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ABSTRACT 

The experimental resul t s  on the oxidation of hydrogen from a helium 
stream with copper oxide pe l le t s  were very close t o  the predicted behavior 
based on the mathematical model. Experimental measurements of uranyl su l fa te  
loading ra t e s  on chloride equilibrated resin showed l i t t l e  variation with 
solution concentrations. A tentat ive flowsheet was proposed fo r  cost 
analysis of processing a Pebble Bed Reactor. A uranium-zirconium plate  was 
dissolved i n  n i t ra te- f ree  Zirflex solution. An authentic TRIGA prototype 
was processed i n  engineering-scale equipment. Three 4-stage leacher model 
dissolution runs were made, two of which used 8 M HN03 and one used 4 PI HN03. 
Flooding ra tes  and holdup da,ta were obtained f o r s i e v e  plate  pulse c o l b s  
under 55 TBP-1.8 M P U ( N O ~ ) ~  flowsheet conditions. A Purex waste calcination 
run (R-37') was maze using sodium and magnesium t o  reduce sulfate  vo la t i l i t y .  
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SUMMARY 

1.0 GCR COOLANT PURIFICATION STUDIES 

Predicted r e s u l t s  of hydrogen oxidation by copper oxide p e l l e t s  based 
on a model of  external  in te rna l  d i f fusion were i n  good agreement with 
experimental r e su l t s .  Experimental r e s u l t s  a r e  calculated based on flow 
r a t e s  and concentrations measured t o  + 5$, and the  agreement with predicted 
r e s u l t s  w a s  within experimental error- 

2.0 I O N  EXCHANGE 

Experimental measurements of uranyl su l f a t e  loading r a t e s  on chloride 
equi l ibrated 963 micron Dowex 21X showed l i t t l e  var ia t ion with the  loading 
solut ion uranium and su l f a t e  concentrations. According t o  a proposed k ine t ic  
model, t h i s  would indicate  l i t t l e  var ia t ion i n  t he  equilibrium uranium t o  
su l f a t e  loading r a t i o  over t h i s  concentration range. 

Predicted chloride e lu t ion  r a t e s  from 820 micron r e s in  during uranyl 
su l f a t e  loading were i n  good agreement with experimental measurements when 
a t  equilibrium 0.98 of the  e f fec t ive  r e s in  capacity was assumed t o  be 
occupied with U O ~ ( S O ~ ) ~ =  at the  remainder with su l f a t e  ions. 

3.0 POWER REACTOR FUEL PROCESSING 

3.1 U-C Fuel Processing 

A s  the  bas i s  f o r  cos t  analysis  of  processing a Pebble Bed Reactor f u e l  
containing -10% ThC2, UC2 dispersed i n  graphite spheres, a t en t a t i ve  flowsheet 
was calculated which involves the  l o s s  t o  waste streams o f  1.15 l i t e r  of 
22.5 M HNOs (equivalent) per kg of graphite fue l .  The reference dissolver  
i s  an-upright s l ab  with moderate gas overpressure t o  dr ive  a continuous 
flow of  acid  downward through the  bed dis integrated fue l .  

9.2 Modified Zirf lex 

In  engineering-scale equipment 1/8-in. t h i ck  8$ U-Zr p l a t e  was dissolved 
i n  2 hrs  i n  refluxing dissolvent i n i t i a l l y  6.53 M NH4F-0.1 M Hz02 (run CZr-5) ; 
there  was no s t ab l e  foam although & was evolved-in the  rat70 of 2 moles &/ 
mole Z r  dissolved. The scrubbed "off-gas" contained & + &0 99% with 
O2 5 0.159. 

An authentic TRIGA prototype (normal U) was processed i n  the engineering- 
sca le  equipment. The 0.030-in. A 1  cladding and the  A1-Sn poison d i scs  were 
dissolved i n  < 30 min i n  refluxing 2 M IY~OH-1.  8 M NaNOs.  About two t h i r d s  
(by w t )  of the  two graphite slugs were dis integrcted i n  2 hrs  i n  90 vol  $I 
HN03 (white m i n g )  - .lo vol $I &So4 (fuming) a t  room temperature. The 8$ 
U-ZrH meat slug (1.4-in. d i a  x 14-in. long) weighing 2274 g was 99.75% 
dissolved a f t e r  11-1/2 hrs  refluxing i n  dissolvent i n i t i a l l y  6.3 - M NH4F- 
0.55 M - NH4NOs-0.01 - M H202. 



Acid-aluminum stabi l ized solvent extraction feed solution containing 
0.46 M Z r ,  0.78 M f ree  F-, 3.44 g  liter and 0.8 M HNOs and A ~ ( N O ~ ) = ,  and 
H20 stabi l ized solutions containing 0.444 M Z r ,  0.52 M f ree  F-, and 3.54 g 
 liter remained s table  a f t e r  > 300 hrs a t room temperature. 

3.3 Shearing and Leaching 

A four stage leacher model dissolution run i n  which 9 batches of 
UOz pe l le t s  (600 g/batch) were dissolved using 4 M HN03 a t  a H N O ~ / U O ~  
mole r a t i o  of 5.43 as the dissolvent resulted i n  38.4 - 99.3% of the UO;? 
dissolved in  a 4 hr  dissolution time. 

Two four-stage leacher model dissolution runs i n  which 9 batches of 
UO;? pe l le t s  (600 g/batch) were dissolved in each using 8 M HN03 as  the 
dissolvent resulted i n  a steady-state composite product OF 500 g  liter 
and 1.9 M H+ a t  a HNo3/uo2 mole r a t i o  of 4 a s  compared t o  a composite 
product of 335 g  liter and 4.1  M H+ a t  a HNo3/uo2 mole r a t io  of 6.15. 
In each run apparent steady s t a t ewas  attained i n  3 - 4 batches. 

4.0 SOLVENT EXTRACTION STUDIES 

Flooding ra tes  and holdup data were obtained for  sieve plate  (0.125-in.- 
d i a  holes, 23% free area)  pulse columns under 5$ TBP-1.8 M A ~ ( N o ~ ) ~  flowsheet 
conditions . Maximum capacity of the compound extraction scrub column w a s  
2010 gal ft';?hr-' fo r  aqueous continuous operation a t  50 cpm. Increasing 
the ra t io  of dispersed phase t o  continuous phase from 3/10 t o  311 while 
holding the pulse frequency constant a t  70 cpm lowered the flooding r a t e  
from 933 t o  287 ga l  ft-2hr-'. Flooding data was correlated by a method 
based on hindered se t t l i ng  whereby phase flow ra t e s  were related t o  dispersed 
phase holdup by the character is t ic  droplet velocity. Actual and theore t ica l  
phase flow veloci t ies  a t  flooding agreed well a t  3/10 phase r a t io .  However, 
a s  the r a t i o  of dispersed phase t o  the continuous phase increased, the 
theoret ical  veloci t ies  became progressively greater than those actual ly  
measured. Measurements showed that dispersed phase holdup varied markedly 
throughout the column, probably due t o  surface e f fec t  of the plates ,  r e su l t -  
ing i n  increased holdup a t  the higher dispersed t o  continuous phase r a t io .  

The feed used f o r  t e s t  R-37 was Purex 1 W W  plus 1.2 M Na and 0.2 M Mg 
added t o  reduce su l fa te  vo la t i l i t y .  There was serious corrosion of tEe 
calciner pot i n  the area of the l iquid level.  The solid was pa r t i a l ly  melted 
and separated. The corrosion w a ~  probably increased because of lo s s  of 
temperature control because a thermocouple corroded and allowed the  calciner 
pot outside temperature t o  reach a temperature greater than 1100'C. The 
overheating may have decomposed some %SO4 (decomposed i n  9 0 0 ' ~ )  allowing 
SO3 t o  at tack the 304 s ta in less  s t e e l  calciner pot. 

The t e s t  controlled, except f o r  one temperature zone, very well. The 
evaporator controlled a s  had been predicted. 



1.0 GCR COOLAIVI' PURIFICATION STUDIES 

J. C .  Suddath 

Contamination of  coolant gases by chemical impurit ies and re lease  of  
f i s s i o n  products from f u e l  elements w e  maJor problems i n  gas-cooled 
reactors  and in -p i le  experimental loops. Investfgations a re  being made 
t o  determine the  best  methods t o  reduce the  impurit ies,  both radioactive 
and non-radioactive, with emphasis on t he  k ine t ics  of the  fixed bed ox-fda- 
t i o n  of hydrogen by copper oxide. 

An attempt i s  being made t o  f i t  experimental data  from the study of  
the  CuO-H2 reaction t o  a mathematical model of external  di f fusion and in t e rna l  
d i f fusion o f  Hz control l ing the  rapid, i r revers ib le  reaction of  Hg wfth CUO. 

1.1 Comparison Between Predicted Results and Experimental Data - C .  TI. Scott  

The method used t o  t e s t  the  mathematical model with experimental da ta  
was t o  compare r e su l t s  predicted by the  tnathematical model with ac tua l  
experimental data .  

The deep-bed t e s t s  i n  which 1/2-in.  t o  2-in.  deep beds of CuO p e l l e t s  
were used t o  oxidize H2  i n  a flowing stream of  helium were run f o r  t h i s  
purpose (un i t  Operations Ebnthly Reports f o r  January, February, and March, 
1961). In these t e s t s ,  the  eff luent  hydrogen concentration was measured 
periodically t o  give complete e f f luen t  hydrogen concentra%isn h i s to r i e s .  
The d i f f e r e n t i a l  equations derived f o r  the  extel-nal diffu-sisn-internal  
di f fusion r a t e  control l ing model were used t o  calculate  the  eff luent  hydro- 
gen concentration his tory.  

1 .2  Solution of Di f fe ren t ia l  Equations 

The th ree  d i f f e r e n t i a l  equations which descrlebe the extel-nal dff'fusion- 
i n t e rna l  d i f fusion model are : (March 1961 Unit Operat,isns Msnthly Report 

Deep bed material  balance, 

Reaction r a t e ,  

Position of Cu-CuO interface,  



where, 

C = bulk gas -phase hydrogen concentration, g-moles/cc 

t = time of reaction, sec 

z = height in  fixed bed of CuO measured from the bottom of the bed, cm 

V = l inear  velocity through the in t e r s t i ces  between CuO pel le t s ,  cm/sec 

B = bed porosity, volume of intergranular voids per uni t  gross volume 
of bed 

n = g-moles of CuO which have been reacted t o  Cu i n  a uni t  volume of 
bed, g-moles/cc 

k = mass-transfer coefficient across the external gas film, cm/sec 
g 

e r f i c i a l  surface of the CuO pel le t  per uni t  volume of bed, 

T = number of CuO pe l l e t s  i n  a uni t  volume of bed, pel le ts /cc 

R = radius of a sphere having the same volume a s  the average volume of 
the CuO pel le t s ,  cm 

r = radius of the Cu-CuO interface i n  a pe l l e t ,  cm 
0 

Q. = effect ive in te rna l  porosity of the Cu pe l l e t ,  void volume/total volume 

D = molecular d i f fus iv i ty  of hydrogen i n  helium a t  the conditions of 
the system, cm2/sec 

b = molar density of CuO i n  the CuO pel le t s ,  g-moles/cc 

These equations can be solved simultaneously by a f i n i t e  difference 
method and the hydrogen concentration i n  the eff luent  gas stream can be 
predicted as  a function of time. For a f i n i t e  difference solution, the 
position of the Cu-CuO interface,  ro, can be determined by a relat ion,  
somewhat simpler than equation ( 3 ) .  The change i n  ro during a short  
period of time can be determined by: 

The f ini te-difference solution of equations (l), (2)  and (4) was se t  
up for  a high-speed d i g i t a l  computer and seven d i f fe rent  cases were solved. 



By use of these  equations one f inds  qua l i t a t i ve ly  t h a t  a p lo t  of C/C, 
( e f f l uen t  Hz concen t ra t ion / in i t i a l  H2 concentrat ion) vs  time gives t h e  
t y p i c a l  "S"-shaped curve found i n  t h e  experimental t e s t s .  When t h e  measured 
value of  t h e  e f f ec t i ve  porosi ty  ( ~ p r i l  1961 Unit Operations Monthly Report) 
w a s  used along with t h e  i n i t i a l  experimental condit ions,  t h e  predicted 
e f f l uen t  hydrogen concentration f o r  s i x  deep bed runs gave f a i r  agreement 
with experimental values and i n  th ree  pa r t i cu l a r  cases ( runs  R-4, R - 7  and 
R-9) t he  agreement was very good ( ~ i g u r e s  1.1, 1 .2 ,  1.3, 1 .4 ,  1.5, 1 . 6 ,  and 
1.7). Since these  predicted values a r e  based on gas flow r a t e s ,  and i n i t i a l  
hydrogen concentrations measured t o  - + 5$, t he  agreement, i n  general,  i s  
within experimental e r ro r .  
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Fig. 1.1. Comparison between experimental results from run R-3 and predicted results from the mathematical 
model of external diffusion and internal diffusion controlling a rapid, irreversible reaction of hydrogen with porous 
pellets of CuO. 
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Fig. 1.2. Comparison between experimental results from run R-4 and predicted results from the mathematical 
model of external diffusion and internal diffusion of hydrogen controlling a rapid, irreversible reaction of hydro- 
gen with porous pellets of CuO. 
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Fig. 1.3. Comparison between experimental results from run R-5 and predicted results from the mathematical 
model of external diffusion and internal diffusion of hydrogen controlling a rapid, irreversible reaction of hydro- 
gen with porous pellets of CuO. 
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Fig. 1.4. Cornprison between experimental results from run R-6 and predicted results from the mathematical 
model of external diffusion and internal diffusion of hydrogen controlling a rapid, irreversible reaction of hydro- 
gen with porous pellets of CuO. 
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Fig. 1.5. Comparison between experimental results from run R-7 and predicted results from the mathematical 
model of external diffusion and internal diffusion of hydrogen controlling a rapid, irreversible reaction of hydro- 
gen with porous pellets of CuO. 
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Fig. 1.7. Comparison between experimental results from run R-9 and ~red ic ted  results from the mathematical 
model of external diffusion and internal diffusion of hydrogen controlling a rapid, irreversible reaction of hydro- 
gen with porous pellets of CuO. 



2.0 I O N  EXCEINJGE 

J . C . Suddath 

2 .1  Predictions of Uranyl Sulfa te  Loading Rstes on Chlorfde Equil ibrated 
Dowex 21K - J. S o  Watson 

In recent months predicted u r m y l  su l f a t e  loading r a t e s  on chloride 
equi l ibra ted res in  have been shown t o  be a function of t he  equilibrium 
su l f a t e  t o  uranyl su l f a t e  loading on the  res in .  Exact measurements of t h i s  
r a t i o  experimentally has not been possible,  but an assumed value of approxi- 
mately 0.02 i n  t h e  calcula t ions  has been shown t o  give good agreement 
between measured and predicted loading r a t e s  with 960 micron Dowex 21K 
and a loading solut ion 0.005 M i n  uranyl su l f a t e  and 0.020 M i n  su l fu r i c  
acid.  This value of the  ratio a l so  allows yeasonably accurgte predictions 
o f  t he  r a t e  a t  which chloride ions leave the  r e s in  during the  uranyl 
su l f a t e  loading. 

The most recent e f f o r t s  have been d i rec ted  toward determining i f  t h i s  
same behavior i s  found with o ther  r e s in  samples, and t o  determine i f  the  
loading r a t e  i s  a function of  the  loading solut ion uranium o r  s u l f a t e  
concentrations. Loading runs have been made with a 0.006 M uranyl su l f a t e  
solut ion.  The t o t a l  su l f a t e  concentration o f  the  solution-was varied from 
0.026 M t o  0.201 M i n  t o t a l  su l f a t e  by adding sodium su l f a t e  between runs. 
A run was a l so  maze with a 0.003 M uranyl su l f a t e  solutir,n 0 .11 M i n  t o t a l  
su l fa te .  Both solut ions  were 0.020 M - i n  s u l f u r i  e acid .  The r e s z l t s  of  
these runs a r e  shown i n  Figure 2.1. Over t h i s  concentratl.on there  were no 
s ign i f ican t  var ia t ions  i n  the  loading r a t e .  According t o  t h e  proposed 
model, t h i s  implies t h a t  no s ign i f ican t  var ia t ion  i n  the e q u i l i b r i - u ~  
su l f a t e  t o  uranyl su l f a t e  loading oecures. 

Calculations and experimental measurements s f  t he  r a t e  of chloride 
l o s s  from 820 micron r e s i n  during uranyl su l f a t e  loading have been made. 
The r e s u l t s  ( ~ i g u r e  2.2) show t h a t  good agreement between t he  predicted 
and measured l o s s  r a t e s  a r e  obtained i f  one assumes t h a t  the  equilibrium 
s u l f a t e  t o  uranyl su l f a t e  loading r a t i o  i s  0.02. This i s  i den t i ca l  t o  the  
r e s u l t s  obtained with 960 micron res in .  
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3.0 POWER REACTOR FUEL PROCESSING 

C . D. Watson 

3.1 U-C Fuel Processing - B. A .  Hmnaford 

Proposed reactor fue l s  of t he  uranium-graphite type contain pa r t i cu l a t e  
compounds ( ~ 0 2 ,  U02-Th02, UC2,  U C ~ - T ~ C ~ )  dispersed i n  a graphite matrix. 
Fuel pa r t i c l e s  may be uncoated o r  coated with a refractory ( ~ 1 ~ 0 ~ ~  pyrolyt ic  
carbon); f u e l  elements may be coated with SIC o r  associated with unf'ueled 
graphite.  

A s  the  basis  f o r  a preliminary estimate of  the  cost  of processing a 
uranium graphite fue l ,  a continuously-loaded 350 MWT Pebble Bed Reactor 
was chosen. Processing load, assuming plant  operation 300 days ,per  year,  
would be 100 kg/day. Fuel was assumed t o  be UC2-ThC2 pa r t i c l e s  coated with 
pyrolytic carbon, dispersed i n  1-112-in. spheres covered with Sf-Sic. 

Figure 3.1 represents an untried semi-continuous flowsheet, contrived 
primarily a s  a bas i s  fo r  the  preliminary cost  estimate. The dissolver  i s  
an upright s l ab  designed f o r  moderate ( 1  t o  2 atm) gas overpressure t o  d r ive  
fuming HNOs and wash water through the  deep bed of dis integrated graphite 
and the  supporting sand f i l t e r .  A small gas stream is  continuously bled 
o f f  t o  the  condenser and off-gas treatment system. Following an i n i t i a l  
soak period, during which the  cracked spheres a re  l a rge ly  dis integrated,  
continuous flow of  ac id  through the  dissolver  i s  begun. Boil-down of  acid  
leach solut ion p r io r  t o  mixing with wash water would permit recycle of t h e  
bulk of f'uming HN03. Leached graphite,  Sic ,  and sand would be f luidized 
and/or j e t t ed  t o  waste. 

A make-up volume of  115 l i t e r  of 22.5 M HNOs would be required f o r  the  
succeeding 100 kg batch of f'uel, d ic ta ted  p&narily by the  s i z e  of the  waste 
acid cut  during boil-down. Stoichiometry of  the reaction of UC2,  ThC2 with 
fuming HNOs i s  not known; however, acid consumption due t o  chemical react ion 
and thermal decomposition would be small i n  comparison with the  l o s s  t o  
waste acid overhead. An acid concentration of 22.5 M (95%) was chosen i n  
order t h a t  acid i n  t he  dissolver would not  drop below -21.2 M. Volume and 
compositions of v i r t u a l l y  all streams shown - acid dissolvenc, water wash, 
recycle acid ,  waste acid,  and off-gas - a re  highly t en t a t i ve ,  and require 
experimental ver i f ica t ion .  

3.2 Modified Zirf lex - F. G. K i t t s  

Modified Zi r f lex  denotes a process f o r  t he  recovery of uranium from 
U-Zr-Sn f'uels by batchwise dissolut ion i n  NH4F-NH4N03-H202 solut ions ,  
s t ab i l i z a t i on  with H N O ~ - A ~ ( N O ~ )  and TBP extract ion.  During dissolut ion 
a small, continuous addit ion of hydrogen peroxide is  made t o  oxidize uN 
t o  t he  more soluble u V I .  Such a process i s  desi rable  f o r  processing 
zirconium f'uels containing higher per centages of  U (up t o  10%) without 
t he  intermediate p rec ip i ta t ion  of UF4 which would occur i f  no oxidant were 
added. Presently dissolut ions  of  unirradiated zirconium f u e l s  a r e  being 
carr ied out both on a laboratory scale  and i n  engineering-scale equipment. 
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Fig. 3.1. Tentative flow sheet for processing PBR fuel containing ThC2, UC2, i n  22.5 M HN03. 

4.4 hf H N 0 3  
90.5 g/l Th, U 

2 M H N 0 3  
250 g/1 Th, U 



Run CZr-5 was made i n  the  engineering-scale equipment using dissolvent 
i n i t i a l l y  6.53 M NH4F-0 .OO M NH4N03-0 . O 1  M GO2 and a G O 2  addit ion r a t e  of 
0 .5  x lom5 mols7cm2-min ( ~ a c l e  3.1). ~ h e l . 1 0 3  kg of unoxidized 8% U - Z r  
p l a t e  (0.122 i n .  th ick)  was completely dissolved i n  2 hrs  of refluxing. 
About 4 g of a green prec ip i ta te  was collected which contained 56% U, 25% 
F and 3$ Z r .  It i s  assumed t h a t  t h i s  i s  the  same material  involved i n  t h e  
coat formation reported by Gens (ORNL-2905) since the  f r ee  f luor ide t o  U 
r a t i o  was only 51. The amounts of gaseous reaction products evolved agreed 
very well  with the  assumed stoichiometry of the  dissolut ion reaction with 
2.0 moles of H 2  and 4.2 moles of NH3 observed per mole of Z r  dissolved. 
Four samples of t he  scrubbed off-gas taken a t  in te rva l s  throughout the  
run showed & 2 93% with & + G O  2 99% and O2 2 0.15%. The average boil-up 
r a t e  (obtained by measuring the  ref lux t o  the  dissolver)  was 0.15 ml/min-cm2 
of i n i t i a l  f u e l  surface. The addit ion of s t a b i l i z e r  [1.8 M HNO3 - 1.8 M 
Al(No3) a t  room temperature when the  dissolut ion product-had cooled to 
-90'C produced a s tab le  solvent extract ion feed containing 0.35 M Z r ,  2.78 
g  liter, 2.7 M F, 1 M HIT03 and 1 M A l ( ~ 0 ~ ) ~ .  Material balances f o r  Z r ,  
U and F accounted f o r  F3. 5 - 95.5% of the  t o t a l  amount of each element 
charged. 

Runs MZr-17, 18 and 19 were made i n  t he  1-in.-dia rec i rcu la t ing  dissolver  
t o  l ea rn  the  e f f ec t  on dissolut ion of a d i f f e r en t  s t rength (6%) and method 
of Hz02 addit ion.  The volumetric addit ion r a t e  was maintained the  same a s  
with 3% solution resu l t ing  i n  an approximate doubling of the  molar r a t e .  
No change i n  dissolut ion r a t e  was observed but the  solutions turned yellow 
e a r l i e r  indicat ing a lower uIV concentration i n  t he  middle stages of dissolu-  
t i on .  The H N o ~ - A ~ ( N o ~ ) ~  s t ab i l i zed  portion of MZr-17 was a s tab le  solut ion 
 a able 3.1). Neither solution i n  MZr-19 (a l so  H N O ~ - A ~ ( N O ~ ) ~  s t ab i l i z ed )  
was s table  f o r  t h i r t y  days; the  f i r s t  port ion [0.8 M H N ~ ~ - A ~ ( N O ~ ) ~ ]  produced 
white c rys ta l s  while t h e  second [1.0 M H N o ~ - A ~ ( N o ~ ) ~ ]  produced a suspended 
gelatinous prec ip i ta te .  A l l  three  o f t h e  &0 s tab i l i zed  solutions were 
s table ;  the  most highly loaded one contained 0.444 M - Z r ,  3.28 M - F and 3 54 
g  liter. 

Run C Z ~ - 6   able 301) was the  dissolut ion of a TRIGA "meat" s lug (8% 
U-ZrH, -1.4 in .  @ x 14 i n .  long). The large diameter (-1.4 in .  ) of the  
slug resul ted i n  a low area  t o  mass r a t i o  and a long dissolut ion time. 
This necessitated high G O 2  addit ion and boil-up r a t e s ,  on an a rea  basis ,  
i n  order t o  give streams of the  desired magnitude. The G O 2  volumetric r a t e  
was s t i l l  low (2  - 6 cc/min) so t h a t  considerable gassing ( indicat ing H202 
decomposition) was observed a t  the  i n l e t  t o  the  dissolver .  Although the  
NHs evolution r a t e  and O2 percentage a r e  believed r e l i ab l e ,  the  & + 02 + 
(N2?) evolution r a t e  ( ~ i ~ u r e  3.2) i s  i n  e r r o r  (low) due t o  a malfunction 
i n  the  scrubbed off-gas metering system. 

The 8$ U - Z r H  slug dissolut ion described above was only one s tep  i n  t he  
processing ( ~ i g u r e  3.2) of a genuine TRIGA element. The removal of the  
0.030 i n .  A 1  clad and dissolut ion of the  A1-Sm poison d i s c s  were accomplished 
i n  l e s s  than 112 h r  a t  ref lux i n  an excess of 2 M NaOH-1.8 M - NaN03 ( the  
large volume of dissolvent w a s  required t o  c o v e r t h e  28-in. long element i n  
The 6-in.  -dia d i sso lver ) .  The soluble U l o s s  w a s  0.015$ with about an 
equal amount carr ied by a gelatinous prec ip i ta te  fpresumed F ~ ( o H ) ~ ] .  After 



Table 3.1. Data for Modified Zirflex Runs 

Dissolvent U-Zr-Sn ~dd- ate Dies. & NHQ Scrubbed Off-gas Rate in 
Run Vol NH4F NH4N03 H202 Wt Diss. Area moles Time Zr Zr Vol H2 + Hz0 02 ml Reflux 
NO. ml ! M M Type 1.3 $ cm2 hours mols mls ft.3 % $ cmL-min M - 

CZr-5 13,350 6.53 0.00 0.01 8% U-Zr 1103 100 1077 0.5 x lo-' 2.0 2.0 4.2 18.2 99 0.1 0.15 0.6-0.1 
czr-6 27,514 6.3 0.6 0.01 TRIGA 2274 99-3/4 412 1.6 x lo-' 11.5 - 5.3 - >10 0.4 0.6-0.1 
MZr-17 25ba 6.53 0.00 0.01 8% u-zr 21.00 100 23 1.3 x 10" 1.9 - 
MZ~-18 241a 6.53 0.00 0.01 8$ U-Zr 20.32 100 23 l.lxlo-' 2.0 - 
MZr-19 245a 6.58 0.00 0.01 TRIGA 20.94 100 14.2 1.1 x 3.75 - 

Stabilizer Solvent Extraction Feed Material Balances 
Run Vol HNO, Al(N03)3 Vol Zr U F HNo3 Zr U F 
NO. ml M - M ml g/J g/J !! M M % $ $ 

a~fter dissolution, the batch was split into two equal volumes and stabilized as indicated. 
b 
H20 
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thorough washing and drying 1 .0  l i t e r  o f  90 vol $ WFNA - 10 vol $ H2S04 
(fuming) was admitted t o  t he  dissolver  f o r  d i s in tegra t ion  of the  two -1.4- 
i n . -d i a  x 4-in. long graphite slugs.  After 2 hrs  exposure a t  room tempera- 
t u r e  t he  graphite was 213 (by wt) d is integrated (equal a t t ack  on both pfeces) .  
Due t o  t he  system geometry the  U-ZrH s lug w a s  not subjected t o  the  acid 
mixture; low U losses  were reported. by Gens (ORNL-3065). The Al end pieces 
were only s l i g h t l y  attacked. 

It i s  believed t h a t  fu ture  invest igat ion should include a preliminary 
mechanical preparation which would require only t he  cu t t ing  of t he  0.030 in .  
A 1  cylinder near each end of  the  U-ZrH slug. This would el iminate t h e  
graphite slugs,  t h e  Sm poison d i scs  and t he  massive Al end f i t t i n g s  from 
the  dissolut ion cycle. Even i f  t h e  U-ZrH s lug could not be mechanically 
separated from i t s  A 1  tube t he  process would be reduced t o  a much simpler 
two s t ep  operation with the  elimination of  t h e  hazards of handling fuming 
HN03-H2S04, exhaustive washings and t he  removal o f  Al heels  and granular 
graphite from the  dissolver .  

3.3 Shearing and Leaching - B. C .  Finney 

A chop and leach program t o  determine the  economic and technological  
f e a s i b i l i t y  of continuously leaching the  core mater ia l  ( ~ 0 2  o r  U O ~ - T ~ O ~ )  
from r e l a t i ve ly  shor t  sect ions  ( l - i n .  long) of f u e l  elements produced by 
shearing is continuing. This processing method enjoys t he  apparent advantage 
of recovering f i s s i l e  and f e r t i l e  mater ia l  from spent power reactor  f u e l  
elements without d i s so lu t ion  of the  i n e r t  jacketing material  and end 
adapters. These unfueled port ions a r e  stored d i r e c t l y  i n  a minimum volume 
as so l i d  waste. A "cold" chop-leach complex consist ing of a shear, conveyor, 
leacher,  and compactor i s  being evaluated p r io r  t o  "hot" runs. 

Leaching. Three dissolut ion runs were made i n  the  glassware leacher 
m o d e l m 3 . 2 )  and i n  each run 9 batches of UO2 p e l l e t s  (whole unir radia ted 
PWR r e j e c t s )  were dissolved with a program t o  simulate 4 stages.  In  t he  
f i r s t  run (run 25),  4 M HNO3 was used as dissolvent  a t  a H N O ~ / U O ~  mole 
r a t i o  of 5.4; t h i s  resu l ted  i n  s l i g h t l y  l e s s  than complete dissolut ion of 
t he  U02 (98.4 - 99.4%) i n  a 4 hr  d issolut ion time. 

Two runs were made using 8 M HN03 as the  dissolvent .  The f i r s t  (m 26) 
w a s  made at  a H N O ~ / U O ~  mole ratio of 4. The instantaneous uranium leading 
and ac id i t y  as a function of d issolut ion time a r e  presented i n  Figure 3.3. 
The uranium loading varied from a maximum of -600 g / l i t e r  t o  a minimum of 
350 g / l i t e r  while t he  ac id i t y  varied from a minimum of 1.1 M HN03 t o  a 
maximum of 3.6 M HN03. Steady s t a t e  w a s  a t t a ined  i n  approx~mately 3 batches 
and the  composite product a t  apparent steady s t a t e  as represented by t he  
port ion of t he  curves above l i n e  AB w a s  -500 g U/ l i t e r  and 1 . 9  M - HNOs. 

Run 27 w a s  made a t  a H N O ~ / U O ~  mole r a t i c  of 6.15 ( ~ i ~ u r e  3.4) .  Again 
steady s t a t e  was a t t a ined  i n  approximately 3 batches o f  U02. With exception 
of t he  6th batch, t he  maximum uranium loading varied from 375-425 g / l i t e r  
t o  a minimum of approximately 200 g / l i t e r  and the  ac id i t y  varied from a 
maximum of approximately 6 M - H N O ~  t o  a minimum of approximately 2.7 M - ~ ~ 0 3 .  



Table 3.2. kache r  Model Dissolution Data U02-HN03 System 

Pel le t s :  PWR Rejects (0.370-in.-OD x 0.390-in. long, edges chipped) p 10.3 g/cc 

Dissolvent (HN03) U02 Pel le t s  Product (composite) Off- s Acid 
U02 Dissolution Flow W t  

Time Temp. Rate Vol Charged Loading H+ 
4 composition 

Run Batches $ Vol Nitrogen HN03 -mol NO; 
No. Qsed min 'C ml/min l i t e r s  g Dissolved g  liter H l i t e r s  g-mol Feed Bg-mol U 

25 No. 1 
No. 2 
No. 3 
No. 4 
No. 5 
NO. 6 
No. 7 
NO. 8 
No. 9 

26 ~ 0 . 1  

No. 2 
No. 3 
NO. 4 
No. 5 
NO. 6 
No. 7 
NO. 8 
No. 9 

27 ~ 0 . 1  

No. 2 
No. 3 
No. 4 
No. 5 
NO. 6 
No. 7 
NO. 8 
No. 9 







The composite product a t  apparent steady s t a t e  was 325-350 g lJ / l i ter  and 
approximately 4 M HN03. In comparing runs 26 and 27 a 5076 increase i n  t he  
H N O ~ / U O ~  mole raFio resul ted i n  approximately a 30% decrease i n  the  composite 
product uranium loading and approximately a 100% increase i n  the  composite 
product ac id i ty .  



4.0 SOLVENT EXTRACTION STUDIES 

A. D. Ryon 

The flooding r a t e s  and holdup data  reported t h i s  month were obtained 
using the  5$ TBP-1.8 M ~ ( ~ 0 3 ) ~  flowsheet. The experimental techniques and 
a description of the  columns may be found i n  the  October 1959 Unit Operations 
monthly report  (CF 59-10-77) . 
4.1 Flooding Rate Studies - R .  S. Lowrie, F. L. h l e y  

Studies were made t o  determine the  flooding r a t e s  f o r  aqueous continuous 
operation of sieve p la te  (0.125-in. -dia holes, 23% f r e e  a rea)  pulse columns 
under conditions s imilar  t o  the  545 TBP-1. 8 M M ( N O ~ ) =  flowsheet. Physical 
properties of the  solvent and aqueous feeds-are shown in  Table 4.1. Flood- 
ing r a t e s  f o r  aqueous continuous operation of  the  24 f t  compound extract ion 
scrub column where mass t r ans fe r  of uranium occurred increased from 580 t o  
2010 gal-ft'2hr'1 a s  the  pulse frequency decreased from 90 t o  50 cpm  a able 4 .2) .  
Flooding r a t e s  f o r  operation of the  24 f t  column with no scrubbing o r  mass 
t rans fe r  (recycle feed) ranged from 665 t o  > 1770 ga l  ft-2hr'1, as the  pulse 
frequency decreased from 90 t o  50 cpm and a r e  i n  good agreement with values 
obtained with mass t r ans fe r  ( ~ i ~ u r e  4 .1) .  Increasing the  r a t i o  of the  
dispersed phase t o  the  continuous phase from 3/10 t o  3/1, while holding the  
pulse frequency constant at  70 cpm, lowered the  flooding r a t e  from 933 t o  
287 gal  ft-2hr'1. 

The flooding r a t e  determined f o r  the  24 f t  column of 933 ga l  f tm2hr - l  
a t  70 cprn checked the  950 ga l  ft-2hr-1 at  70 cpm value obtained i n  a 12 f t  
column. 

4.2 Correlation of Data 

Flooding da ta  was correlated using the  method of Logsdail and Thornton 1 

whereby phase flow r a t e s  were re la ted  t o  the  dispersed phase holdup, x, and 
the  charac te r i s t i c  droplet  veloci ty ,  To, by means of Eq. 1 

V = veloci ty  of dispersed phase, f t / h r  
d 

V = veloci ty  of continuous phase, f t / h r  
C 

x = f rac t ion  dispersed phase holdup 

- 
V = cha rac t e r i s t i c  droplet  velocity,  f t / h r  
0 

'"liquid-liquid Extraction, Par t  X I V ,  The Effect  of  Column Diameter Upon the  
Performance and Throughput of Pulse P la te  Columns," Logsdail, D. H. and 
Thornton, J. D o ,  Trans., I n s t .  Chem. Engrs. Vol 35: 331-342 (1957). 
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Table 4.1. Physical  Proper t ies  o f  Tes t  Solutions 

Density Viscosi ty 
Solution g / ~  cent ipoise  Composition 

U-Feed 1-275 4.442 U, 2 .1  g/l?J H+, 0.17 -- M 
A 1 ( ~ 0 3 ) 3 ,  1-75 M 

Scrub 1.155 2.177 1 . 0  M ~ ( ~ 0 3 ) ~ ~  IF, 0.03 AD 
Solvent 0 765 1.42 5$ TEP i n  Arnsco 125-82 + 

Recycle Feed 1 275 3 425 1.75 M - M ( N o ~ ) ~ ,  0.16 M - H 

I n t e r f a c i a l  Tension 
Solution P a i r s  dynes/ cm 

Solvent ) 
Raf f i n a t e  ) 

Solvent 1 
Recycle ~ e e d )  

Loaded Solvent)  
Scrub ) 

A l l  measurements a t  25.C. 
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Table 4.2. Flooding Point Data 

Pulse 
Run Frequency Phase Ratio Flooding Rate 

No. CPm Solvent Scrub Feed ga l  ft'2hr'1 

24 f t  Compound Extraction Scrub Column-U Feed 

24 f t  Column - Recycle Feed 

12 ft Column - Recycle Feed 

- - - -- 

Pulse amplitude = 1 inch 



Fig. 4.1. Flooding curve - sieve plate extraction column. 



Plo t t ing  the  values of Vd + vCx/( l  - x)  vs x ( 1  - x)  calculated from the  
flooding t e s t  da ta  resul ted i n  a s e r i e s  of s t r a igh t  l i n e s  passing through 
the  or ig in  whose slope = vo, ( ~ i g u r e s  4.2 and 4.3, Table 4.3). The l imi t ing  
f rac t iona l  holdup a t  flooding can be calculated by Eq. 2. 

where V ~ / V ,  i s  the r a t i o  of the  dispersed phase flow t o  the  continuous phase 
flow. Using the  l imi t ing  xf values and To values, the  t heo re t i ca l  flooding 
ve loc i t i es  can be calculated using Eqs. 3 and 4. 

The ac tua l  and theo re t i ca l  phase ve loc i t i es  a t  flooding agreed qu i te  
well f o r  the  3/10 phase r a t i o  t e s t s   a able 4.4). However, a s  t he  r a t i o  of  
the  dispersed phase to the continuous phase increased, the  t heo re t i ca l  flood- 
ing ve loc i t i es  became progressively greater  than those ac tua l ly  measured. 
For simplicity,  the  above correla t ion assumed t h a t  the  holdup of  the  
dispersed phase was constant throughout the  column. Actually, holdup of 
the  dispersed phase varied markedly ( ~ i g u r e  4.4),  consequently flooding 
occurred a t  some point i n  the  column a t  a lower dispersed phase velocity 
than predfcted. Probably the  surface e f f ec t s  of the  p la tes  where l o c a l  
flooding occurred were d i f f e r en t  from those of the  majority of  p la tes  i n  
t h a t  they tended t o  form smaller dispersed phase droplets ,  resu l t ing  i n  
increased holdup. Further, as the  r a t i o  of dispersed phase t o  continuous 
phase increases, these surface e f f ec t s  would become increasingly important 
and ac tua l  flooding values should be progressively lower than the  predicted 
values, s imilar ly  t o  the  r e s u l t s  shown i n  Table 4.4. 



Fig. 4.2. Characteristic droplet velocity curves. 



Pulse Frequency 

cpm V d V c  - 
A 70 3/10 
a 70 1/1 
o 70 2/1 
A 7 0  3/1 

UNCLASSIFIED 

Fig. 4.3. Characteristic droplet velocity curves. 



-37- 

Table 4.3. Recycle Flooding Test 

Dispersed 
Pulse Phase Run Phase Fraction 

Run Frequency Ratio Time Flow Rate Holdup x 
No. CPm v,/v, h r  Vd, f t / h r  x x ( 1  - x )  c 

v + v, 
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Table 4.3. (Cont 'd)  

1)i.s D E S ' S : ? ~ ~  

Pulse Phase R u n  Phase Fraction 
Fun Frequency Ratio Time Flow Rate Holdup x 

vd/vc h r  Vd, f t / h r  
v + Vd No . CPm x x ( 1  - x)  -- C 

*Run No. 13 i n  12  f t  column. 

Pulse amplitude 1 inch - Aqueous continuous operation 
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Table 4.4. Calculated and Actual Flow Rates at  Flooding 

- - - - - - - - - - 

Phase Fract ional  Pulse - Calculated Actual 
Ratio Holdup Frequency vo vd 

f t / h r  f t / h r  
vd 

'dlvc *f CPm f t / h r  

Pulse amplitude = 1 inch 



Fig. 4.4. Holdup profile i n  sieve plate column. 



5.0 WASTE PROCESSING 

J. C .  Suddath 

The purpose o f  t h i s  program i s  t o  ob ta in  engineering information f o r  
design of  a hot p i l o t  p l a n t ,  which w i l l  demonstrate t h e  d isposal  o f  high 
l e v e l  waste so lu t ions .  During t h i s  period t h e  main emphasis w a s  on t h e  
c lose  coupled evaporator-calciner  with Purex type feed .  

5 . 1  Evaporator-Calciner Tes t  R-37 - C .  W. Hancher 

The purpose of  t h i s  t e s t  (R-37) was t o  demonstrate t h e  o p e r a b i l i t y  and 
con t ro l  of  a c lose  coupled waste evaporator and c a l c i n e r ,  previously 
described,  March and Apr i l  1961 Unit Operations monthly repor t s .  The 
evaporator  had an opera t ing  capacity o f  22 l i t e r s .  The ca lc ine r  pot  was 
8- in .  -d ia  by 94-in. long,  opera t ing  capacity o f  about 60 l i t e r s .  

The feed used w a s  simulated Purex 1TdW (40/ton of  U )  p lus  1 . 2  M o f  N a  - and 0 .2  M Mg added t o  reduce s u l f a t e  v o l a t i l i t y ,  Table 5.1. sodium was 
added a s - ~ a 2 ~ 0 4  and t h e  Mg a s  0 .  L M MgSOB and 0 . 1  M a s  MgO i n  t h e  simulated 
feed with t h i s  being t h e  only sulfKte i n  feed.   he a n a l y t i c a l  labora tory  
had d i f f i c u l t y  i n  determining Mg i n  t h e  feed samples, but  t h e  co r rec t  
amount w a s  added during feed make-up f o r  t h e  amount o f  s u l f a t e ,  s ince  t h e  
only s u l f a t e  i n  t h e  feed w a s  added e ~ $ h e r  as Na2S04 o r  MgS04. 

5.2 Evaporator-Calciner Control  and Operation 

Tes t  R-37 s t a r t e d  with t h e  evaporator f i l l e d  with cold feed and t h e  
c a l c i n e r  empty and cold  a able 5 .2 ) .  The evaporator  contents  a r e  heated 
t o  b o i l i n g  and then t h e  c a l c i n e r  i s  heated and f i l l e d  simaltaneously, 
requi r ing  about 30 min t o  f i l l  t h e  ca lc fne r .  A s  t h e  con t ro l  va r i ab les  
reach t h e i r  s e t  point  condit ions they were switched from manual t o  auto-  
matic con t ro l .  The con t ro l  s e t t i n g s  f o r  f i v e  cont ro l led  streams a r e  shown 
i n  Table 5.3. The system con t ro l l ed  s a t i s f a c t o r y  f o r  over 90% of t h e  t e s t  
 a able 5 . 4 ) )  during one period ( t e s t  time 6.0) c a l c i n e r  l i q u i d  l e v e l  probe 
plugged f o r  a shor t  pe r i sd  of  time, about 5 mfn. The con t ro l  w a s  s h i f t e d  
t o  t h e  higher e l eva t ion  l i q u i d  l e v e l  probe, Figure 5.1.  By t h e  time t h e  
probes were switched t h e  ca lc ine r  l e v e l  was low and t h e  evaporator l e v e l  had 
d r i f t e d  high and w a s  bo i l ing  a t  a high r a t e  ( 4  - 6 l i t e r s l m i n )  t o  reduce t h e  
l e v e l .  The ca lc ine r  removed a s i g n i f i c a n t  volume from t h e  evagorator a t  a 
high r a t e  and overshot s l i g h t l y .  The c a l c i n e r  and evaporator l i q u i d  l e v e l s  
o s c i l l a t e d  f o r  about 3 h r s ,  before it w a s  manually brought back i n t o  c o n t r o l  
i n  a few minutes. Major upsets  had t o  be con t ro l l ed  manually. 

The feed r a t e s  var ied  from 4 t o  70 l i t e r s l h r ,  t h e  average r a t e  w a s  
21.0 l i t e r s l h r .  The water add i t ion  r a t e  was 3 t o  172 l i t e r s l h r .  The water 
i s  added t o  remove t h e  n i t r i c  ac id  from t h e  evaporator by s t e m  s t r i p p i n g .  
Evaporator a c i d  i s  held a t  6 M o r  below t o  reduce Ru v o l a t i l i t y ,  no cold 
o r  radioact ive  Ru w a s  used i n t h i s  t e s t .  The water t o  feed r a t i o  was 0.05 
t o  5.80, t h e  average r a t i o  was 2.4, Figure 5.2. The concentrat ion o f  
evaporator  ac id  was con t ro l l ed  by evaporator temperature and water add i t ion .  
The evaporator  temperature s e t  point  was 1 1 3 ' C ,  which w a s  predetermined t o  
be approximately 6 M - HN03 a t  -0.5 ps ig  and a Fe concentrat ion 25 t o  30 g / l i t e r .  
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Table 5.1. Test R-37 Feed-Purex (40 ga l l ton  U )  

- - - - - 

H N o 3  Fe Al so4 N a  Mg 

A s  made up 4 . 1  6.1 0 .5  0 . 1  1 .0  1.8 0.2 

A s  analyzed 
Tank 1 3.6-4.3 6.0-6.1 0.49-0.51 0.11 1.0-1.1 1.6-1.8 0.09-0.11 
~ a n k  2 3.6-4.3 6.1 0.49 0.11 0.98-1.1 1.6-1.8 0.08-0.11 
Tank 3 3.4-4.2 6.1 0.48-0.49 0.11 1 .0  1.2-1.8 0.11-0.18 

Table 5.2. Test R-37 Operation Log 

Test 
Time Time 
Hour Hour 

-.-a 

~ : O O  A 0 S t a r t :  Empty-cold calc iner  
Full-cold evaporator 

9:30 A 0.5 Calciner f u l l  

11:30 A 2 .5  Calciner l i qu id  l e v e l  probe plugged 

12:OO A 3.0 Calciner l i q u i d  l e v e l  probe plugged 
Added 50 cc/min water 

~ : O O  P 6.0 Calciner l i qu id  l eve l  went high, plugged probe, 
when unplugged then low. Meanwhile evaporator 
went high, s t a r t e d  t o  b o i l  f a s t ,  then f i l l e d  t h e  
calc iner  and went low. Cycle repeated. Took 
3 hrs  t o  re tu rn  t o  good control .  

7:OO P 10.0 Water t o  evaporator manual (20 l i t e r l h r )  

12:00 A 15.0 Everything normal, ca lc iner  feed r a t e  low 

4:00 A 19.0 Stop: Stopped feeding ca lc iner  

6:00 A 20.0 s top :  Stopped evaporator operation 

6:00 A 20.0 Stop: Stopped calc inat ion 
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Table 5.3. Control Set t ing f o r  Test R-37 

Dev* 
Control Control Prop. Set from Set 

Variable Range Band Reset Point Point 
0-100% % min % 0,' 10 

Evaporator Liq Level 7.4-35.0 100 10 50 40-85 
l i t e r  

Evaporator Density 1.0-1.5 200 10 65*** 57-71 
g/cc 

Evaporator Temperature 101-128'~ 100 10 50 30 -90 
Evaporator Pressure -5 t o  +5 50 0 3 40 40-60 

psig  
Calciner Liq Level 44-52 25 3 50 48- 62*-* 

l i t e r  

* Deviations of hourly reading 
** A t  end of t e s t  went t o  100% f u l l  

*** Approximately 30 g / l i t e r  Fe 

Table 5.4. Operational L i m i t s  f o r  Test R-37 

- --  -- - -- 

Operational* 
Set Reading 

L i m i t  "A" L i m i t  "B" Point L i m i t  "C" L i m i t  "Dtt min max 
Upper Upper Lower Lower 

Operational Desired Desired Operational 
L i m i t  L i m i t  L i m i t  L i m i t  

Evap . ( sca le  % 90 65 50 3 5 2 5 40 85 
Liq Level ( l i t e r s  33 2 6 22 18 15 19 31 

Evap . (scale  % 80 70 65 50 40 5 7 71 
Density (g/cc 1.40 1.35 1.32 1.25 1.20 1.27 1.36 

Evap . (scale  $ 90 60 50 20 0 30 90 
Temp. ( "C 122 115 113 107 103 109 122 

Evap . ( sca le  % 45 42 40 38 35 40 
Pressure (psig 

60 
-0.5 -0.75 -1.0 -1.25 -1.5 -1.0 +1.0 

Calciner ( sca le  $ 30 40 50 60 70 48 62 
Liq Level ( l i t e r s  5 8 59 60 61 62 59 61 

- 

* Recorded hourly reading 
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Fig. 5.1. Calciner pot R-37. 
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TEST TIME - HOURS 

Fig. 5.2. Test - R-37. Feed, water, and condensate flowrates as a function of time. 



The control  of variables has been evaluated by the s e t t i ng  of l im i t s :  

L i m i t  "A" Too high, out of control ,  dangerous 
L i m i t  "B" Upper l i m i t  of good control  
L i m i t  "C" Lower l i m i t  of gocd control 
L i m i t  I ' D "  Too low, out of  control ,  uneconomical 

The evaporator temperature control  was very good. Only two high readings, 
once above "A" l i m i t  and once above "B" l i m i t ,  and no low readings, Figure 5.3. 
Hawever the  actual  acid  concentration deviated more than the  temperature 
indicated deviation, Figure 5.3. The one high acid concentration was probably 
due t o  a low Fe concentration below l i m i t  "C" a t  t h a t  time. 

The density o f  evaporator content was used t o  determine the  dissolved 
sol ids  a s  n i t r a t e  s a l t s  which i n  tu rn  were expressed a s  Fe concentration 
since Fe i s  the  major consistent .  When the  density was low, feed was added 
t o  the  evaporator. The density was twice above l i m i t  "B", t h i s  was the  only 
control  d i f f i c u l t y  (Figure 5.4).  However, the  Fe concentration was below 
l i m i t  "C" twice and above l i m i t  "B" once. The density and Fe concentration 
followed each other very well.  

The evaporator pressure controlled very well  a able 5.3) : 90% of t h e  
time the  process controlled -1.0 + 0.25 psig. - 

The n i t r a t e  i n  the  condensate was 72$ of the  n i t r a t e  i n  t he  feed. The 
remaining NO3 i s  assumed t o  be i n  the  sol id ,  since it i s  not completely 
calcined. The su l f a t e  i n  the  condensate was 0.75% of the  feed, and the  
su l fa te  i n  the  so l id  was 92% of the  feed. 

The non-condensable off-gas was 391 cu f t  o r  0.97 cu f t / l i t e r  of feed. 
This i s  about 4 t o  5 times the  volume of  non-condensable off-gas from t e s t  
R-36  a able 5.5).  

5.3 Calciner Pot Corrosion 

In a l l  of the  other pot calcination t e s t  made t o  date,  corrosion has 
not been serious.  In t e s t  R-37 a number of holes ( 5  t o  8) about 2-in. d i a  
corroded through the  calc iner  pot a t  60 t o  65 i n .  from the bottom of the  
pot .  There a l so  was l oca l  overheating i n  t h i s  area  of the  calc iner  pot 
from furnace sect ion No. 2, Figure 5.1. 

There a r e  5 thermocouples per furnace sect ion:  

A = center of pot - record 
9 = ins ide 1 in .  from wall of pot - record 
C = outside of pot - record 
C = outs ide of pot - control  
C = i n  furnace section - control  

The power t o  the  furnaces was controlled by a thermocouple attached t o  
the outside of the  calc iner  pot a t  a s e t  point  of 900 '~ .  The furnace thermo- 
couple i n  t he  furnace was t o  l i m i t  i t s  temperature t o  about 1150 t o  120O0C. 
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Fig. 5.3. Evaporator-calciner test - R-37. Evaporator acid and evaporator temperature as a function of test time. 
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Table 5.5. Test R-37 - System Results 

Ni t ra te  Balance 

System input 2469 g moles 
System recovery 

(condensate - 1776 g mol = 72% 
(off-gas - unknown 
( so l i d  - 86 g mol = 3.5% 

Sulfa te  Balance 

System input 390 g mole 
System recovery 

(condensate - 5.0 g mol = 0.75% 
( ~ f f - ~ a s  - unknown 
( so l i d  - 360 g mol = 92.0% 

Off -Gas 

831 cu f t  t o t a l  
440 cu f t  leakage and gas purge (20 cu f t / h r ,  25% and 75%) - 
391 cu f t  of generated non-condensables 

3911404 = 0.97 cu f t l l i t e r  of  system feed 

Feed Rate 

Water Rate 

983 l i t e r  of water; water t o  feed r a t i o  = 9831404 = 2.4 

Calcined Solids 

78 kg solids168 l i t e r  = 1.15 g/cc bulk densi ty  



A t  t e s t  time 17.0 a l l  of thermocouples appeared t o  be operating sa t i s f ac to r i l y .  
Apparently thermocouple (58-in. - C )  t o  the Wheelco control  fo r  the  furnace 
section No. 2 was then destroyed by corrosion and reported a low temperature 
which caused furnace section No. 2 t o  overheat,  a able 5.6).  The overheat- 
ing occurred a f t e r  the  pot had corroded through. The pot was 100 m i l  3 0 4 ~  
s t a in l e s s  s t e e l .  The a rea  a t  the elevation around the holes was reduced t o  
about 25 m i l  thickness ( ~ i g u r e  5 .5) .  

One possible explanation of the corrosion i s  t h a t  MgS04 decomposed a t  
900°C, freeing SO3, which mixed with HN03 available a t  the  corroded zone. 
The corroded zone was approximately the  operating l iqu id  leve l .  In R-36 
with no Mg o r  N a  there  was plenty of SO4 t o  corrode completely the ends of 
the  l iqu id  leve l  probes and feed l i nes ,  but the  wall was not attacked 
 able 5.6).  In R-37 the  feed and leve l  l i n e s  were not corroded. Complete 
data over the  feeding cycle a re  presented i n  Table 5.7. 

Calcined Solid. The calcined so l ids  had a bulk density of 1 .15  g/cc 
 able 5.5). When the  calciner  pot was s l i t  from end t o  end and half  of the  
metal s h e l l  removed ( ~ i g u r e  5.6))  it was noted that the  midsection of the  
calciner was empty except for  a t h i n  outer  f i lm from 114 t o  112 in .  th ick .  
The bottom appears t o  have melted (Figure 5.7).  The top ( ~ i g u r e  5.8) had 
not been calcined. The so l id  was red-yellow and smelled of sulfur .  



Table 5.6. Temperature Test Time 17.0 t o  20.0 

at the  Top of Calciner 

Thermocouples - ( ~ i ~ u r e  5.1) 

Inches 
from A B C D 

Bottom @C *C C 'C 

920 + 925 1125 1150 

980% 4 1060 1000 4 1040 

1000 4 950 900 4 850 

* Thermocouple (58 in .  - C )  t o  Wheelco control  was corroded in to  when 
calc iner  pot was removed from the furnace a f t e r  the  t e s t .  
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Fig. 5.5. Thickness of calciner pots after testing. 



Table 5.7. Waste Evaporator-Calciner  Tes t  R-37 (Purex Xaste)  

Purex Waste (40 g a l l t o n )  + 1 . 2  M Na and 0 .2  M Mg 

Water Ca lc iner  
System System To M o l  Evap. Evap. Ca lc iner  Ca lc iner  Temp. 

T e s t  Feed Water Feed System System N O 3  Mol NO3 Evap. Evap. Fe Evap. Steam Meat Temp. a t  Midsection 
Time Purex Feed Ratio Condensate Off-gas Input  Condensate D ~ n s i t y  Temp. Conc. Pcid Temp. Input Feed Po in t  Center 
h r s  l i t e r s  l i t e r s  Rat io l i t e r  cu f t *  g mol g mol g/cc O C  g / l  m1 "C Dlii 'C *C 

* System leakage and purging = 20 cu f t / h r  
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