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Abstract

In a previous paper some inequalities occurring in

the one-velocity theory of neutron transport with isotropic

scattering were derived. In the present paper some of the

previous results are generalized to the case of linearly

anisotropic scattering.
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1. Introduction

1.1. In a previous paper the author stated and proved fourteen theorems

concerning five quantities of interest that arise in the one-velocity theory

of neutron transport. These quantities are all set-functions referring to

bare, homogeneous, convex solids with isotropic scattering. The purpose of

the present paper is to lift the restriction of isotropic scattering; accord

ingly the case of linear anisotropy is considered here.

1.2. Of the five quantities considered in I, only two need be considered

here: the first-collision probability P of neutrons from the persisting

distribution and the nonescape (absorption) probability P of neutrons

from a uniform, isotropic source in the solid. The other three, the first-

collision probability P from a uniform, isotropic source, the buckling B2,

and P .,, the diffusion-theoretic value of P , need not be considered here at
ad' a'

all. This is true for the diffusion-theoretic quantities B2 and P , because
ad

the form of diffusion theory does not change with a changing angular distri

bution of scattering although the constants involved in the theory do. Thus,

the theorems regarding B2 and P hold with at most some alterations in the
ad

constants. That P is entirely independent of any anisotropy follows from

the fact that the angular distribution of scattering cannot make itself felt

until after the first scattering has occurred; the theorems of I regarding it

hold without any changes at all.

1.3- The theorems proved in I about P and P are of five distinct types.

The first type is the inclusion theorem; it compares values of P and P in

two solids one of which can be entirely inscribed in the other. The second

type is the symmetrization theorem; it compares values of P and P in two
3.



2
solids related by some process of symmetrization. From the symmetrization

3
theorem isoperimetric theorems can easily be derived. The third type of

theorem is that related to the so-called second fundamental theorem of reactor

h 5physics and arises from the convexity^ of the Fourier transform of the in

finite-medium transport kernel. The fourth type is the factorization theorem;

it compares, for example, the values of P for a considered solid with the

product of the respective values for certain other solids whose orthogonal

intersection is the considered solid. The fifth and last type of theorem

relates the values of P, P , and P for a given solid.
3, C

l.k. All of these theorems are proved in I using variational representa

tions for P and P . These representations are of the maximum type, that is,

the functional whose stationary value is P or P^ is always = P or P respec-
a a

tively. This latter property is ultimately a consequence of the isotropy of

scattering assumed in I; the most important direct effect of this assumption

is to allow the ordinarily non-self-adjoint transport equation to be reduced

to a self-adjoint form. This self-adjointness combined with some other

properties is enough to prove the maximum property of the variational prin

ciples used in I. The maximum property fails when the restriction of iso

tropy is lifted, and since it is a central feature in all the proofs in I,

its failure prevents the direct transcription of the proofs in I mutatis

mutandis♦

In the present paper two devices are used to circumvent the loss of the

maximum property. The first of these depends on the extremum property of

the variational principle against small variations in the trial functions

and is essentially a form of perturbation theory. It runs as follows:



When a physical property of the solid (e.g., volume, shape, degree of aniso

tropy of the scattering) changes by a small amount, the change induced in

either P or Pa is independent to first order of the induced changes in the

flux. This fact allows the derivation of formulae for the derivatives of

P and Pa with respect to the physical parameters of the solid that do not

involve the variation of the flux although they involve the flux itself.

Frequently, it can be shown from these formulae that the derivatives of P and

Pa with respect to certain properties of the solid have only one sign; from

this fact an inequality can be immediately constructed. The second device

involves the construction of an auxiliary problem that is self-adjoint and

in which a quantity P' exists that is always < P and that can be represented

by a variational principle of the maximum type.

1.5. Using these two devices, it has been possible to prove some but

not all of the types of theorems proved in I. An inclusion theorem has been

proven for P and Pa identical with that of I. No symmetrization theorems

have been proven nor has it been possible to prove an isoperimetric theorem;

in fact, all that has been shown is that P and Pa are stationary against small,

volume-preserving deformations of a sphere. A theorem of the third type men

tioned above (that related to the second fundamental theorem) which is anal

ogous to that of I has been proved. No factorization theorem has been proved.

None of the three relations given in I between P, Pa, and Pc has been proved,

but one new type of theorem has been proved, viz., one comparing the values

of P (or Pa) corresponding to different degrees of anisotropy.

2. The Integral Transport Equation

2.1. Neutron transport in an infinite homogeneous medium is governed by

the integro-differential Boltzmann equation



div [Sk(r,a)] +\|f(r,fi) = c /f(M1 )i|f(r,flf) dfl1 + Q/4n (l)

where t(r,fi) is the collision density at r of neutrons traveling in a

direction specified by the unit vector a, f(fi-fi') is the normalized angular

distribution of secondary neutrons resulting from collision of primaries of

direction fi', c is the number of secondary neutrons produced per collision,

and 0,/kn is a uniform, isotropic, external source. Here, as in the rest of

the paper, the unit of length has been chosen equal to the mean free path

in the medium. When (l) is applied to a finite, homogeneous solid V the

following boundary condition must be added to it:

T|r(r ,fl) = 0 if n.fi < 0, (2)
s

where r is any point on the surface S of V, and n is the outward normal

at r .
s

If Q = 0, Eqs. 1 and 2 describe the criticality of the solid V. Among

the solutions of Eqs. 1 and 2 there will be a persisting distribution

\|/(r,fl), which is positive everywhere in V. The value of c corresponding

to it is the critical multiplication; its reciprocal c is equal to P,

the first-collision probability of neutrons from this persisting distri

bution.

2.2. When f(ff'ff' ) = (kn)~ , i.e., when the scattering is isotropic as

considered in I, Eqs. 1 and 2 can be transformed into the following integral

equation:

♦ (?) = cf e*PH?-?'|) ♦(?.) d3r. (3)
~ inr |r - r' |2

where <t>(r) = / i|/(r,n)dfi. A similar transformation is possible when f(fi»oj)



is a polynomial in fi-fi1; the manner of making this transformation is fully

Q

explained by Davison, but for the sake of completeness it will be sketched

briefly here.

If Q is imagined to be held fixed, then

div [<^(?,n)] = n.w(?,"n) = d*(r,fl) (k)

where s is the path length along any chord C of the solid V that points in

->• .

the direction Q,. Substituting Eq. 4 into Eq. 1 converts the LHS of the

latter into a first-order linear differential operator that can be inverted

to give

s

¥(?,3) = / e^S-S') R(r\fi) ds'
6"

where R(r,"fi) represents the entire RHS of Eq. 1. In Eq. 5 the positi

direction along C has been chosen in the direction of Jt, and the point

s = 0 has been chosen as that intersection of C with S at which ^ points

into V. The point r' is given by

r'= r - (s - s') fi

:ive

(5)

(6)



In accordance with these definitions, it follows from Eq. 5 that t(r,ftj = 0

when s = 0, as it should, since when s = 0 r is on S and Q. points into V.

If we now introduce the variable p = s - s' we can rewrite Eq. 5 as

s(r,ft)

\[f(r,fi) = / e"M R(r',fl) dp

where s(r,fl) is the distance from the point r to S in direction -0. Eq. 7

may be written out more fully by replacing R by its value from Eq. 1. It

then becomes

s(r,fi)

i|/(r,ft) e"p dp c /f(fl'fi') ^(r',H') dfl' + qA«

(T)

(8)

2.3. The case of linear anisotropy, which is dealt with in this paper,

corresponds to a linear form for the function f, i.e.,

f(ft.fl') = (h*)'1 (1 + 3^*0') ,

where £ is the average cosine of the scattering angle, that is, the angle

between ft' and ft. If Eq. 9 is introduced into Eq. 8 the latter becomes

s(r,ft)

V(r,fi) = e"Pdp
¥iT

>(r') + ^3^'T(?') +QA«

(9)

(10)



where the flux <t>(r) is defined by

<t>(r) = /t(r,?2) dft (11)

and the current vector j(r) is defined by

ftr) =/^(r,S?) dft (12)

2.4. A pair of coupled integral equations for <t> and j can now be derived

—>

from Eq. 10 by multiplication by 1 and ft, respectively, and integration over

—>•

ft. To carry these steps out it is first necessary to note that

ft = (r - r')/p (13a)

P = |r - r'| (13b)

and s(r,ft)

dft / ... p-dp

° V

= J ... d3r' (13c)

Then we can easily obtain from Eq. 10 the coupled pair:

- r - r' i t ,— -r, .

♦ (f) = c " _^ i *(?•) + 3il vx " 'y . j(r') ^ d3r< (14a)
4Jt | r - r' |2

v
r - r'

i -»• ->,
|r - r'

4«|r - r'|2
+ Q / e — d3r'

V



_. r e-l?-?'l f(r- ?') A,-n ,- (r - r') (r - r' ) -r, 1 ,3j(r) = c / — —— -i*- —f 4>(r') + 3|i tr r^ ^ It *j(r )f d r
43t|r-r'|2 ^|r - "?' | |r-r'| |r-r'

V

1-* ->
r - r'

+ Q / -2— (r " r') d3r' (14b)
Ujt |r-r'|2 |r-r'|

3. The Variational Principle for P

When Q = 0, Eqs. 14a and 14b define an eigenvalue problem for c = P 1.

By making use of the notation

-|r - r'
J: ' ^3-k-iK = / — d3r' , (15a)

^/ 4:r|r - r'|2

p - r - r' /-» -*, vKZ = / _S_! !_ (r -r') .... d3r, , (l5b)
kn\v - ?' |2 |r - r'I

V

etc., this eigenvalue problem can be written in the form

M$ = P0 (l6a)

where $ is the column vector

<t>(r)

and the operator-matrix M is given by

-»

K 3n Ku

M = I _^ ) (l6b)



The adjoint of M is the operator-matrix

(17a)

3 m. Kco 3i_l Kuw

The minus signs occur here because in forming the adjoint of an integral

operator the two arguments r and r' must be exchanged. The adjoint flux,

<i> (r), and current, j (.r), are defined by Eq. loa with M replaced by M .

It is easily seen that

<D+(r) = <f>(r) (17b)

«T(?) = -3mT(?) (17c)

As is well known, a stationary expression for the eigenvalue P is

P = i*^i (l8)
($+,$)

When rewritten using 15a, b, l6b, and 17b, c, this equation becomes

P =

I —f —3" I

u^ J a3r'̂ ♦ (?) +3m^4 •?(?)!• e".! "!',_(*(?') +3M-^4:i4(?')
V v

r - r ^ 4it r - r1 ^ r - r'

*2(r) - 3M j2(r) j- d3r (19)
V



That this expression for P is stationary can now also be demonstrated directly

by the usual methods of variational calculus; the work is straightforward.

4. Dependence of P on u

4.1. Let 0* and j* satisfy (l4a,b) with Q = 0 for a certain value of

M = m* corresponding to a value of P = P*. If n is given an increment

_ -> -> -»

6m, i.e., if m = M* + &M> * will equal <t>* + 5<t> and j will equal j* + 6j.

However, because Eq. 19 is a stationary expression for P, the first-order

terms in 5$ and &j*in the expression for 5P vanish identically. The first

derivative of P with respect to u may therefore be calculated exactly by

ordinary differentiation of Eq. 19 treating <t> and j as constants that are

equal respectively to $* and j*. The result of this differentiation is

3 J j*2(r) d r
1 dP* V . .
p* — =-—; — ' (20)

* J
V

j**2(r*) -3^j*2(?) |d^

where use has been made of the fact that <t>* and j* satisfy (l4a,b) with

Q = 0.

The numerator in the fraction in Eq. 20 is clearly positive, being the

square of a real quantity. The denominator is also positive; this we show

by noting that

<D2(r) -3m j2(r) =4jt / \|r(r,-ft) f(fl'fi1 )^(r,ft' )dft dft' . (2l)

10



Thus

dP*
< 0 (22)

dM

and P is a monotone decreasing function of p..

4.2. It has been mentioned in the introduction that the variational

principle for P is neither of the maximum nor of the minimum type. That

this is so can be proven directly from Eq. 22 as follows. Let us assume

that Eq. 19 is a variational principle of the maximum type. Then when

M = M >

P* ^ Jt*,?] (23)

where J is the functional appearing on the RHS of Eq. 19. Choosing 4> = <t>.

and j = 0 where <t>. is the solution of Eq. 14a when jl = Q = 0, we get from

Eq. 23

P*^P-^ (2>0
ISO

where P. is the value of P corresponding to ll = 0. If we choose u* > 0,
ISO ^ ft

however, it follows from Eq. 22 that

P* = P- ; (25)
ISO v ''

thus P* cannot be of the maximum type. A similar proof holds when the

11



variational principle is assumed to be of the minimum type, except that

M* must be chosen negative.*

5. Dependence of P on the Size and Shape of V

5-1. The dependence of P on the size and shape of V can be obtained

by a procedure similar to that of Section 4. Let us begin by introducing

the characteristic function f(r) of the solid V, defined by

f(r) =1 r e V (26a)

f(?) =0 r i V (26b)

Let us now consider a one-parameter family of convex solids V(e) with

characteristic functions f(r,e) whose boundary surfaces vary continuously

with e. Let us denote the solutions of Eqs. 14a, b for these solids by

*(r, e) and j(r,e). With this notation Eq. 19 can be rewritten

P(e) = f d3r f d3r> f(r",e) f(r"',e) { 4>(?,e) +3m (^' "̂ .T(?,e) }
J L |r' - r| J

x
e

1r - r'

- {*(?',e) +3m" (!"!'} •7(?',0 }/[f(r,e) (27)
4it|r-r'|2 r-r

j<P2(?,e) -3m d2(?;<0 J d3r

*It may be argued that this proof does not preclude the possibility that
Eq. 19 is a maximum principle for m ^ 0 and a minimum principle when m > 0.
We can eliminate this possibility, however, as follows: Choose functions <t>
and j which are not solutions of Eq. 14a, b for any u. Then P would be
> J(m) when m < 0 and < J(m) when p. > 0. Since J and P are both continuous
functions of m, p(°) would then equal j(0). But since <t> and j are not
solutions of Eq. 14 for any m, P(0) > J(0), for the variational principle
is in fact of the maximum type when m = 0 (see I).

12



Again because Eq. 27 is stationary with respect to first order

variations in * and j, the derivative of P with respect to e may be

calculated only by differentiating f:

1( dP , (28)
P V de

"" ,3.

^%^{*2(?,e) -3M j2(?,e) } d3i

J f(r*,e) |$2(?,e) -3M 32(r,e) j d: r

Use has again been made of the fact that <t> and j satisfy Eq. 14a, b.

5.2. If the family of solids V(e) is such that V(e2) can be inscribed

in V(ei) if ex > e2, then ^ ' ' > 0. Thus dP/de > 0, from which it

follows that if a solid V2 can be inscribed in another solid Vi, P(Vi)

=P(V2).

5-3. If the family of solids V(e) is such that all members of it have

the same volume V, then

0 - -ar =5i-/f<^> ^ =/ -^ & <^)
Now Bf(r,e)/Se is different from zero only on the surface of V(e) (where

it behaves like a delta function); thus if *2(r,e) - 3JIj2(r, e) were the

same at every point of the surface of V, dP/de would be zero. This condition

is certainly fulfilled if V(e) is a sphere. Hence, P is stationary against

any infinitesimal, volume - preserving deformation of a sphere.

Furthermore, it follows from Eqs 28 and 29 that d>2 - 3flj2 must be the

same at every point on the surface of any solid for which P is stationary

against any infinitesimal, volume-preserving deformation. The author

13



believes but has not proven that the only solid for which *2 - 3MJ2 is

the same at every point on the surface is a sphere. If this were so,

then among all solids of a given volume, P would be an extremum only for

the sphere. It is physically obvious that this extremum would have to be

a maximum, and the isoperimetric theorem would be proved: Of all solids of

a given volume, P is greatest for the sphere.

Analogous remarks apply to the infinite right circular cylinder.

6. The Connection with the Second Fundamental Theorem

6.1. If Q = 0 in Eq. 14 and V is all space, one may introduce the

Fourier transforms

*(£) = /%(?) eik'r d3r (30a)

T(k) =Jffi) e1?"? d3r (30b)
and manipulate* Eq. 14 into the form

Pm <t>(k) = *(k) *(£) +3m1 X" K(k) | ' T(£) (31a)

t, k -f/^*\ . 1 - <(k) a/t*\ n- 1 - /c(k) k -?fT>-\ /oni,\
P - • j(k) = i r-^ 4>(k) + 3m — t: • j(k) (31b)

where /c(k) = (arctan k)/k and P denotes the infinite-medium eigenvalue.

From Eq. 31 it follows that P is then the root of the secular equation

*See Appendix 1.

14



/c(k) - P
v ' 00

0 = (32)

1 - *(k)
1 k

sp x ; K(k)JH- k

o- 1 - *(k)
- P

00
->M-

k2

To each infinite medium solution there corresponds but one value of

k = |k|. Thus the infinite medium flux <t>(r) satisfies the wave equation

V2 *(?) + k2$(?) = 0 (33)

6.2. The so-called second fundamental theorem of reactor physics is a

method of estimation of P for finite solids based on the infinite medium

equation 32. It consists of setting k = B where B2 is the lowest eigenvalue

of Eq. 33 and some arbitrary boundary condition. This boundary condition

generally has the form of a requirement that 4>(r) vanish on some surface,

usually chosen to be just outside the physical surface of the solid being

considered. With a proper choice of boundary condition, the numerical

accuracy of this method is quite high, but the method involves an unavoid

able element of arbitrariness.

This latter feature is removed in the following theorem, which we shall

prove in the following sections: Let a solid Y with surface S be given.

Let B2 be the lowest eigenvalue of Eq. 33 with the boundary condition

<D(r) =0 if reS. Then if P(v)/[l-P(v)]I 3JI ^ 0, P(v) = Pco(B).

6.3. We begin by rewriting Eq. 14a. We make use of the identity

-r / -> \ p -r' E (r)
-S— \ ?J=-V/ -S— dr- =-V-^l_ (31*)
4itr2 4nr'2 4itr

r

15



where

Then

00

E2(U) =/
-uv dv

e —

v2

(34b)

-|r - r'l r* -*,\ r E ( r - r' )
6' ' I'; •?(?') aV = / j(r')-V, 2' ' d*r
4jt|r -r'|2 |r- r' | ^ 4it |r -r'

E (|r - r'|) p E (|r - r'| )
-^ V..j(r') d3r' + / —2-— 7C?').dS'-> r-> x ->

£ 4n jr - r'| g 4n |r - r'

(35)

where the last integral is a surface integral over the surface S of V.

V«j may be expressed in terms of * through the equation of continuity

which follows from Eq. 1 by integration over ft:

V-j"(r) = (c - 1) *(r) + Q (36)

Substituting Eqs. 36 and 35 in 14a. (Q = 0), we get:

p r -|r -r'| E (|r - r'|)
W(?) = /] e _ „ 3m(c-D 2 _, _> j- ♦(?') d3r' (37)

^L4ir|r-r'|2 4n |r -r'

_ p E (|r- r'|)
+ 3M / —Z—z ^— j(r')-dS'

4n Ir - r'

16



6.4. Let us now consider an auxiliary problem defined by the self-

adjoint integral equation

_> P f -|r-r'| E(|r-r'|)
P'X(r) = / ] e „ „ 3m(c -l) 2 _ _ hx(?') d3r' (38)

^ L 4jt|r -r'|2 4jt|r -r' |

In Eqs. 37 and 38 c has exactly the same value; in 37 c = P_1, but in Eq. 38,

of course, no such simple relation holds between P' and c. Let us for the

moment consider only those cases in which (c - l) x - 3M- - 0. In this case

the eigenvalues c = (P') -1 are all real and positive and form a discrete
0 n v n'

set; furthermore, to the lowest of these eigenvalues C there corresponds

an eigenfunction X (r) which is everywhere positive in V (see Appendix 2).

Thus a variational principle of the maximum type holds for P' (henceforth

we will drop the subscript zero and only be concerned with the lowest mode):

-Ir - r'| E ( r - r* )
d3r / d3r' X(r) ^ -^- —- 3^(c - l) -2 [ X(7')

v v v "" 4Jt|r - r' |2 4it|r - r1
p. > I 1 : (39)

J X2(r") d3r
V

where X(r) is now arbitrary.

6.5. If we multiply Eq. 37 by X(r), Eq. 38 by ^(r), integrate over r

and subtract, we obtain

17



p n p E (|r - r' |)
(P-P-) / *(r) X(r) &% = 3m / / X(r) —§ j*(?').dS' d3r (40)

J J J kit Ir - r' I

now since j(r)«n = / t(r,ft)ft«n dft and since for a point on the surface S only

-> -*•-*•

values of ft for which ft.n > 0 contribute to the integral, the integrand on the

RHS of Eq. 40 is positive. Thus if jl - 0,

P = P' (41)

6.6. Let us now introduce the Fourier transform

X(k) =j X(r) eik#r d3r (42)
V

into Eq. 39• Then it becomes*

|x(k)|2{/c(k) -£(c -1) 1-*(*) Id3k

J |x(k)|2 d3k

If 3m(c - l) = 7/5 the quantity in braces in Eq. 43 is a positive,convex-
,y..y.

downwards, decreasing function of k2. Therefore, by theorem 204 of

Hardy et al.

*See Appendix 2.
**See Appendix 3»

18



where

I K(k) -3"M (c -1) 1 - *(ko) (iMVa)
k2

o

/ |x(k)|2 k2 d3k
k2 = -* (44b)

y |x(k)|2 d3k

If we invert the transforms in Eq. 44b, noting that

ivx(?) =(atpj n(k) e_ik'r d3k (45)

we find

F |vx(r)|2 d3r

K - Y—r («)
/ X2(r) d3r

V

The RHS of Eq. 45 can only converge if X(r) = 0 on S, the surface of V,

for otherwise since X(r) = 0 outside of V (see Eq. 42), Vx(r) will have

an infinite singularity on S. Since the trial function X(r) is arbitrary

we now choose it to vanish on S. Now because the RHS of Eq. 44 is a mono

tone decreasing function, the best value of k will be the smallest possible.

Under the boundary condition X(r) = 0 on S, the minimum of Eq. 46 is achieved

for that trial function X(r) which satisfies the wave equation

V2 X(r) + B2X(r) =0, (47)

19



and the minimum value of k is just B. Combining this fact with Eq. 44

and Eq. 41, we obtain

or

> K(B) -3m (4 -1) X'^(B) (48a)
r B2

P2- p(K+3^i-iJ£)+3S(l^)>= o. (48b)
V B2 ' V B2 y

With an equality sign Eq. 48b is just the equation determining P^; this

follows from Eq. 32. If we call the larger and smaller roots of Eq. 48b

P and P^, respectively, then either P = P^ or P = PJ,. When ^ = 0 we

know that P = P^; hence by the continuity of these functions, this conclusion

must be true for finite m.

6.7. The proof given above depends upon the two conditions P/(l-P)

>- 3m - 0. The condition 3m - 0, although sufficient, is not necessary.

For since P exceeds P in a finite solid by a finite amount when m = 0,
00 ^ '

it must also do so for sufficiently small negative values of m. This

raises the question of whether the theorem is true for all negative values

of m. A comparison shown in Table 1 of P values previously calculated by

the author for slabs with the corresponding values of P^ supports the

validity the theorem for all negative m. No proof of this validity,

however, has yet been found.

The other condition, which may be rewritten P = 3m/(1 + 3m)j limits

the applicability of the theorem to solids larger than a certain size.

20
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The numerical results given in Table 1 indicate that for positive u P

decreases relatively more rapidly than P with decreasing size. Hence,

it is likely that even when the condition P = 3m/(1 + 3m) is violated,

P>=P.
00

6.8. The result proved above is the most important application of

Eq. 37• Another result of less practical utility that can be obtained

from Eq. 37 is the following: If Po is the value of P = c - 1 for a

solid V when u = 0, then

P > Pjl - 3m(c - 1)] M> 0

P < Pq[1 - 3m(c - 1)] M< 0

<C —r -To prove this, we begin by noting that E (r) = e /r. Then, if \± > 0,
2

Now

n -|r - r'|

P<t>(r) > [1 - 3m(c - l)] / — <fr(r') d3r' (49)
4^1 r - r' I2

V

P -|r - r'I
P X(r") = / -£— X(?') d3r- (50)
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where X(r) is now the value of <J>(r) corresponding to \i = 0. Multiplying

Eq. 49 by X(r), Eq. 50 by <t>(r), integrating over r, and dividing gives

the desired result. When jl < 0 an analogous proof holds except the sense

of the inequality in Eq. 49 is reversed.

7. The Variational Principle for Pg

7.1. In I it was shown that if H was a positive, Hermitian operator and

<t>* was the solution of the equation H<t>* = S, where S is some source, that

(s,f)

(<J>,H4>)

is a variational expression of the maximum type for the inner product (S,<f>*).

From this functional a variational expression of the maximum type can be

constructed for Pa, the average absorption (nonescape) probability.

When the scattering is anisotropic the relevant operator, M, is no

longer Hermitian. The procedure of I can still be followed, however, and

will yield a stationary principle for P but not one of the maximum type.
s.

We begin by noting that if

cj)* _ C]VB>* = S (51a)

the functional

J = (*}s)(S+,*) (51b)
($,$)-($+,cM<2>)

+ *+ / + *N
is stationary around $ = $*, $ = $ , and is equal to (S ,0 ). Here the

24



meaning of the adjoint of a column vector is given by Eq. 17b, c. To

prove the stationary character of (Eq. 51b) the result M $ = (M3>) ,

*+
verifiable by direct computation, must be used to show that 0

+ *+ +
cM $ = S .

7-2. Let us now apply Eq. 51b to Eq. 14a, b in the case that

Q = l/v. This choice corresponds to a uniform, isotropic source of

unit total strength in V. c is now to be interpreted as the scattering

fraction and is therefore =1. In this case the source vector has the

form

1
K

S V V Koj

where the operand of the operators K and Kw is understood to be 1. Sub

stitution of Eq. 52 into Eq. 51b and use of the definitions 15, l6, and

17, yields for the functional J the result:

J =

4*

1

V

- r - r'

'(?') +% [l - TJ ] • ?(?•)
V

dJr / dJr'

V

<D2(r) - 3m j2(r) r d°r-c

V V

4it

:< 2
>(?') + 3m

r - r
t 12

d3r

V

(r - r'
j(^v

25

r - r'

(r' - r) .<Tr« ^d>(r) + 3m ^ " XJ • T(?)
|r' - r|

(53)



The value of J when $ = $* can be obtained from Eq. 53 by use of

Eq. 14a, b and is

J[**] = ^ 1 / ,3^ ,3., e
r - r'

**(r) d3r - i / d3r / d3r
V J J 4*|r -?'|2 J

v V V ' '

(54a)

Now with the source normalization chosen as it has been, the nonescape

probability P is just equal to (l - c)/ <t>*(r)d r. Using this fact as well

V

as the fact that the double integral in Eq. 54 is just P , the first-collision

probability from a uniform, isotropic source in V, Eq. 54 can be written as

P = (1 - c) (VcJ[fl*] + P ) (54b)
9. C

Replacing j[**] by j[$] in Eq. 54b then gives a stationary expression for

P , as may now be verified by the usual methods of variational calculus.
ei

8. Dependence of Pa on u

Proceeding as we did in Section 4.1 we show that

dPa p
=-3(1 -c)cV / j2(?) d3r , (55)

dM V

a quantity which is clearly negative. Thus Pa is a monotone decreasing

function of \i. The variational principle for Pa can now be shown to be

neither of the maximum or of the minimum type by using the argument of Section

4.2.
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9. Dependence of Pa on the Size and Shape of V

By introducing the characteristic function f(r) of V as in Section

5, one can derive the result

^ =(1 -c) J ^e) {2*(?) +Vc [^(t) -3M J2(?)] }d3r (56)
V

From Eq. 56 it follows that (l) if a solid Vi can be inscribed in another

solid V2, Pa(Vi) = PaCva) and (2) Pa is stationary against any infinitesimal,

volume-preserving deformation of a sphere.

10. Concluding Remarks

The theorems just proven represent on the whole a less satisfying

body of knowledge than their analogues in I. For example, in the present

paper it has not been possible to prove either the symmetrization theorem

or the isoperimetric theorem for P and Pa although it seems certain that

both are true. Furthermore, the proof of the inequality between P (b)

and P(v), which is related to the second fundamental theorem of reactor

physics, is at present marred by two restrictive but apparently superfluous

conditions. The author feels that these particular difficulties can be

remedied, however, and looks forward to the time when some interested

reader effects a cure.

Other instances in which the present paper is less satisfactory than

I concern the questions of whether a factorization theorem holds for P or

whether any general inequality relates the values of P, Pa, and Pc. Here

the author makes no conjecture but hopes as before some interested reader

will find an answer.
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Appendix 1

Since the integral kernels in Eq. 14 are difference kernels, the

form Eq. 31 results from Fourier transformation of Eq. 14 by a straight

forward application of the convolution theorem. The main work of this

appendix will then be the evaluation of the Fourier transforms of the

various kernels appearing in Eq. 14. One other kernel appearing in

Eq. 38 will also be transformed. The first of these is e /4rcr2 and

is relatively easy to transform. Introducing spherical coordinates,

it °°

*(k) = /V^f-^-) d=r =1/2 F sinOd* Fellsr COS*-r dr (l.l)
4 itr1

The r-integration is easily done and after the change of variables

v = cos* yields

+1

™ ' ^ fi^SS (1'2)
-1

1

&\± _ arctan k

o 1 + k2u2
k

The second kernel to be transformed (e~ /4itr2)(r/r). Owing to the sym-

metry of this kernel, its Fourier transform must be parallel to the vector k.

Thus

ik-r ( e \ r ,o k / ik-r / e \ k-r*i(k) = / e I J- d3r = j- / e ( — ) — d3r (1.3)

Proceeding exactly as before, we reduce /Ci(k; to
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+1 +1 .

Vk) ~ k J 2(l-iku) k2 V" 2J 1^*W _1H~
-l _1

(1.4)

The next kernel to be transformed is the dyadic (e" /4itr2)(rr/rr).

Again by considering the symmetry of the kernel it can be seen that the

transform must be a linear combination of the unit dyadic I and the dyadic

-» -»

k k. Thus we can write

K(k) I +K (k)kk = F eik'? (^l)l£d3r (1.5)
2 3 J \)i2/rr \ s /

This operator actually appears in Eq. 31 in the form

k
jkJx) I+Kjk) kkj•3(3), (1.6)

which can be rewritten as

7* -*/

k*j(k) j k (k) +k&n (1.7)

kIt follows from Eq. 5.1 by pre- and postmultiplication by =- that

2 3 J \|l2/\kr
K(k) +K (k) = eik-C-±_ fe dar (1.8)

l-itr

r* -> \2
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This reduces to

+1 +1

„(S) ♦ ,3(5) - / ^te- ±r J (r^V -1) h* d-9)
-l -l

1 - K(k)

The last kernel to be transformed is one appearing in Eq. 38, viz.,

E (r)/4jtr. Now using Eq. 34b, it can be shown that
2

'ikvr 2 ,,3- _ F dv F dig
~k^~ "J ^ V 2(v-ikM)2

-1

dv 1 - K(k)

2(v2 + k2) k2V

30
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Appendix 2

In this appendix we shall consider some of the spectral properties

of the Fredholm equation

_» rf-|r-r'l E(|r-r'|)~]
X(r) = C H ^— — -a -^-— ^X(?')d3r', 1-a I 0 (2.l)

y Un|r -?'|2 4rt|r"- ?'| j

Q

The discussion here is patterned after that of Davison^ in the case a = 0.

The statements we are trying to prove about this equation are that

its eigenvalue spectrum in a finite solid V is composed of discrete, real,

positive eigenvalues c', that the eigenfunction corresponding to the lowest

of these is everywhere positive in V, and that a variational principle of

the maximum type holds for c^ (see Eq. 39). Now the fact that the eigen

values are real follows from the symmetry of the kernel. To prove they

are discrete, Davison reasons as follows: If the bracketed kernel were

nonsingular, then by a well-known theorem its eigenvalue spectrum in a

finite solid would be discrete. Since the kernel is singular at r = r',

this theorem cannot be directly applied. However, if any iterate of the

kernel is nonsingular, then this iterated kernel will have a discrete

eigenvalue spectrum in V. Since the eigenvalues of the iterated kernel

are just a fixed power of the eigenvalues of the original kernel, these

latter are also discrete. Now the kernel (1.2) is - j-— |r - r'|~2;
10

a discussion given by Morse and Feshbach shows that the third iterates of

such kernels are nonsingular.
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That the eigenvalues are all positive can be shown by Fourier trans

forming Eq. 1.2. If X (r) is the (real) eigenfunction corresponding to the

eigenvalue c', then

c'_1
n

IXn(k)|2 JK(k) -aX-*(k) }d3k

/ |X (k)|2 d3k
J ' nv y|

(2.2)

In obtaining Eq. 2.2, we have used the result

eis;? (igW. \a3r . i -«(» (2.3)
4jtr y k2

which has been derived in detail in Appendix 1. In Appendix 3 it will be

shown that /<~(k) *- (l - /c(k)/k2; thus c'_1 - 0 as long as a - 1. Since the

c' are a real, positive, discrete set, they can be ordered starting with

a lowest, viz., c' -c' -c' -....

Davison next notes that under the circumstances already known to

prevail, the kernel in Eq. 2.1 can be written in a bilinear Hilbert-Schmidt

CO

series, ) X (r) X (r)/c', irrespective of whether X form a complete set.
' /_j n n ' n n

n=o
00

-> V -> ->Furthermore, any function X(r) may be expanded as X(r) =) anXn(r) +p(r)j
n=o

where p(r) is orthogonal to every X and vanishes if they form a complete
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set. Substituting these two series in the Rayleigh quotient on the RHS

of Eq. 39 shows that this quotient is always less than c' x = P'.

The last link in the chain, namely, showing the lowest eigenfunction

X (r) is positive everywhere in V, is fashioned as follows by Davison:

Suppose that X (r) is the exact eigenfunction corresponding to c' = P'"1

and suppose that it is not everywhere positive. Then use of the trial

function |x (r)| on the RHS of Eq. 39 will make the Rayleigh quotient
_-, ->

even larger than P' = c' , which is not allowed. Hence X (r) is in fact
o o o

positive everywhere in V. It is worth noting that this conclusion depends on

the condition a - 1, since for the argument to be valid, the kernel can

never be negative. The condition a - 1 suffices for this since e~ - E (r)/r.
2
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Appendix 3

In this Appendix, we prove that if a - 7/5, then the function

F(k) = /c(k) - a[l - /c(k)]/k2 is a positive, convex-downwards, decreasing

function of k2. We perform the proof in three parts.

Part 1. If a - 3, F(k) - 0. Proof: By cross multiplication and expansion

it is possible to prove that

i-h2
3 (3.1)

1+k2 (1 +|k2)2

Integration of Eq. 3.1 between the limits 0 and k gives the result

arctan k - = , (3-2)
1 + ha2

from which it follows by a simple rearrangement that

kW >3 i-*00 (3.3)
k2

Equality is achieved when k = 0. Thus since Kand (l - K)/k2 are always

positive, a = 3 is the largest value for which F(k) is also always positive.

Part 2. If a -|, —— -0. Proof: It will be enough to show that dF/dk - 0.
3 d(k2)

First we consider d/c/dk.

d/c 1 arctan k 1 / k ., \ <•

^ k(l +k2) k2 k2 V 1 +k2
- arctan k ) - 0 (3-4)

34



The last inequality is a trivial consequence of Eq. 2.3. Next we consider

[l-/c(k)]/k2.

d Cl_^<(k)_) =_3_ (arctank_k 1+ !** ) (3.5)
dk \ k2 / k4 \ 1 + k2 y

To show this is less than zero, we start from the identity

, 1 + k2 +| k4
1

1 + k2 (l + k2)2

which yields on integration the result

2 v2

arctan k - k - (3-7)
2

1 + k

Finally, we consider F(k) = K(k) - ^ \ ——- J • From Eqs.

3.4 and 3«5 it follows that

3 V k2

2k2dF k2 + 5 I k , 3

(3-6)

- . + - arctan ky (3.8)
dk k4 Vl + k2 (l + k2)(i + k2/5)

Now by partial integration we can easily show that

k k

arctan k= f <* = _k + F-^^ (3.9)
6" 1 + x2 1 + k2 6- (l + x2)2

Thus dF/dk will be negative if

,k ^k2
/ 2x2dx > 3

oJ (1 +x2)2 (1 +k2)(l +k2/5)
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(10.3) can be verified by noting that

2 , p k 2 2 x4

ii =F ^.1 +r -v ax (3.ii)
(1 + k2)(l + k2/5) oJ (1+x2)2 22 *

1 + 5 25

Since dF/dk = 0 when k = 0 and a = 5/3, and since -tt- and -=•=- (
k2

are - 0, 5/3 is the largest value of a for which dF/dk - 0 for all k.

Part 3. If a (- 7/5, d2F/d(k2)2 - 0. Proof: Let us first consider K.

Now

/ 1 + — k2 \
d2K - 3 (arctan k 2 ) (3.12)

d(k2) 4k5 v (1 + k2)2

From Eq. 9-3 it follows that

k

arctan k >- —^ + 1 F 2x2dx = k X+^k73 ; (3-13)
1 + k2 (1 + k2)2 J (1 + k2)2

o

thus d2/c/d(k2)2 is - 0.

Next we consider [l - /c(k)]/k2.

_df_ r1-km ) __ 15^ (\ 1+lk2 +̂ k4 -arctank) (3.14)
d(k2)2 V k2 y 4k' V (1 + k2)2
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A second partial integration of Eq. 9«3 gives

n 5 n2 k
1 + i k 8 f x4dxarctan k = k ^ + 2. / x ^ (3-15)
(1 +k2)2 3 0J (1 +x2)3

The derivative under consideration will be positive if

k

k5/5 > f x4dx

(1 +k2)2 J (1 +x2)3

This last inequality can be proven by noting that

k x4 + i x6

(3.16)

k5/5

(l + k2)2 ^ (l + x2),2\3
dx (3.17)

Finally we consider F(k) =/c(k) -\ [ 1 "K^ ).
5 v k2

Now

_d2F_„ _Sjk2^) ( arctan k_k1+Ik2 I5jf ,(3#18)
d(k2)2 Uk7 v (1 + k2)2 (1 + k2)2(l + k2/7)

The positivity of the parenthesis is equivalent to the inequality

r _^dx_ > ^—
QJ (1 +x2)3 (1 +k2)2(l +k2/7)
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Eq. 19.3 can be proven by noting that

JeLIi = / —£ —_ _ dx (3.20)
2 2 x4

1 + 7 X ""35

(1 + k2)2 (1 + k2/7) QJ (l+x2)3 l+£x2+g-

Since d2F/d(k2)2 = 0 when k = 0 and a =7/5, and since d2/c/d(k2)'

d2 ( 1 - Kand ( ) are both positive, 7/5 is the largest value of a
d(k2)2 V k2 7

for which d2F/d(k2)2 is - 0 for all k.
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