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Abstract 

Concentrations of f i s s i o n  products i n  t he  f u e l  and i n  t he  
coolant stream of a generalized reactor power plant  employing 
unclad f u e l  material  have been calculated using ac tua l  f i s s ion-  
product chains and wide ranges of assumed values of 1) escape 
r a t e  from t h e  f u e l  and 2) removal r a t e  from the  coolant stream. 
The calculations were made on an IBM 704 d i g i t a l  computer. Some 
typ ica l  r e s u l t s  a r e  displayed i n  the  form of graphs t o  i l l u s t r a t e  
t he  e f f ec t s  of the  var iables .  The complete t ab l e s  of calculated 
data  a r e  available but a r e  not included with t h e  present report .  

As data  on escape r a t e s  from f u e l  and removal r a t e s  from 
coolant become available,  t he  t ab l e s  and graphs developed by t h i s  
study can be used t o  estimate t h e  fission-product concentration i n  
t he  coolant stream, which would i n  t u rn  furnish a bas i s  f o r  determin- 
ing the  degree of coolant pur i f ica t ion  required t o  maintain t he  c i r -  
culat ing a c t i v i t y  below a given leve l .  

*We L. Albrecht of TVA part ic ipated i n  t h e  formulation of 
t h i s  study before being subsequently reassigned. 
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In t roduct ion 

This study i s  d i r e c t e d  toward p red ic t ing  the  buildup of concentrat ion 

of f ission-product  a c t i v i t y  i n  a gas-cooled power reac to r  coolant stream 

a s  a funct ion of time, fission-product escape r a t e s  and removal r a t e .  For 

the  purposes of t h i s  study, all removal processes including deposit ion,  

leakage, and p u r i f i c a t i o n  have been considered together  a s  t h e  removal 

r a t e ,  A coro l l a ry  study would be t h e  determination of t h e  d i s t r i b u t i o n  of 

deposited a c t i v i t y  i n  a coolant system when s u f f i c i e n t  da ta  on deposit ion 

become ava i l ab le .  

The problem of coolant a c t i v i t y  i s  a  general one f o r  power reac to r s  

using e i t h e r  c lad  o r  coated s o l i d  fuels ,  s ince  a l l  power reac to r s  depend 

on coolant flow t o  remove t h e  heat  of f i s s i o n  and decay and s ince  t h e  

p robab i l i ty  always e x i s t s  t h a t  f i s s i o n  products w i l l  e n t e r  t h e  coolant 

stream v i a  imperfections i n  t h e  f u e l  coating o r  cladding. The same 

theory and ca lcu la t iona l  methods used here  could be appl ied  t o  l i q u i d -  

cooled reac to r s  with appropr ia te ly  chosen ranges of removal r a t e  parameters. 

The l e v e l  of a c t i v i t y  i n  t h e  coolant gas w i l l  be important t o  t h e  de- 

termination of t h e  hazards of rout ine  and acc iden ta l  r e leases  of t h e  

primary coolant.  The cos t  and d i f f i c u l t y  of maintaining the  coolant sys- 

tem w i l l  depend l a r g e l y  on t h e  l o c a t i o n s  and amounts of deposited a c t i v i t y ,  

which t h i s  study does not attempt t o  analyze. I n  t h i s  study, t h e  deposited 

a c t i v i t y  i s  combined with t h a t  removed from t h e  coolant by whatever 

cleaning methods a r e  used (e.g., a  f i l t e r  i n  a by-pass system) and t h e  t o t a l  

removal r a t e  thus  obtained i s  designated by t h e  symbol r ( f r a c t i o n  removed 

per second) . However, t h i s  does permit t h e  determination of p u r i f i c a t i o n  

system requirements t o  obta in  a cooling system concentra3ion of a c t i v i t y  

l e s s  than any given value, i f  indeed a p u r i f i c a t i o n  system i s  needed a t  

a l l .  

Fission-Product Escape from Fuel 

The escape of f i s s i o n  products f r0m.a  f u e l  element i s  taken here  t o  

be a d i f f u s i o n a l  process, f i r s t  i n  d i f f u s i o n  t o  the  surface of  t h e  p a r t i c l e  

o r  c r y s t a l  i n  which t h e  f i s s i o n  occurred, then out  through t h e  f u e l  element 



matrix t o  i t s  surface, where it i s  assumed t h a t  the  atoms of f i s s i o n  pro- 

ducts en te r  the flowing gas coolant stream through a defective o r  porous 

fue l  container o r  coating. This analysis assumes t h a t  the  dif fusion of 

the  f i s s ion  products i s  controlled by the fue l  pa r t i c l e  and not by the  

processes by which it i s  subsequently released t o  the coolant stream. 

For an element consist ing of UO pa r t i c l e s  i n  a graphite matrix, the  2 
diffusion t o  the  surface of the  UO pa r t i c l e  i s  indeed controlling. '  For 2 
other types of fue l  element, d i f fusion through the matrix m y  be more s ig-  

n i f i can t  o r  even control l ing ( f o r  example, UO pa r t i c l e s  i n  a s t a in l e s s  
2 

s t e e l  matrix coated i n  t u rn  by a s t a in l e s s  s t e e l  sheath) .  Since the s izes  

and shapes of fue l  pa r t i c l e s  and the escape routes from fue l  par t i c les  

t o  the  fue l  element surface vary t o  a degree t h a t  has so f a r  prevented 

use of the actual  d i f fusion coeff ic ients  (where known), experimental 

"vir tual"  di f fusion coeff ic ients  ( D ' )  have been employed. 2'3 The theory 

of the escape process ins ide the fue l  element i s  explained i n  d e t a i l  by 

Eichenberg, e t  al . ,2 and i s  surm~arized by Cot t re l l ,  e t  a1.l Alternatively,  

an isotope may form within the  fue l  element o r  the  gas by decay of i t s  

parent o r  disappear by decay t o  i t s  daughter. Decay chains of up t o  four 

generations a r e  considered i n  t h i s  analysis .  

This report  i s  not intended t o  be specif ic  as  t o  what numericaL 

values of D l  and V (escape parameters defined i n  the  sect ion on analysis)  

should be expected t o  be va l id  f o r  isotope escape from fuel ,  but  covers the 
-14 

range 10  t o  l o m 7  f rac t ion  removed per second because some experiments 4 ~ 5  

indicate  t h a t  the value may eventually be found t o  be within t h a t  range a t  

f ue l  element temperatures of most i n t e r e s t .  

Fission-Product Fate i n  the  Coolant 

When a radioactive isotope enters  the coolant stream it may decay, 

deposit on a container surface, l eak  out, be removed by a chemical o r  

physical process (e.g. ,  a  f i l t e r ) ,  o r  remain suspended i n  the  f l u i d  

stream. It i s  assumed here t h a t  no isotopes move from the f l u i d  stream 

i n t o  the  fue l .  
6 

This report  makes no attempt t o  specify the  ac tua l  means of removal 

from the coolant but covers the  range r = 0 t o  r = 1 of removal ra tes ,  

where r = f rac t ion  removed per sec  by a l l  processes combined except radioactive 



decay which i s  included separa te ly  and i s  considered i n m r i a ~ t ? ;  On. the  o the r  hand . 
deposit ion,  leakage and p u r i f i c a t i o n  a r e  o r  may be subject  t o  control .  

Deposition on a container surface i s  con t ro l l ab le  t o  some ex ten t  by design 

o r  mater ia l  spec i f i ca t ion  although the re  may be some p r a c t i c a l  l i m i t a t i o n s  

on t h i s  process. Nornal leakage from t h e  coolant system can be control led  

by design and maintenance spec i f i ca t ions ,  whereas removal by chemical o r  

physical processing may be ef fec ted  e i t h e r  i n  t h e  main coolant stream or,  

more usual lyJ  i n  a bypass c i r c u i t .  Some  test^^'^ ind ica te  t h a t  deposit ion 

i s  sometimes much more dependent on chemisorption than on condensation o r  

physical (e .g . ,  van der  waals) adsorption,  It i s  hoped t h a t  t h e  range of  

the  removal r a t e  ( r )  se lec ted  f o r  use i n  t h i s  study w i l l  be anenable t o  

in te rpo la t ion  t o  experimental values.  The removal r a t e s  used here repre-  

sen t  t h e  sums of t h e  removal constants  f o r  leakage, deposi t ion  and 

pur i f i ca t ion .  

Not only i s  it not  now poss ib le  t o  separa te  deposited a c t i v i t y  from 

t h a t  removed by o the r  processes, bu t  a l s o  t h e  l a c k  of e i t h e r  da ta  o r  

accepted theory prevents determination of t h e  d i s t r i b u t i o n  of deposited 

radioact ive  i sotopes  i n  the  coolant system, It has become evident 778 t h a t  

deposit ion by condensation of f i s s i o n  products from t h e  coolant caused by 

exceeding t h e  sa tu ra t ion  concentrat ion i n  t h e  coolant i s  f requent ly  com- 

p l e t e l y  i n v a l i d  a s  a b a s i s  f o r  predic t ing removal r a t e s  o r  deposi t ion  

loca t ions .  Study and t e s t i n g  of o the r  f a c t o r s  (such as chemisorption, van 

de r  Waals adsorption, e t c . )  which influence t h e  removal of f i s s i o n  products 

i s  a t  an ea.rly s tage  of development. 

Range of Parameters Examined 

The bas ic  parameters considered i n  t h i s  study a r e  1) those a f f e c t i n g  

r a t e s  of d i f fus ion  from, t h e  f u e l  elements ( D ' ) ,  and 2)  t h e  assumed, removal 

ra.tes ( r)  from t h e  coolant,  and 3) operat ing time ( t ) .  

D l  (see'') may be defined a s  a constant times t h e  amount of an i sotope 

d i f fus ing  out per second evaluated a t  t h e  surface  of t h e  f u e l  p a r t i c l e ,  
2 

It a r i s e s  from a t h e o r e t i c a l  de r iva t ion  a s  an experimentally determinable 
-1 value f o r  a p a r t i c u l a r  s e t  of condit ions.  D '  = ~ / a ~  ( sec  ), where D 

b 

2 
i s  the  conventional d i f fus ion  coef f i c ien t  (cm /see)  and a i s  a c h a r a c t e r i s t i c  

length2 associa ted  with the  f u e l  (cm), such a s  t h e  radius  i n  t h e  case of a 



spherical  fuel  pa r t i c l e .  

Three "cases" were included i n  the calculations of both the elements 

and the isotopes, as  follows. 

Case I .  I n  the Case I calculations, the value of D' (=D; ) used i s  -- 
the same f o r  every element, over the range of values D' = 10-12to D I = 

sec-'. 

Case 11. I n  the Case I1 calculations the value of D f  (=  % ) used -- 
fo r  elements of atomic numbers 35-37 and 51-55 inclusive i s  10-1 times the 

value of D l  (=  D '  ) fo r  the other elements i n  Table I over the range a 
D' = 10-l3 t o  D' = sec- l .  The reason i s  explained below. 

Case 111. I n  the Case I11 calculations the value of D' (= Dh ) used -- - 2 f o r  elements of atomic nmbers 35-37 and 51-55 inclusive i s  10 times th.e 

value of D l  ( =  D i  ) f o r  the  other elements i n  Table I. The reason i s  

explained below. The t o t a l  range of D l  covered f o r  these elements i s  

thus 10-l4 t o  10-7 sec- l .  
1 

Reason fo r  Cases I1 and 111. Cottre l l ,  e t  a l . ,  reported t h a t  experi ----- 
mental data  show tha t  the D l  values f o r  some elements a r e  s ign i f ican t ly  

d i f fe ren t  from others at  the same temperatures (pp 76-81, ORNL-2935). The 

evidence i s  not c lear  as  t o  the quanti tat ive re la t ions ,  but it appears 

t ha t  factors  of difference of a t  l e a s t  up t o  100 a re  involved. Therefore, 

t h i s  analysis assumed the factor's of difference l i s t e d  above f o r  the 

Case I1 and Case I11 calculations.  It should be emphasized tha t  the 

selections a re  i l l u s t r a t i v e ,  not quanti tat ive,  and tha t  experiments m y  

show the factors  of difference t o  be off  by orders of magnitude. A s  

experimental values accumulate, values within the ranges selected m y  be 

used fo r  interpolation,  while values outside the selected ranges may be 

used a s  input data fo r  new calculations.  

The parameter r ( sec- l )  i s  the  f rac t iona l  r a t e  of disappearance 

from the coolant stream, t ha t  i s ,  it i s  the f rac t ion  of the t o t a l  inven- 

tory of the isotope i n  the coolant which disappears from the coolant per 

second. This parameter incl.udes l o s s  by leakage, deposition, and puri f i  - 

cation.  Values of r selected for  t h i s  study range all the way from zero 

t o  one, and were chosen with the in ten t  of permitting interpolat ion be- 

tween the values selected.  The same values of r were used i n  each of 

the  three cases studied. 



The parameter of time ( t )  i s  given i n  seconds a f t e r  r eac to r  s t a r t u p .  

It i s  assum.ed t h a t  s t a r t u p  i s  instantaneous and t h a t  operat ion i s  steady 

s t a t e  t o  t h e  time i n  question. The range of values of t used was from 10  5 
8 

seconds (approximately 28 hours) t o  10  seconds (approximately 3.2 years) ,  

t o  cover t h e  range from reasonably shor t  opera t ing times t o  times long 

enough t o  be a t  o r  near e q u i l i b r i u n  concentrat ions of most f i s s i o n  pro- 

duct s  . 



Mathematical Analysis  

Using t h e  b a s i c  parameters def ined  above and t h e  b a s i c  r ad ioac t ive  

decay parameters, t h e  genera l ized  system was analyzed mathematically by 

J. Replogle of  Cen t ra l  Data Processing, ORGDP. Calcula t ions  were performed 

on a n  IBM 704 d i g i t a l  computer u s ing  a program w r i t t e n  by J. L. Lucius of  

Cen t ra l  Data Processing.  The a n a l y s i s  fol lows.  

Only t h e  parameters used throughout t h e  a n a l y s i s  a r e  def ined  i n  t h e  

Nomenclature, page 1 7 .  Other cons tants  and parameters a r e  def ined  as 

needed. The a n a l y s i s  i s  f o r  a four-membered decay chain and r e s u l t s  i n  

equat ions d e f i n i n g  t h e  e x i s t i n g  amount of  each i so tope  a s  a func t ion  of 

time i n  both the  f u e l  and t h e  gas coolant .  The c a l c u l a t e d  amounts were 

p r i n t e d  out  as t h e  number of  atoms of i so tope  pe r  f i s s i o n  per  second i n  t h e  

f u e l  elements l eak ing  t o  t h e  coolant .  

I .  Summary of t h e  D i f f e r e n t i a l  Equations f o r  a Four-Membered Chain 

A .  F i s s i o n  product i n  t h e  f u e l .  

where, 



-12- 

F = ~ ( t )  is the fraction of an isotope in the gas, of the total in 

both the gas and the fuel at the time under consideration Y 

The solution to this system is; 

where 

A1 = A +V a a, 

A2 = A b + v b  

As = 6Aa y,/q 

Ah = (yb + Aj)/A2 

As = - q) 
A6 = + V  

c C 

A = A 4 h b  
7 

A8 = U g h b  

A 9 = 
(A7 + Y,)/A~ 

A10 = - ~ 7 )  - A2) 
All = (A6 - 

A12 = 9 1  - - A1O 



B. Fiss ion Products i n  the  gas (coolant) .  

where 

g -1 -1 
Nd 

atoms f i s s i o n  sec = Ndl + Nd2 ' 

Ndl 
= amount i n  the  gas which had diffused out from the  fue l  

N~~~ = amount i n  the  gas which appeared from decay of i t s  parent 
which was already i n  the  gas 

The solut ion t o  t h i s  system. i s :  



where 

and 

r - fractional rate of disappearance from suspension in gas 
(assumed constant), sec -1 



11. Derivation of the Solutions t o  the  Different ia l  Equations 

The ' f i r s t  three  equations of a four-membered chain a r e  solved by 

LaPlace transforms.  he ' las t  equation f o r  the fue l  can be wri t ten as :  

2 + A ( t )  x = B ( t )  
d t  

IShose solut ion i s :  

x = e-Jiidt J ( elAdt ) mt + c e -J ~ d t  

where 

C = constant t o  be valuated from the condition x ( 0 )  = Q 

The d i f f e r e n t i a l  equation f o r  Nd2' i s  solved by transposing the term 

r N ~ ~ '  t o  the  l e f t  s ide  of t he  equation and applying the  operator 

0 
it erT dT t o  both s ides  of t he  equation. However, t h i s  leaves the  

t r7 i n t e g r d  ol e Ndf ( T )  F (T ) dT t o  be e ~ l U a t e d  numerically, and 

considerable care must be taken t o  avoid round-off e r ro r s  i n  the 



machine calculations.  The form of the solut ion t h a t  was found t o  be 

t rac tab le  i n  all but a few cases i s  a s  follows: 

( t )  K ( t)  + M (t) + r e -rt E ( t )  
N: = m) 0 I. m 

where 

K ( t)  = e -'t err P1 ( T )  dr 
0 

and M ( t)  has been defined previously. The l a t t e r  functions a r e  ea s i l y  

evaluated a s  they a r e  l i n e a r  i n  t and exponentials of t .  

The in tegra l  was evaluated by the  generalized mean value theorem 
k 

by estimating 7 i n  each of 2 equal subintervals.  The i n t eg ra l  i s  then: 
j 

with 

to = 0 

and 

t k = t  
(2 1 

111. Solution of a Chain of Three Members or  Less. 

Each member of the  chain i s  solved according t o  i t s  charac te r i s t i c  
-11 

description i n  the  chain except fo r  isotopes with h < 10 . I n  t h i s  case 

the  equation i s  solved a s  i f  the  isotope were s tab le  a s  represented by the  
f 

equations fo r  N and N: i n  Par t  I, with Ncf and Ncg being replaced by 
d 

the  next higher element i n  the  chain. 



Nomenclature for Mathemati c'aJ Analvsis 

N = nuniber of ato~ns in fuel (or gas) at 'cine t after 

startup 

= fractional rate of disappearance from suspension in 
- 1 

gas (assumed constant), sec 

= fission yield, atoms of species appearing per fission, 
- 1 

fiss 

= fraction of y which is isomer being calculated 

-I 
= fractional decay rate, sec 

= fractional rate of disappearance from the fuel matrix 

(assumed constant), V = 3 J h ~ '  (see ref. 2, Ee;. V-10) 

Superscripts 

f = fuel 

e; = gas 

Subscripts 

a,b, c,d = member of d.ec~y chain a -+ b -+ c -+ d 



A s  s t a t ed  above, the  calculat ions  i n  t h i s  study apply only t o  those 

fuel  elements which o f f e r  no res is tance t o  the  escape of f i s s ion  products 

from the fue l  material surface t o  the  coolant gas. The tabulated r e su l t s  

have the  un i t s  " to t a l  number of atoms per f i s s ion  per second" f o r  concen- 

t r a t i ons  i n  both uncontained fue l  elements and i n  the  coolant gas a t  the  

l i s t e d  values of D', r, and time of continuous steady-state operation 

since reactor  s ta r tup .  

Results were calculated fo r  the  elements l i s t e d  i n  Table 1 and for  the  

isotopes and isomers l i s t e d  i n  Appendix A. Nuclides of t he  elements i n  

Table 1 with atomic mass numbers 85 through 106 and 127 through 151 were 

included i n  the  calculations.  This includes a l l  isotopes of t he  l i g h t  

(groups A )  elements form rubidium through molybdenum, and of the  heavier 
i 

(group B) elements form iodine through pmlhethium, plus the  more s ign i f ican t  

isotopes of the  other fission-product elements. 

The ac tua l  concentrations may be obtained from the re la t ions:  

and 

with the  nomenclature: 

= concentration of nuclide i, atoms cm -3 
'i 

P = f i s s ion  power generated i n  the  leaking fue l  elements, 
-1 

f i ss ions  sec 

Ni = 
t o t a l  atoms of nuclide I i n  the  medium specified,  

-1 
atoms f i s s ion  sec -1 

v = volume of the  medium specified,  cm 3 



Table 1. Fission-Product Elements Included in this ilnaly sis 

Group A 

( Lighter Elements ) 

Element Atomic ldo. 

Br 

Kr 

Rb 

S r 

Y 

Zr 

ND 

blo 

Tc 

Ru 

Rh 

Pd 

(Heavier Elements ) 

Element Atomic No. 



I n  as  much a s  it was not p rac t ica l  t o  include all the  data  f o r  all 

isotopes f o r  all the cases, 12  isotopes were selected from Appendix A 

f o r  i l l u s t r a t i v e  treatment. They were chosen roughly on the  bas i s  of 

combinations of f i s s ion  yield, decay constant, beta  o r  gamma energy, and 

biological  significance.'' They a r e  not intended t o  be inclusive,  but 

they were chosen only a s  s ign i f ican t  examples t o  i l l u s t r a t e  the  e f f ec t s  

of the  parameters time, D l ,  and r, on the  hazards and therefore  on the  

design specif icat ions  of fue l  and coolant systems. The 1 2  isotopes 

selected were K I - ~ ~ ,  Sr8', srgO, ygO, 1131, I ~ ~ ~ ,  I~~~~ Ba14' 7 La 140 7 

144  144 
Ce , a n d P r  . 

Some of the  e f f ec t s  of the  parameters of time, D l ,  and r, on the  con- 

centrations of the  12 isotopes chosen a re  shown i n  Figs.  1 through 36 which 

a r e  presented f o r  convenience a t  the  end of the  report .  Included a re  

graphs of Ng ( t o t a l  atoms i n  the  gas/fiss/sec) f o r  Case I f o r  all 12 

isotopes and of Ng f o r  Cases I1 and I11 f o r  the  long-lived (28-yr) S r  9' 

g and the  r e l a t i ve ly  short-l ived La14' (whose N depends e s sen t i a l l y  on 

t he  decay of 12.8 day Ba14'). For the  time scale  used, concentrations of 

t he  r e l a t i ve  short-l ived isotopes which a r e  not daughters of long-lived 

precursors appear a s  essen t ia l ly  s t r a igh t  horizontal  l i n e s .  This would 

natural ly  be expected, because of the  more rapid approach t o  equilibrium 

concentration a s  the  h a l f - l i f e  becomes shor te r .  

I n  addit ion t o  the  r e su l t s  shown i n  Figures 1-36, se lected isotopes 

have been analyzed on one of two bases, 1) those which cons t i tu te  the  

more serious, po ten t ia l  inhalat ion exposures, and 2) those which const i tu te  

the  more serious d i r ec t  radia t ion po ten t ia l .  The selected isotopes i n  

each group a re  tabulated i n  Table 2 and 4 respectively, together with 

nuclear or  biological  constants which describe the  r e l a t i ve  po ten t ia l  of 

each. Table 3 then l i s t s  the  concentration of isotope given i n  Table 2 

f o r  a number of values of D' and r, together, i n  all instances, with the  

index of the  inhalat ion hazard potent ia l .  Likewise, Table 5 l i s t s  the  

concentration of the  isotopes given i n  Table 4 fo r  a number of conditions 

of D l  and r, together i n  all instances, with an index of the  d i r e c t  

radia t ion hazard po ten t ia l .  
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Table 4. Selected Constants of Isotopes Selected fo r  

Direct Radiation Exposure Potent ia l  

Total  (b) 
E 

(Mev/ii s ) 

a 8 Calculated fo r  10 sec a f t e r  s tar tup;  steady-operation at  100 M w t .  

b ~ o r  greater  refinement of accuracy, use E separate ly  f o r  each 
energy group and u l t i p l y  Ng by f rac t ion  i n  theyenergy group, then 
sum the  3.1 x 10'' Ng C Eii A .  f ract ion,  since the  hazard i s  high f o r  

1 
harder gammas f o r  t he  same ~ e v / s e c .  

C Total  a c t i v i t y  i s  all the  coolant. The concentration and geometry - 
w i l l  determine t he  hazards. Also see note b. 



4 .  

Table 5. Gas Concentrations and Relative Direct  Radiation Hazard Potent ia l  

Case I 

K r  8 7 

,131 

,134 

,135 

C s 138 

Ba 
140 

La 140 

C e 
144 

Pr 
144  

of Selected Isotopes f o r  Various Values of D' and r 

= l om7  . 8 D' = D i  = Dd , t = 10 sec 

r = 0 -6 - 4 - 2 
Ng Activi ty  

r = 10 r = 10 r = 10 

atoms/(fiss/sec) (~ev/sec) /100 Mwt  - Ng Activi ty  Ng - Activi ty  - Ng Activi ty  

I)'= D = D; = lo-1z . t = 1 0  8 sec 
a 
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Discussion 

The concentrat ion of r a d i o a c t i v i t y  i n  t h e  coolant may be important t o  

t h e  operat ion and maintenance of t h e  system because of t h e  hazards of d i r e c t  

r ad ia t ion  from a nonleaking cooling system, o r  of both d i r e c t  r ad ia t ion  and 

inha la t ion  of r a d i o a c t i v i t y  from a leaking coolant system. The r e s u l t s  of 

t h i s  study can be analyzed t o  show the  r e l a t i v e  e f f e c t s  on concentrat ions 

i n  t h e  coolant of 1) varying t h e  res i s t ance  t o  d i f fus ion  from t h e  f u e l  a s  

compared with 2) varying t h e  r a t e  of p u r i f i c a t i o n  of t h e  coolant .  These 

e f f e c t s  can each be control led  over wide ranges by design spec i f i ca t ions  of 

t h e  f u e l  elements and the  coolant system. The leakage r a t e  f r o m t h e  coolant 

system can a l s o  be control led  by design, operations, and maintenance speci-  

f i c a t i o n s  and administrat ion.  Thus, a balance can be made t o  obta in  an  

optimum combination of f u e l  and coolant system designs, with t h e  accuracy 

of t h e  optimization bounded only by t h e  accuracy of t h e  parameter data .  

As a b a s i s  f o r  an i l l u s t r a t i v e  p a r t i a l  ana lys i s  of the  r e s u l t s ,  an 
8 

operat ing time of 1 0  sec (3.2 yr) was chosen t o  include near-equilibrium 

concentrat ions of the  shor te r  h a l f - l i f e  i so topes  and s i g n i f i c a n t  concentra- 

t i o n s  of t h e  longer h a l f - l i f e  mater ia ls .  A power of 100 Mwt was chosen 

a s  representa t ive  of t h e  power range of many power reac to r s  and because t h e  

r e s u l t s  a r e  e a s i l y  conver t ib le  t o  o the r  powers by a simple f a c t o r .  Tables 

3 .  and 5 present  p o t e n t i a l  a c t i v i t i e s  i n  t h e  coolant of 1 2  represen ta t ive  

nuclides se lec ted  f o r  comparisons. 

Inhala t ion Exposures 

For each isotope t h e  po ten t i a l  inha la t ion  dose was ca lcula ted  f o r  four  

values of r a t  each of two values of D ' f o r  both cases I and 111. The 
a 

r e s u l t s  a r e  presented i n  Table 2. Mathematically t h e  ca lcu la t ion  i s :  

w i t h  these  d e f i n i t i o n s :  



TID = t o t a l  in tegrated dl3se f o r  inhala t ion of - all t h e  coolant, rem. 

P = power generated by - all the  f u e l  elements combined 

Ng = t o t a l  number atoms i n  t he  coolant gas, atoms/(fiss/sec) 
-1 

A = f rac t ion  decaying per second, sec 

F = f ac to r  t o  convert pNgh t o  pc x lom3,  pc/ (dis /sec) .  Value of 
v 

F = 1/3.7 x 10' 
10 

D = Burne t t ' s  dose parameter, mrem/pc 

g The values of N were obtained from the  d i g i t a l  computer r e su l t s .  

Values of D* were obtained by recalcula t ing Burne t t ' s  1957 values1' of 

Di 
= 73,800 F E.  (RBE) FiT/:mi with the  new values of t he  components 

a , i  1 

reported i n  1959 by ICRP Commit'tee 11. 

The equation f o r  the  potent ia l  dose a t  a reactor  power of 100 M w t  

with the  above def in i t ions  i s ;  

10 D = rem/(100 ~ w t )  a t  10 8 sec 
TID = 8.38 x 10 N~ 

i 

To obtain the  TID t o  a person, the  TID tabulated i s  mul t ip l ied by t he  

r a t i o  of the  reactor  power t o  >30 M w t  times the  f r ac t i on  of a l l  the  coolant 

gas which t he  person breathes ( , t o t a l  coolant gas breathed per t o t a l  coolant 

Direct  Radiation 

For each isotope the  t o t a l  gamma a c t i v i t y  was calcula ted f o r  four values 

of r a t  each of two values of Da' fo r  Cases I and 111. The r e s u l t s  a r e  pre- 

sented i n  Table 5. Mathematically the  calcula t ion i s :  

with these def in i t ions  : 

A = gamna a c t i v i t y  i n  a l l  t he  coolant gas, (~ev /sec) /100  Mwt  

* 
A dose factor ,  not a d i f fus ion parameter. 



p = f i s s i o n  power i n  leaking fue l  elements, M w t  

Ng = t o t a l  number atoms i n  gas per f i s s ion  per second, atoms/fission-sec 
-I -I 

h = decay constant, d i s  atom sec 
-1 

E = mean t o t a l  gamma energy per dis integrat ion,  Mev d i s  
18 

F = f ac to r  t o  convert t o  ( ~ e v / s e c )  per 100 M w t ,  F = 3.1 x 10 , 
(f iss/sec)/100 M w t  

The values of Ng were obtained from the d i g i t a l  computer resu l t s .  

The equation f o r  t o t a l  ganrma a c t i v i t y  i n  all the  gas with all fue l  elements 

leaking i s :  

18 8 
A = 3.1 x 10 Nig hi E = Mev sec - '~00  Mwt)  a t  10  sec 

i 

The r e su l t  would be multiplied by the  r a t i o  of the  reactor  power t o  100 Mw. 

Since d i r ec t  radia t ion dose calculations depend c r i t i c a l l y  on the  geometry of 

the  coolant system and on the shielding e f f ec t s  of components and shields,  

no general statement on making these calculations i s  feas ib le  here. 

Effect  of Removal Rate on Concentration i n  Gas 

It may be seen from Tablks 3 ,  and 5 t h a t  Ng (and therefore the  concen- 

t r a t i on )  of rnost of the  isotopes i s  reduced by about a f ac to r  of 10  f o r  each 

increase i n  r by a fac tor  of 10 a t  D' = t o  Dl = 10 
-14 

i n  the  

range of values of r from t o  lom2. A t  smaller values of r, t h i s  

re la t ion  does not hold a s  well.  Since t h i s  analysis  does not separate the  

e f f ec t s  of leakage, purif ication,  and deposition i n  the  removal of isotopes 

from the coolant, no conclusions can be drawn a s  t o  t h e i r  r e l a t i ve  e f f ec t s .  

Large values of pur i f ica t ion  removal of many of the  isotopes could be 

obtained by passing all o r  a l a rge  f rac t ion  of the coolant through f i l t e r s ,  

absorbers, o r  chemical reactants .  The f e a s i b i l i t y  of each such operation, 

and the  f rac t ion  of the  flow t o  be continuously treated,  would be subjects 

f o r  study and optimization i n  each case. For example, pressure drop power 

losses  and maintenance and replacement costs would have t o  be considered. 



Effect  of D l  on Concentration i n  Gas 

The quant i ta t ive  e f f ec t  of a  given change i n  D' on concentration i s  l e s s  

predictable than f o r  the  same change i n  r. However, f o r  most of the  isotopes 
- 6 

i n  the  range r = 10  t o  the  f ac to r  of decrease i n  Ng i n  going from 
-12 

D l  = 10 
-14 

t o  D 1  = 10  i s  about 10, o r  about a  f ac to r  of 3 per decade 

of D . For the  same range of r values i n  going from D '  = 10- ' t o  D = 

lo-', the  f ac to r  of decrease var ies  more but  i s  i n  the  approximate range of 

1 . 7  t o  2  per decade of D ' .  

It would be expected t h a t  the  value of D t  can be lowered considerably by 

coating the  fue l  pa r t i c les ,  by obtaining uniform f u e l  pa r t i c l e s  of optimum. 

volume t o  surface area  r a t i o s ,  by control l ing s ign i f ican t  impurit ies i n  

the  fue l  pa r t i c les ,  o r  by increasing the  densi ty  of the  pa r t i c l e s .  Some 

progress has been made along each of these  l i n e s  f o r  UO pa r t i c l e  fuels,' and 
2  

there  i s  no apparent reason why improvement i n  other  fue l s  would not be 

feas ib le  . 
g Some Considerations i n  D 1  vs N Relations 

Obviously, lowering the  value of D l  f o r  an isotope w i l l  lower i t s  con- 

centra t ion i n  the  gas. However, the  parent of an isotope with a low D 1  may 

have a  comparatively high D' .  I n  such a case the concentration of t h e  

daughter i n  the  gas, w i l l  be l e s s  dependent on the  concentration of the  

daughter i n  the  fuel ,  s ince a l a rge r  f r ac t i on  of the  daughter i n  the  gas 

w i l l  have appeared from decay of tne  already-escaped parent. The l a r g e r  t he  

r a t i o  of D 1  parent t o  D '  daughter, the  more pronounced t h i s  e f f e c t  w i l l  be. 

Likewise, of course, the  l a r g e r  the  r a t i o  of h daughter t o  h parent, the  more 

pronounced t h i s  same e f f ec t  w i l l  be.  An example of combinations of A and D l  

values f o r  parent and daughter isotopes i n  t h i s  repor t  shows the  tendency jus t  

described, especia l ly  a t  low values of time operated. 

From the  computer output, t he  value of Ng (atoms fission-'  sec'') f o r  
-1 

~ b "  i s  e s sen t i a l l y  constant a t  2.01 x  10 a f t e r  l o 5  sec  operating time with 
-1 

D t  = lo-' sec  . The N~ of i t s  daughter 5r90 increases markedly with time 
8 

through a t  l e a s t  10  sec operating time with D' = lo-', a s  would be 

expected ( ~ i ~ s .  5 - 12)  because of i t s  long (28-yr) h a l f - l i f e .  The Ng of 



sQO consis ts  of two par ts ,  1) t h a t  resu l t ing  from decay of Rb90 which had 

diffused i n t o  the  gas before decaying and 2) t h a t  which was formed i n  the  

f u e l  and subsequently dif fused out i n to  the  gas. The par t  of the  Ng of S r  90 

resu l t ing  from decay of RbgO i n  the  gas may be calculated a s  follows: 

where 

N = atoms sr90 i n  gas from decay of Rb90 i n  gas/fiss/sec 
S,d 

NRg 
= atoms RbgO i n  gas (constant) / f iss /sec  

t = time a f t e r  reactor  s tar tup,  sec  

= decay constants of sr90 and RbgO respectively,  sec  
-1 

" s)% 

The solut ion t o  t h i s  equation is: 

5 6 7  8 Sdbst i tu t ing values of t = 10 , 10 , 10  , and 10  sec gives values of 

N 
S, d 

a s  follows : 

t ( sec) 105 10 l o 7  10 
6 8 

The difference between these values and the  t o t a l  values of Ng f o r  sr90 i n  the  

gas taken from the  tab les  represents the  amount of sr90 (per  f i s s i o n  per second) 

which had diffused d i r ec t l y  out of the  fue l  and had not yet  decayed, a s  shown 

i n  Table 6.  



Table 6.  Amounts of srgo i n  Gas from 

RbgO Decay and srgO Diffusion 

Source Term, & Condition 5 6 7 8 t = 10 sec t = 10 sec t = 10 sec t = 10 sec 

Case 

(calculated 8.48 x 10 8 . 4 8 ~ 1 0  8 . 4 8 ~ 1 0  8 . 1 3 ~ 1 0  4 
N ~ , d  

above; D g  = lo- ' ')  

2) NSg (calculated by 704, 9-50 x 10  1.62 x l o 3  7.90 x 10  3 . 6 9 ~ 1 0  6 

Di = D 6  = 1 0 - 7 )  

3) NSg (calculated by 704, 8.65 x 10  
1 

9.27 x 10 1 . 6 1 ~ 1 0  4 
7.55 x 10  

5 

D I  = 10-7, D; = 10-9) r# 
a 

4) N~~ - N [case 2 - 8.2 x 10 7.05 x 10  3 . 6 1 ~ 1 0  0 
7.72 x 10 

2 6 - 
S, d 

Case 1 1  
D; = D; = 10 - 7 

5) N , ~  - N [case J - 1 . 7  x 10 7.62 x 10 6 . 7 4 ~ 1 0  0 7.9 x 10 1 5 
S,d 

Case 1 1  

It can be seen tha t ,  a t  any time, decreasing D l  f o r  srgO re l a t i ve  t o  D l  f o r  

RbgO, Case J vs Case 2 above, s ign i f ican t ly  reduces the  amount of srgO which had 

diffused d i r ec t l y  i n t o  the  gas and had not decayed. Table 6, Case 4 had the  same 
90 -2 D' f o r  RbgO andsrgO,  while Case 5 hadD1  f o r  S r  = 10 time D l  f o r  RbgO, and a t  

8 
10 sec a f t e r  s tar tup,  the  amount of S r  i n  Case 4 i s  more than f i ve  times t h a t  of 

Case 5. 

It i s  a l so  of i n t e r e s t  t o  compare the amount of S r  t h a t  had diffused as Sr  - 
from the fue l  t o  the  t o t a l  amount of S r  i n  the gas f o r  the two cases D '  = D i  = l o - '  
and D; = D< 5 "8 2 = 10". A t  shor t  times (10 ) the  r a t i o  i s  0.0872 f o r  

93 



D l - D b  = and 0.0194 (s) f o r  the  second case: a t  longer times a 
8 (10 ) the  ratios a r e  0.978 ( 6.74 3*61) and 0.893 (-) respectively.  It i s  3.69 7.55 

important t o  note t h a t  Dd may be a much smaller f r ac t i on  of D' than 
a 

-1 
was assumed f o r  Case I1 o r  Case I11 (10 and respect ively) ,  i n  which 

case the  di f fus ion .and decay of the  parent may e s sen t i a l l y  determine the  

N~ of the  daughter. It i s  therefore  important t o  determine the  values of 

D' of parent and daughter isotopes r e l a t i ve  t o  each other.  Of course, i f  

the  absolute D' values can be determined, the  r e l a t i v e  values follow, and 

pur i f i ca t ion  and leakage r a t e s  can be specif ied accordingly. 

Conclusions and Recommendations 

Every fue l  considered f o r  use i n  a reactor  should be studied a s  t o  both 

the  absolute and r e l a t i ve  magnitudes of the  d i f fus ion  escape r a t e s  of the  

fission-product elements from the  fuel ,  a s  well a s  t o  the  removal r a t e s  from 

the  coolant gas. While it i s  evident t h a t  increasing t he  removal r a t e s  from 

the  gas can e f f ec t  l a rge  reductions i n  concentrations, it i s  a l s o  apparent t h a t  

reductions i n  d i f fus ion  r a t e s  from the  fue l  can produce s ign i f ican t  reductions 

of concentrations i n  t he  gas. The several  ways known f o r  reducing t he  r a t e s  

of removal from the  fue l  t o  the  coolant include 1) jacketing t he  fue l  elements 

a s  with metal jackets, 2)  coating t he  fue l  element with a d i f fus ion- res i s tan t  

material  (such a s  pryolyt ic  graphite on graphite-based elements), 3) control-  

l i n g  the  s i ze  and shape of the  fue l  pa r t i c les ,  and 4) incorporating the  fue l  

pa r t i c l e s  i n  a d i f fus ion- res i s tan t  matrix such a s  a metal. An appropriate 

balance between control  of the  di f fus ion from the  fue l  and removal from the  

gas i s  f i n a l l y  a cost  engineering problem and may be expected t o  be d i f f e r en t  

f o r  each type of f ue l  element, coolant system, and d i f f e r en t  combinations of 

the two. 

Data a r e  being developed on the  D 1  values1 obtainable by fue l  treatment 

and manufacturing methods, and on r values a t t a inab l e  by physical and chemical 

pur i f i ca t ion  of the  gas coolant. By tabula t ing and analyzing the  per t inent  

data  from the  calcula t ion herein fo r  the  ranges of D' and r of i n t e r e s t ,  an 

approximate optimum combination of design specif icat ions  can then be reached 

on a cost  bas i s  t o  a r r i ve  at  required maximum specif icat ions  of isotope concen- 

t r a t i ons  i n  the  coolant gas. I n  addit ion,  maximum leakage r a t e s  from the  



coolant system can be specified t o  fit the  maximum concentrations allowed i n  

the  coolant i n  a r r i v ing  at costs  of protection against  damage from inhal ing 

f i s s i o n  products leaking from the  coolant system. 

The magnitudes of the  e f fec t s  on hazard potent ia ls  of control l ing the  

r a t e  of escape from the  fue l  and of pur i f ica t ion  of the  coolant show the  

importance of determining fission-product di f fusion r a t e s  i n  fue l s  and coolant 

pur i f ica t ion  ra tes ,  both as  functions of costs,  so t h a t  optimum designs can be 

approached. 

Information i s  needed on deposition r a t e s  of f i s s ion  products from the  

coolant, both a s  t o  amounts deposited, r a t e s  of deposition, and loca t ion  of 

concentrated deposits .  Such information would be valuable i n  determining the  

shielding requirements a t  all par ts  of the  system, the  requirements f o r  main- 

tenance, and the  minimum pur i f ica t ion  requirements. It appears t h a t  the  

complexity of the  problem w i l l  probably prevent accurate theore t ica l  analysis,  

and tha t ,  therefore,  most of the  information needed must be determined 

experimentally. 

This study assumes values of the  parameters D' and r and presents the  

resu l t ing  f i s s ion  product concentrations i n  the  coolant. It does not analyze 

any r ea l  system except t h a t  the  range of values of D' and r a r e  expected t o  

include those of ac tua l  r ea l  systems. Furthermore, the  r e su l t s  show some 

r e l a t i ve  re la t ions  between the  e f f ec t s  of changes i n  the  two parameters, and 

presents absolute values of concentrations f o r  use a s  accurate data  become 

avai lable  on the  removal r a t e s .  
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Appendix B 

Arrangement and Use of the  IBM 704 Print-Out Tables 

Input Data 

The input data  t o  t he  IBM 704 computer a re  shown i n  Appendix A of t h i s  

repor t .  These input data  used i n  the  calculations were abstracted from 

Blomeke's tables1' of nuclide parameters. Appendix A i s  a tabulat ion of 1) 

chain mass number, 2) nuclide code number ( f i r s t ,  second, th i rd ,  o r  four th  

member of the  chain), 3) decay constant, A, of nuclide, 4) f i s s i o n  yield,  

y, of nuclide, and 5) f ract ion,  6, of f i s s i o n  y ie ld  involved i n  the  decay 

chain branch indicated i n  column 1. 

It i s  necessary i n  many cases t o  consult the  input data  t o  i n t e rp re t  

the  IBM mk print-out of the calculated r e s u l t s .  For example, the  branches 

of decay chains a r e  calculated a s  separate chains, and the  t o t a l  concentra- 

t ions  of the  nuclides a r e  obtained by adding the  r e su l t s  of the  calculat ions  

of t he  branches. For example, i n  the  mass-85 chain, the  two branches a r e  

added f o r  3.00 min barium, 4.36-hr krypton, and s tab le  rubidium, but not f o r  
85 12  

10.27-yr krypton. (TO c l a r i fy ,  see the  diagram of the  decay chain of B r  .) 

Thus, on the  f i r s t  page of the  Case I isotope table ,  t he  t o t a l  Ng f o r  B r  85 
-1 

i s  o 0469377 x 10-I + 0.117344 x 10-1 = 0.586 x 10-1 atoms f i s s i o n  sec 
-1 

5 a t  T = 10 sec, D f  = and r = 0.  The t o t a l  Ng f o r  lib8> i s  0.244453 x 10  3 
3 -1 -1 + 0.521322 x = 0.244 x 10 atoms f i s s i o n  sec  . 

Computer Print-Out Table Headings 

The complete IBJI 704 print-outs of r e su l t s  a r e  avai lable  although not 

included i n  t h i s  repor t .  They organized i n t o  the  following t ab l e s :  

individual isotopes, Cases I, 11, and I11 respectively.  Each of these  tab les  

i s  divided i n t o  subtables arranged i n  order by parameter values. The values of 

the  parameters used a r e  printed a t  the  beginning of each subtable. Each 

subtable has the  print-out o r  r e su l t s  arranged i n  order by mass number. A b r i e f  

discussion of each tab le  follows. 

Individual Isotopes, Case I .  A t  the  top  of the  f i r s t  page of each 

subtable values of D l ,  r, and T (dif fusion parameter, removal r a t e  from gas, 
-I 

and time a f t e r  s ta r tup)  a re  l i s t e d  i n  sec-l ,  sec , and sec respectively.  On 

each page the  extreme right-hand column l i s t s  f o r  each row the  chain mass 

number with an addi t ional  in teger  t o  indicate  the  branch of the  decay chain 



fo r  which the r e su l t s  a r e  printed i n  t h a t  row. When the  same nuclide 

(isomer o r  isotope) appears i n  two o r  more separate rows, the  t o t a l  

concentration i s  obtained by adding the resu l t s ,  a s  explained above. 

I n  the  Case I isotope table ,  the  machine-printed values of D', r, 

and T a r e  correct  and straightforward. 

Cases I1 and I1 Isotope Tables. The subtables f o r  Cases I1 and I11 ---- 
isotopes a re  arranged i n  the same order and with the  same meanings a s  the 

subtables f o r  Case I isotopes, with the  following exceptions : 

1) To save computer time, only the  mass chains 88 through 97 and 

137 through 146 were calculated f o r  these two cases. 
6 

2) For the  subtables headed T = 0.1 x 10 (sec) ,  the  D i n  the  heading 
7 8 9 i s  D1 . For the  subtables headed T = 0.1 x 10 , 0.1  x 10 , and 0 . 1  x 10 , 

a 
the  D i n  the heading i s  D1 (DL = 0.1 DL fo r  Case 11; 

b 
D i  = 0.01 D L  f o r  

Case 111). 

Nuclide Sums, A l l  Cases 

The tab les  f o r  sums of nuclides f o r  Case I a re  straightforward. 

To obtain Case I1 nuclide sums f o r  strontium, y t t r i u m ,  zirconium, 

niobium, barium, lanthanum, cesium, and promethium, the Case I1 t ab l e s  of 

nuclide sums a r e  used d i r ec t  with D' = D;) = 0.1 DL . Results from sums 

of other nuclides a r e  obtained f romthe  Case I nuclide sums t ab l e s  a s  follows. 

For barium, krypton, rubidium, t i n ,  antimony, tellurium, iodine, xenon, and 

cesium, the  r e su l t s  a re  obtained from the Case I sums tables  with D '  = D' . 
a 

For molybdenum, technetium, ruthenium, rhodium, neodymium, promethium, 

samarium, and europium, the  r e su l t s  a r e  obtained from the Case I nuclide 

sums tab les  with D '  = 0.1 DA . The D value l i s t e d  a t  t he  beginning of each 

subtable i s  D' 
b 

For the  Case I11 nuclide sums of strontium, yttrium, zirconium, niobium, 

barium, lanthanum, cerium, and praseodymium, the  Case I11 nuclide sums tab les  

a re  used d i rec t ,  with D '  = Dd . For barium, kyypton, rubidium, t i n ,  

antimony, tellurium, iodine, xenon, and cesium, the  r e su l t s  a r e  obtained from 

the Case I sums tab les  with D' = D i  . For molybedenum, technetium, 

ruthenium, rhodium, neodymium, promethium, samarium, and europium, the  r e su l t s  

a re  obtained f romthe  Case I sums tab les  with D 1  = 0.01 D l  . The D value 
a 

l i s t e d  a t  the  beginning of each subtable i s  D; . 



For i l l u s t r a t i o n ,  Table 7 l i s t s  some examples. 

Table 7. I l l u s t r a t i o n s  of Use of Sums Tables fo r  Cases I1 and I11 

Case - Element Find Concentration under Sums Table f o r  
Case - D - 

I 10 -8 

I 10 -11 

I1 

I11 10 -lo 

I 

I11 

I1 10 -13 



APPENDIX C 

Arrangement and Use of Proposed Tables of Computer Output 

It i s  proposed t h a t  t he  o r i g ina l  print-out  t ab l e s  from the  IBM 704 

computer be copied i n  a more convenient arrangement and form f o r  use f o r  i n -  

clusion a s  an addendum t o  t h i s  repor t  a t  some l a t e r  da te .  Several  complications 

i n  the  o r ig ina l  form, explained i n  Appendix B, would be avoided i n  t he  re -  

arranged t ab l e s .  Table 8 i s  a sample page of the  proposed new format. 

There would be s i x  t ab l e s  of r e s u l t s  i n  t h i s  addendum. The s i x  t ab l e s  

would present the  calcula ted N~ (number of atoms per f i s s i o n  per second) of 

individual  isotopes and of individual  elements i n  t he  gas coolant a s  a 

function of time a f t e r  r eac to r  s t a r t up  f o r  Cases I, 11, and 111. The 
g arrangement would be such t h a t  each page presents t h e  N values f o r  one isotope,  

isomer, o r  element i n  t he  coolant f o r  one case number, f o r  a l l  s i x  values each 

of D' and r, calcula ted a t  each of four values of time a f t e r  s t a r t up .  I n  

each t a b l e  the  element would be taken i n  order by mass number. I n  cases of 

two isomers of the same isotope, the  page of r e s u l t s  f o r  the  upper branch of 

t he  chain would precede the  page fo r  the  lower branch. 

The number of atoms i n  a leaking f u e l  element can be obtained by calcu- 

l a t i n g  t h e  t o t a l  number per f i s s i o n  per second i n  a nonleaking element and 

subtract ing from it the  number i n  t he  gas and mult iplying t he  r e s u l t  by the  

number of f t s s i ons  per second i n  the  element. 



Table 8. 

Concentrations of Individual  Iso topes  in Gas (case I) 

Tota l  Atoms in Gas, ~ i s s - '  sec 
-1 

A t  Time, seconds a f te r  s t a r t u p  

Isotope r ( sec - l )  D~~ (sec-') 

- 6 9.08 x l o m 6  1 .09  x - 4 9.08 x 2.44 x 10'~ - 
3.11 x 3.85 x 3.66 x Missing -4 
1 . 0 1 ~ 1 0  1 . 2 6 ~ 1 0 : ;  1 . 2 5 ~ 1 0  9 . 5 2 ~ 1 0 ~  
3.21 x l o v 7  4.04 x 4.06 x 3.49 x 1014 
1.02 x 10:: 1.28 x 10 1 .29  x 10:; 1.16 x 10 
3 . 2 2 ~ 1 0  4 . 0 6 x 1 0 - ~  4 . 1 1 ~ 1 0  3 . 7 2 ~ 1 0 ' ~  
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Fig. 1. Buildup of  Fission Products in Coolant; 

~ r ' ~ ,  Case 1 ,  D'= r = 0 to I (sec-'1. 
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Fig. 2. Buildup of Fission Products in Coolant; 

~ r ' ? ,  Case 1 ,  D'= lo-'*, r = 0 to I (set-0. 
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Fig. 3. Buildup of Fission Products in Coolant; 
- 

~ r * ' ,  Case I , D'= 10 7, r =  0 to 1 (set'). 
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Fig. 4. Buildup of Fission Products in Coolant; 

s r e g ,  Case 1 , D'= IO-", r = 0 to 1 ( s e c '  ). 
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Fig. 5. Buildup of Fission Products in Coolant; 

srgo, c a s e  I ,  D'= 1 0 - ~ ~  r =  0 to I (sec- l ) .  
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Fig. 6 .  Buildup of Fission Products in Coolant; 

srgO, Case I, D'= lo-", I = 0 to i. (sec-'1. 
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Fig. 7 .  Buildup of Fission Products in Coolant; 
-12 ~ r ~ ~ ~ C a s e I ~ 0 ' = 1 0  , r = o t o 1 ( s e c - ' ) .  
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Fig. 8 .  Buildup of Fission Products in Coolant; 

srgO, case11, D; =lo- , r = 0 t o 1  (sec-'1. 
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Fig. 9 .  Buildup of Fission Products in Coolant; 

srgO, Case 11,  DL = t0-12, ,- = 0 to I (Sec-' 
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Fig. 10. Buildup of Fission Products in Coolant; 

srgO, Case 111, 0: = r =  0 to 1 ( s e c '  1. 
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Fig. 1 1 .  Buildup of Fission Products in Coolant; 

s r g O ,  Case 111, DL = r = 0 to 1 (set'). 
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Fig. 12. Buildup of Fission Products in  Coolant; 

srgO, Case 111, 0; = 10-12, .= 0 to 1 (set"). 
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Fig. 13. Buildup of Fission Products in Coolant; 
- 7 

Y ' ~ , C C I S ~ I , D ' = I O  , r - = o t o ~ ( s e c - ' ) .  
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Fig. 14. Buildup of Fission Products in Coolant; 

y g O ,  case I ,  D'= 10 -I2 , r =  o to1 (set'). 
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Fig. 15. Buildup of Fission Products in Coolant; 

r i3 ' ,  Case I ,  D'= to-?, r = 0 to 1 (sec-'1. 
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Fig. 16. Buildup of Fission Products in Coolant; 

~~~l~ Case I ,  D'= IO-'*. r = 0 to i (set-'). 
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Fig. 17. Buildup of Fission Products in Coolant ; 

I ~ ~ ~ ,  Case I ,  01 = r = 0 to 1 (set-0. 
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Fig. 18. Buildup of Fission Products in Coolant; 

I ' ~ ~ ,  case  I ,  D / =  I O - ' ~ ,  r = o 10 1 ( s ~ c - '  1. 
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Fig. 19. Buildup of Fission Products in Coolant; 
- 7 

I ' ~ ~ ,  C a s e I ,  ~ ' = 1 0  , r = O t o l ( s e c l ) .  
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Fig. 20. Buildup of Fission Products in Coolant; 

I ' ~ ~ ,  case I ,  D'= 10- '* , I = 0 to I (set-0. 
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Fig. 21. Buildup of Fission Products in Coolant; 

C S ' ~ * ,  Case I ,  D l =  r = 0 to 1 (sec-'1. 



lo7 
TIME (secl 

Fig. 22. Buildup of Fission Products in Coolant; 

cs13* Case I .  D '= 10 
- 2 r =  o to I ( s e c t ) .  
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Fig. 23. Buildup of Fission Products in Coolant; 

~ a ' ~ ' ,  Case I, D' = r = 0 to 1 (sec-'). 
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Fig. 24. Buildup o f  Fission Products in Coolant; 

6ai40, Case I ,  D ' =  r =  0 to I (set'). 
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Fig. 25. Buildup of Fission Products in Coolant; 

~ a ' ~ ' ,  Case I, D'= r = 0 to I (set'). 
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Fig. 26. Buildup of Fission Products in Coolant; 

lo r = 0 t o 1  (set'), ~ a ' ~ ' ,  Case I, D'= 10- , 



Fig. 27. Buildup of Fission Products in Coolant; 

~ a ' ~ ' ,  case I, D '- - 1 o - ' ~ ,  r = O  to 4 (sec-' ). 
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O R N L - L R - D W G  6 0 6 4 5  

Fig. 28. Buildup of  Fission Products in Coolant; 

~ o ' ~ ~ ~  Case 11, 0; = lod7, r = 0 to  f (sec-'1. 
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Fig. 29. Buildup of Fission Products in Coolant; 
- 1  

-I2 I- = o to I (sec ). La 140, Case 11. D; = 10 
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Fig. 30. Buildup of Fission Products in Coolant; 
-1 ~a '40, Case 111, 0,: = lo-?, I = 0 to I (sec 1. 



Fig. 31. Buildup of Fission Products in Coolant; 

~ a ' ~ ~ ~  Case 111, D; = 1 0 - ' ~ ,  r =  0 to ( s e c ' l .  

40' 

TIME (set) 
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Fig. 32. Buildup of Fission Products in Coolant; 

Laf4 ' ,  Case 111, D:= lo-", r = O  t o 1  (sec-'1. 



lof 
TIME (sec) 

Fig. 33. Buildup of Fission Products in Coolant; 
/ ~ e ' ~ ~ ~  C a s e  1. 0 = W7, 1- = 0 to I (set'). 
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Fig. 34. Buildup of Fission Products in Coolant; 
144 l2 r = O  to I (set'). Ce , Case I, D'= 10- , 
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Fig. 35. Buildup of Fission Products in Coolant; 

~ r ' ~ ~  
- 1 

, Case I ,  D l =  I-= 0 to1 (sec 1. 
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Fig. 36. Buildup of Fission Products in Coolant; 
-12 

~ r ' ~ ~ ,  Case I, D / =  10 , r = 0 t o  1 (set'). 
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