insensitive to plasma geometry.

B. Proper Ion-electron coupling, such as to cause instability, can be

provided only if charge compensation obtains (in the sense explained above).

The equation (6^), expressing this condition, depends only on the propagation

direction, not on the wavelength; hence, again, plasma geometry seems to be

unimportant. The expectation that the stability conditions for Harris in

stability will be insensitive to plasma geometry is borne out by a study by

Burt and Harris1 of Harris instabilities in a cylindrical plasma shell.

A final remark concerns Harris instabilities at higher harmonics of fi .

The equations (2^) to (26) contain singularities at oj = + fi and to = + 2fi .

Further singularities at higher harmonics of fi would arise, if we included

higher-order moment equations. Since this would significantly alter our equa

tions for u> ~ nfi , n > 3, it is not possible to study Harris instabilities at

the higher harmonics of fi by our simple set of hydrodynamic equations.
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