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I. Introduction

The design of a satisfactory control system for the EGCR re-
quires a comprehensive understanding of the response of the plant
to perturbations imposed on the reactor and steam plant complex.
In order tc further this understanding, the entire reactor plant
was simulated on an electronic analog computer. As part of this
program, an analog model of the EGCR steam generator was developed
and operated on the ORNL analog computer.

The development of such a model requires a satisfactory mathe-
matical description of the heat transfer performance of the unit.
Transient conditions existing after impcsing perturbations to an
equilibrium condition are determined by the simultaneous solution
of these equations during the transient period.

The present study investigated steam generator response to
changes in gas inlet temperature, gas flow, and steam flow with
the unit always operating within the design renge of 20 to 100% of
full power. ©Some investigation, however, was also made of the ef-
fect of a reactor scram or a loss of power on the steam generator
performance.

A series of graphs are included which represent the transient
response of the steam generator to the input perturbations. Also
shownt are equilibrium operating temperatures and flows for the helium

and steam at 20 tc 100% power levels.
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IT. EGCR Steam Generator Description

Figure 1 is a drawing of the EGCR steam generator. The unit
is basically a single-pass gas crossflow heat exchanger. Gas enters
the pressure vessel at the midheight of the tube bundle through the
ol-in. entrance nozzle. The gas passes into the distribution shroud,
impinges on the tube entrance baffle plate, is distributed vertically
along the length of the tube bundle, and then passes across the tube
bundle. The discharge gas flows around the outside of the bundle
shroud and out the discharge nozzle.

Feedwater enters the economizer section of the steam generator
in the bottom floating drum and mekes five passes across the gas
path before discharging into the steam drum. The feedwater returns
to the floating drum through the central downcomer pipe and flows
up the evaporator tubes to the steam drum. Saturated steam is dis-
charged from the steam drum through an external pipe to the super-
heater entrance in the bottom floating head. The steam is super-
heated in four passes across the gas path and is discharged from
the bottom floating head. Section BB of Fig. 1 shows the arrange-
ment of economizer, evaporator, and superheater tubes within the
bundle -shroud. Figure 2 is an isometric view of the unit. Table I
gives additional data on the steam generator.

The steam generator is one of two identical units that together
provide the necessary cooling capacity for the reactor. Each gene-
rator has a rated capacity of 147 X 106 Btu/hr (43 Mw), and their
steam outputs are combined to drive a turbine-generator unit pro-
ducing 29 Mwe. Throughout the study it was assumed that there was

no interaction between the two steam generators.
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TABLE I

EGCR Steam Generator Design Data

Tube outside diameter, in.

Tube inside diameter, in.

Tube length, £t (LO-ft tubes are U-tubes)
External surface type

Tube pitch, in. (60-deg equilateral spacing)
Area ratio, outside area/inside area
Outside area, ft

Number of tubes

Water-side passes in section

Number of tube rows

Tube material

*
Straight and U-tubes intermixed over four-row interval.

FEconomizer
3 /4 3/4
0.495 0.495
40.08  20.25

finned finned

15/16 15/16

5.86  3.86
3750 1350
190 134
L 1
17* 17*

carbon carbon
steel steel

Evaporator
I 1T ITT
3/k4 1 1

0.495 0.709  0.834
20.25 20.25  20.25
finned finned bare
15/16 11/ 1 1/k
3.86 3.66 1.23
1000 L4020 1380
98 294 261
1 1 1
3 10 6

carbon carbon carbon
steel steel steel

Super-
heater

1
0.782
40.08
bare
11/4
1.31
1460
139
I
10

11/4 cr
1/2 Mo
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ITTI. Heat Transfer

Calculation of the heat transfer capacity of the EGCR steam
generator 1s complicated by the following factors:

l) The free-flow area for gas varies significantly across
the tube bundle so that the gas mass velocity and hence gas-side
heat transfer coefficient is a function of the position within the
steam generator.

2) The heat transfer coefficient also varies slightly with
gas temperature within the steam generator.

The calculation of the over-all heat transfer coefficient for
each section of the steam generator utilized certain approximations
to simplify the simulation. In computing the capacities of the in-
dividual sections of the EGCR steam generator, qorrections to the
countercurrent log mean temperature differen’(v;ﬂe‘s for the existing
flow geometry were not made. Values of log mean temperature used
in the simulation are estimated to be approximately 2 to 5% above
actual values.l The approximation in driving force temperature,
however, has little effect on the transient analysis results, and
a marked reduction in complexity of the simulation is effected by

the assumptions made.

A. Superheater Section

The gas mass velocity across the superheater was computed for
several positions in the superheater, and the effect on gas veloc-
ity of the variation in free-flow area was approximated by lineaf-
izing the changing flow area across the 10 tube rows of the super-
heater. TFigure % shows the variation of the gas-side coefficient
as a function of gas free-flow area for the superheater section
assuming the linear change in flow area. The positions of row 1

(at the gas entrance) and row 10 are shown on the graph. The gas-
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side heat transfer coefficient for crossflow with bare tubes was
obtained using the Colburn correlation for flow across banks of

staggered tubes.2

h D_ ¢ - t/3 DG 0.61
A = 0.33 [—P—k J {———H } (1)
f - f
Steam-side coefficients were computed using the correlation
of McAdams, Kennel, and Addoms.-
e
_ ’ 2.3 0.8 1/3
Nu = 0.021k Kl + 7% (Re). " (Pr); (2)
which for the EGCR steam generator may be reduced to:
0.2
0.001k ¢°° (Cp *
b= 0.2 573 (3)
4 (Pr)

The corresponding gas-side and steam-side coefficients for each row
could have been obtained by a process of iterative calculations,
but there was not available electronic equipment to permit such a
detailed simulation. Corresponding gas-side and steam-side coef-
ficients for rows 1 and 10 of the superheater were computed, and
from these values the over-all U values for these rows were cal-
culated. The over-all heat transfer coefficient was then assumed
to vary with constant exponent as shown on Fig. 3. The variation
of steam-side coefficient with steam temperature as computed from
Eq. (%) is shown on Fig. 4. The large variation is a result of the
radical change in thermal properties of the steam between saturated
and superheated conditions.

Also shown in Fig. 4 is the percentage of superheater load (for
903°F steam) as a function of steam temperature. As seen on the
graph, the high specific heat of steam near saturation conditions

shifts the heat load towards the low-temperature portion of the
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superheater. The relative load of the superheater at any temper-
ature is indicated by the ratio of the slope of the solid curve at

that temperature to the constant slope of the dashed curve.

B. Evaporator Section
As shown in Table I, the EGCR evaporator consists of three

sections of tubes. The variation in gas velocity across the evap-
orator was approximated by computing an average mass velocity across
each section. The temperature driving force was computed between
gas temperature and saturation temperature corresponding to EGCR
saturation pressure. The effect of fin efficiency was neglected,
since for the low fin design and the design mass velocities for
the EGCR, fin efficiencies will exceed 95% in all cases.LF It was
recognized that the simulated response of the system to perturba-
tion would not be greatly affected by the approximations to the
temperature driving force and the fin efficiency. However, the
equilibrium levels at which the simulation showed the reactor sys-
tem would operate would be affected to the extent of the influence
of the approximation on steam generator capacity.

For purposes of the simulation a boiling coefficient of 3000
Btu/hr-ft2—°F was selected, and this value was used throughout the
simulation. Gas-side heat transfer coefficients for flow across
banks of staggered finned tubes were obtained using the following

equation derived from data obtained in Refs. 5 and 6:

j = 1.38 Re™0-59

where the equivalent diameter for the Reynolds number is defined

5 ) Ndf <§—>2
e 12 dt

as:
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The temperature driving force was computed for a heat ex-

changer with a constant sink temperature.

C. Beconomizer Calculations

The correlation for gas-side heat transfer coefficients was
that used in the previous sections. Water-side coefficients were
computed using the Dittus-Boelter correlation.

The location of the economizer section with respect to the
downcomer and within the changing shroud area (see Fig. 1) pro-
duces gas-side mass velocities which decrease from maximum to mini-
mum by approximately HO%O An average gas mass velocity across the
economizer was selected for computing economizer capacity.

Implicit in the equations used for determining the heat trans-
fer capacity of the steam generator was the assumption of uniform
gas flow across the steam entrance face of the tube bundle. In ad-
dition, it was assumed that the gas mass velocity is uniform at any
cross section as the gas proceeds across the tube bundle.

In the analysis of the steam generator performance during
transient operating conditions equations wer written for each sec-
tion of the steam generator including terms representing the mass
of metal and the capacity of the tube-side fluid. This is explained
in more detail in Section IV.

A constant fouling factor of 0.0005 (Btu/hr-ft2—°F) was used
t hroughout.
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IV. Description of the Analog Computer Model

The simulation of the EGCR steam generator involves the simul-
taneous solution of many nonlinear, partial differential equations
and of several equations requiring iterative solution techniques.
Since each of the three regions of the steam generator is in itself
a somewhat complex system, a separate study employing fine break-
down and including nonlinear effects was made, when required, on a
given region. The results of these investigations then made it pos~-
sible to simplify the models without seriously affecting theilr per -
formance. The simplified models, when interconnected, could then
be assumed to give a fairly accurate representation of the behavior
of the entire unit.

The analog model was set up to accommodate continuously vary-
ing gas, steam, and water flow rates and temperatures, and variable
steam pressure. The useful operating range was to be nominally 20
to 100% of full power which correéponds to the range of the reactor?'s
automatic control system.

A block diagram of the simulation is shown in Fig. 5 and is
explained in detail in the following sections.

The appendix contains a description of the equations used in
the analog model. Figures A-9 through A-14 in the appendix show
the nonlinear relationships between the various steam generator
parameters and the corresponding approximations used in the analog

model. Figure A-15 is the computer circuilt schematic used.

A. Superheater Section

The superheater was assumed to be a counterflow heat exchanger
with both steam and gas-side properties as continuous functions of
their respective flow rates. A three-lump breakdown (in the direc-

tion of flow) was required for an accurate solution of the steam-side
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’

transients.¥ Mean values cf the steam-side heat transfer coeffi-
cient (ES) and the steam specific heat (5p(s)) in each lump were
determined at full lcad by trial and error methods using the com-
puter model. The iterative procedure was necessary because of the
strong temperature dependence of ES and ép(s)' Once these values
were established, however, they were assumed to be independent of
temperature changes.

An analog model using a five-lump breakdown with values of ES
and Cp(s) as continuous functions of temperature was constructed
so that the adequacy of the three-lump model could be judged.
Figure 6 shows the response to step changes in gas inlet tempera-
ture for three initial gas temperatures. Note that the steam-side
temperature dependence becomes noticeable when the gas inlet tem-
perature drops below 800°F. Figure 6 also shows an instantaneous
drop in superheater gas outlet temperature for a step inlet change.
This is because the transport lag time of the gas was neglected.
This approximation contributes negligible error in this case since
the transport lag time is very small compared to the thermal time
constants. As noted on the figure the use of the three-lump break-
down with constant steam properties gave results almost identical
to those cbtained using the five-lump breakdcwn including tempera-
ture-dependent properties.

The gas-side free-flow area varies significantly across the
superheater section, and this i1s largely responsible for the change
in gas-side coefficient from lump to lump.

The dependence of stezam properties with pressure is not signifi-

cant for small changes in pressure and was neglected in both models.

*

An "x-lump" breakdown means that the partial differential equa-
tions describing the system were reduced to "x" sets of total dif-
ferential equaticns using standard finite difference techniques.




°F

Steam Outlet Temp.
Change,

°F

Gas Outlet Temp.
Change,

18

ORNL-LR-Dwg. 64227

Unclassified
For [Al1|Tes}s: [w = 1oo%
st¢am
gad = 104%
steam in 1 9"
>
P
e~ =
10
fnitlal ¢as Inleq Tedperqturd =| 1003°F
[nit]ial §as Inlef Tengpergturd =| 903°F
— 1+ —+ —|— Init}al §as Inlef Tepperdturg =| 803°F
5 N
\L‘._ I A N ! A |
10
Cirguit{Despripfiont S Bregkdoyn
ump
Steam CD 3+ £ [temp. )
Steam|sida¢ n § £ [temp.)
Gps-531de Propgrties Constant
Notk: R 3-lump Brepkdopn wjith pon-paryfing ¢as 4nd Pteam-Sige
Propertips Ghve Respbnsefp Colincifentjwith Solid Lineg
for Fach Test
0 20 40 00 co 100 120
Time, sec

Fig. 6. Responses to 100°F Step Decreases in Gas Inlet Temperature
Showing Effects of Variations in Starting Point Temperatures




19

B. Evaporator Section

It was assumed that the temperature of the water in the evap-
orator was uniform (saturation temperature), and because the combi-
nation of boiling and fouling heat transfer coefficients is much
lJarger than the gas-side coefficient, the water and tubes were as-
sumed to form an essentially constant temperature sink for the gas.
For a heat exchanger with a constant sink temperature, it is con-

venient to express the heat transfer capacity as a function in the

. =T
gas in gas out %
T -T >
gas in sink

a function which varies only with gas flow rate. Knowing the gas

form:

inlet temperature, the sink temperature, and the gas flow rate, one
can then determine the evaporator gas outlet temperature. The in-

stantaneous power delivered from the gas to the tube is the product
of gas flow rate, gas temperature drop, and specific heat.

Because the combination of boiling scale and tube resistances,
although small, was actually not negligible compared to the gas-side
resistance; a fine-structure analog model was subsequently constructed
in order to evaluate the original approximations. The results showed
that the gas outlet temperature and power are not strictly instan-
taneous functions of inlet temperature and flow but are lagged by
a function which closely approximates a first-order lag with a 3-sec
time constant. This lag was not included in the model used for this
report.

The calculation of the pressure in the evaporator was compli-
cated by the fact that the pressure is a function of the relation-
ships between the rates of heat transfer from the gas, the tempera-
ture and flow rate of the water entering the evaporator from the
economizer, and the steam flow rate. The steam flow rate is, in

turn, a function of the evaporator pressure, the pressure drop
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across the superheater and the steam piping, and the condition of

the turbine and throttling and dump valves. The basic equality:

Pevaporator - APSuperheater * APpiping * APvalve and turbine

Psink

was solved continuously by a computing process which determined the
value of steam flow rate which satisfied the equation. The pressure
drop across the superheater and piping was assumed to be a function

of the square of the steam flow rate, and the drop across the turbine

and throttling valve was calculated (assuming critical flow) from:

steam flow rate
valve & turbine effective valve Cv

Thus the pressure drop characteristics of the valve and turbine were
approximated by one valve with linear trim.

Evaporator pressure was computed from the density of steam in
the evaporator. This value was obtained by assuming a constant steam
volume in the evaporator and determining the mass of steam within.
This mass of steam was in turn a time integral function of the dif-
ference in the steam generation rate as computed from the heat traﬁs-
fer through the evaporator and the steam effluent rate as computed
from the pressure drop equations.

A condition of nonequilibrium exists when the temperature cor-
responding to the pressure as computed above is different from the
actual bulk temperature in the evaporator. Since both superheated
and supercooled water are unstable, such temperature differences
would cause steam to be either flashed off or condensed in order
to restore equilibrium conditions. In the computer model, an un-
stable condition caused a variation in the total steam flow rate

according to:

= K (T )

- T .
steam water saturation
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where K is a large number. A heat balance was maintained by chang-
ing the heat content of the evaporator water and metal by an amount
equal to the integrated heat content of Awsteam'
The drum level controller, which controls from a combined level
and steam-to-water flow ratio signal, was assumed to make the feed-
water mass flow rate always equal to the steam mass flow rate. Since
the response of the level controller would generally be fast compared
to changes in steam flow rate, this assumption would produce negligi-
ble error. Also, since the steam and water flow rates were assumed
equal, the net rate of sensible heat input to the evaporator could
be computed from the product of feedwater flow and the difference
between the temperature of the water entering the evaporator

and saturation temperature.

C. Fconomizer Section

The usual method of heat exchanger simulation involves one or
more sets of computations for heat transfer between one fluid and the
pipe, heat storage in the pipe, transfer between the pipe and the
other fluid, and fluid transport lags (where required). In the
evaporator, however, the over-all thermal dyramics are dominated
by the effects of the transport lag time of the water, the water
transport time being 28 sec at 100% flow, while the approximate
time constant for heat transfer through the pipe is 7 sec. Thus
the use of the conventional simulation techniques would require a
prohibitively large amount of computing equipment.

An analog model was developed which uses a power balance re-
lationship in which the power delivered from the gas to the econo-
mizer water and piping is proportional to the product of gas flow
rate and gas temperature change across the economizer. The effects
of gas inlet temperature and flow rate changes on the mean water
(and pipe) temperature take place as a first-order lag approxima-

tion to a ramp function with a 28-sec duration (at 100% flow), as
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perature and flow rate on the mean temperature of the water and
pipes are also functions of the ramp approximation.

The effective over-all heat transfer coefficient (U) in the
economizer is a function of both the gas- and water-side coeffi-
cients. Due to the nature of the simulation techniques used, it
was necessary to make linearized approximations of the actual heat
transfer mechanism. A two-lump heat transfer computer circuit on
the gas side was adjusted to give exact effective log mean AT trans-
fer for 100% and 20% full-load conditions, assuming equal gas and
water flow rates (percentage wise). In between 100% and 20%, the
effective U was assumed to vary as the gas-side coefficient, which
is dominant. During transient gas flow conditions and for large
changes in steam generator inlet gas temperature, however, the gas
and water flow rates are not equivalent, and the effective U value
varies significantly from the computation which assumes balanced
flow rates. Calculations and test runs covering a wide range of

input changes (150°F changes in inlet temperature and 20% step
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changes in gas flow) show that the maximum departure of gas and
water flow rates is about 20%. A computer circuit to account for
this unbalance was used which gives a linear approximation to the
actual U values for up to a 20% departure.

As before, the fin efficiency variation and the gas transit

time in the economizer were neglected.

D. Turbine, Throttle Valve, and Pressure Control System

As noted previously, the turbine and throttle valve were simu-
lated by assuming that their combined action could be characterized
by one valve whose opening (Cv) was proportional to the output of
the positioning device. Because of the large pressure drop across
the "valve" and the low sink pressure, the flow was assumed to be
in the "critical” range. The effects of steam temperature changes
on the flow are small and were neglected.

The pressure regulator control system attempis to maintain a
constant pressure upstream of the throttle valve by varying the valve
opening. The characteristics of the control system were taken from
the manufacturer's data and are shown on the block diagram (Fig. 5).
It was found that the effects of the controller and actuator lags
on the performance of the unit were negligible and were omitted from
the simulation. The automatic reset feature of the coniroller was

included, hcwever.
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V. Operation and Results

The salient results cf the varicus input perturbations imposed
on the steam generator appear in Figs. 11 to 23. Table IT lists the
equilibrium and transient runs investigated and the important per-

turbations imposed during each ruxn.

A, Equilibrium Operating Conditions

Utilizing the heat transfer coefficients derived from the equa-
tions given in Section IITI, equilibrium operating conditions for the
steam generator were determined. TFigure 8 shows the equilibrium
operating conditions for a constant steam temperature of 903°F leav-
ing the superheater as a function of helium flow rate. Figure 9
similarly shows c¢perating conditions for a constant gas temperature
of 1043°F entering the steam generator. In each case the feedwater
inlet temperature was varied in accordance with Fig. 10. The condi-
tions were repeated using a modified gas-side coefficient, and the
results are also shown on the graphs. Because of the assumptions
made about the log mean temperature difference, the fin efficiency,
and the fouling factor, the unit capacity sacwn by the so0lid lines
in Figs. 8 and 9 may be somewhat high. A modified coefficient rep-

4

]

csenting a reduchtion in the gas-side coefficient of spproximately
10% more nearly represents probable equilibrium conditions. This
modification was examined in order to confirm that the transient
response of the system would be insensitive to small errors in the

computer heat transfer capacity of the system.

B. Turbine under Pressure Regulator Control

1. Changes in Gas Flow

The characteristic effects of a large change in gas flow through

the steam generator system are shown in Fig. 11, Run D-1. A step
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Fig., 22
Run K-1 Constant Pressure Control
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Fig. 23
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TABLE II

Summary of Series Runs on Analog Study

Figure

Series Run Operating Conditions or Perturbations No Page

A 1 Steady state, 903°F steam, 100% gas flow 8 25

2 80% gas flow 8 25

3 60% gas flow 8 25

L 40% gas flow 8 25

20% gas flow 8 25

) B 1 Steady state, 1043°F, gas 100% gas flow 9 26

/ 2 80% gas flow 9 26

3 60% gas flow 9 26

i L 40% gas flow 9 26
5 20% gas flow 9 26 hl

D 1 Constant pressure control: step decrease gas flow 100-60% 11 28

] 2 step increase gas flow 60~100% A-1 62

3 step decrease gas flow 100-20% A-2 63

b ramp gas flow at 0.5%/sec to 20% 12 29

“ 5 decrease gas flow on Kaiser blower
coastdown curve 13 30
E 1 Constant position of steam control valve: step decrease gas flow
100-60% 16 33

2 Constant position of steam control valve: step increase gas flow

60-100% A-3 6L




Series

F

Run

TABLE II1 (continued)

Figure
Operating Conditions or Perturbations No. Page
Constant pressure control: step decrease gas temperature
1003-903°F 14 31
step increase gas temperature
90%-1003°F A-l4 65
decrease gas temperature approximating
reactor scram 15 32
step increase gas temperature 985-1085°F
with 60% gas flow A-5 68
step increase gas temperature 932-1032°F A-6 67
with 20% gas flow
Constant position of steam control valve: step decrease gas temper-
ature 100%-903°F 17 3L
step increase gas temper-
ature 903%3-1003°F 20 37
" decrease gas temperature
approximating reactor scram 18 35
Step control valve open on decrease of gas temperature approximating
reactor scram A-T 66
Step increase control valve opening by 100% 19 36
Step increase control valve opening by 100%, decrease gas flow on
blower coastdown A-8 69
decrease gas temper-
ature approximating reactor scram 21 38

ch



Series . Run

K

1

1

TABLE II (continued)

Operating Conditions or Perturbations

Constant pressure control: step decrease of gas flow using a
reduced gas coefficient

Constant pressure control: step decrease gas temperature using
a reduced gas coefficient

Figure
No. Page
e2 39
23 4o

¢h
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change of gas flow from 100 to 60% was made at time zero with the
steam turbine under pressure regulator control. Although it is
not anticipated that step changes of this magnitude will occur in
operation, such changes are useful in an analysis of the transient
response of the system.

The step decrease in gas flow causes an instantaneous step
reduction in the gas-side coefficient which is proportional to
approximately the 0.61 power of flow. Since the temperature drop
of a fluid passing over a cooling surface is proportional to the
heat transfer rate divided by the fluid flow rave, one can see
that a decrease in flow rate initially would cause a decrease in
the gas outlet temperature. Because no transport lag for the gas
flow through the steam generator is included in the simulation,
the model shows the drop in gas temperatures out of the three steam
generator regions to be instantaneous.

The reduction in the gas heat load results in a drop in the
rate of steam generation. Examination of Run D-1 shows the satu-
ration pressure dropping cff. This is because the reduced steam
flow (i.e., steam generaﬁon) results in a reduced pressure drop
between the evaporator and the turbine valve where the steam pres-
sure is held constant. The reduction in steam flow (and thus feed-
water flow) results in reduced eccnomizer and superheater heat
transfer coefficients, and this further reduces the heat transfer
capacity of the steam generator. Thus there 1is a gradual increase
in the gas-side temperatures to a new equilibrium condition.

The initial drop in steam outlet temperature due to the re-
duced gas-side load is eventually recovered because of the subse-
guent reduction in steam flow rate, and thus the final steam out-
let temperature is above the initial value. In a similar manner,
the initial fall and subsequent rise of the evaporator water inlet
temperatature reflects the initial effect of reduced gas heat load

and subsequent reduction in feedwater flcw rate.
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Run D-4 (Fig. 12) shows the transient effects of a ramp change
in gas flow rate from 100 to 20% at O.5%/sec.

Run D-5 (Fig. 15) simulates a blower scram with a constant gas
temperature entering the steam generator. This condition approxi-
mates an actual simultaneous reactor and blower scram. It should
be noted that in the first 15 sec the rate of change of the steam
generator gas outlet temperature exceeds the maximum specified rate
of temperature change of lSO°F/min given in the steam generator
specifiication PJ-1. DNote also that during the coastdown period of
the blowers the steam outlet temperature rises to between 950 and
975°F and may remain in that temperature range for a period exceed-
ing that specified in the steam generator specification. (The
latter states that the maximum steam temperature may be 950 to 975°F
but for no greater than a 15-min duration and must aggregate no more
than 1% of the total operating time in this temperature range. )
When the turbine is removed from the line, however, and the pressure
is no longer controlled, an increase in the steam flow (via the dump)

will reduce the steam temperature.

2. Inlet Gas Temperature Change

The effect of a step change in gas temperature with the turbine
under fressure control is shown in Fig. 14, Run F-1. Here the gas
inlet temperature was reduced 100°F. The temperatures of the gas
entering both the evaporator and economizer sections show step
changes since no transport lag was included in the model. The mag-
nitude of these step changes is significantly reduced, however, since
the capacity of each section of the steam generator is reduced as a
function of the change in log mean temperature driving force.

The gas temperature leaving the steam generator increases
slightly with lower inlet gas temperatures. This results from
the reduction in steam generator capacity which occurs because

of the lower temperature driving force in the steam generator
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and the subsequent reduction in steam flow rate and tube-side
heat transfer coefficient. It is important to recognize that
the effect of the turbine pressure regulator 1s to accelerate
the reduction in steam-side flow in order %o maintain a constant
turbine throttle pressure under conditions of reduced gas flow
or gas temperature.

The effect of a more complex reduction in gas temperature
is shown in Fig. 15, Run F-L4, using an approximation to the gas
temperature leaving the reactor on a reactor scram with the blowers
in continued operation. Behavior of the gas temperature through
the unit was similar to the case in Rum F-1, the step reduction
in inlet temperature. There exists, however, an unbalanced con-
dition of gas temperature entering the economizer well below the
water temperature leaving the economizer, and the transient traces
through the 6 min of operation indicated no return to equilibrium
conditions. The physical interpretation of this is that during the
transient at reduced gas inlet temperature, there is a shifting of
the boilling regicn witnin the steam generator into the economizer
section. The graph at € min shows a saturation pressure of 1280
psia which corresponds to a temperature of 576°F, while the water
temperature entering the evaporator section is indicated to be
T35°F. The rapid dreop in gas inlet temperature reduces saturation
Pressure and results in a reduced steam-side flow and reduced super-
heated steam heat transfer coefficient. The drcop in superheater
capacity because of the reduced heat transfer coefficient ard re-
duced temperature driving force tends tc shift the heat load to the
evaporator and ecoanomizer sections. The analog simulation in the
economizer utilizes a fcrced heat balance and requires that the
heat transfer all occur as sensible heat increase of the water.
Thus the water temperature leaving the economizer is a fictitious

value under these conditions and indicates that boiling would ac-
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Note that the steep inlet temperature gradient is greatly
damped within the unit so that response on the outlet gas tem-
perature is not sharp. In the run discussed, the outlet gas
temperature shows about a 10-deg rise 45 sec after the initial
perturbation and after the gas inlet temperature has dropped
approximately 280°F. This indicates the extreme insensitivity
of steam generator gas outlet temperature to steam generator gas
inlet temperature. During the transient period, outlet gas tem-
perature rises about 60°F over the 6-min trace period.

It should be recalled that initial conditions for the simu-
lation were intended to be maintained between 20 to 100% power
conditions. Steam conditions were assumed not to deviate greatly
from the design conditions so that assumptions on thermodynamic
properties of steam and latent heat of vaporization are less valid
at conditions far from design.

Note that even with very low steam flows the turbine throttle
pressure can be maintained for several minutes after initiation of
a scram. The traces showed no evidence of turbine pressure dete-
rioration. This should aid in determining when the turbine need

be removed from the line in the event of a reactor scram.

C. Turbine Control Valve Position Constant

To simulate the effect on steam flow of a turbine regulated
under speed control, a number of transient runs were conducted
while maintaining the control valve opening at a constant position.
Tests were also conducted making step changes in the control valve

position.

1. Perturbations to Gas Flow

Figure 16, Run E-1, shows the effect of a step change in gas
flow from 100 to 60% with a constant control valve opening. The

reduced gas flow and gas heat transfer coefficient again cause an
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instantaneous drop in gas temperatures leaving each section of
the steam generator. This time, however, with no pressure regu-
lation, the saturation pressure and turbine throttle pressure
both decrease with the reduced steam flow rate. The initial drop
in steam temperature due to reduced heat transfer is reversed at
lower steam flows, and the steam temperature gradually rises. The
combined effect of reduced heat transfer due to lower steam and
gas flows and increasing steam temperature reduces the superheater
capacity and results in a slowly increasing gas temperature leaving
the superheater.

The effect on the evaporator section is not as pronounced.
The drop in saturation pressure reduces the evaporator tempera-
ture, and since the tube-side coefficient in the evaporator is
unaffected by steam-side flow, the gas temperature leaving the
evaporator continues to decrease. The economizer section responds
somewhat like the superheater in initially suffering a decrease in
capacity because of a reduced temperature driving force and reduced
heat transfer coefficient. ©Since, however, the gas temperature en-
tering the economizer is dropping in temperature, an almost constant
gas discharge temperature occurs after the initial 2C sec of the

transient.

2. Perturbations to Gas Temperature

The effect of a 100°F step decrease in gas inlet temperature
with a constant control valve position is shown in Fig. 17, Run
G-1. Comparison of Fig. 1k with Fig. 17, Run F-1 (with pressure
control) with G-1, shows remarkably similar response characteristics
between the two ftransients. The essential difference lies in the
continued decreacse of turbine and evaporator pressures and of steam
flow over the interval considered in the case of the constant con-
trol valve position. The effect on gas outlet temperature was

negligible in both cases.
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A simulation of a reactor scram with the blowers remaining
on is shown in Fig. 18, Run G-4. In this case steam generator
gas inlet temperature was decreased as shown on the figure with
the control valve held constant. The graph shows a rapid dete-
rioration of turbine and saturation pressures but again a rela-
tively stable gas outlet temperature. The reversal of water tem-
berature leaving the economizer and gas temperature entering is
again shown, indicating that boiling is occurring in the economizer
section. Note that in this case the outlet gas temperature from
the steam generator decreases slightly during a reactor scram,
while with the system under pressure regulator control the gas
temperature increases slightly for this scram condition. The
difference is due to the effect on the heat transfer coefficient
and water temperature of the much reduced water flow with the
turbine under pressure regulator control. Note that the direction
of change of outlet gas temperature with a given change of gas in-
let temperature appears to be a function of the type of control of

the throttle wvalve.

3. Perturbations in Turbine Throttle Valve Opening

The effect of a step change in the control valve opening was
simulated in Run H-1 shown in Fig. 19. A step increase of 100%
in valve opening causes an instantaneous change in steam flow rate
(and hence water flow rate), resulting in a drop in the bulk gas
temperatures in the heat exchanger as a result of a higher heat
removal rate. The unbalance between heat supply and removal rates
results in a subsequent reduction in steam flow rate. As the
steam flow rate 1s reduced, the initial reduction in steam tem-
Perature is partially recovered. The behavior of the economizer
water outlet temperature is similar to that of the superheater
steam outlet temperature. The evaporator capacity is increased

by the reduction in saturation temperature and consequent increase
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in pinch point temperature difference. The economizer and super-
heater capacities are reduced by the reduced heat transfer ccef-
ficients after the initial instantaneous rise in capacity.

The effect of a step change in throttle valve position simul-
taneously with a blower coastdown was examined in Run H-2, Fig. A-8.
In this case a very rapid deterioration of steam conditions occurred.
After the instantaneous increase steam flow drops off, and the graph
indicates that the steam temperature begins to recover because of the
drastic reduction in steam flow. Gas outlet temperature decreased at
approximately 250°F/min Tor the first 30 sec of the transient. This
case approximates a loss of electrical power. It assumes a constant
temperature into the steam generator and simulates opening of the
electromagnetic relief valves. In the case of a true loss of powver,
the gas inlet temperature may change somewhat, but as shown in Fig.
20, Run G-2, the effect of an increase in gas inlet temperature on
gas outlet temperature under a ccnstant valve position is slight.

In the loss-of-power accldent feedwater flow from the emergency
surge drum was assumed to maintain the liquid level in the drum.

The condition of either a steam line rupture or cpening of
relief or electiromagnetic valves on the steam system again imposes
temperature transients on the steam generator in excess of those
specified by PJ-1. Since the value used in the study for the in-
creased opening for steam flow may be low, the actual transient
may be more severe than that shown.

The effect of steam blowdown with a reactor scram with the
blowers remaining on is shown in Fig. 21, Run H-3. Again a rapid
deterioration of steam conditions occurs, but the effect on steam
generator gas outlet temperature is much less severe. This is

consistent with previous results already discussed.
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L, Reduced Gas-Side Coefficient

To confirm the theory that small errors in computed heat
transfer coefficients would have a negligible effect on the
transient response of the steam generator, a reduction of ap-
proximately lO% on the gas coefficient was effected. Runs K-1
and L-1, Figs. 22 and 23 (showing step changes in gas flow and
inlet temperature), may be compared with Figs. 11 and 14, Runs
D-1 and F-1. The transient response was essentially identical
in both cases. This indicates that possible errors in predict-
ing accurate heat transfer coefficients should not Jeopardize

the validity of the analog transient response characteristics.
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VI. Conclusions and Recommendations

1) Results of the study are reasonable, and the model appears
to describe adequately the performance of the steam generator under
the conditions of operation studied. The equilibrium operating con-
ditions predicted from the simulator analysis agree well with hand
calculations. The transient response of the system to perturbations
can be logically explained.

2) Assuming good gas flow distribution across the tube matrix,
the thermal capacity of the steam generator at full power conditions
is adequate. It is probable that a steam generator inlet gas tem-
perature lower than 1043°F will be required to hold a steam tempera-
ture of 903°F leaving the steam generator.

5) Several transient conditions can exist during which the
rate of change of gas and/or steam temperature exceeds the value
of 150°F/min specified in PJ-1 steam generator specificatlons.

Since there are several critical areas in the steam generator which
may be affected by such temperature transients, it is necessary to
determine the implications of these transients on the present design.7

4) Remedial measures o reduce the gas temperature transient
leaving the reactor during a scram must consider the effect on gas
temperature leaving the steam generator. For example, the use of
a braking mechanism for slowing the biowers down faster than the
Kaiser blower coastdown curve will increase the temperature transient
leaving the steam generator.

5) Gas temperature leaving the steam generator is insensitive
to gas temperature changes entering the steam generator. The steam
generator thermal capacity is large. Changes in the gas inlet tem-
perature essentially affect only the temperature driving force to the
sink temperature. The steam generator, because of its large themmal

capacity, acts socmewhat like an infinite sink. The effect of the
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change in gas inlet temperature is largely absorbed by the steam
generator unit and is not reflected by a change in gas outlet tem-
perature. In addition, direction of response under certain condi-
tions is dependent on whether the system is operating under turbine
pressure regulator control or with the control wvalve position held
constant. Thus with the system under a constant control valve set-
ting, the steam generator gas outlet temperature decreases with a
decrease in gas inlet temperature. Under the same conditions but
with the steam system under pressure regulation, the outlet tem-
perature increaées with a drop in gas inlet temperature.

6) Under a condition of steam pressure regulation, steam tem-
peratures rise on a reactor scram and may exceed the time-temperature
limitations specified in PJ-1. The implications of this situation
to the steam generator design should be examined.

7) The deterioration of steam pressure to the turbine with
the turbine under pressure regulator control on a reactor scram is
very gradual. Several minutes are available before the turbine need

be tripped off the line because of low pressure.
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Nomenclature

specific heat, Btu/lb-°F
valve seat opening
diameter, ft

diameter, in.

mass velocity, lb/ftg—sec

QQQ'U<:OO

maximum mass velocity
max o

h heat transfer coefficient, Btu/hr-ft~-°F

J J factor, h/CpG X(Pr)g/B, dimensionless

k thermal conductivity, Btu/hr-ft-°F

L length, ft

N number of fins per inch

Nu Nusselt number, hD/k, dimensionless

Pr Prandtl number, Cpp/k, dimensionless

Re Reynolds number, DG/H, dimensionless

S tube pitch for an equilateral triangular arrangement, in.

8] over-all heat transfer coefficient, Btu/hr-ft2—°F
viscosity, lb-mass/ft-sec

Subscripts

b film or fin

1 inside

t tube

e equivalent
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APPENDIX

Summary of Equations Used in Analcg Model

Superheater Section

The superheater model is divided into three axial lumps, each

solving the equations for: 1) heat transfer from the gas to the

tubing, 2) heat storage in the tubing, and 3) heat transfer from

the tubing to the steam.

The finite difference approximations to the heat transfer equa-

tions are of the form:

where

P = = = = o
= = K (TG - TP) + K, (TS - TP) F/sec

T, = TG(in) - K5 (TG - TP) F
To(ous) = T = %5 (Tg - Tp) ¥
Ty = TS(in) + K (TP - TS) F
Ts(out) g + K, (Tp - Tg) F

TP = mean tubing temperature in lump

TG = mean gas temperature in lump

TS = mean steam temperature in lump

TG(in) = temperature of gas entering lump

TG(out) = temperature of gas leaving lump

TS(in) = temperature of steam entering lump

TS(out) temperature of steam leaving lump

Kl’KE’KB’Kh = gee Table III1
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TABLE ITI

Tabulation of "K" Symbols Used in Equations

Describing Analog Model

Superheater Section Value at 100% Flow
Symbol Units Represents Lump 1 Lump 2 Lump 3% Varies as
-1 0.61
K, sec hGAG/MPCP 0.0790 0.0689 0.0602 W,
-1 0.8
K2 sec hSAS/MPCP 0.1020 0.1134 0.1225 WS
-0.39
K5 D1 hGAG/szcG 0.1590 0.1386 0.1641 W
-0.2
Kh D1 hSAS/EWSCS 0.7350 0.7120 0.6620 WS
Evaporator and Economizer Sections
Value
Symbol Units Represents (100% Flow) Varies as Reference
K, DL L g6 W, Fig. A-lh
G(in) "SAT
Kg [(psi) flow 0.071k
(secg)]/ resistance
(1p)@ ‘
K [(psi) valve 32.5
7 <
(sec)]/ factor
(1b)
Kg 1b/°F- water in- large
sec stability _positive
factor number
K9 1b/Btu 1/hfg 0.00173 TW(evap) Fig. A-9
K D1 heat 0.181 w939,
10 G
transfer
AJ factor
factor
K D1 heat 0.634 y 029
11 G p)
transfer
AJ factor
factor
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The steam~-side heat transfer coefficients given include the
tube resistance and fouling resistance.

The time lag circuits used to multiply (TP - TS) by 2 have
no physical significance. They are included to dampen spurious
oscillations arising from algebralc loop problems.

A mathematical development of the finite difference approxi-

mations used is given in ORNL CF-6o-9-116.9

2. Evaporator Section

The equation for the change in gas temperature through the

evaporator is:

Molevap) = Ta(in) = Tsar! ¥s F
where
K5 = % ATG/[TG(in) - TSAT]’ as shown in Fig. A-14
Also,
Ta(out) = Ta(in) ~ “Ta(evap) F

The power input to the evaporator water and metal from the gas:

Evap power = W, C, AT (Btu/sec)

G ¢ T G(evap)
where
Cqp = 1.241 Btu/1b-°F
The rate of steam flow out of the evaporator (WS) is determined
by an implicit computation which equates the evaporator pressure with

the sum of the pressure drops from the evaporator to a vacuum:
Pevap - APSH * A“Ppiping * APvalve + turbine * Asink
where

APgy APpipe = Kg (WS)
(K6 is such that AP.. + APpipe = 90 psi for 100% ws.)
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W
valve + turbine T effective value % C,
. — = s .
(K7 is such that AP . .. .. . = 1255 psi for 100%; W, and
C, = 92% of its maximum value.)
P = 0O psia

sink

The heat balance equation for the evaporator water and metal

is:
dTevap
=y o L ' -
Mevap Cevap dt hfg wS WFW CFW (Tecon TW(evap)out)
where
WS' = & net steam flow rate resulting from a difference
4+
between TSAT and Tevap
’ = -
Wy' = Kg (Tevap TSAT), 1b/sec
K8 = g large pcsitive number
S cevap 17,400 Btu/°F
The net rate of steam generation WS” is computed from:
ro_ . ’
w." o= (evap power) K9 + Wy 1b/sec
where
K9 = l/(hfg)(T), as shown in Fig. A-9
The mass of saturated steam in the evaporator is computed
from: t
- 7o
oV oV Of (Wy" - Wy) dt 1b
where
oV o = 734 1b

The evaporator pressure 1s computed from the density according
to Fig. A-10, and the saturation temperature corresponding to this

Pressure is computed from the relationship shown in Fig. A-12.
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3. Economizer Section

As described in Section IV-D, an iterative procedure was used
to determine the circuit parameter values such that the effective
capacity of the economizer was correct at 100% and 20% of full power.
The transient behavior of the mean water-side temperature (Tecon) is
dominated by the water transport properties, approximated by a first-
order lag with a time constant Tt (14 sec at full flow), varying in-
versely with W_ .. )

W
The economizer equations are:

= 1
Tecon = TFw(in) * E'ATW(econ)
TW(econ)out = 2 Tcon - TFW(in)
1 ap _ Malecon) o %a /1 >
2 “"W(econ) 2 W Cy Tq + L
where
¢y, = 1.3 Btu/1b-°F
S = Laplacian argument
First Gas Lump Circuit:
Tar = TG(econ)in - Ko (TGl - Tecon?
Tor(out) = To1 - 10 (To1 = Tecon)
Second Gas Lump Circuit:
TG2 - TGl(out) - Kll (TG2 - Tecon)
Teo(out) = Ta(out) Taz = K11 (Tgp - Tecon)

K and K

10 ll: see Table IIT
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AU Factor Circuit:

AU factor for 100% W, and We = 0.5 (50 v)
AU = 52.2 - 0.155 wGO'6l + 0.238 wso'8 (volts)
4.  Pressure Control System

The equation describing the control system was derived direct-

ly from data provided by the manufacturer of the regulator:

fraction Cv_(max) 0.77 (Tl S +1)
psi error - (T2 S + l)(TC S + l)(TG S + l)(T3 S+ 1)
where
Tl,T2 = controller reset varigbles
Tc = controller sensing lag = 1 sec
To = governor lag = O.h sec
T5,74 = controller lags = 0.3, 0.2 sec

The time constants TC, TG, TB, and T) were found to be unim-
portant in all but controller set point change tests and were omitted
in the tests for this report.

The dump pressure regulator was assumed to begin to open with
1280 psia upstream of turbine valve, being full open at 1330 psia

(Cv.linear over range). t was assumed that the throttle and dump

valves had the same CV’
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Nomenclature

heat transfer areasa, ft2

C specific heat, Btu/1b-°F

h heat transfer coefficient, Btu/sec-°F-ft2
hfg heat of vaporization of water, Btu/lb
ol density, lb/ft5

M mass, 1b

P pressure, psia

S Laplacian argument, sec_l

T temperature, °F

U over-all heat transfer coefficient, Btu/hr-°F—ft2
Vv volume, ft5

W mass flow rate, lb/sec

Subscripts

econ economizer

evap evaporator

W feedwater

G gas side

S steam side

SAT saturation

(ss) steady state

SH superheater

turb turbine

W water side
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ORNL-LR-DWG, 64246
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Fig. A-6
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