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ABSTRACT

The effects of seismic vibrations on the dynamic "behavior of a com

posite system have "been analyzed. The equations of motion were derived

and solved with special emphasis on determining the resulting stresses.

The method of analysis thus developed was applied to the composite struc

ture consisting of the core, pressure vessel, and supporting skirt of the

Experimental Gas-Cooled Reactor (EGCR). A system with three degrees of

freedom was considered in order to determine the effects of an earth

quake of the maximum intensity expected in the area surrounding Oak Ridge,

Tennessee.

The system of equations of motion was solved both numerically and

analytically, and the resonant frequencies were determined. The seismic

effect was shown to be small when the frequency of the seismic disturbance

coincided with a natural frequency of the system. In particular, the

shear stresses in the graphite core were shown to be negligible.

111





CONTENTS

Page

Nomenclature vii

1. Introduction 1

2. Equations of Motion Without Damping 2

3. Equations of Motion With Damping 10

4. Solution of the System of Equations 12

5. Seismic Results for the EGCR 18

Appendix A

Material and Geometrical Constants for the Analysis 27

Verification that Eq. (23) Adequately Approximates
Eq. (22) 29

Appendix B

Analog Solution of the Equations of Motion 30





NOMENCLATURE

A = maximum amplitude of sine wave into which it is assumed graphite
columns bend (function of time)

b = vertical distance from lower end of graphite columns to intersection

of supporting skirt with reactor vessel

C = bending stiffness of supporting skirt; moment required to give top
rim of supporting skirt one radian of angular displacement about
any diameter

C = damping coefficient for the A degree of freedom

CQ = damping coefficient for the 9 degree of freedom
a

C. = damping coefficient for the x degree of freedom

E = modulus of elasticity of graphite

g = acceleration of gravity

G = location of average center of gravity of entire reactor; assumed to
be at center of gravity of pressure vessel

h = distance between plane of top rim. of support skirt and point G

I = moment of inertia of a cross section of a graphite column with re

spect to neutral axis of cross section

I = mass moment of inertia of core about a horizontal axis through G

I = mass moment of inertia of pressure vessel and core about a horizon-
g

tal axis through G

I = mass moment of inertia of pressure vessel about a horizontal axis
^ through G

ki = shear stiffness of supporting skirt; force required to displace top
rim of supporting skirt a unit distance horizontally with respect
to bottom rim

L = length of graphite columns in reactor core

M = total mass of reactor

mi = mass of reactor excluding graphite core

m.2 = mass of reactor core

n = number of graphite columns

S = absolute horizontal displacement of earth during an earthquake

x = absolute horizontal displacement of intersection of supporting skirt

with reactor vessel; positive to the right; function of time

y = displacement of any point on a graphite column measured perpendicu
lar to a straight line through upper and lower ends of column; posi

tive to the right
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z = axis along length of undeflected graphite column measured from lower
end of column; positive upward

p = mass of reactor core per unit length (1112/L)

6 = absolute angular rotation of axis of reactor pressure vessel; fun-
tion of time

5 = damping factor for the x degree of freedom; i.e., ratio of damping
present to critical damping in x coordinate

5. = damping factor for the A degree of freedom; i.e., ratio of damping
present to critical damping in A coordinate

damping factor for the 6 degree of freedom;
present to critical damping in 6 coordinate

6 = damping factor for the 6 degree of freedom; i.e., ratio of damping
C7
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EFFECTS OF SEISMIC VIBRATIONS ON THE EXPERIMENTAL

GAS-COOLED REACTOR

F. J. Witt D. R. Carver*

R. L. Maxwell**

1. Introduction

Seismic disturbances may cause failure or malfunctioning of impor

tant components of a nuclear reactor, and, in areas where significant

disturbances can be expected to occur, the dynamic behavior of the re

actor components must be examined. In particular, the Experimental Gas-

Cooled Reactor (EGCR) must be designed to withstand loadings caused by

the earthquakes which may occur in the East Tennessee area. The motion

of the earth and the accompanying accelerations of the base of a structure

during a quake impose both lateral and vertical forces on the supported

members. The initiating factor of an earthquake is a sudden shear fail

ure at some dislocation in the earth's crust and subsequent readjustment

of the shear stresses from the focal region outward; hence, a disturbance

is a response to one or more impulses and is definitely not periodic. In

predicting the behavior of a structure under seismic loadings, however,

the maximum accelerations for the ground movement and the nature of the

response for a body with periodic vibration characteristics to the non-

periodic ground motion must be known. Using accelograms from recorded

quakes, Biot1 determined the response of a single-degree-of-freedom ideal

oscillator with varying natural periods and found that the maximum ac

celeration occurred when the period of the oscillator was between 0.1 and

0.5 sec. Particular attention was given to this range of periods in the

analysis.

In the absence of adequate data, the U. S. Coast and Geodetic Survey

was asked to set a value for the maximum horizontal acceleration to be

*Professor, Engineering Mechanics Department, Louisiana State University.

**Professor, Mechanical Engineering Department, University of Tennessee.

M. A. Biot, "Analytical and Experimental Methods in Engineering
Seismology," Trans. Am. Soc. Civil Engrs. 108, 365 (1943).



used in designing the EGCR. The value given was 5% of that due to gravity,

and the vertical acceleration was taken as one-half this amount. Based

on these facts, an analysis was made that considered only horizontal and

angular displacements of the composite structure consisting of the core,

pressure vessel, and supporting skirt.2 The nozzles on the pressure ves

sel and the primary coolant piping were not taken into account, and all

the graphite columns were treated as having identical geometries. The

graphite columns were assumed to behave under lateral loadings as simply-

supported beams, and since graphite is a structurally weak material,

special attention was given to the seismic shear stresses in the core.

A simple harmonic function was chosen to represent the ground motion.

The equations of motion are derived in Sections 2 and 3, and the

exact solution of these equations is obtained for a particular type of

disturbance in Sections 4 and 5. Appendix A gives the numerical con

stants used, and Appendix B presents a comparison of exact and analog

computer results. The authors are indebted to B. Y. Cotton who did most

of the numerical work associated with this analysis.

2. Equations of Motion Without Damping

The simplified model which includes only the support skirt, pressure

vessel, and core of the Experimental Gas-Cooled Reactor is shown in Fig.

1. The reactor building and containment vessel are assumed to follow the

motion of the earth, with very little or no buildup of ground accelera

tion. The pressure vessel is assumed to have horizontal and rotational

motion with the top and bottom of the core rigidly fixed to the pressure

vessel. As noted above, it is assumed that the graphite columns deflect

together as beams simply supported at the ends; hence, it is assumed that

they deflect into a sine curve of the form

Experimental Gas-Cooled Reactor Preliminary Hazards Summary Report,
ORO-196, May 1959. In this report each graphite column was considered to
consist of five blocks of equal length fastened together by threaded graph
ite pins. However, monolithic columns will actually be used, and there
fore the analysis described here was made using the monolithic column
concept.
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Pig. 1.
Motion.

Model of EGCR Illustrating the Three Degrees of Freedom of

y = A sin
7TZ

L
(1)

where A is a function of time. This freedom of movement is illustrated

in Fig. 1 by a', which is the location of a point in the core before a dis

turbance, and a, which is the instantaneous location of this point after

a disturbance. Also G/ and G illustrate the instantaneous displacement



of the center of gravity of the pressure vessel. The absolute horizontal

motions for a and G are x + (b + z)6 + y and x + [b + (L/2)]0, respec

tively. A horizontal force-moment diagram for the reactor is shown in

Fig. 2, with the external and inertia forces indicated. The deflections

are considered to be small. The equations of motion are developed first

without considering damping, and the damping effects are then included.

Since the seismic restraints are not in actual contact with the pressure

vessel, no credit is taken for restraint at their elevations.

k^S-x)

UNCLASSIFIED
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P^x +(d +z)9+y]c/z

mJx +(b+V2)e]

Fig. 2. Horizontal Force-Moment Diagram for the Pressure Vessel and
Core.
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Summing the horizontal forces in Fig. 2 yields

ki(S -x) =mi x+(h +|j 0 +J" p[x +(b +z)0 +y] dz , (2)

where the dots denote derivatives with respect to time. Since the de

flection is in the form of Eq. (l),

p/ [x +(b +z)9 +y] dz =PL x+(b +|j 0+-A , (3)

and because pL = m2, Eq. (2) becomes

2m2
Mx + Mh0 •+ A + kix = kiS ,

7T

(4)

where h = b + (L/2).

Each graphite column is assumed to be simply supported at the top

and bottom, and, in dynamic equilibrium, should satisfy the vibrating

beam equation. Thus,

d*y P
EI = [x + (b + z)0 + y] ,

Sz4 n
(5)

where n is the number of graphite columns. When the expression for y is

substituted into this equation, it becomes

EItt4, ttz p
A sin — =

L4 L n

7TZ

'x + (b + z)0 + A sin —
L

(6)

No attempt is made to satisfy the equation at each point z along the axis

of the columns. Instead, the total forces along the beams are made to

be in equilibrium; that is, both sides of Eq. (6) are integrated with re

spect to z from 0 to L. The resulting equation is then solved exactly.



ThusJ

or

Tr m2

2EI — A + —

LJ n

x + K)
2A"

0 + = 0

7T

m.2 nigh -; m2 ,, ir
— x + 0 + — A+EI — A = 0 .

2n 2n mr

(7)

(8)

Before deriving the rotation equation, expressions were found for

the dynamic shear forces at the top and bottom of the graphite columns.

A free-body diagram of the ith column, which is at a distance q. from, the

center plane of the pressure vessel, is shown in Fig. 3. The coordinate

q. is considered positive to the right of the center plane. The shear

ing forces at the top and bottom of the ith column are designated Hii and

H21, respectively. Since the displacements are small, the transverse

components of the horizontal forces are considered equal to the forces

themselves. Also, the vertical component of displacement of an element

of a column is taken to equal q0 rather than (q + y)0, since the product

y0 is of second order. In the remaining derivation all nonlinear terms

are neglected.

The overturning moment from the shift in the location of the center

of gravity of the core is negligible. Also, changes in the moment of in

ertia of the core from deflection of the core columns are neglected. A

summation of the horizontal forces in Fig. 3 yields

Hi: + H2i =£ J [x + (b + z)0 + y] dz (9)

The variational procedure with the same assumptions yields a slightly
different Eq. (8). The coefficients of the coupling terms, m2/2n and
m2h/2n, are 4m2/ir2n and 4m2h/ir2n, respectively, by the variational pro
cedure. Neither equation is exactly correct.
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£ dz [qQ - g)

jj dz lx + (b + z)8 +/J

"2/

mzg<2y pp .,

Fig. 3. Free-Body Diagram of a Graphite Column.

As before y = A sin (ttz/L) and pL = m2, so Eq. (9) becomes

Hii +
m2 [".. / L\ . 2A

IT

do)

The summation of moments about point P., neglecting secondary effects

from column bending, yields

rHijL =£ J [x + (b + z)0 +y]z dz +J f (q.0 - g)y dz . (11)
n -'o n ^o ±

Hence,

m2

Hii = —
n

"x /b L\

-+(- +-) 0
.2 \2 3/

A 2(^0 - g)A
+ — +

TT 7TL

(12)



Equations (10) and (12) may be combined to give

m2 ("x /b L\ ..

n |_2 \2 6/

A 2(q.0 - g)A"
H2i = — I-+I- + -I0 + -

7T TfL

(13)

If Hi and H2 are the total shear forces at the top and the bottom

of the core, respectively, then

l=S HH <U)H

and

H2 =J H2i • (15)
i

Thus, because of symmetry, these shear forces are

*-«[f*(M*-l-£J <16)
and

These expressions for Hi and H2 can now be used to derive the equation

of rotational motion. From the free-body diagram shown in Fig. 4, the

moments about the center of gravity, G, of the pressure vessel are sum

med. This gives

Ip0 +C0 +Hi I-H2 §-ki (x -S) (b +|j -Mg0 fb +IJ +

+— \Z (qi'^ "g)qi =° • (18)n L i J
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£(q.9-g)

fc^x-S)

Fig. 4. Free-Body Diagram of the Pressure Vessel.

By substituting for Hi and H2, Eq. (18) becomes

Cp5 +m* (S +̂ I <) °+(C - Mgh)0 - kihx -

2m2gA
= -kihS

IT

(19)



In Eq. 19

m2 £ +;§*)8-|r[?(iH]|8 • (20)
Considering the graphite column as a thin rod, (m2/n)[(L2/l2) + q£] is
the moment of inertia of the kth column about the center of gravity of

the core. Thus, Eq. (19) becomes

or

2m2gA
(I + I )0 + (C - Mgh)0 - kihx = -kihS (21)
P C TT

2m2gA
I_0 + (C - Mgh)0 - kihx = -kihS . (22)
G

IT

In Appendix A it is shown that for the case under consideration Mgh and

2m2gA/7T are small. Thus, Eq. (22) becomes

I_0 + C0 - kihx = -kihS . (23)
Lr

3. Equations of Motion With Damping

In the previous section an undamped system was considered and the

corresponding equations were derived. It will now be assumed that the

system is subjected to viscous damping, as indicated in Fig. 5. For each

equation of motion the damping coefficient is of the form 2sVkM, where

M is the mass of the system described by the equation, K is the spring

constant, and 6 is the ratio of the actual damping to the critical

damping. Thus, in order to include the effects of viscous damping on

the equations of motion [Eqs. (4), (8), and (23)], the x coordinate is

coupled to the S motion by a retarding force C (x — S), the bending

10
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Fig. 5. Damping Diagram for the Pressure Vessel and Core.

vibration is damped by a force C A, and rotation is damped by a force

C„0. The coefficients C , C„, and C„ are given by
0 x' A' 6

C = 2SY>7kiM ,
x

(24)

CA = 2&A
EItt m2/EI7T3

L3 XITT
(25)

11



and

CQ =2oeVci^ , (26)

where 5 , &„, and &^ are the damping factors and are defined as the ratio
x' A' 0

of the damping present to the critical damping for the x, A, and 0 degrees

of freedom, respectively.4" A reasonable range for these damping factors

is from 0 to 0.4, and for most structures* they are less than 0.2. Since

the actual values of these factors are not known, parametric studies were

made, as described later.

Thus, the equations of motion become

and

2m2 ..
Mx + C x + kxx + Mh0 + A = kiS + C S , (27)

IT

m2 .. . EItt3 ni2 .. ni2
— A + C A + A + — x + — h0 = 0 , (28)

A •3mr L 2n 2n

In9 + Ca6 + C0 - kxhx = -kihS . (29)
G 0

4. Solution of the System of Equations

The system of equations was solved using digital computers and the

classical method of computation.5 By this method the natural frequencies

are determined, and the transient and steady-state portions of the solu

tion may be separated. The remainder of this section is devoted to a

discussion of the solution of the system of equations.

*F. B. Seely and N. E. Ensign, Analytical Mechanics for Engineers,
4th Edition, John Wiley and Sons, Inc., New York, 1952, pp 368-79.

5T. von Karman and M. A. Biot, Mathematical Methods, McGraw-Hill
Book Co., Inc., New York, 1940, pp 37-42.
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The homogeneous part of the solution is considered first. It is

assumed that

and

xH = D'e

AH=FA

at

at

at0H = G7e

(30)

(31)

(32)

where the subscript H designates the homogeneous portion and D7, F7, G7,

and a are constants to be determined. When these expressions are substi

tuted into Eqs. (27), (28), and (29), the following system of linear si

multaneous equations in D7, F7, and G7 is obtained.

2m2
a"- MtacrMa^ + C a + kx

x x
IT

m2 m2 EItt3 m2ha2
— of

2n

-kih

— a* + C„a +
A t3TLTT LJ 2n

I~a2 + CQa + C
G 0

p ~ • -

D7 0

F7 = 0

G7 0

L . -

(33)

For a nontrivial solution to exist, the determinant of the matrix must

be zero. This yields a sixth-degree polynomial in a and is called the

characteristic equation. Thus

where

Pia6 + P2a5 + p3a4 + P4a3 + P5a2 + P6a + p7 = 0 ,

Pi =

(Mm2

nir

(34)

(35)

13



m2lG
P2 = Cx + MIGCA+( )Cfl , (36)

TOT

(Mrri2 m2\

)C0 >
nrr nir/

(MEItt3 kimgX /Mm2 m2\

~^ +—Km )
LJ nir / \n7r nrr/

kih2 m2
+ (Mm2 - m2) + IQCxCA + MC^ + — C^ , (37)

mr mr

\ L3 nir /
P4 =( ^ + — C] Cx + (kilQ + MC + kiMh2)CA +

(MEItt3 m2\

— +kl-)C0+"x"A"0:)ki — c« + CYCflCfl , (38)

EItt3 MEItt3 \ m2 Mh2El7T3(' EItt3 MEItt3 \
ki + C)

L3 L3 /
P5 = (ki —— + —:— C| I + ki — C + ki +

mr L3

EItt3

3
+ — cxce + kiCAce + ccxcA , (39)

EItt3 EItt3
P6 = CC + kiCCA + kx C_ , (40)

L3 X L3 9

EItt3
P7 = ki C . (41)

L3

Each root of the polynomial guarantees the existence of a solution. Hence,

the complete homogeneous solution becomes

*H - j

14

L D.e J , (42)
j=l



at

ae = £
j=l

F .e

9H = Z Gje
j=l J

a.t

(43)

(44)

The 18 constants of integration are reduced to six by solving two of the

equations in the system for two of the unknowns, D . and F ., for example,
J J

in terms of the third, G.. This gives
J

F. =
3

TT

2m2

I^a* + C_a. + C
D = G J e J

j kih
G

Mb. + 1 Ml_a. + MCna. +MC +LC a. +
G j 0 j G x j

kih

C C

+ C C. + — + kiIG +
x 0

a.

kiCe kiO
h —

2
a. a.

The roots of Eq. (34) occur in complex conjugate pairs of the form

a. = t. ± ia.
3 3 3

(45)

(46)

(47)

When the expressions given in Eqs. (45), (46), and (47) are used in Eqs.

(42), (43), and (44), the following set of equations is obtained:

v T>tx^ = /, e (H. cos a.t — I. sin a.t) ,
H >r-| 3 3 3 3

T.t

ATT = /, e J (J. cos a.t — K. sin a.t) ,
" H 3 3 3 3 '

(48)

(-49)

15



where

v V9„ = A e d (L. cos a.t - M. sin a.t) , (50)
H ., 3 3 3 3

H. = (2D.)R , (51)

I, = (2D,)T ; <52>

J. = (2F.)R , (53)

K. - (2F.)I , (54)

Lj = (2G.)R , (55)

M. = (2G.)T . (56)

The subscripts R and I signify the real and imaginary parts, respectively,

which are obtained6 by using the plus sign in Eq. (47). It should be

noted that the real parts of the roots of the characteristic equation

are the damping exponents and the imaginary parts are the resonant fre

quencies.

The forcing function, S, is assumed to be of the form

S=]] \ cos (wkt + </>k) . (57)

Since the system of equations is linear, particular solutions are addi

tive. Thus, only one term of Eq. (57) needs to be considered. Sub

scripts p will denote particular solutions. If

6A real forcing function will be used; hence, the solutions are real
and the results given here follow.
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S = S0 cos (w0t + 4>0) = (S0 COS 0O) cos w0t —

— (Sq sin </>o) sin Wgt ,

then the particular solutions are of the form

x = No cos Wot + Oo sin Wot

A = Pq cos w0t + Q0 sin w0t

0 = Rq cos wot + Tq sin wot
ir

(58)

(59)

(60)

(61)

By substituting Eqs. (59), (60), and (61) into the system of equations,

a linear simultaneous system results that is given here in matrix form.

2 2m2 2
-Mw0 + kj Cxw0 w0

Cxw0

2
ni2W0

2n

-kih

MVfn - ki 0

ni2Wo

w0 -Cawo

0

0

2n

EItt3

2m2 2
w0

CAw0

112 2
• — W0

EItt3

2

-Mhwo

"2 2
— hw0
2n

Mhwo

ra2hwo

2n

-Iqwo + C Cew0

2

S0(k! cos (j> —

- Cxw0 sin (j>)

S0(k! sin 0 +

+ Cxw0 cos 0)

0

0

--kihSo cos

kihS0 sin 4

(62)

The solution of this system yields the particular solution. Thus, par

ticular solutions are of the form.

x = ), (N, cos w, t +0, sin w, t)
p V v k k k k '

A = ), (R cos w, t + Qn sin w, t)
V u ^ k k k '

k

(63)

(64)

17



0

p k
=S (\ cos wk*+ Tksin wkty • (65)

The complete general solution is then

x = ), e J (H. cos a.t - I. sin a.t) +
H 3 3 3 3

+ /, (N. cos w, t + 0n sin w, t) (66)
t-> k k k k
k

A = /, e J (J cos a.t — K. sin a.t) +
A j ^ J J

+Yj (pk cos wfet +0^ sin wfct) (67)

0 = /, e J (L. cos a.t — M. sin a.t) +
J=l J J J J

+Y (\ cos wkt +Tk sin wfet) . (68)
k

For the problem under study, the initial conditions on the general solu

tion are

x=A=0=x=A=0=O . (69)

5. Seismic Results for the EGCR

A listing of the constants which apply to this analysis and an

explanation of how some of these constants were derived is given in Ap

pendix A. Substituting the constants into Eqs. (27), (28), and (29)

yields

18



x = 19.0830 + 0.1946A + 410.825 x +
x

+ 42193x = 410.828 S + 42193S
x

x + 19.0830 + 0.6366A + 86.3215 A + 3043A = 0
1\.

+ 323.325 0 + 261340 - 6546x = -6546S .

(70)

(71)

(72)

As previously noted, the damping factors must be considered as pa

rameters. Various combinations of these factors were taken and corre

sponding damping exponents and damped natural frequencies were found.

The results of this procedure are shown in Table 1. Theoretical analyses

have shown that considerable damping is required to alter noticeably the

natural frequencies of structures of this type. This is borne out in

Table 1.

While Eq. (57), considered as a Fourier series, could be made to

describe any random motion, such a consideration may not be necessary.

Should the impressed frequency coincide with a natural frequency,

Table 1. Natural Frequencies and Damping Exponents
for Certain Damping Factors

Damping Factors
teal and Imaginary Parts of Character

(Damping Exponents and Natural F:
ristic Equation

8
X &A &0

requencies)

0 0 0 [0, 58.53)a [0, 102.1) [0, 452.3)
0.03 0.03 0.03 J-1.318, 58.52) [-3.45, 101.98) [-11.89), 452.2)
0.05 0.05 0.05 [-2.196, 58.49) [-5.749, 101.8) [-19.81, 452.1)
0.1 0.1 0.1 {-+.388, 58.38) [-11.49, 101.22) [-39.64, 451.3)
0.4 0.4 0.4 [-16.72, 59.88) [-45.91, 81.37) [-159.4, 437.0)
0.01 0.15 0.01 [-4.896, 58.98) [-9.172, 100.5) [-5.155, 452.2)
0.05 0.1 0.05 [-3.772, 58.54) [-8.631, 101.4) [-20.24, 451.99)
0.05 0.15 0.05 -5.367, 58.71) -11.50, 100.7) (-20.66, 451.9)
0.1 0.2 0.1 [-7.567, 58.60) -17.24, 99.52) [-40.47, 450.9)
0.15 0.2 0.1 -7.828, 58.44) (-18.27, 99.54) -53.98, 449.6)

The first number of each pair is the damping exponent and the

second number is the natural frequency in radians per second.
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amplitudes of the forced vibration should approach maximum values. The

ground accelerations associated with an earthquake may be larger than

those predicted by the U. S. Coast and Geodetic Survey, and the most

important feature of the structure is that there must not be large magni

fications of the displacement amplitudes when resonances occur. Hence,

a forcing function with a frequency near that of the natural frequency

for the structure was used in this investigation.

In the solution that follows the damping factors were 5, 15, and

5% of critical for the x, A, and 0 coordinates, respectively.7 For this

case the natural frequencies are 9.3, 16.0, and 71.9 cycles per second

(58.71, 100.7, and 451.9 radians per second). For the forcing function,

Eq. (57), S , w , and <j> were chosen so that resonance existed at the

lowest natural frequency, and the maximum acceleration was 0.05 g, that

is,

S = -4.670 X 10-4" cos 58.71 t . (73)

The displacement as a function of time is plotted for each of the co

ordinates in Figs. 6, 7, and 8. Figures 9, 10, and 11 are similar plots

for the accelerations. Since A is the maximum displacement at the mid-

plane of a graphite column, it is proportional to the maximum bending

stress, as indicated by the ordinate on the right in Fig. 7. It is par

ticularly interesting to note in this graph that the curve builds up to

the steady state; this suggests that 9.3 cps is the fundamental frequency

associated with the motion of the graphite columns in the system as a

whole. Figures 12 and 13 show the total shear forces at the top and bot

tom of the core, as given by Eqs. (16) and (17). The ordinate on the

right indicates the resulting shear stress. In each of the graphs the

transient and steady-state solutions were found separately and then added

to give the general solution, as indicated. Only a short time interval

7These values seemed reasonable after considering Edward Y. W. Tsui,
"Aseismic Design of Structures by Rigidity Criterion," Journal of the
Structural Division, Proceedings of the ASCE, February 1960, pp 81—106.
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is plotted because the transient solution has its maximum effect very

early and then dries out.

A summary of the results produced by the forcing function of Eq.

(73) is presented below:

max x = 7.7 x 10"4 ft

max A = 40 X 10~4 ft

max 0 = 46 X 10"6 rad

max Hi = 130 000 lb

max shear stress = 5 psi

max x = 88 ft/sec2

max A = 46 ft/sec2

max 0=3 rad/sec2

max H2 = 115 000 lb

max bending stress = 105 psi

max displacement of the top of the support skirt
with respect to the ground = 4.6703 X 10"4 ft

max displacement of the top of the pressure vessel
with respect to the ground = 4.6703 X 10~4 ft

Steady-state solutions were found for several frequencies, and rep

resentative values are presented in Table 2 as comparisons of the ratios

of the steady-state displacements and accelerations to the ground dis

placement and acceleration for frequencies of 1.3, 58.71, and 100.7

radians/sec. A similar table resulting from, an analysis on an analog

computer is given in Appendix B. It may be seen from Table 2 that there

is no serious magnification of amplitudes when resonance occurs between

the ground and structure motions.

The forcing function used does not represent the disturbances

caused by recorded quakes. However, the magnitudes of the stresses and

displacements corresponding to the forcing function used were very small

Table 2. Comparison of the Ratios of the Maximum Steady-State
Displacements and Accelerations to the Maximum Ground
Displacement and Acceleration for Three Frequencies

Frequency
(radians/sec)

max x max x max A max A max 6(radians) max 0(radians)
or or or

1.3

58.71

100.7

max S max S max S max S

1.00004

1.19

0.93

0.00056

8.4

5.05

max S max S

0.00001

0.097

0.095

25



despite the selection of a frequency very near the natural frequency of

the system. In view of this, a more accurate representation of a true

earthquake disturbance was not warranted.

On the basis of the low stresses (summarized above) found in this

study, it is concluded that, under the assumptions made, the stresses

induced by predicted seismic disturbances alone present no hazard to the

EGCR. It is interesting to note that for the forcing function with a

frequency of 58.71 radians/sec a ground acceleration of about 0.5 g

(based on the measured flexure strength of approximately 1000 psi) would

be necessary to fracture the graphite columns.
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APPENDIX A

Material and Geometrical Constants for the Analysis

Listed below are the constants for the EGCR that were used to solve

Eqs. (27), (28), and (29):

M = 1.4065 X 106 lb = 4.368 x 104 slugs

m2 = 0.43 x 106 lb = 1.3354 x 104 slugs

ni2

— = 119.925 slugs
n

L = 19 ft 4 in.

h = 19 ft 1 in.

I_ = 5.373 X 106 slug.ft2
G

I = 3927 in.4

C = 14.042 X 1010 ft-lb/radian

ki = 1843 x 106 lb/ft

E = 1.5 X 106 psi

C = 17.9446 X 106 S
x x

CA = 51.7604 x 104 &A
Ca = 17.372 x 10s &n

a v

Most of these values are known explicitly;1 the remaining are discussed

below.

The graphite columns for the EGCR are monolithic structures with

16-in. X 16-in. quasi-square cross sections. They are 232 in. long with

a weight per unit length of 10.09 lb. The eight dummy fuel assemblies

in the ends of the fuel channels were assumed to weigh 50 lb each. The

24 fuel elements, each weighing 47.6 lb, were assumed to be distributed

over the rest of the length of the channel.

The moment of inertia, I , of the pressure vessel and core about the

center of gravity of the pressure vessel was found by summing the moments

of inertia about the point for the following components: the core, the

-"-Experimental Gas-Cooled Reactor Preliminary Hazards Summary Report,
0R0-196 (May 1959).
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lower grid and grid plate, the upper grid and grid plate, the cylindrical

shell of the pressure vessel, and the upper and lower hemispheres of the

pressure vessel.

The support skirt constants, C and ki, were calculated from Fig. A.l.

The skirt was assumed to be at a temperature of 500°F and to have a modu

lus of elasticity of 28 X 106 psi. Poisson's ratio, u, was taken as 0.3.

The shear strain, 7, is given by

7 AG

where A is the cross-sectional area of the skirt, F is the horizontal

force, and

28

E

G =

2(1 + n)
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Fig. A.l. Force-Moment Diagram for Determining the Skirt Constants.



Thus

F_ = GA
7d dki = „, - , ,

where d is the height of the support skirt. If 0 is the angle of rota

tion in radians,

Md

9 ~ ET •
s

Thus

where

M EI

C=- =-^ ,
0 d

I = 7rr3t
s

Verification that Eq. (23) Adequately Approximates Eq. (22)

In Eq. 22,

^ =1.9 X10-4

Thus,

C - Mgh x C .

Substituting the appropriate constants into Eq. (22) gives

0 + 261340 - 6546x - 0.04A = - 6546S .

Thus, the term containing A was also neglected.
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APPENDIX B

Analog Solution of the Equations of Motion

For comparative and checking purposes, Eqs. (70), (71), and (72)

were solved on an analog computer for values of S , B , and 5 of 0.05,

0.15, and 0.05, respectively.1 The results of this analysis are given
in Table B.l. Data from Table 2 are also given for comparison. The data

given by Milligan are for a forcing function with a displacement ampli

tude of 0.075 ft; this implies that Milligan's results differ from the

results of this report by a factor which is the ratio of 0.075 to 0.000467.

As noted in Table B.l, the frequencies also varied slightly; however, the

two sets of results are in good agreement. The ratios related to the x

displacement in Table B.l were not tabulated by Milligan, but they were

derived from the curves presented. The ratios of the maximum displace

ment and acceleration associated with the x coordinate to the maximum

ground displacement and acceleration are 1.64 from the analog solution

and 1.65 from the exact solution.

The analog displacement results for a frequency of 58.43 radians

per second are plotted for extended time intervals in Figs. B.l, B.2, and

1M. W. Milligan, An Analog Solution of the Seismic Vibrations of a
Gas Cooled Reactor, ME-61-TN1, Engineering Experiment Station, University
of Tennessee (July 1961).

Table B.l. Comparison of the Ratios of the Maximum Steady-State Displacements
and Accelerations for Two Frequencies

max x max x max A max A max 6(radian) max 6(radian)

Frequency
(radians/sec)

max S max S max S max S max S max S

Analog
Solution

Exact

Solution

Analog
Solution

Exact

Solution

Analog

Solution

Exact

Solution

58.71a

100.7b

1.10

0.90

1.19

0.93

9.05

6.07

8.4

5.05

0.120

0.103

0.097

0.095
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Fig. B.l. Time-Dependent Displacement of Top of Supporting Skirt
(Analog Solution).

B.3. These figures contain the same information as Figs. 11, 12, and 13,

respectively, as given by Milligan;1 however, in Figs. B.l, B.2, and B.3

the vertical scale has been changed by a factor of 0.0062; i.e., the

ratio of 0.000467 to 0.075.

In addition, Figs. B.l, B.2, and B.3 are comparable to Figs. 6, 7,

and 8 of this report. The frequencies associated with each coordinate

and the amplitudes of the transient displacements depicted in these

figures are in good agreement, thus further indicating the agreement be

tween the two methods of solutions.
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