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THE DISTORTED-WAVE THEORY OF DIRECT NUCLEAR REACTIONS
I: "Zero-Range" Formalism withouf.Spin-Orbit Coupling,
and the Code SALLY

R. H. Bassell, R. M. Drisko, and G. R. Satchler *

ABSTRACT

The distorted-wave theory of direct nuclear reactions 1is pre-
sented in a unified manner in which the effects of assuming various
reaction mechanisms and nuclear models appear oﬁly in certain radial‘
form factors. The zero-range approkimation is used, and spin-ofbit
cpupling is neglected in the distorted weves. Formulae are given
for transition amplitudes, cross-sections aﬁd polarizations. Then
a description is given of the IBM-?OMIéomputer code SALLY which is

based on these formulae.
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PART I: The Distorted-Wave Theory

‘1. Introduction

In recent years the broad class of reactions called "direct" has be-
come -of great importance as a source of information about nuclear structure.
There are two reasons for this; firstly, since they do not pass through an
intermediate or compound nucleus stage, they are dominated by a direct over-
lap between the initial and final nuclear states, and provide information
in a way comparable to electromagnetic transitions. Secondly, they suffer
no inhibition when feeding low-lying states of the residual system (in fact,
a large energy loss is unfavorable). These states in general are least likely
to be populated by more complicated processes such as compound nucleus forma-
tion and decay, yet they are the ones we most wish to study in terms of
nuclear models.

One may say(l) that direct reactions only involve a few internal degrees
of freedom of the system. Whether it is appropriate to describe these in
terms of single particle or collective modes of motion, only one or two are
involved in any particular reaction. Most of the current theories further
assume weak-coupling; that is, they assume that elastic scattering is the
most important process which occurs, and that inelastic or reaction events
can be treated as perturbations. This leads for example to the so-called
distorted-wave Born-approximation expression for the transition amplitude(u
in which the interaction responsible for the reaction appears once; that is,
it describes a.simple one-step process. The relative motion before and after
the inelastic event is described by distorted-waves, which include the elastic

scattering (usually calculated in an optical model approximation), so the
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transition is one between elastic scattering states. The name Born-approxi-
mation, however, may be misleading. For example, the interaction one uses
may be an "effective" interaction, in close analogy to the residual inter-
actions one introduces into shell-model calculations. The theory is, perhaps,
more closely akin to the impulse approximétion. A great deal more has been
done, in principle, than is usually implied by the term Born-approximation.
For some years theories have been used which are based upon plane waves

(2)

instead of distorted waves. That is, the elastic scattering is also
assumed to be small. At the same time it was usually argued that one should
exclude the nuclear interior from the integrals because of strong absorption.
This basic inconsistency no longer appears in the distorted wave theory.
Any strong absorption present is éutomatically taken care of by using the
appropriate distorted waves. Disfortion effects often considerably modify
the shapes of differential cross—sgctions. In addition they give rise to
polarization effects not allowed by the plane-wave theories (such as vector
spin-polarizations) and modify others which are allowed (such as the angular
distribution and correlation of y-rays following the reaction). A further
important feature of the distorted-wave theory 1is the possibility of predict-
ing absolute cross-sections (apart from nuclear structure factors, and it is
often the purpose of experiment to extract just these).

The plane-wave theories had one advantage that their results could often
be expressed in simple analytical terms.(z) This is not possible with distorted-

waves, and unless very dubious approximations are made it is impractical to

carry out these calculations without the aid of a high-speed computer. For
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this reason codes have been wriften for use on the IBM-T04 or 7090 computers.
The present réport describes the simplest of these, called SALLY, which was
originally written for the IBM-704 but also may be used on the 7090 with
compatibility.

It is based on the theory using the so-called zero-range approximation,
and neglecting the effects of spin-orbit coupling on the elastic scattering.
It may be used for inelastic scattering, stripping (and pick-up) or knock-
on reactions. It calculates differential cross-sections, polarizations, and,
where appropriate, y-ray correlation parameters, and in addition the elastic
scattering cross-sections for incident and outgoing channels. The running
time for this is typically 2 or 3 minutes on the TO4+ and less than 1/2 minute
on the 7090. A variety of interaction models for the reaction, and a variety
of optical models for the elastic scattering, are available as options, as
described below. Up to 49 partial waves may be used.

Later reports will describe developments including (i) the effects of
spin-orbit coupling in the distorted waves and (ii) the effects of finite range

of the interactions.

2. The Distorted-Wave Theory

The distorted-wave theory of a direct nuclear reacton A(a,b)B is based

upon a transition amplitude of the form

1= jdf@j&& ﬁ(jr: (~k+)fu)<’(’,3/ V/e %:Z (2-4) )
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for particle a incident wifh relative momentum k and b emitted with re-
lative momentumhgb. The @ are distorted waves (plane plus spherical scattered
waves, outgoing or incoming denoted by the superscript (i) respectively).

We assume they are functions only of the separation of the centers of mass

of the colliding pair, and independent of their spins. In practice they are
generated from optical-model potentials such as describe the observed elastic

scattering. They then satisfy Schrodinger equations of the form

[V K= 25 UL ] Bk,2)=0 6

where U(r) is the optical-model potential, p the reduced mass of the pair,

and:p the Coulomb parameter, y = 2.21e>/ﬁ1r. Asymptotically,

ﬁ(-r}/é/f — e‘:knﬁ 7[/9%) -e»tl?-/‘
POk 2) —> 8 o flme,Trp) &

which illustrates the general relation Qfﬁfof,ﬂz) Aﬂ(‘..,i),

The remaining factor in (1) is the matrix element of the interaction

taken between the internal states of the colliding pairs,

GV ety = U BTV Ry

It plays the role of an effective interaction for scattering from one elastic
scéttering state to another, and contains all the information on nuclear
strutture, angular momentum selection rules, and even the type of reaction con-

sidered (whether stripping, inelastic scattering, etc.). By having a number
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of form factors available as options for this part of the matrix element,
we may study a variety of nuclear models and reactions.

The effective interaction (3) 1is in general a function o1 both’_raA and
RIS however we assume here (as in all current distorted wave calculations)
that we may put these two vectors parallel, r, . = (mAﬁﬂBl?aA’ where YnA’
TﬂB are the masses of A, B. We call this the "zero-range" approximation.
It reduces the amplitude (1) to a single (3-dimensional) integral, which
greatly facilitates its computation. When the reaction is inelastic écatter-

ing, so WLA_=“1 this approximation corresponds to assumlng the interaction

B’
V is local, and neglecting exchange terms, for then the coordinates of the
incoming and outgoing particles are the same. For a knock-on reaction, in
which a knocks b out from the target A through an interaction Vab’ and is
itself captured, we have to assume that V_, 1s of zero-range (and local) in
the separation of the centers of mass of & and b, V_, gﬁfa '»~b)’ which
gives‘gbB = (Wk/wg)faA' In a stripping reaction, we have a = b + X, where
X 1s the particle transferred, so that B = A + x also. The interaction is

generally assumed to be Vbx’ and the factor (3) reduces to a "spectroscopic

amplitude" (or nuclear overlap sometimes called a relative reduced width),

7#* (1) D(24) - (4)

where Qg is the bound-state wave function for the captured particle x within

times

B, and D 1s the product of the interaction and the internal wave-function

for the relative motion of b and x within 8,

D(@M) = Vx(im) %/-ﬁm}. - ()
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The usual zero-range approximation consists of putting D equal to a delta-
function, D(ry ) = DOJ (ry,), which leads to r,. = (M, /M)r . Strictly
this also implies the neglect of tensor terms in Vbx and of all but S-states
in yLa' We note that x (and/or b) may be a complex particle, such as in
so-called "double-stripping" where x is a pair of nucleons. These cases

are discussed in more detail in Section 5. Because of this zero-range
approximation, this version of the theory is inadequate to deal with heavy-
particle, or target, stripping in which the emitted particle is supposed

to originate from the target nucleus (i.e. the target is stripped instead
of the projectile). 1In this case it is never reasonable to replace the

analog of (5) by a delta function.

3. The Transition Amplitude

We must now specify the amplitude (1) more carefully. If the spins

of the particles are designated JA

components by M,, My, m , m , the amplitude (1) becomes

) JB’ Sg0 Sy and their corresponding z-

/| = (333 My, S4my; l"u,/ \V4 /\—)—A Ma, Sama; éa> ~ )

() *
= J_Jdiaﬁjdi\w %03 /Q,Q%B)(JBMB)%MA)\//IHMA/SAM; ¢:‘Za/iqﬂ).

(J is the Jacobian of the transformation to the relative variables oA and

T It is convenient to expand the effective interaction < V> into terms

*be')
corresponding to transfer to the target nucleus of a total angular momentum
g_comprised of an orbital part,{ and spin part s, according to the vector

coupling

g
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) )

j = J, S=fc8y, jrtes. -0

———

(often only one value j,‘f and s is important (or allowed) in a transition.)

(3)

Then we may write, with Clebsch-Gordan coefficients corresponding to

egs. (7).
J<JEMB/5&Mb}VIJ MA;S«M(> Z<‘TA]MF})MBMA/J}3MB/

,(<£ s m, "‘a"‘ur/j MB'MA><54 Se "la,-"ur/5 "7;"'4>
co¥™ A (B, (20 )

where of course m = MB +om - MA -m. The separation into the coefficient
A and the form factor 4: is one of convenience, so that for example universal
form factors with simple normalization mey be used in computation. Then A
will include both the strength of the interaction V and a spectroscopic
amplitude (which depends upon the internal nuclear structure) arising from
the overlap of the nuclear wave functions in eq. (8). Some examples are
studied in section 5. By construction the factor {}5#,”\ (113) Lok ) be-
haves under rotation of coordinate axes like the spherical harmonic >Q;n,¢

We how define matrix elements for the transfer of definite angular momentaf@ﬁ

m/bg)m _ k’ m’i(d,&kfvuﬂ H?/? B)_}[

(+)
\/-T’T mﬁ i(,g)fqﬁ) aé(‘k“'i‘“ﬁ) o /9)

SJN‘L

(The normalization adapted is for later convenience.(u)). We have not yet

made the zero-range approximation. When we do, the form factor becomes
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-FI.SJ‘,N\ (:_P{'_B)i‘oﬁ) ~ Esj (+,4) Zﬁm 5(7,13 mB'faﬁ --{io)

where 7 appearing as the argument of a spherical harmonic denotes the polar

angles of r. We use (10) from now on, and drop the subscripts aA for simpli-

city. To evaluate (9) we need the partial-wave expansions of the distorted-
waves,
Ma Mo X (a)
(+) LT  La
¢ j (*a mm) = l? ED >/ (‘a)y /‘Q\&) ¢ X /)?“ﬂ(\c\>
} oo L M LO« Lc_ L\(k )
a a4
- M)
(2% . LNV NN IENIL
(—-«,{,_) —w.{,) = _Zf/ Z >/ / 4) Y A ’X (kﬁf/{,.)
4B k'bm_ LMy Ly Li ) Ly :

(<)
Fach partial-distorted-wave )XL ( ‘?+) is a solution of a radial Schrodinger

equation with a central potential Ui(r) (which may be complex)

d" 2 D9k , + () _
):C—i:’- +k - —2:__ - %ﬁ; U“(ﬂ B L%')] 7<L_ (’H)—O' (I"?)

22 ‘
The CMS kinetic energyis t 'Q / 2/&; , Where Hy is the reduced mass of the

pair, and ?&. their Coulomb parameter . Z 2 e / Fv . At large radii where

j_(r) is negligible, 7( has the form

K (k) = L D— (ke) + (. H_(k )J
~ 5‘- [é‘& (M—’) Lo 2ke - LT) _ e:ei(k.j—oi) €+g(br_7fﬂ2k;_(’g‘)]

A




i

B _9..

where o = arg T’(“Lﬂy) is the Coulomb phase-shift and where HL"' CL‘bl F‘_)

and FLJ C}L are the regular and irregular Coulomb functions, respectively.

K,

The scattering amplitude C L =€ sw W, ; the phase shift KL is intro-

duced by the nuclear potential U(r), and in the absence of U we have KL =

On the other hand, if the particle is uncharged, so 9 =0, F

L and H_L become

the spherical bessel and hankel functions, respectively,

Fb(kr) = ke J‘L(k*)
and HLU“\) —a kot ’E:')(JQJ\)

Thus in the absence of both Coulomb and nuclear interaction, p =U=0,
+
, XL(kr) = (kr) jL (kr), corresponding to plane waves, ¢( )/,13/5) = ex,:/[k.i‘)_
Insertion of (10) and (11) into (9) gives immediately
m - QL +I
/59 = lﬂr J'z<l_jrl My, —M/L MLl oolL, 0 ;-7 bt 2

5
LolyMp

, VL:*(Q TR L4 X (k) By ) X () -t

This expression simplifies if we choose the z-axis along ”lga and the y-axis
along};a X ~}5b’ and put © as the angle between »158, and ~}5b For m >/ 0 we

can then w-rite ﬂ
O 'V\ " e
sy (81 = €1 () = -/ T7L Pt M., 9

where

FL'O:\L - LA (QL ’)‘/( L,(, ) <Ljrﬂ OO/LaO><L1-€"’,’M/La07 _-‘(lé),

Ly+m)! ’
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the FZTYG)are associated Legendre functions, and the radial integral is
R = PR COR S
Lyla My ,Qa Ly
For low values ofAQ the coefficients E;it have simple explicit forms;
these are given in Appendix I, for =0 through 4. The occurrence of the
"parity conserving" Clebsch-CGordan coefficient <fL6£OO/LA<3:> ensures
that only even values of Ib + Lb + }2 contribute; that is to say, (-)f is
the parity change in the transition. The explicit form of /SQN\also shows
the origin of the orbital angular momentum transfer ; it comes from a
change in the relative orbital momentum before and after the collision,
A =L, -L,

The code SALLY computes the matrix elements /SQW\defined by (15), (16)
and (17). For this purpose a variety of optical potentials U(r) and form factors
F(r) are available as options as described in Section 11 below. If required,

. L 2
the various /% and integrals '{QL may be printed out.

4., Cross-Sections and Polarizations

The transition amplitude (1) or (6) now has the form

<\Ts M&, Symy k(r) \// TaMp, Sama l‘iﬂ}

2
lﬁ? D‘% z <J-Aj My MB“MA}J}; MBXSQSJ,MQ;V%J S m&"l& =) 4%

ko \ g

“{

<15 ™Mo '*L(rlg My MA>4/074+! A/S /3) (8)

$J
(This form does not depend upon the zero-range assumption(lo), so the results

of this section are subject only to the neglect of spin-orbit coupling.)
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The differential cross-section

(-1—9) - M éf’. Z_M_TL’:Q_EJ—— ---(14)
Ol(,d' (a?ﬂt»l)l kq. (QJA*'I)(QS,,#-I)

then becomes

do _ a/uxr 2! —_Ll; Z/ )glﬁsﬂml ~{29)

do Tk (23a+')(°2'3—9+)

We note there is no interference between transitions with different / S J o™ m,

SALLY computes 0’15) [ 6 ) , for a given choice of form factor 55 8 where

m___.—_———s My M 9-268 Jon |&
oy . ) = B & a — M
L) () m: (ma+mﬁ)(mj,+mg) k k. %_ ) /533 ) yﬁ/_i{_‘ (9.)

when energies are in Mev, lengths in fermis and masses in p.m.u. (proton mass)

units). Then /A /4
de_ dJsr! e J 7, (6)  mbfst .(22)
dw RTIy+ 1 ds)|(25a¥1) 5.093x 10 J =

This normalization is so chosen that for deuteron stripping (where 8y = 1
and s = -%) if we take 5 5 { +) to be the radial wave function of the captured
R 2 3
nucleon (and assume it independent of j) the quantity Z/Ajsj//[(»?saﬁ&o?sxloj
J
is just the spectroscopic fza.ctor(5 ) S) y) (or “reduced width in single particle
units," although this notation is somewhat misleading); see Section 5 for
details.
P
The vector spin-polarization of the emitted particles b, AT /s S
)

only has a non-zero component along ka. X kb , of value
Ay Lo ad
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(S+)(.2$ ) N @SH)(.?S’H)(QéH) S‘Q-S,ﬂ_;'—j
Ple) = 2 [l ) STt -

3‘253’

>

W(ss DA 1) W (sespsshisa) Ay /\js,j |

I QM Qm+l >
/\/(ﬁwvu-lj[,ﬁ—m) j-m L/BSJ‘ ps,a- - ]
Z /Al /L zm‘ /ﬁff/?_

L SJ *J
The W are Racah coupling coefficients ,(3 )

---(13)

-/

/4
p2

e}

and ensure that P vanishes if
/Z = 0 or 8y = Oors+s’= 0. There is now interference between different
s values. In the special case s = s' = %‘, Sy = 1l, and 8y = %‘, (e.g. deuteron

stripping) with only one / contributing,

2 A (3-4)
plg = 83 1Al S Ty,

o?a‘+) \_(24)
A ' >N
where JZ ‘ «CJ{.JI
‘0"’\ QM-H »#
Mo - 2 B Al S [f5p0 0]
A > ,/5,0-:1,2_ [2)
e~ g $)

is the average projection of the vector /¢ along k, x X,

77/_65()‘ - < y/j > b} / /// \< 7 \--@6)
If the form factor is independent of j, so is xn, and (24) becomes

P(G) = é ij/_) = R+
2+ J ~47)
T oy =4-4

)

IR
- 3
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Of course, P vanishes (but 7T does not) if s,_ = O, while both vanish if

b
A= 0. sALLY also computes the quantity n as defined by (25), for a given
form factor fis‘/*)‘

If the spin 8y is greater than l, other tensor polarization moments may
be produced, but only of rank éNQQM{ where 8 ax is the maximpm value of the
spin transfér s. Thus they are not allowed in deuteron pick-up, (p,d) and

(n,d), for even though s. = 1 here, we have s = % only.. However they could

b
appear in reactions which allow s > 1, such as (@,d) or (d,4') (and the (p,d)
and (n,d) if viewed as knock-on rather than pick-up processes). If 5, =1,

the tensor polarization moments are the expectation values of the operators

T

2q
TQO - \/é ( 3501_ Q)
Tasi = V2(Ss + %, 5,) 9
Taza = V3 (S.tt)l

where S, = Sz) S+, = F (SKIL‘S,)//;{ . Then t?‘i«:<_’3‘y> is the

same quantity that Iakin and Wolfenstein define.(6) With the amplitude (18)

these become (with z-axis along k 0V along k xk)

f :HQQ%,: NMWM<1QM%“MW>VF-T _r*

24, Msmy,Hama My eyiq,Mama

7

) a
Moty MgMp MBMA)MAMa
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- *
taq = ﬁjt%ss, VREDEL)259(25%) Ajzsj Aﬂs’d’

)((—)’S.L_S“-"l W(? 1ss’, QSQ)Waf’ss’)'o?j)

=N €2-q (L3, s /\)

, o
S L | pt !

.(SJ‘

where the tensors (Ok are given by

f’k (£s; )95’()') S sty )1\4

Cr—g (1< 450

5 y Ry
“) <MM¢ I"’>AJ /So,w (3

H

&e shall require these tensors again later. They give a convenient way
of describing the polarization properties of the reaction. The TQ 50' of
eq. (25) is proportional to €” , while the differential cross-section is pro-
. O m O
portional to (JOO]. It also follows from the symmetry ﬁ. = ) p
(with our choice of axes) that
k /" X
dsi As") = e 2" Qs
€ g (253, 's'§") Prg, (L 45))" (3)

and hence from the symmetry of the Racah coefficients in eq. (29) that
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the t2q are real. From the definition (30) we see the () g’ and hence

tpys venish if A+ 2’< Q , in particular for ¢=/’= O. Further the
Racah coefficients impose the selection rule t2q =01if s + s8' £ 2, as re-

marked above. Just as with the vector polarization P, these t, may be de-

(6)

2q
tected by a second scattering.
Using an incident polarized beam induces an asymmetry in the differential
cross-section given by
d d G
_9’) :(_‘T) ]+ TQP + Z() “(O? ‘LL&2 ---(32)
where ( alr/dw)unﬁw‘ is the differential cross-section, (19) or (20), with

(<n)
unpolarized particles incident. B is the vector polarization of the in-

/4 '1) Scy _é_ («\) ’

cident beam, [/ , while the are the tensor polariza-
’ /\ '\)
tion components, defined as in (28), < ) > . Of course the
{cn) . . 1
f 26, vanish if Sy = 0 or °h The vector‘ r has a non-zero component along
k x k only, whose value is given by the expression (23) if s, and s, are
i -5

interchanged, and A y is replaced by Z (—)3 A’{SO‘] . Similarly the

tensor coefficients ’t’aq are given b‘y eq. (29) (for S, = 1) if s, 1s there
replaced by s, and A’(s,]' by [(')J—S AISJ‘] . Hence the same selection
rules operate for the. 3 and ’L’zq as forNI: and t2q' (Note also this~ implies
the choice of z-axis along ka and y-axis along ka b'4 kb) If the incident
spin Sq > 1 (for example, L:I.7 ions with S;% ), additional terms could appear

n (32).
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An expression similar to (32) is obtained for the differential cross-
(7)

section when the target nucleus 1s polarized and the coefficients may
again be expressed in terms of the €
ka
In general the residual nucleus B is also polarized and this may be
studied by observing the angular distribution or correlation of any de-excita-

(8)

tion y-rays. The orientation of B is conveniently described by statistical

tensors(9) of rank K \< 2Jp , with z-component -k AL K,

S Jp+Q@-Mp — X
0ca(87) =) (RT M@k T 69
MgMa Mm, BW',HF) Ma 8 m Mpme.
By construction ()KQ behaves under coordinate rotations like the spherical
Q %
harmonic YK and has the symmetry GKQ = &) (Ok @+ Then, for example,
the angular distribution of y-rays in coincidence with particles b emitted

along kb , 1s given by

-1

W(eg; ko ky) =KZQ eraes) Fic () ka((M) (%)

e R, = 2, CoCL F (LR Ts),

74 4
2
and CL is the relative probability of a 2L-pole 7-ray in the transition
A
JB—7\'JC. Then Fo =1 if E C,__ = l. The y-correlation coefficients
FK(LL'JCJB) have been tabulated(g) ) and only even values of K enter.

Tensors with odd K are needed to calculate, for example, the circular polariza-

tion of the 7—rays.(1o)
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Using the amplitude (18), (24%) becomes

Ouq (T8T2) = ZM /(MH)(MH)(QJH)(J A (,ZJ'BH)(-) W/j T T KT,
JJ/ /

7 *
x WO us) (')l Aﬂsj H@’SJ’ GKQ(QSJ\) QIS‘J/) = (39)

where the GKQ(QSJ , Q's\j’) have been defined in eq. (30). The zero-rank

tensors are proportional to the differential cross-section,

600(723')3) = N/QJ—B‘“I Z /Aﬁs_j/){—— //Sfjw\/l

S J'
and

- (36)

. I orer) _ S Lo ¥
(Joo(/sz’ﬂSJ') - 6fﬂ’q/20+: % /éd /55’0" , (37

We notice that while there is interference between different £ , J in (26),

It j--j/, and also

j=j'and s = s', or the form factor is assumed independent of j and s, it
is convenient to define(8)

there is none between different spin-transfers s

(ﬂs‘) As
Cue (451, L5)) (39)
(.,)‘Q<</€,foo/l/(0>q/r2g+l (OOO(’QSJ/ISJ‘)

Keven : CZKQ {JSJ) B

when K is even, so do = [/ . This normalization is not possible for odd K,
for then <ﬂ) 0o , KO> vanishes. However, we may normalize the odd rank tensors
as (0 ’ )
wo L£5), €5y
: ds) = €
Kodd : dKQ { SJ)

o

- [3q
Z e /
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With the re-definition (38) the angular correlation (34) may be rewritten
/
for the special cases with,g:/e and either (i) only one value of j =
and s = s' contributing, or (ii) the form factor (and hence dKQ) independent

of s and j,

W (s kak,) =2 g.dey Cugled) 0

Keven Q
where CKQ = \/477/(,3 K+1) )’KQ (Qﬁ) is normalized so COO = ]
and CKo = FK (CGSQ). The coefficients separate, jK = AK F ,

K
with FK as before and

A (Qlﬂ)Z J(2J+|)(ld+;){QJB+)) 7 R S</€100/L<0>
3l

« W(4 41 72T WJA)W(M\)J' )[

a Ay
Z A, I
J J

)

with Ao =1

Whens:O,wehave,j:j':,éand

A, = o778 (aan) 2Ter {LLoo kD W 7,3, KTs)

- _n
< e7RTIE ZM‘TA'(]%)JAK)/W )

in terms of the tabulated Z coefficients.(ll) Again, for s = % we can write

A in terms of tabulated ‘7K ,(12)

. |
")
he =2 | Dui D | Gy sy
JJ Z,A‘QJ)

"
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O M, f-m. .
Because of the symmetry ﬁ = 6 )/3 , we have that a/KCQ is (rea.l/
imaginary) as K is (even/ocdd), when we use a z-axis along k and y-axis along

nga X,Eb' However, it is more convenient to have the tensors referred to

~ . ' ~ . (%) 2 I
k x kb as z-axis and k as x-axis. The /3 referred to these new axes
~8a ~ ~a,

O
are given in terms of the calculated./3 by the coordinate rotation trans-

formation 0 / s
~ fw < m’ I o
ﬁ = Z__ ﬁ _DM/M-(—:_)’;_‘O) -‘(4‘\")
m/
where (-%, %’ 0) are the Euler angles of the rotation taking the old axes

Fa)
into the new. In this way we obtain expressions for a;a?eferred to the new

m P-
axes. Detailed results are given in Appendix I and II. The symmetry/SﬂﬂzfvépM
N
in the other coordinate system leads to’/gﬂ"‘:-o ifQﬁwQ)is odd, so that
- z~

dK&=O if Q is odd. The non-vanishing dK&
(8)

are now complex, and may be

written

N N — Qe
dKQ = /dxa/e “ ",'(L"S)
Because the number of tensors one can define is greater than the number
of independent /5W1matrix elements, one is led to relations between them (and
hence between experimental results) which depend only upon the general assump-
tions of the theory for their validity.(8) Then it is not necessary to compute
all the tensors; again details are given in Appendices I and II. SALLY computes
the tensors‘O[KQ for /( = 1 and 2 (there are none for A - 0). Those for other
// could be obtained by a trivial extension of the program, or by hand from

the computed /3QT'

Another quantity of interest is the orientation of the residual nucleus

averaged over the angular distribution of the outgoing particles b. This
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determines the angular distribution of any ensuing radiation when not measured
in coincidence with particles b. For this we need the average values of the
()KG\Of (33) and (35) (referred to k as z-axis; the Q@ = O terms vanish when
averaged in azimuth aroundhga. Also the (ko vanish. for odd X),

Jeuo(®) s20 48
- ° (46
< €K°> - [ fool(8) s 646 (+¢)

so<<éo;>= 1. Here © is the angle between>§a andﬁgb. From the correlation

formula (34) we find the angular distribution of y-rays to be

w80 = Z . P {Peop P (e 60) -7)

even K

Of course 1~ is symmetrical around ka, and 97 is measured from ka. The restric-
tion to even K also énsureS<«fis symmetrical about 97 = 900. If we use the

normalization (38), then from (40) we get the expression equivalent to (47),

w (0%) = 2 I <Oiz<o> PK (cos éw) -

even K
where
Jd _ fd,(o(e) o (B) son 6 d6
Loy = T
fote) s &40
and o(8) is given by (21). SALLY computes the <§juo for = 1 and 2 transfers.

SALLY also computes the coefficients for the correlation (40), in the
‘scattering plane, for the special case xﬁ= 2 and JA = 0, JB =j=2,s8=20

or 1, corresponding to inelastic excitation of the first state in even nuclei,

T)=(=+yp) + yys&ﬁ(ﬁ«ﬁfo) +(/-333)s‘m2,?/¢';51) L [AJDV,AJOJ{

For spin - % particles,'g is the ratio of spin-flip to spin-independent intensity.

If y = O (as for alphas), this becomes the well-known

I(g) - A +Bs2(g-4)  A/B ==

The @, B, 7, ¢q are given in terms of the ﬁiq in Appendix II.
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5. Form Factors for Various Reaction Models

The characteristics of the particular reaction under study are ex-
pressed entirely in the radial form factors E/sj(r) defined by egs. (10)
and (8), within our zero-range approximation. In this section we shall
derive expressions for some typical types of reaction and nuclear models.
Other reaction models may easily be dealt with along similar lines.

5.1 Stripping Reactions) A\(Q,lr)]g

Here the projectile a is assumed made up of the emlitted particle b
and another particle x which is captured by the target, soa = b + x and
B = A + x. In deuteron stripping, (d,p) for example, a =d, b = p, and
x = n. The interaction responsible is taken to be Vbx' For the present
(13)

purpose we shall assume V. X to be central,

b Vig = V(rbx), and that b, x

are in an s-state of relative motion within a. The matrix element (3) or

(8) is. then

<J;> MB)\S»{JM/(I)\//J;MA)SQM">

-. (50

:f (//33:5 (5,20 %) ﬁ:;f"'lr) \/(%M) %[fe /‘g/? | }\Lf m (1) 45

where § represents the internal coordinates of the target and o the in-
ternal coordinates (e.g. spin) of particle i. From the position-vector

diagram

o
41_

e,
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—_ - -~ '
’”zer:c— O((g “A :‘:»(rB) )
Ten= < (2pa- forz))
o = al
x (A+a)
§ - A
B p)
- 4
¥ . oL )
where a, A, --- represent the masses of the corresponding particles. The

Jacobian of the transformation from the “natural”variables Toa and r 4A
(or r . and ’g_&x) is just

7 - < [gam) )

The integral over ; in (50) may be carried out formally, and expressed

in terms of angular momentum states of the extra particle x.(5 ) (For

simplicity we omit explicit reference to isotopic spin -- see ref. (5))
*
S G by (9 45
::‘)%_SMP<JAJ~ MAMBVMA/J-B MB><’£5 M}JLI j MB-MH> “_(5_?)

_ . " b
* jBA(isj) Uy () 1&4% ?"d 3[3/{0;)
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The factor i‘p is included to ensure that Qf(f;i) is real.(9) Oy represents -
any internal variables for particle x (e.g. intrinsic spin). The particle
x moves within B with total angular momentum j comprised of an orbital part
/(7and a spin S . When x is a composite particle or cluster (such as in
so-called "double-stripping" where x is a pair of nucleons(l4)), the "spin"
or internal angular momentum s of the cluster need not have a unique value
in general.(lh)
The parentage coefficient sj(fsj) in the expansion (52) selects 6ut

a particular particle x. If we consider n identical particles x within B,

the cross seétion is proportional to the spectroscopic factor(B)

S/AJ) = n[j(l’sj)]z , - (53)

q/é§ may be called a spectroscopic amplitude. é? is analogous to a reduced
width measured in "single particle" units. A similar expansion can be
carried out for particle a. If we assume the pair b, x are in an s-state

of relative motion, we may integrate over their internal variables

% . .
Ju%wr(%) 7;%# (o) Vsmfim) ) Ao, doy,

I

a(s) 54 (t4y) S0 s myp [samay - (54)

where \[ Qilv(*) +*dt = 1.. The constant a(s) includes the overlap of
the internal states of b and x when initially forming a, and when finally free

(p) or within B(x). If x and/or b are composite, or clusters, these overlaps



-2l o

may be less than unity (e.g. a cluster X may be smaller when part of a
than wvhen part of_];), but of course for single nucleons the overlaps are
unity (as for deuteron stripping). The remsinder of a(s) represents the.
probability amplitude of finding & made up of b and X in this way.

Again, if there are V) identical particles x within a, the cross-
section is proportional to VvV and the effective overlap becomes //\7 als).
In deuteron stripping, for example, this factor beéomes unity.

Inserting (52) and (54%) in (50) we obtain exactly the forﬁ of (8)

with

A,fs:‘) (B/(:)Pro.) -ﬁjsj,m (“’[\(’rB)iﬂA) = J i‘;a»:" iy a(s) j[/&sj)

e 9
x V(ux)%a(ﬁm> Uy (*Jcn) >j€ /‘7:%3‘

where J is the Jacobian (51) and the weights /n .4 have been included.

The zero-range approximation consists here of putting

V() Q/&(uﬁ)'x D §(=,.) - --(56)

Since —1, = o((é—r - fj,g) » we have

(e = D Slbuan) - T Lincen) 69

Then the Jacobian J cancels out from the amplitude (55). Comparing these

equations with eq. (10) we may identify the form factor (noting Ten =10 A

when T hse = O>

Fuoo (7)) = 4, (7) (59)
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and the coefficient A,

Afsa‘ = /3:::— Sy w(s) jaSJ) Do -~ (69)

< S+
The radial function «fz{ag may in general be éxpanded in terms of the
radial eigenfunctions for the particle x moving in some central potential -
(i.e., shell model orbitals),
) = 2, Ch Uy, (1)

-

(15)
where N is the principal quantum number. Of course in practical applica-

tions it is assumed only one such orbital tg%éfﬁ) contributes, (with

CN = 1). In SALLY these are computed as harmonic oscillator functions for

r < RN’
TP Y
(o) £ =Pt -—/ ton 13 7
— s A+3; 87
6 () = —uNé[»y ot A€ /_ 7 ¢ A ,
where B is adjusted so that 4*N? matches smoothly on to a negative-energy
Coulomb function (or hankel function if x is uncharged) of given binding

energy, for r 2 RN. Then the function is normalized so that

4ﬁaN4(ﬁl‘r2J+ = 7

Further, if V is really the potential binding b and x to form a (rather
than some effective interaction), some estimates of the magnitude of DO
may be made. ¢a then satisfies the Schrodinger equation (with the reduced

r_naSS/A=€'%)
(V- ) #l = E v gl 6
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Two procedures are possible. First we may use

D, fol,ff V(+) ¢(+) —From (56)
B (v -
—¢ [de gl7), o )

kS
where € = =k ,/°2/u» is the binding energy of a —» b + x. (The term

I

n

2
in V vanishes upon applying Green's theorem). If we choose the form for

ot
@ which is correct asymptotically, ﬂ/*‘) =»Z?%(r € /i~ , we get

2

D = S - ar(E)ter

s £l )
= 0238 X | O ev)

/4.3/‘ (Proton mMmasses)

(This form is equivalent to assuming V(r) itself has zero-range, Y= Vog/i)>
Alternatively we may improve ¢ for small separations r by taking the Hulthen

form (which also changes the magnitude, but not the form, at large r),
' — o 4 — B
¢/*) A TYCITS) e — €er
R (= p)* -~

which gives

D} - EE () )

(]

and reduces to (62) when B >> «a. An alternative point of view is to con-

sider the fourier transform of V¢,
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Clr) = [de e V() g 14)

1]

2 2, 2 -k 2
__5% /K+oa) fc/i e ¢/+)/ 0 (6%)

2
the last step following from (60) and the Hermitian property of V. Clearly

Do = G(0) and corresponds to taking only the zero momentum components of

V@. The Hulthén wave function leads to

: ¥ 2
8T [x+p\t
Glx) = = 4T (98) L, ()

2 2
so the correction for finite momentum components K is /3 //?Q( +76f) . In
the plane wave theory there is a unique value of K at each scattering angle,

namely

)

Mo é»«é“—,\é{-/)
and the "zero-range" amplitude should be multiplied by G(Ko)/Do to correct
for this. With distorted waves many other components K are introduced,
although the plane wave value of K may indicate roughly a lower limit on
the correction factor. It is worth noting, however, that if only the very low
momentum components of V@ contribute then the so-called zZero-range approxi-~
mation becomes exact. This would be the case for low energy, low Q reactions
(so both’ga andwlgb were small in magnitude) if the captured particle was
loosely bound (so the reaction proceeds at large distances from the nucleus

where the distortion does not introduce momenta much different from ka and kb).
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For deuteron stripping, (d,p) or (d,n), a binding energy of & = 2.23 Mev
with p = % leads to o = 0.23 fermi-l. For the single exponential eq. (62)
then gives Do2 = 1.0 x lOlL Mev2 fermi3, which is the value used in deriv-
ing eqs. (21) and (22) for the amplitudes computed by SALLY. For the
Hulthén function with B = Ta, eq; (63) giveg‘Dog ~ 1l.5 % lOu. This and other
values of Do2 may be incorporated-very simply, since the cross—sectién is

proportional to Doa. Then for the general stripping reaction we have from

(53) and (59)

de . 3t S @y WO D hx) e
dw 2%+ 1% S () 257 1018 x [0 %,[e) mb/st v (6b)

which for (d,p) or (d,n) reactions, with our choice of Doe(n,p), reduces to

e o 2T 5 S (ly) o, [6)  mbst )

o w QJA"’ ' Is|

If the Hulthén function is preferred*, multiply (67) by 1.5.

5.2 Pick-Up Reactions

These, of course, are just the inverse of the stripping processes dis-
cussed in the previous section. The analysis of Appendix I shows that for
the pick-up reaction B(b,a)A we should use the spectroscopic amplitude

Afsj(b;a) P

*Application of effective range theory(l) gives the same value for Doa.
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25 +1  TpTatSe-Sa 4
bl = T GRS e (4 gy

_ISJ . QI+

where Apsj(a,b) is the stripping amplitude for which expressions were given
in the previous section. Then for example the differential cross-section

for B(b,a)A is

Qvays D, x)
do _ 25215 @ s °?5+(7)Z i 0, (6) bt

dur 2s,+1 1e l.ol1&x 10%
/ZJ ---(6?)

2
which for (p,d) or (n,d) becomes (with our choice of .I% ﬁzp)))

do |
e 2 ZJ S (¢45) %j(e) /st (o)

5.3 Inelastic Scattering, A(a,a')A*

In this section we consider inelastic scattering, but neglecting (1) ex-
change of the scattered particle with one in the target nucleus, and (ii) non=-
local interactions. (Exchange may be regarded as a knock-out process,(l6)
as discussed in Section 5.4). We have b = a', and B = A*, so that M =
and r, o = r , and the "zeroerange" assumption (10) is automatically satisfied.

(Also, the Jacobian of the transformation to the variables r is unity.)

Zan = ZbB
The general interaction which induces the scattering may be expanded in

multipoles

I o = G)ju/u o,
Viz,e,5) % Ve p (59 Loy L (Ros) -0
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where %f represents the internal coordinates of the_target, and o those of -

the scattered particle Q. The spin-angle tensor is constructed as

Top o () =2 Lhsmpomfipp <7 S (%) 413

where \Sb°= 1, and for ywe use the Ath.component of the spin operator for

s(j,/'a-'

a (or the Pauli spin operator if S, = %), etc. Of course, we can only have
Sq + By constructi both V and Ty _. rotate like the spherical
$< dSa ¥ eon chIon, ZSJ,P« /esJ:u P

harmonic Yj“, and (71) has the correct scalar-product form.(3) For the special

case § =0, eq,\(-’-z)' gives
—_— - . h .
/,@oﬂjm (7) = 41 Xg (%) ---(73)

so if we only have s = O (e.g. if s, = 0, as for a-particles) we may abbreviate
(71) to
2y "]
Viet) =2 NV, (8][4 #) (19
4 e
Arm
where, of course,
.,eff ;" .
_ 4 6p) s 6&9d¢.
V, (v5) = <7 ) VIz3) Y, (68) o=
The terms with s f 0 we may call "spin-flip," although this notation is not
literally correct because of the uncertainty principle. The transfer of spin
angular momentum s f 0 includes some transitions in which the z-component of
the spin of the scattered particle does not éhange, m, = m, as may be seen
from the general amplitude (18).
Taking the matrix-element of the interaction (71) between the internal

states of the colliding pair immediately gives the form (8), (10) with

Aoy Fo @ = %350 el Sl ol -9
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where we use the Wigner-Eckart theorem(3) in the form

(s | Vi [3My = (T Map [>TV 00y ()
men (sl Sollsy=1,ea (s S, ls>-/alic) i S, = s

or <i NSy ) f‘{> = /3 if ;_57 =0 and S,=3 . Thus for the special case

(7%) in which s = 0,

A, B0 = s (T | v (0 [Ta) --(17)

We now proceed to some special nuclear models in order to obtain explicit

expressions for (75) or (77).

5.3.1 Collective Rotations

We derive the interaction from a deformed, or non-spherical, potential
well which has a definite shape in a body-fixed coordinate system,(l7)
Vv =V(r e’ ¢'). There are various ways of defining the shape of such a potential;

we mention two only. The first assumes the potential depends only upon the

1"

distance from the nuclear "surface," which is allowed to be non-spherical and

defined by r = R(9'@') where

Ree'g) = R |1 + Z % V,f”(e’fzf?] (19

R4,

For example, for a quadrupole deformation k = 2 we have

' _ s U )
aaozﬂcw\o’ , G,,=4q =0, Qy,< Q,.5% /5'\/3\ - (77)
in terms of the familiar deformation B and asymmetry y. Then we take

\/ = 1/[ - R{Q/ﬁ’)‘] . The much-used Woods-Saxon potential is a spherical

form of this type,
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V(R = =Y x= =R . (@9

Inserting (78) and expanding in a Taylor series about R = R,
A d x
- - - = A L S
Vo= V(+-R)- §R G VI+-R) + L 6R & Ve-R)
where 3, ---(81)
Y
SR = R, 2 Ay, )/k (6'd')
kg,
We note that, on this model, a given multipole deformation k of the surface
R(O'¢’) contributes, in second and higher orders, to other multipole terus,‘p,
in the interaction. In second order, for example, it contributes to even
values of Z in the range O éj ¢ 2k. However, in first order ,( = k, and we
have in body-fixed axes
0 R dV(R) 5 Vo (o'
Ve - - o, V) V169
= No —g Ly, X ‘
4
o L
We may identify V(r - Ro) as the spherical optical potential which gives rise
to elastic scattering. The other terms we rotate into space-fixed axes
V¥ 65) = 3 Y ey DD (R
¢ - A g ’
where R is the rotation taking the body-fixed axes into the space-fixed axes.

We can then identify
J
(1 dV *
\/im(*»g) - -utR, de Za,ale, Dim(m- (83)

The spherical-harmonic addition theorem may be applied to the second-

order terms in the expansion (81), to give
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SR™= R, ZZW Oy, Py <K g uy R 00) 48>
%9

x%(ﬁk+l}(&k/+'l) >/ /M(Q/ﬁ/) . (93)

4T (Q4L+1) £

which for k = k' = 2 and an axially symmetric deformation, 8oy = B, 8 , 1 =

ay +2 = 0, becomes
sRe - A L ), () 2 ), )]

Rotating (83) into space-fixed axes now enables us to identify the second-
"order interaction terms

Ve 2k 2V 5 )T @)

Ml
&y f‘

.
kg *kny)

kk’ab )

(o el v R

which for the axially-symmetric quadrupole deformation k = k' = 2, as in

(84), becomes

S
\/ (2) _ 4‘/5_ . /31& ddrl -DOQM(@) @__O%OT/’:{O? “,(%)

for even /e, and zero otherwise.

If we take the Wood-Saxon form (80) for the potential V(r - Ro), then



O(V - A O_[_V _ Vo €x _ V (2)
e % d x @@ - TP
.-~ (27)
A 2 7SN SA PR Pl I V()
de*  a® dx? a* (ex-lr‘})z [1 e}?]‘/ o F (+).

(The form factors F(2) and F(9) are options available in SALLY.)
An alternative way to define the potential V(re'@') is in terms of

the volume-conserving equipotential surfaces

-1
2 q/ /47
A= [l - z'ni “hg % Yy Yh (6?’)],
5 .

50 that '
V= V(W) - \/(+) + &+ %{ + & v Z%Vz .
where (
- -~- (88)
S+ = =4 Lk@ Q\M}/ Vk [9/¢I) + higher order terms.

Thus to first order the only effect is to replace the R, of eg. (82) vy r,

vhich tends to give the interaction a longer "tail.” When V is taken to

: D) 4+ d ) _ T ol »
be Woods-Saxon, the corresponding form factor, F (-r)_ Rodx €21~ R, F ( ))
is available as an option in SAILY. Contributions from (88) which are second-

b3
order in the deformation are associated with both + olV/ d+ and »rl o v/c){}.
J

. ((0) /’f\ ZO(.Z /
the £ factor +) = [= b - is also available in SAILY.
e torn gactor F000) = (7 ) T

It now remains to calculate the matrix element <J}3 // VQ // \7;',>. Here

we shall only consider transitions induced in even-even nuclei considered as

asymmetric rotators.(l7) The extension to odd nuclei is straightforward.
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(18)

The wave function for any asymmetric rotator may be written

MOJM‘: g AZ 9LKJM 5
(89)

[ %) [D;Mm " D WJ-

(18),

The (real) mixing coefficients Ab<are given in references For
axially symmetric nuclei, only K = O enters, and Ao = 1. The interactions
(82) and (85) can be written

m /.r- ,e/». /‘4 M ) e)‘,h
which has matrix elements

Le%l Ve« = 2 A P {aT5ll Yy 4675,

VoGS - LTt /
{67l Ve ll 0T =) 22 V5, M 1+5e0)

X {<J_,q-0 L(ﬁ wg'KA/ JB K3> %KB"{H + (")J;<\7;) ﬁ)"(F))KB"KAPZiK;Y()Ki%

For even nuclei, J = K = 0, so we must have J = ,f, and

(ot Veleoy = [F 2 Pt @)

In the axially symmetric case, KB = 0 only, so (91) becomes

el Vyfeo> = Voo ---(33)

V20 +|

S, 69
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According to eq. (90) the jé“ are obtained from eq. (82) to first-order
in the deformation, and from eq. (85) to second-order. For convenience, we.
summarize here the results for scattering from even nuclei with an axially-
symmetric quadrupole deformation, and thus K = O, using the Woods-Saxon
potential. If we identify the form factor E((+) in eq. (77) with the options
F(i)(r) available in SAILY and defined by eqs. (87), we have for the spectro-

scopic amplitudes 52 (remembering s = O in this model)

"
A;g = —’\/é (ﬂ;__po\/o) & fist order | 0> QT
a
Jgsq+1 ‘

AY L R | =9 J5=d
B ( o

to & v\d C’.{\
;:2;\:(—‘ /4J_ﬁ 2] eco ovqe

(3

() . + +
,@/‘t— = 0 b First order | O 74
<L Satl e,

() L p?
_/6,4' _ /L-—— (/5_&’_,\/0 1, Second order J;};O J._B:L’"
St 14 a* ’

W

5.3.2 Collective Vibrations

The interaction model adopted here is the same as in the previous section,

namely a non-spherical potential well, except that the deformation parameters

akq are now treated as dynamical variables, creating and annihilating phonons.(l9)

v
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So we now write a —ey ak » Where

/ Tiu) [:’gk + &) J@k _q, = é')QIQ/b :ib

and b kq’ bkq are the usual boson annihilation and creation operators for

a 2k-pole oscillation with angular momentum k and z-component q.

Since the deformation is no longer static, the expressions (78) and

(81) may now be regarded as referring to space-fixed coordinates, and to first

order we have

\/z(l) = -t R dWPR) oy

. )

- (94)

while to second-order, the analog of (85) is

(2) A sa YR { . X *
\/‘em - Z"ﬁ_—- Po ?L— hk’ ( koy kmq,)

-

o (kg g [Lmp kK 004 >/(.?\i+?\(jk+|)

Again, we shall only discuss matrix-elements for even nuclei, but again extension
to odd nuclei is straightforward. We denote the states by ‘N,JM)? ’ where N

is the number of phonons present. The ground state has zero-spin and no

phonons, JA = 0 and NA = 0, and the first order interaction (94) can only

excite one 2" -pole phonon, so to first order we must have NB =1, JB =£’- Since

W« oo = /?
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eq. (77) then gives for single phonon excitation

0)
A, F
J2sux 1

Using the Saxon form for V, and taking El(r) = F(2)(r) of eq. (87),

A (1) ﬁ
= 2 VK %u ---(37)
\/Z{s?—t o 4

If we compare (97) for a quadrupole transition,,[ = 2, with the analogous

2 p dV(rR)
RD A+ o?Cg

- --@a¢)

rotational excitation, ot —> 2+, of eq. (93), we see the phonon transition

strength is the same as for an equivalent deformation B where

B o= 5 ---@s)

cQCz

For the excitation of two 2k-pole phonons by the second-order interaction

(95), we soon find

A&) («“) <§Q \QM/O > /? o Vfe-R,) ke

4/3_—}_’/: Jr ol r 2041
- ,{qg)

¥
x L kkoo2oy (2 0li 111k || [0,
if /(is even, and zero otherwise. For quadrupole phonons, k = 2, we can have

/€= 0, 2, 4; also

(ol | 1,00 = 22

Again taking the Saxon form for V and putting El(r) = F(9)(r) of eqa. (87),

the excitation of two quadrupole phonons leads to




A/a) = VRE 4 5+ Lo
= o o R x .-
m 2T at o’ZC '('oo)

B 5o =3k

Since the second-order interaction is quadratic in the akq’ it cannot
contribute to the excitation of a single phonon state. It does, however,
have diagonal elements (excitation and subsequent annihilation of a phonon)
which will affect the elastic scattering from the state. For example, the

scalar part of (95) contributes a potential to the N-phonon states of

AU/<NJ a) /NJ> o’ZN+5 P d* V/'rR) hwy -<-(o})

d+? 2C

It is easy to see this has the effect of making more diffuse the surface
of the central potentials seen in the higher excited states, as would be

expected on physical grounds.

5¢.3.3 Excitation by Two-Body Forces

The interaction here is taken to be a sum of interactions between the

incident particle and the particles in the target nucleus.

Vines) = 2 weleomm) ot
(16)

In general, isotopic-spin variables will enter &lso. An example of such
an interaction is the nucleon-nucleon écattering amplitude used in the impulse
- approximation description of the inelastic scattering of high-energy nucleons.(zo)

The spatial dependence of such interactions may be expanded in multipoles,
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g(12-%1) -

and the ?z"\ taken with the various spin-dependent terms to form the tensors

?QH*) >/ /A / c<-(103)

(72). For example, for nucleons, an interaction of the form
) ~--{10
Vie = 9(122l) [A + B o] (109

(where A, B may be i-spin dependent, A = A + A T .T,, etc.) becomes

B ~a ~1i
Via = zi

() o T (he)T, (Be) 09
L), ) R )JSJ/V* )) ‘

Cyg ;lﬂ

L ym .
ifa =A, & =B, and T(OJ,m =1 Z; . Then V has the form (71) if

1

2 )° : o -~ (106
Voor o (25) = Z %5 g9 00m) Ty (o) (9
so that from (75), remembering s_ = % here,

gy Frg () = aulh T3 || 29,009 Tugj (50| Tay. -+ 1107)

Further development requires a specific model for the nuclear wave-functions,
}or example in terms of a single-particle excitation(zl), or a rotational
excitation with deformed-nucleus orbitals for the intrinsic structure.(az)
The corresponding radial form factors will have the same general features
as those discussed for the collective model, namely §(r) zero at the origin,
r = 0, and peaking inside or near the nuclear surface, r = Ro' Thus the same

form factors may often be used, with suitable adjustment of parameters, to

represent these more detailed models.
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5.3.4 Coulomb Excitation

The inelastic scattering of charged particles is also accompanied by
coulomb excitation(23); indeed at energies well below the Coulomb barrier
this is the main mode of excitation. When both nuclear and coulomb forces
contribute, their amplitudes are coherent and interfere. We here indicate
how the coulomb excitation may be included in distorted-wave approximation.
Since the calculation is carried out by partial-wave expansions, the coulomb
contribution is only accurately assessed for scattering angles 6 > 4§, = JZ{MM)
the classical deflection angle (when ‘p<éfl_hax) for the maximum orbital
angular momentum Lmax which is used.(23) For @ ;; Gc, the coulomb excitation
is underestimated. An associated restriction is imposed by the upper cut-off,
Rmax’ on the radial integrals. This corresponds to neglecting impact distances
> Rmax’ or, classically, neglecting angular momenta L > k Rmax’ and so
underestimates the cross-section for © :; ‘Q?//k7amax .

The non-relativistic Coulomb interaction may be regarded as a special

case of the two-body forces of the previous section.
- 7 e _Gi
vC * Z |- -2
y (i08)

= 4-77—2 . <
qe % e, g%\ ,{}ﬁﬂ 20 +1 >*/(,

where Z,e is the charge on the projectile, and e the charge of the ith nucleon
in the target, while r ., r. are the greater and the lesser of Tiy Te Thus,

for r > r.,
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. o
where ]wqc(Q"Q :'2Z€;41 >L (*g) is the multipole operator for electric transi-
tions.(l9) We note that in this approximation V(c) only contributes to s = O
transitions. Then denoting the purely nuclear s = O interaction by’Ygg) we

2

have

Aree Foa (9 = o2t <3y "0 1)
N N A
- AR = S o

where the latter form is valid if we neglect contributions from r <f ry- The
nuclear amplitude is defined (as in the preceding sections) by

N)  — (n N)
Ao Y 7 EASES G

and the coulomb excitation parameter by

y) Ayrze Tl Mel9))Tn)

= - ~-(2)
4 RL+ Ai’g)
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The well-known reduced transition probability for de-excitation is just(lg)(23)

B, (E9) = [KTa )/ m(&) )Ty )

The radial form factor in (110), y (
(~N) A

/Q [”\) = /EZ /f) - o~ 2+l ~-=(1%)

is avaeilable in SALLY for /= 2 and 3 with the shape (87), F(;)(r) = %x ;;x’:, ,

fI‘-«Ro

Oy

3= . The chief feature of the coulomb term is its long tail, so

its effects should be seen mainly at small scattering angles. Since the Coulomb
potential is repulsive, and the nuclear potential attractive, the interference
between them is mainly destructive.

Explicit expressions for b may be obtained if the collective model is

used. Equating the deformation variables to the mass-moments(lg)

4T Y EVECUINN
L 3A Z Re y) 2)

and assuming the charge and mass distributions coincide, gives

SZe g * .-

me{‘o)m) = 477 Pc o(/,w» . . - (1)

Using the vibrational model of Section 5.3.2 to first order, eq. (94), with

) d
the Saxon form factor (87) B F o = oo e’£+/ , @and hence the nuclear ampli-

tude (97), A(:} = ,Zz/e(') = /D?SAH 4‘4 \g}?o /:E%u , we soon find for
d .

the Coulomb parameter

' o?ﬁ-v‘—/ \/O Ro _~_Qlé)

= —(3%/) O- 864 V, Ro

L
Y . 3 * ~ 3 A
if R, a in fermis, V_ in Mev. Tﬂ.cauy) ?C ~ .25 x A ferms
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An analogous derivation for the rotational model of section 5.3.1 leads

to the same expression (116) for b .

5.4 Xnock-On Reactions, A(a,b)B

These are visualized as processes in which the target is comprised of

a core plus the emitted particle, A = C + b, the latter being ejected by the

incident particle, which is itself captured so that B = ¢ + a. The interaction

is taken to be that between a and b, vab'

Exchange between an incident nucleon

and the struck target nucleon in inelastic scattering is a special case of

this type. (10)(21)

These reactions may be included in the "zero-range"

formalism if the interaction Vab is itself taken to be of zero-range in the

separation of the centers-of-mass of particles a and b.

The parentage expansions of the nuclear wave functions corresponding to

A=C+ Db, and B = C + a are of the same type as already discussed for stripping

reactions, eq. (52).

v,

M
A TeMe 4y g,

(& 40 )= > T jaMeMert, 3, NN /J‘MM}

-~{117)

x j&c(gﬂj{r) u//&_(“lc))«d& fof},c) %TCMC({C))

and an analogous expression for B = C + a.

The internal coordinates of the

core are denoted gz, those of b by Oy This expansibn selects out a parti-

cular particle; if there are M identical particles a within B, and 7, identi-

cal particles b within A, the cross section is proportional to NNy We

shall account for this by including the factor q/nmﬂé. in the transition amplitude,



-L45-

which then includes two '"spectroscopic amplitudes™ E =./n j , each similar
to the one (53) appearing in a stripping amplitude in Section 5.1. If these
expansions are introduced into the matrix element (8) of V, and if we assume
V is scalar in spin-space (i.e. contains no spin-orbit or tensor terms), some

(3)

straightforward Racah algebra leads to the following expression

/A\ls‘ 7[\ . (faA)ng) = E_Z ﬂjlrlfaj qua)q/—j (1}4-54]6—)
y sjm Ver "

CEDVE (R uy () sz ve, Fye)

T + =4 + at
e TR 4, o0ty |l ”wasww

xW(JA'JBJqu;jJ-C)W(SQ~%.%SQ,‘ES) ] Je Jt -~ (18)

L Lo A¢
S Sa S&
summed over Jc J&)‘Q‘G/J‘Uﬂ _ , and where
/(Qf +|)(J!(,+o) . -
</p ,f] OO/ 0 e (Q‘€+’) y[ 42’ <j [e_/;m/u/ﬁm> (d‘ >/ :156
When = 57 , Ij{"'\ (%, —r,(,\) becomes just X{ (®) . We have

also put for the value of Vab in the state with total spin E J

z

Vi = Lloase) 2, M | Vo [(ses) Z M5
(Since we assumed V scalar in spin-space, it is diagonal in2 ) For example,

for spin -~ —% particles, S =S, = %_ , the general interaction of this type 1s

0., and we have 0
"A-3B £ Z=0 claglet
\/Z - A + [022(24-,)-3]:8 = 7 3

"9

A+rB 4 5=1, teplet,
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Because V_, does not involve the core coordinates it is diagonal in the

ab

core states, so that the target A and residual B nuclear states must have at

least one parent core state '}LJ, in common for the transition amplitude not
eMc

to vanish.

To introduce the zero-range approximation we put

VZ = -G, §(t,-1.) - (29

a -

For the position-vector diagram we have

B
T,{,C—*QC = m_(ilB - '§'~aﬂ>
so that $ (:Qrc— i‘ac <B+G) S (,\%B ,,QA> . Also, the

3
+
Jacobian J of the transformation from r ac’ rbC to -ra.A’ EbB is [AB/C (B l—):) .
The product of these factors gives (A/C)3, which also follows immediately from

A -
jmc = 6 1.8 when Lra = 0. From eq. (10) we then have for the zero-range

amplitude and form-factor,

ALe,J 55J (+) J;—(m” Z ﬁ/_ai ("a%J)ﬂjACﬁ%()O (22+1) G

Tl

- 0t~ + o?j"'\
) 4( ,r)%_ M5.) ; N(J T Tt e <ﬂioofo>/ : 'JH (3)

X \/@a+'){°?j++')(°20°~+l)(°?€6—+9W(‘TAJZSJ‘Q‘o.;JJC) Wsagsisits) %ZJZ

S Sq 54




b=

The complexity of this expression arises entirely from the recoupling of the
various- angular momenta involved, from the coupling scheme appropriate to the

nuclear states,

Jetje » e = 4+ s,

A

,.‘IB :gc"']a p) a:’f“"'é“
to that exhibiting the angular momentum transfers in the transition between
them, (which also displays the selection rules for J, i?and s),

g:JB JA =J'—a/6_ =«€+S

L e

P~

L= L=y, s-s-s0.

7

Some simplification is obtained by taking special cases; for example, if the
interaction is spin-independent so that (;2.2 é;)independent of & , the sum
over 2 in (121) may be carried out,

ZZ (224—/) \/\/(Sas{rs,(r.ga)‘Zs) = ] _\;(/QQ)

Again, if only one core state, of zero spin, contributes, Jc = 0, we have

Jp*Js ‘J‘

W/J' 2 94 Ju 5 J.) J=0 (=)

/2Tt 27w+ 655 +)

In many cases it will be possible to assume only one orbital _/L and only one

orbital.fi contribute, so the radial form factor is basically Uy (+) ?74,/f)
a
(where the -Q({h? may be taken as shell model orbital wave-functions), and the

remainder of (121) may be taken as the amplitude Ajsj:

Ma m
fs(] /) = 4’,‘(& Me 1&) ";‘& /YTCB'{\)) (-fcn* all allowed [S )
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It will often be possible to represent this F}J ' (—r) to a good approxi-
J
mation by one of the options available in SAILLY. (When doing this, it must

2
be remembered that (123) implies the normalization ju((*) Aol = 7)



-L49.

PART II: The Code SALLY

6. Method of Calculation

The amplitudes and cross-sections described in Part I are computed by

the code called SALLY. It was written for the IBM-TO4, (with 8000-word fast
memory; a 16,000 or 32,000-word machine would require revision of the program)
but may also be used on the IBM-709 or TO90 with compatibility. The running
time for atypical case, with about 15 partial waves in both entrance and exit
channel;}is about 2 or 3 minutes on the 704 and less than 1/2 minute on the 7090,
with the minimal output. Of course, these figures depend upon the number of
partial waves used, details of the integration intervals and step-lengths and
the amount of output demanded.

| The code calculates the amplitudes described in Section 3, eq. (15) and

(16), using the I’ coefficients tabulated in Appendix III.

s - 5 Pl "

\'
o

¢ L4d (/0‘24)

(L +L/+l) even
"< La

FL = Db R X o

LLs 2 L’

From these the various quantities specified in Section 11 and Appendix ITI are

A3 T

L L

calculated, including the cross-section (21)
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5 ¢ On =
c(e) = N <, | 5 0)

where v c “-0Q5>
PJ - fz;fi§:§_ rrzB Yylb. sza
ke ke Mg (me)(MgHMy)

with the masses in p.m.u., the wave numbers in (fermi)-l.

Because of the limited storage of the 70“, SAILY is conveniently broken
into three parts. 1In part A the form factor E[(r) is computed at specified
radii and stored on a drum (in the 7090 Eé(r) is stored in core). Program B
is then called from tape and is written over A. B first calculates the
optical model wave functions for the incident channel and stores them on tape
as a function of radius, in blocks (>< (Z) (ﬁ) , X:a)(ﬁ) s- - X?(ﬂ))
for each r.. On completion of the integration, the normalizations of the various
partial waves are computed, (by matching onto the asymptotic coulomb functions)
and stored on tape. This program then returns to compute the optical wave
functions for the oubtgoing channel at rys calls in the incident channel wave
functions and the form factor at this radius to calculate the integrands,
normalizes by the incident channel normalizations and accumulates the integrals
by the trapezoidal rule. This calculation proceeds until a cutoff (upper or
lower) radius is reached, at which point the integrals are stored on tape.

The calculation then continues, outputting integrals at every specified cutoff,
if any, until Rmax is reached. The normalizations of the outgoing wave functions
are then computed and stored.

Program C is then called, obtains the integrals from tape, applies the
normalizations from the second optical model pass and proceeds to calculate

the amplitudes and other quantities of physical interest specified (see Section 11).
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If lower cutoffs are called for, Program C differences the integrals
at Rmax and Rcutoff to obtain the integrals needed. Throughout the calculation,
precautions have been taken to insure that underflow will not introduce errors.
Overflow is, of course, monitored but no remedial action can be taken. In
this case, the calculation is stopped and a message printed, identifying the
stop and the routine in which it stopped.

The code makes use of a Kutta-Simpson integration method to solve the
radial Schrodinger equation. This has the advantage of using a variable radial
mesh, so that sensitive regions of the potential, etc., can be investigated
carefully. In addition this method is relatively insensitive to the starting
guess made for the function. The solutions are scaled to prevent overflow of
the un-normalized wave functions. This feature also guarantees that the higher

partial waves will not be started until they make a finite contribution to

the total wave function.

The coulomb functions FO, Go’ Fl and Gl are computed using asymptotic
formulae.(zu) The solutions are of high accuracy if P = h‘RN\ is
max ax
chosen as
© e 2%(72 + 49 + 5) oF }> 3, .‘-(/,24,)
> lo - 9 < 3

where is the Coulomb parameter. The Coulomb functions for the higher angular
Y,

momenta are found by recursion relations;(25) (upward recursion for G., down-

L)

ward for FL). Here the program assumes values for FLf and FU44 ,» with
L' >'Ihﬁx' On completion of this calculation the program assumes values for

Fon and F . 1, with L" > L', and recalculates. If the two results compare

L"+

to sufficient accuracy the calculation passes on to the next phase. If not,



-52-

the program trys 5 times to compute these functions. If still unsuccessful,
the program increments 6>max and trys again. SALLY is pre-sgt to try to
find Coulomb functions 25 times. If still unsuccessful, the program stops.
These failures occur if fﬁax is not large enough or if the function has a

zero in this range of The remedial action suggested is to try a larger

Coax’
(but one within the bounds of the physics).
f)max’
The most common remarks (messages) output by SALLY are the following:
"Remark # 11 in subroutine 1

Increase 6) max = Gmax + & (oma.x"

This remark occurs because of the failure to find Coulomb functions of

sufficient accuracy (see above).

"Remark # 1 in subroutine 11"

This routine checks whether Lmax is sufficiently large to include all
partial waves affected by the potential. It also checks to see whether (0
is large enough so that the nuclear potentials are negligible. According to
which failure, the program will increment Lmax by 1 or (Omax by 5f>, and try
again. Again SALLY is pre-set to make only 25 such increments.

"Error # 2 in subroutine 10"

This routine calculates '7 , k, ka, ka', 2'7/%Rc. IT E, a, a', or r,
are input as zero, in the course of calculation there is a division by zero.
Check the input parameters!

T. TInput for SALLY

The New York input routine NY-INP1l is used for SAILLY. Each row of the
input sheet corresponds to an 80-column card. The input is scanned so that

one may enter any integer either with or without a decimal point. Negative
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parameters are simply preceded by a minus sign. BEach entry is followed by a
comma, except the last in each row. Any entry left blank is read as =zero,

€efe ==-8,,b--- is eduivalent to ---a, 0, b--- so that it is never necessary
to f£ill in zeros. (A comma at the end of a row will be interpreted as being
followed by a zero: =---a, = ---a, 0O ). There is no specified number of entries
per row (card), but certain sections of data must start on a fresh row (card).
Fach row of input numbers should start in the 12th column, and the 11th column
is left blank. The preceding columns 8, 9 and 10 are used for the instructions
BCD (binary coded decimal) or DEC (decimal).

The first two rows (cards) are:

BCD 3XEOXXX

DEC O
The X's may be replaced by 6 other symbols (e.g. for identification of the
coder) but these are not printed on the output. They may be followed by up
to 11 symbols (for designation of the run) which are printed on the output
sheets.. No commas are necessary on these two cards.

The next three sections of input contain parameters for the ill form factor
and integration intervals, iiil optical model for the entrance channel, and
i}i}l opticdl model for the exit channel. Each section must start on a new
row (card), but each may occupy more than one row (card).

Lll Form factor and integration controls: ¥l through F5 are parameters
for the form factor, and F6 controls the choice of form factor (see Section 9).
A/ is the orbital angular momentum transfer (in units of #i). The last nine
entries control the integration intervals (see Section §).

Total: 27 entries (including zeros).
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Liil Optical model for entrance channel: Ea is the labgratory energy
(Mev) of the inéident particle E,Yﬂa its mass (amu) and YUA the mass of the
- target nucleus (pmu). ZaZA is the product of the charges of incident and
target nuclei (in units of ez). Next follow the parameters for the optical

model potential for the pair a, A (see Sectionl10). (Note: even if the particle

is uncharged, ZaZA = 0, a non-zero numbér mist be entered for the charge
radius r.s for example, put r, = ro). Lh is the maximum orbital angular

momentum (in units of #) considered for the pair a, A, and so controls the
number of partial waves used in the entrance channel. Lh should be chosen on
physical grounds; a rough guide is that La should be of the order of ZkaR,
where ka is the wave number and R the nuclear radius. Values up to La = U9
mey be used, provided L > 3.

KAl controls the choice of optical model (see Section 10).

Total: 24 entries (including zeros).

(iii) optical model for exit channel: as for last section, except the
first entry is the Q-value of the reaction (Mev) and the last four entries
are used as option controls. Lb’ the maximum angular momentum in the exit
channel, is also chosen on physical grounds and should be of order 2kbR. Again,
values up to L = 49 may be used provided L, > 3.

KBl controls the choice of optical model for the exit channel (see Section
10).

KB2 controls the choice of lower or upper cutoffs on the radial integrals;
enter O for upper, 1 for lower. (Upper cutoff R means the integrals are carried
out for 0 ¢ r < R, while lower cutoff R means R < r < Rmax)' If no cufoffs

are required (see below), enter O.
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KB3 controls the output; entry O gives the cross-section, polarization
and tensors (where applicable), while entry 1 gives in addition the matrix

elements ém, BLm and the radial integrals fﬂ (see Section 11). When cut-

LU
offs are employed, this data is printed out for each value of the cutoff as
.well. The form factor, and the elastic cross-sections and partial-wave
scattering amplitudes are always printed out.

KB4 controls the choice of quantization axis for the matrix elements
Bm and éﬁ (and the tensor phase angles ¢i) but for 17= 1 and 2 only; entry O
gives them referred to the incident beam as axis, entry 1 refers them to the
recoil direction Q = gd-%hgb as axls (see Section 5) and also prints out the
recoil angles. For other,x‘values, enter O here.

KB5 controls the angular intervals at which the reaction cross sections,

etc., are evaluated; entry O outputs them at every 50 from 0° to 1800, entry 1

for the same range. With these two options, enter ieros for 00
\

at every 2.50
and A in thé places preceding Lb’ More control over the angular intervals
is provided by entering 00, the smallest angle at which output is required,
and A6 the interval, in these positions, and entering the number of angles
required (up to 75) in KB5.

If cutoffs are to be employed, up to 29 of these (in fermis) may be
entered on the next row or rows (cards). If no cutoffs are required, these
rows(cards) may be omitted. Finally a transfer card is required: TRA 3,k

Thus the input requires a minimum of 6 cards (if no cutoffs) or 7 cards
(with cutoffs). This input is summarized in columns on the following page,

and on a key input sheet. A sample input for a typical case is also shown.
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__:__ ....... = __._._D._E_.C_} : V, W, Ty Ty 84,,TH, 8 W (a + A optical mod@
I JU I DEC | |yesligseKAlyyys
|| (Stattnde :aﬁ.—l._‘_gﬁ.(i_: {Q.ng.mn. ZhZp Coutgoing data)
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"SAILY" INPUT : SUMMARY

1. Form factor and 2. Bntrance Channel 3. Exit Channel
integration controls option model optical model
F1 ) E (Mev) lab. energy Q (Mev) Q-value
F2 form factor rnq»(Pmu) incident mass Yﬂé (pmu) outgoing mass
> parameters (pmu) t £ ( ) fdual
F3 Y(M p2 arget mass Me pgu residual mass
F4 ZaZA(e )-\charge product AR (e )~ charge product
F5 v (Mev) v (Mev)
0 W (Mev) W (Mev)
0 T (f) r ()
0 angular r, (f) |optical r, (£) optica}
t_ . potential
A ( ) momentum a (f) >potent1al a for
0 transfer 0 for 0 b+ B
76 {forrfx factor 0 a + A 0
option
! T
0 r! (£) r! (f)
0 a' (f) a'  (f)
0 W' (Mev)) W' (Mev)
0 0 0
0 0 % (deg) initial angle
0 0 I A0 (deg) angle interval
0 L, (n) {angular Ly, #) max. ang. mom.
a integration o momentum 0
b controls: KAl {ﬁmdel KBl model option
c radii (f) 0 option KB2  cutoffs
d 0 KB3 output
e 0 KB4 quant. axis
£ 0 KBS angle control
g number of
h intervals 2k entries 24k entries
i -13

(f = fermi = 10 cm; pm = ptoton mass unit)

27 entries
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8. Integration Controls for SALLY

The last 9 entries, a through i, in the first section of input parameters
afford full control over the radial integration intervals. The complete input

(radii in fermis)

Rl’ RE’ R3: RN’ Rma.x’ Nl’ N2: N3: N)-l-

corresponds to four integration regions:

R, R
f l '1
< N1 >< ,\ll N3 \/% Nl'_ 7

intervals intervalg intervals intervals

P

RN Pmax

) S

increasiang -

>

Not all of these have to be used (see simplified input below).

The starting value for the Lth partial-wave radial function in each
channel is taken to be ﬁfj' JL(L+0 [ at the first f& for which this quantity
is ) - 121 (where (©: = kKR.,). Thus -u_(p,)= y ow (e) =1L p” ete

fl I o €~)- Cr ) i GJ A S :
The quantity (% must be greater than zero and small enough to allow the waves
to start. Normally 6% = 0.0625 is satisfactory, only introducing an error
in the real part of the s-wave phase shift of order 10’“ radian.

For charged particles, the value of = kRmax in each channel should

max
satisfy the inequalities (126),

C; 5’ r>v fghmx >

~

;% [Tf + 4v-+3]) or 10, whichever is great-
er. (Values of D ﬁp to approximately 11 can be handled by SALLY.)

The other criteria fqr Rmax are physical. It must be chosen sufficiently
large that the optical potentials and the form factor have fallen to negligible

values. The form factor is usually the over-riding consideration here (remember
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it is weighted by r2 in the radial integrals). In most cases of physical
interest Rmax should be chosen at least twice the nuclear radius, and pre-
ferably three times it; in some circumstances larger values may be needed.

The N, intervals between R

1 1

accuracy in starting the integration of the radial differential equations;

and R2 are chosen to be small to ensure

they should be approximately éf % 0.0625 (or &+~ 0.0625/k) or less. Also,

it is suggested that the value of (32 = kKR, should be at least 0.5 in each

2
channel. At low energies, when k is small, the more important parameter is
the local wave number K inside the optical potential, which may be considerably

larger than k. Then a starting radius of R, = 0.0625/K and an interval size

1
of §r = 0.0625/K may be advisable.

The remaining intervals must be chosen so that they are small compared.
to (i) the wavelength in either channel, and (ii) distances over which the
optical potentials or form factor vary appreciably. Condition (i) appears to
be satisfied if g@.ﬁ 0.25 (or $+ 4 0.25/k), while for Saxon botentials with
a typical surface diffuseness a = 0.5, a step length as large as Sbrx 0.35
(provided S@ < 0.25 simultaneously) does not seem to impair the accuracy
greatly, although a smaller interval would be advisable.

(Note also that the radius R_ is part of the form factor input for options

N
0, 7, 12 and 13, although with other options it is a free parameter.)
Not all these parameters have to be used. A useful combination is effectively

to omit R3, entering

Rl’ R2’ RN’ max

Ropr O Ny, Mo, Ny, O Rys Ros Ry Rypors Mg, Ny, Ty, |




-61-

corresponding to:

RL‘ R;

< N, 7 N,

Pav]
p4
>
L
3
»
x

AT

These three regions are sufficient to allow the use of smaller intervals in
the range Rl to RN’ where the form factor, optical potentials and distortéd
waves may be varying rapidly ('"inside the nucleus"), than in the "external"
region RN to Rmax' Then RN should be chosen (except with options 0, 7, 12, 13)
to be somewhat larger than the nuclear radius.

A flexible, simplified, system of preset values for the radii and the
intervals is also available. This is based on the three integration regions
above with Ry = 0.0625/ka, R, = O.S/ka, Roax = 30./ka, and using N, = 7 and
N,

27 73
(Note that for charged particles, exmxx = 30 is too small if the Coulomb

, N, as the smallest integers for which § Tss $ r3 < O.25/ka respectively.
parameter 7);> 6.5. Also note that Rmax = 3O/ka leads to 6)max = 30 kb/ka
in the exit channel.) Only RN needs to be entered as input, and any value
between R2 and Rmax may be used for it (except that for options O, 7, 12, 13,

Ry has the usual significance (Section 8)). The input is now written:

RN’JJJJJ’JJ

w

Rys 05 05 0, 0, 0, 0, O, gJ

corresponding to

'OGQS/kA ;S/kq PN 30/ka.
| — = j
< N, < N, > Ny ——

=7 - kR_RN— 5 - 30"kq?~
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with N2, N3 rounded upward. More control may be gained by entering a value

(1) for Ny: Ry @, 0, 0, 0, N3, 0, 0, O = kRN,,,,, N3s55

(ii) for Rmax: RN’ Rmax’ 0, 0, O, N3, 0, 0, 0} = RN’ Rmax”” N3,,,

‘(iii) for R,: Ry» RN’ Rmax’ 0, O, No» N3, 0, 0| = R2, RN’ R oax??r Mo N3,,

In either of these, or the more complete input, any of the Ni can be entered

as 0, when it will be taken as ka(Ri - Ri)/0.25 (rounded upward) for

+ 1
i> 2, ork(R, - Rl)/0.0625 (rounded upward) for i = 1.

Example 1: (d,p) deuteron stripping, incident energy 8 Mev

For this energy, k & 0.8, so the preset value of R ax = 30/ka:x 37.5.
The preset interval size of O-25/ka¢b 0.3 may be adequate., For the exit channel
consider two Q values:

(i) @ =0, so k = 0.6, and the preset value of R . leads to a
emaij 22.5,

(ii) Q = 8 Mev, so k. < 0.8 and the preset § max ~ 30+ The Coulomb para-
meter ‘7& for the deuterons is approximately ZA/lE, so is well below the limiting

value of 11 even for the heaviest nuclei. For the protons,‘7b is even smaller.

We could then use the input:
RN’ 0, 0,0, 0,0, 0, 0, O = RN””””
While these preset integration controls are adequate, the Rmax is much

larger than is usually necessary, and the running time could be reduced by about

L0% by using Rmax:; 20, say. This leads to €rmncx'l6 for the deuterons and
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C)ma.x: 12, (for @ = 0) or C max 16, (for @ = 8) for the protons. The

input is then

R 20: O: O: O: 0, O: 0, 0 = RN’ 20:::::::

N)

If, in addition, the interval size of 0.3 is inadequate for the nuclear

interior, a smaller interval may be used by explicitly writing input for R2

and N,. Suppose RN = 5.3 and we require S = 0.15. The preset R2 is

o.s/kaz 0.63. We may take R, = 0.65, then R_ - R, = 4.65 and N, = 31 gives

2
the required interval. The input is then

N

.65, 5.3, 20, 0, 0, 31, 0, 0, O .65, 5.3, 20,,, 31,,,

i = i i f~A . < < .
leaving N3 O retains the interval §4+=0.3 for RN £r £ Rmax

Example 2: Inelastic a-scattering, incident energy 40 Mev

Here 'ka. = 2.7, so the preset value of Rma.x = 30/ka¢$ 11 is rather small,
although experience has shown it adequate for lighter nuclei (say M A ,é 50).
For heavier muclel a larger R . should be used. The limitation Pm&x’é 65
allows 'Rmax é 24. TFor small energy losses, ka. ~ kb » SO 6 max for the exit
channel has a value similar to the entrance channel. The preset interval of
S+ = 0.25/1{& =~ 0.1 is certainly adequate. Since options 0, 7, 12, 13 will
not be used generally for this reaction, the value assigned to RN is arbitrary
(between O.S/ka and R ma.x) and the simplified input may be used:

R, R 2 OJ O, O, 0: O, O, 0 = RN:RM“JHHH

N’ “way
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9. Form Factor Options in SALLY

Ten interaction form factors F(r) are available, choice being controlled

by entry F6 as follows:

Fé = F(+) =

0, or 12 Bound - state wave - function as,y [+)

1 %i e ) + < Ree | )

’ Lf9-% ., v7 Re f6=-4 =
£, + < Ree s

* fx) - &, + » Ree ? )
f(x), + < Ree R

> flo) - %0, P 2 Ree

vV

< Saxon
e + |

7 5 e_x Ay (+) : + £ Ry Damped bound - state
, ot 19 -R.
U e (+) ) 2 PN = ’La;
- R, )
8 - 'F ’raI ) ) T é RO
’ 4_Re _ o
_F( aE ) ) ’f‘z Ro >'F(X)—J;c ex+’ ;
9, 4 L)
x= 4=Ro
£\ 4oy, To
’O) (Ro> a—x ‘F‘()) )
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The parameters for these options are entered in the locations Fl through F5

according to the following table:

Fl = kN Ro Ro Ro Ro Ro kN Ro Ro Ro BN 'BN
F2 = .7N ao ao % % ao 7N a'E ao ao ZlZ2 le2
F3 = HN b b b ' A Hyy aI 0 0 My | Py
Fit =| O RCE RCE RCE 0. 0 aN 0 0 0 0 aN
F5 =| N 0 0 0 0 0 N 0 0 0 N N
F6 =0 |1 |2 3 1 b 5 |7 |8 {9 |10 |12 |13

Option O or 12 is designed for stripping (or pick-up) reactions and represents

the bound-state wave-function for the captured particle of reduced mass p(amu),
Coulomb charge parameter C)N and binding energy BN = h2k2N/2uN (Mev). The

units of kN are inverse fermis, so

kN >~ 0.2145 \//‘N/F""“')\BN(H“’)

0158 £ Z ng(le“j )
n (e

e the charge of the

R

In

where Z.e is the charge on the captured particle and Z

1 2

nucleus to which it is bound. In option O one enters kN and My in option 12,

BN and 2122 are entered.
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The function is calculated as an harmonic oscillator radial function
of principal quantum number N, orbital angular momentum f , matched smoothly
on to a hankel function (or its Coulomb analog) at r = RN (entered in the
integration controls section) with the required binding energy By, (i.e.
asymptotically it falls off as e-kﬁr/r).

MN.QH) oc ,rfe‘@{" F'(z?ﬂ:_".j) .€+§£) ﬁ-rz)) JSRN)

X

~ 'F'VV(‘7N> 1+§>Qkﬁ)s + 5 R,

F is a confluent hypergeometric function, and W the real Whittaker function;
if =0, W= (2kr/1r)l/2K (kr). B is chosen by the program so the log
7> A+ 1/2 >
derivatives match at r = R and the function normalized so that f p.NE(r) rfar = 1.
[}
N is the number of oscillator quanta plus one; the number of radial nodes (ex-

cluding r = Oand r =00 ) in “Nf is ‘QL(N—I-I) . The relation to a more conventional

notation is as follows

Cp, 6F 3, 24
5s, 54, 29 3s, 23)13
bp, bF 2p, If

3s, 3d 2s, id

Jlp 1p

Is 1s

_/»_’,_{ Conventional

This option in SALLY will compute ('(N.O for N ¢ 6/ -pé/i- + On the first page

of output, below the values of Mw(v*)) are also printed out the values of




-67-

o0

2 2 R”zz 2 2
fMJ\dJ\) f_a%o’r , u/PN)) ﬂPNu/R,\,)/Q/&) /3

R . O
and RN d (ﬁﬂ'ﬁu)//d¢'J*=RN-

No simple rule can be given for choosing values of the matching radius
RN’ although it will be of the same order as a nuclear radius. For the capture
of a neutron or proton, it has been found empirically that in order to reproduce
approximately the wave function of & nucleon bound by a few Mev in a Saxon

potential of radius 1.3 Al/3, the values of RN needed are approximately

RN/A1/3 ~  1.75 1.7 1.65 1.6 1.55

when A ~ 10 25 60 100 200.

In detail, however, it is possible for R to depend upon N,,f, and BN’ as well

N

as A.

Options 7 and 13 are the same as options O and 7 except that4AN£(r) is

r - R._\2
multiplied by the damping factorlexp - (—————H> )for rféRN. This allows

Ay

contributions from the nuclear interior to be reduced smoothly.

Options 1, 2 and 3 were designed especially as form factors for inelastic

scattering (see Section 5.3), but may of course be used for other purposes.

The terms in b take account of Coulomb excitation to first order, but excluding
contributions from r <fRCE (see Section 5.3.4%). For interaction between
particles of like charge, b is negative. The form b/r3 in options 1 and 2 is
appropriate to an ,/= 2 transition, the b/ru in option 3 to an ,é; 3 transition.

b may be put zero, but R, must remain finite (for example,

CE
put RCE = RO). These options may be used with any Jééfh.
Option 8 is similar to options 2 and 3, but with b = 0, and different

values for a_inside and outside the peak r = Ro’ allowing more flexibility in

the choice of shape.
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Option 9 is the derivative of the form factor 2 and 3 (with b = 0), and
again was designed for inelastic scattering (Section 5.3). It is zero at r = Ro’
changing sign there.

Option 10 is just (r/Ro)2 times option 9 (see Section 5.3).

Options 4 and 5 are Saxon and Gaussian respectively.

10. Optical Model Options in SALLY

There are three choices of optical model potential U(r) for each channel,’

chosen by entries KAl and KBl. Each has a Saxon-Woods form for the real part:
\/ 4~ R D m £ \
Real U(r) = -, x=" )\z’(‘o( L) (.c:AoTB)

e+ |

For the imaginary (absorptive) part we have the choices

Kil = lmmg. U(”) =
—(x)* +- R’ / 3
1) —WC_ , X = ar R:‘{\o//m,‘t)
Pt W= O. (5u+ _F&C{' Gaus < Lan)
‘;1) - W ; x = 4+ =R R and a  as For +eal P«*‘t
ex+, 2 o )
Pu,t ’f\ol. =a’= W' = O. (Sa.xo‘n)
Y /o 1=R’ N 3
[") - 81;1 ) T e, R = A5 (m~>
Put wW'=0. (Ln&crendeq— So;xon)
] 4 d | / 4 - R/ 4 Vi +
) “[W‘W &']?»r_r , X, RO A (M)
(tnde?emd ent Soxon P'_w:s_ dcﬂ‘voﬂ:&ﬂ)
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These give adequate control over the distribution of surface or volume
absorption. Of course, Model 2 is a special case of Model 7 (with W' = O
and ré =T, a' = a), but its use avoids having to enter both r,, @ and
ré, a' when these are equal. Similarly, Model 4 is a special case of Model T
(with W' = 0). The signs are chosen so that a positive entry for V or W
gives an attractive pdtential. In Model 7 we may put W = O (pure surface
absorption) or W' = O (pure volume absorption). A purely real potential is
given by any model with W = W' = O (however; a' must not be entered zero unless
Model 2 is used). Similarly, V may be madé zero, but & must remain some
(arbitrary) finite value. When considering values of W and W' to enter for
Model 7 it should be remembered that, while (ex + l)"l has the value % at
r = R, d/dx (& + l)-l has the value %.

In addition to this potential, there is in the entrance channel a Coulomb
potential due to a uniform sphere of radius Rc = rcwn%l/3 and total charge
(ZaZAez), that is

2?&_ZZA-ez
Coulomb 1 g

- ZmZA el(:b_i}_) ’fg ’RC
2 R Re /7

op

and similarly for the exit channel. For neutral particles ZaZA = 0, but a finite

r, must be entered; it is suggested to put r, =T,
Putting both V and W (and W') equal to zero is equivalent to using just
Coulomb distorted-waves. If ZaZA = 0 also, it is equivalent to using plane

waves. (Again, a, a' and r, must be non-zero, except for Model 2 where a' = 0

always.)
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1l. Output from SALLY

SALLY always outputs the form factor used, the elastic scattering in
entrance and exit channels, and the reaction differential cross-section
(and polarizations were applicable). In addition under option, the amplitudes
and radial integrals may be printed out.

On the first page are printed the form factor controls Fl through F6,
and values of the form factor F(r) at each integration step, starting at

r = R, and finishing at r = Rmax.(see Section 8). These numbers appear in

1
the form: a By =8aXx 109 (with the radii in fermis),
e.g. 1.23 === E-02 = 1,23 === X 107°
4,56 - E 09 = -4.56 -=m X 107

]

When the form factor options F6 = 0, 7, 12 or 13 (the bound-state wave

function) are used, R(r) = uNQ(r) is followed by some additional date

= 2 *
EXT AREA = C u +*dr
| \4 NZ£
INT AREA = C j*“ wyt At de
¢}

(where the normalization constant C = EXT AREA + INT AREA)
‘ RN = RN’ matching radius
ZETA (RN)/RN = ALC wy (Ry)
GAMMA = C (tzRN/AQPN)‘“N;(R”>

BETA = B, oscillator parameter

d
RIWWIOGDER = R, = Lo (4 uy) .y

Below are printed the (dimensionless) integration intervals, and step-

lengths 5@, 5 Pa‘éf, ) 5("2) (°~‘5(’z; gfs)("Max—gfs)where €L = kaRL (see

Section 8))to be used in the entrance channel.
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The next page carries data for the entrance channel elastic scattering.
These are expressed in the form: ﬂj a=.aX 103
Ce.ge =3 123 --- = .123 ~-= X 10-3
2 256 e = 456 - X 10°
At the top of the left-hand column is the reaction or absorption cross-section
= SIGMAR (in f2 = 10 mb units) predicted by the optical model. 'The remainder

of the column contains input-, reduced-, and integration-data in the following

way
OPTION x: the optical model (see Section 10) (x= K/\1)
ELAB = energy of incident particle in lab. system (Mev)
MSUBI = Tﬂa, mass of incident particle (pmu)
MSUBB = ,, mass of target nucleus (pmu)
PAAS = 2,7, product of charges of projectile and target (e2)
v = V (Mev); A = a(f)
W = W (Mev); RG = ro'(f) parameters for optical model
RO = ro(f); B =a'(f) for a + A (See Section 10)
RC = rc(f); TAUL = W'(Mev)
ECM = energy in CMS (Mev) ,
ml(PMu.)
ETA = p, Coulomb parameter = -5 805086 [———
K = k_, wave number (f~ -
a’ () = 0.219537¢ Mo (or)E, (M)
Mat+t M, el
KA = ka
a
KB = kaa'
- 1/3
RHOBN = kr_ (mA)
- 1/3
RHOBC = kT ()
1/3
- 1
RHOBG = k,r! (mA) ,



-T2~

‘RHOIN = kaRl’ lower limit of radial integration - followed by the
other k R, (unlabelled) - (see Section 8)

RHOMAX = kaRmax

DRHOIN = kaE;rl, the initial step length - followed by the other

%aé;ri (unlabelled) - (see Section 8)

The next three columns contain the CMS scattering angle THETA = © (at
CMS intervals of 4°), the elastic differential cross-section ( = SIGMATH) in
f2 = 10 mb. units, and, for charged particles (ZaZA % 0), its ratio to the
Rutherford scattering cross-section ( = SIG - SIGC). Finally are printed the
real and imaginary parts of the partial-wave elastic-scattering-amplitudes
CL = eiKL sin KL’ and the normalizing factors obtained when the integrated
partial waves are matched on to the exterior wave functions. At the bottom
of this page are then printed the (dimensionless) integratioﬁ intervals aﬁd
step lengths to beAused in the exit channel, 561) fnf——gf( ) etc., where
el = ko R = ('”f/ka) €L |

The third page carried equivalent information for the exit channel, except
that ELAB is to be interpreted as the lab. energy which would give the same
CMS energy if the residual nucleus were stationary in the laboratory, (i.e.
the lab. energy for the inverse reactipn). In the exit channel, ECM is the
ECM of the entrance channel, plus the Q-value of the reaction.

The fourth page carries the results of the calculation of the réaction,
for an upper cut-off at Rmax’ i.e. the radial integrals are over the range
0<r <rRmax' If other cut-offs (upper or lower) are employed also, similar
results of calculation with these are printed on the‘following pages. At the

top appears the angle-integrated cross-section for the reaction
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TOTAL SIGMA = O = 21tj0(9) sin @ 4 o,

also, for }?: 1 and 2, the tensors averaged over the differential cross-

section (and referred to»lga as z-axis, see Section 4 and Appendix II)

=<d26>

(dI+0>

AV D20

2r fo(e) d,, 81n6 4 6/a,, for f=1.and 2,

AV D4O

on fc(o) 4,, sin® d 6/a,, for /=2 only.

Then arranged in columns are the CMS scattering angle, THETA = ©, the
differential cross-section SIGMA = ¢(©) defined by eqs.(21) and ( ), and
(except for ,p= 0) the "polarization" POL = n(6) defined by eq. (25). For

A= 1 we also have LAMBDA = A(©) and 2PHIO

1

2¢0, while for /= 2, there

is D20 = &, D22 = j</1\22[, Dbk = /&\M/, D32

/3\32}, 2PHIO = 26 , LPHIL = if,,
and 2PHIZ2 = 2¢2 (see Appendix II). The phase angles 994 are given in degrees,
and are physically unchanged by the addition or subtraction of 360O (that
is, ¢o and ¢o + 180°, or ¢l and ¢l + 90°, are physiéally equivalent). When
control KB4 is set as zero, the ¢i are measured from the incident direction
35, a right-hand rotation aboutﬁga X‘gb being positive. When KB4 is set to
1, the ¢i are measured from the direction of the recoil momentum gﬂ@) =k -
Unygk)ké_; also the recoil angle between E,and,ga is printed out on a separate
page precedihg the reaction results at the same values of © (see Appendix II).
When plane waves are used (that is, both optical potentials and the charges are
‘set zero), we have ¢o = ¢l = —(angle of recoil) for KB4 = 0, or ¢o = ¢l =0
for KB4 = 1 (see Appendix IV).

For A= 0 and ,(= 1 the amplitudes (real and imaginary parts) B/m(g)
are also printed out on the same page.

For ,/; 2, the additional angular correlation pérameters o, B and y defined

on page 20 (see Appendix II) are also printed out.
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When the control XB3 is . set as zero, this is the only output. If KB3
. N : L.,
is set as 1, the real and imaginary parts of all the amplitudes /iv ﬂ9) and

— Y,
/5 , and the radial integrals +, ,, , defined in egs. (15), (16) and (17),

L’
or ( ), are also printed out. This is repeated for each value of the cut-off
radii if these are employed. When KB4 is set zero, then m is the component

of f along ka. » but when KB4 = 1, m is the component of /( along the recoil

direction q(©). (In both cases the y-axis is taken along k X mlfb)
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APPENDIX I

Some General Properties

We consider here some general properties of the amplitudes BLLKG),

defined by eq. (14), and the tensors defined by eq. (30).

Cka
(i) Special coordinate systems. By construction, both )&p“ and Pea behave

like the complex conjugate of a spherical harmonic under rotations of coordi-

nate axes,

pia = 2 a0 DIVRTOW

A A

s --(AD
Cxa ) = %/ (O“Q’m :DQ’& (dﬂw )

where (@ B 7) are the Euler angles of the rotation which has to be applied
to set # 1 of coordinate axes to make them coinciderwith set # 2. Two
coordinate systems are particularly useful; the first has x and z-axes in
the scattering plane (defined by‘ga andggb) and y along‘};a X-§b° The other
puts z a.longwlga X—Eb and leaves 2, § in the scattering plane. Quantities
referred to the latter axes we denote by a circumflex, »\, those referred to
the former we leave unmarked.

In the former coordinate system we then have
Y5 e
/* = e B .- (A2)

and it follows for the tensors which are diagonal in 1: s, J (or diagonal

in J and independent of s, j),
_ . x-Q _ R *
Cxka = 7 Cx-a ~ o Ck -a '“(A“3)
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so that eKQis real if K is even, imaginary if K is odd, and PKoz 0 if K

is odd.

In the latter corrdinate system we have instead
~ 4 .
A= o F (Am) is odd, Ak

and hence _ .
(5:(& = 0, @ is edd, -.-(R.5)
but the ?K q are now complex in general. If the two sets of axes are further
restricted so that X is parallel to z, the rotation from (xyz) to (Xyz) has

Euler angles (- -’5, - E, 0), and for example A.l gives
2 2

0 - —,L,\/.:l/ (Oll bl
é\lo = —/%_6)22 - 5—(0020 N ‘“(/)ré)

_.:
(o]
|

“N - - 4 3 !
Caa 2 Casa "‘/{p (oo TF 4 Par ete.
Of course, '(Owo , Which is proportional to the cross-section, is scalar

2 . -~
and invariant under rotations, C)‘” = (00 o s €tc.

(ii) Transition amplitude for inverse reaction. If the wave functions used

7

behave under time-reversal in the conventional way (9) K = 6—)\7-_M %
’ t I'rm g =M 0

the transition amplitudes (6) have the sy'unnetry(27)

<‘TB MB) Sy me ,}E&/ V/J;MAJSQMO )‘~éa>

(A7)
_ (_)\Ts‘JA +34-5,4 Mg=Mp +r—my '
Lot samesb Mk d)
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—

relating the transition A(a,b)B, Xk, —> Xk , to the inverse B(b,a)A, k> -k,
with reversed spins (i.e. M —> -M), but with the same quantization axes
used to define z-components in both amplitudes. With the expansion (8) this

leads to

ToTnt 5475 | 77

/2 I+ A,ﬂsj ‘FsJ')m (iéli“) =6 (—jl—sw/m Ajéj jé/-/w{\i“/tg 648}

where we use to denote gquantities from the inverse reaction, namely the

right-hand-side of (A.7). Using ¢(-)*/.é,i) = ¢/+//__”k/ i‘) for the

distorted waves, this becomes with the normalization (9)

2 Jx-Ja+54-Sa

—_ P ¢ _ j-s N ~Dm 42
'/JJB'J" A/sj /‘)D{j mB ’?a =) (—)J WONIJ] Ajsjﬂ&j m; }?6 --{A.‘?)

The form (radial and angular) of -gﬂ.)m and § 5], m must be the same, so
if we choose them to be identical (in "zero-range", we choose F[éj(r) =

F[sj(r))’ we have
) ~ g 4 b pw\

Ma kAl = Mg R A - (A 10a)

A _ )2Tg+l  TeIats¢mSa S-S '
= ) - - \ ---(A.104
A/sj JTp+ i « AjSJ | (A )

The property (A.10b) was used on page 15 in relating expressions for the

and

polarization of emitted particles to those for the asymmetry induced by an
incident polarized beam. Eq. (A.10a) also gives kz o (6) = k: o (8).
The equality (Yﬂé k: )/30'":(!0,;' k;)/z!” holds if we use the same quantization
axes for both amplitudes, for example with z along ~15a , ¥y along al—Sa X »]5b But
the corresponding choice for the inverse reaction would have been Z along '}b

R 7~
(now the incident direction) and y along k x-k =k xk.
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The Euler angles for the rotation into these axes are (0, n + ©, x)

where © is the angle betweenﬂga and’gb, s0 the /gj”‘referred to them become,
using (A.1l)

"',OM S "V‘Qm/ 7 *
/> (z) = %§> /> (=) sz’m (0, 7+6,m)

L}

* 4
mg) '?q /5 * )
—2 1 [Za T+ 6T
(mA ' (,?6- %’ r (2) DM/M (O/ *6, .
The tensors f&(ﬂ and other quantities are related in a similar way.

x_gb,

along

The (dimensionless) a)a calculated by SALLY are referred to Z along

Y
[Sh] mh‘

X alongﬁga; the corresponding choice for the inverse would have been
k xk, 3 along -k, requiring a rotation (0, n, -0). The rotation has

a simple explicit form then, changing only the phase

~ k-6 -iQ6 © 1. K -a8 7,
dKQ(Z) .= =) e dK‘Q(Z) =) € dKQ [Z)

(iii) The "adiabatic" symmetry. A special symmetry is displayed when the

distorted waves for the incident and emitted particles are similar.(28) This

requires ka = (2%5 kb, that is an energy release of
mA —m_qu J
Q= E &) i | e = 1)

and optical potentials related by

U () = Male ) (e,
[ l', m
mB ma _B
When the particles are charged there is the additional condition on the Coulomb

interaction
%?2:.535 ZQJ}
Z,(,_ ZB mtx
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In practice this last is only satisfied in inelastic scattering, where

Z, = Z{, , Za :ZB/ Ma= M_4 , Otherwise the symmetry will only
apply when Coulomb effects are negligible. The other two conditions are
approximately satisfied in inelastic scattering if the energy loss is small,
|Q| L E, (the adiabatic condition).

Under these circumstances the transition a.mplitudes) and hence observables
from the reaction} are invariant under a rotation of 180° about the recoil
direction q = k - mﬂ/mj'mkb. Thus the (OKQ with odd Q vanish (with z in
the scattering plane and y along k kab); or é\ kg = O K (QK —a (with
z along }—{a X 55, X along g). The consequences of this are discussed in
ref. (28); in particular the polarization % vanishes and the pina.se angles ¢i

N .
of the d'KQ become just the recoil angle (the angle between}a and q).
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Appendix IT

Formulae for £ = 0O through b

There is only one amplitude,

m =0,
B = 2. A Po(e),
Ao = (avr1) 47,

The computed cross-section is, from eq. (125),

o(6) = N //5(9)}::.

and the polarization vanishes, n = O.

(ii) Transfer of /=1

There

[o]

ﬂ
/bl

and

If we write

D_oo
Dao
Da

D;&

so that:

are now two amplitudes, ™m

=6, 1,
=2 p P T DI ATETE A B e
:ZL 7 Py, pf a/s’[{’,u,w“ﬂ'lt.] kaxky s y-axis
o = NLIp +2ip']
oo N

o 2T jm(ﬂoﬂ”') |

the tensors

dyg = Dig /"Doo > Dyg = _W/g(oaa)’
2 el e - o
= pe)i= | m
= 5 Re (pop)
= 22 e

= 0 at O= 0" 150°

Z k‘i) -’glr Pﬂa”

w

\J aﬁo—\q ,SQX E{‘,

d,, +v& dyy = |
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Referred to the other axes,

D.= 131+ | 3]
T 0

AS)
I

0

N

O-'QKJ B,)(kk)

MR
n
|
L
N
1]

L .\?a)k(r T'dhf
22 2

>

)

]
>
\"’.
"

If we have X parallel to z, Z parallel to y,
A1

2

AR

ApT-ap! s =0
taA B0 -

It is convenient(8) to compute parameters X and
daa =

1}

¢o » where

—g_’\/% { [ﬁ]ﬁo,’-_’pnlz) + 4,/2 &(ﬁoﬂ")} _ }3‘22’ e‘-‘?uﬂo)
A =\/’38-,a\“' = r\/"‘Tz)‘ o< X<y A=l oat 0= 0° o+ 180°,
The latter also shows the relation between ) and the polarization =.

referred to the recoil g = kq- My k 4 @as z-axis, the amplitudes /3;;l are
~ = My~ -
those computed with ~ka. as z-axis by

When

related to
[+]
Rr
!
&

it

/
z a/oh? q,)

_1/:{_ s Bg /50 + cosy /.‘J‘ 27’ dmy é..x.éc.,

cos B po + Va2 s B /b'

where QR is the angle between q and ka.‘

(iii) Transfer of £-2

There are now three amplitudes, and

o =

= N [//g,b/F + 2/p] 4 g}/f}‘]
T - —ﬁ—[ﬁwﬂ%'*) + 2 dm //5’/61,’)]

For the tensors C|KQ

= ‘DK@ /‘DO\O ) ‘DQQ - -/;(OJO) ‘D[I-Q Tl 7? (04‘@)
we have ‘ '
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Doo =187 <1212 21 )
'D.;u - 03@ [ﬁﬂ:ﬁz* +/30/3|*J
Dy =2 |p1 - 2R (pp**) L

e T AT

5 P a2 10 0 | % 3 T St
R [ =S5 R+ J2 a0 )
D, = 3 Q(p’P™) + J3 |12
D,y = W/%/é &’(ﬁlﬁ‘u)
Dy [ 5] J

e
! 1l

which gives the relations

:,/l—odm—ﬁd“ = Jar dyy |
/g' d#l'h/% dan ﬁ/?—duw = dzo‘ d#o,

o I - 7
dyo = 3 dio +3 = Y70 el‘*‘f- .
Referred to the other a.xes';

A

LB B 1B <

—y

D,y - 1B - 1A= AT

D= —[Aopr e A 2 ey bk,
Brow A D v & Do [ 8 b
Dy = VD

B, - /¥ R
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If we have Q‘parallel to z, Z parallel to y,
2 3 _
2% = -1 +/§/5°+.\/5
- k3 % [} \ !
IR VRSV, VR

/3“' = 0
© = -JEpT - e p

ISR

"

o™

=}

Oy

Hence the tensor dKGlreferred to the "hatted" axes can be expressed in

terms of the amplitude /5M'referred to the other axes, and are computed 1in

this way by SALLY,

o = 2 [Ip - 2lp = t1po) w08 Be (6767 |

1< dao €1,
dia = 3 {[ %lﬁ°)1-ﬁ|/ﬂllz+&(/%°ﬁ”ﬂ+4&[‘/5/5'/3“+/@°ﬁ'ﬂ}
N

)

C?tw = % «/%s% ﬁlrl |- )/5‘)‘* 3 ’/50)1'/3’3'& //%‘*)J +i0?¢£/£ﬁ°/5’¥—f”'/fﬂ}
—4i g,

- );l\%) e

These are related to the polarization x by

b= (- B - 2 )

At © = 0° or 180° they always take their plane wave values,

A

0 2 0 Sz
dlo = "3':, 'dzz = \/2 , d#u = 128
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For the odd-rank tensors,(ll) normalized as in eq. (39),

~ P —~ ~\ -\
dio = 3 dio =/F'> m Ay = diy = dy = 0, and SALLY

)

computes

a‘}l _ ;/:L /3’ (ﬁ://go% _ ﬂ/\O/\/s\—li()

i

p f I [Bpp - pop ) ive Jm(/sl/s"*)}

N - 2 y o [
:/d33)€ \¢3_ (=O at 9=Oof/c?0),
’
The angular correlation for an j = 2 transition with zero-spin target and

= 0 and/or 1, followed by a quadrupole 7—ray,(2l) involves the coefficients
o, B, 7 (and phase angles ¢o’ ¢l) as described on page 20. These are given by

L[ (d) 7]
= 12 /2 }3\%) ,

-

' _ 4/—_("*\/3,‘3{2.2.0
r? 3 l 4J2 ,duu) ;

y = Cf Jdial

e

At @ = 0° or 1800, these take their plane-wave values, ¢ = 0, B = %, and

When referred to the recoil %: ’?A-mﬁ/mk }? ) a8 z-axis (as under option
- Ry - .

KB4 = 1) the amplitudes /JJ;: are obtained from the ﬁM referred to --l—{a by a
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rotation ( 0)'9R) 0)’ , where OR is the angle between -l{a and q.

o 1 2 .

/ﬁR = l(ScoSOR-I) /\J)o + /.i— Sen 28p /\I,' 4 /% s B /51 )
/ElR - _/% S»\:\QQR /50 + 20y /3»’ + isleR /3) S
. . ] _ 4 ;\2 2

/3“‘; = Ve sE AT - 3B B (I- 2 s~ )3

0 7N\
For the dW(Q this corresponds to using q instead of~ga as x-axis, (i.e. a
rotation of (0, 0, — €k), so the /cﬁwa/(and hence &, B, 7) are unchanged,
but the @,

i,R
being positive) Q& R = ;4 #‘ék , and in the plane wave limit the

are now measured from q (right-hand rotation about_ga x‘gb

¢i,R = 0

(iv.) Transfer of f=3 and 4

The only quantities computed are the cr?ss-section
Mm |2
ore) = N [ Ip1 + 2, lan))

and the polarization

)

ul m-H‘_A‘)
/3 )

=

<

1
*nvd
Q=
M
BN

3

+
N
s
S

?——\

>
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Appendix III

Tables of I' Coefficients

The I coefficient is defined by eq. (16),

T’ﬂm. = Y L-Q(QL+I)/(t j, <L£oo/L’0><LPM,-m)L’0>

L

We give here algebraic expressions for I = 0 through 4.

() f-o
<10
L' = L only : TlLL = (2L + 1)
(i) A= 1
i Ol
L'=1L+ 1 only. T'L)LH = T'L ] = _’1"
' = L+
L, L+t
10 _
. L, L=} - L
(111) £ = 2
om
FL L’ =
m @)
L/ ! 2
) (L+|)(L+e2) 3 L+
L+2 —— 3 3
" 2 (2L+3) f\/e’l 2043 /;2_ 2 (2L+3)
L (Ly)(aLH) /; 2L+ /§ 2L+
L @) (214 3) 2 (a-)) (2L43) 2 (a=1)(2L+3)
L-2 M‘;_') )3 Lo 3 l
2 (2L-1) 2 Q| /5 2 (1)




3m
FL L’ -
m O / 2 3
L/
L+ | & o)ty 55 (Lr2)(3) 5 L+3 Eo
' 2 (aury)aL+ ) 4 (2Lr3)(2Lt S) 8 L13)(2A+5) 4 (2L43)(21+5)
Loy | 2w | B ) T Ltk 38 1
L (2=)(2L+5) K @e)(a+S) T (21)(aLts) b (2m)aL+s )
T N 01 ) R T S () L0 A IO T S L ——
2 (Qe-)(awd) F Q) ¥ Queyawd) | 4 @ey)/asd)
oy | s L(en(ed) 53 (12)(=2) _/E L-2 K |
=Y @n(21-y) o Q) () B Q)2 4 (2L-1)21=3)

€=J’AI

-Lg-
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¥ Qua)uE)RuT)| b (au)(atrS)Re)| WA (zu3)2S)ury)| 4 @Qu3)(aLrshai7)| 39 2 (2143)(25)211.7)
(42 |_5 L{Ln)aa)(t3) | 5 (Lea)fs)fa7) fi Ce3)(27) |35 21+9 e |
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Appendix IV

Plane-wave limits

For convenience in comparing the results of distorted-wave calculations
with those ‘obtained. with the earlier plane-wave theories(l)(z) we give the
plane-wave limits of the formulae discussed in Part I. The plane-wave limit
means putting ﬁ(i)/_/f/ £) = e ks in the expressions (6), (9), etec.,
for the amplitudes, and corresponds to neglecting the scattered waves (or,
equivalently, neglecting the distorting optical and Coulom‘.b potentials in
eq. (12)). Of course, these results can be obtained from SALLY by putting

o U = P O 1in the input, but the partial wave expansions (11l) used there

are unnecessary. Inserting plane waves in eq. (9) leads to

J24+ ‘BJM = Tmni E’i R4+ QOM (A ,D

L k) -
o ~4- kg *Jfa'fan
= del,g Jdi\'m € “&;M(fta/f«a e

The zero-range approximation (10) gives immediately

] Lg . . o *
By = Wrr]di e Y= Bl [FR)

iy

o L) /lje(’“) Fo (o) +2ae - (A)

/57?” oo (3) Lo 0

-

H
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o

m . . .
where g.=~Fa - }ﬁg‘klﬁ If q is chosen as z axis, this becomes

Bp. = Ly S L[l Roel
so that only transfers with zero component ofﬂ@along g—are allowed. A ‘
popular way to evaluate this integral has been to apply a lower cut-off at
some interaction radius R (of the same order as the nuclear radius), usually

on the grounds that strong absorption makes negligible the contributions from

the nuclear interior, although this is inconsistent with the use of plane waves,

'Li = Il (R) = fR jg(‘k*) Fole) +2ds (B

Now, for example, in stripping reactions we may assume the wave-function of

the captured particle is

10,
FZ/J\) = 4{@ /4-) = a,@ ’{11 (LK'(‘) , Wcﬂr‘fz R

with 3y = -Uf(kk/ziuﬂkt))a“d t%?@xthe binding energy, which should be a good
approximation for the capture of neutral particles provided R is somewhat

larger than the nuclear radius. (Options O, 7, 12, 13 in SALLY give this form
for r 2 Ry for neutral particles). The integral (A%) is then readily evaluated

in Wronskian form

_ R
I,(r) = - X

1
|
<\
~
~
~5
>
\_,\./
EAS
IS
N
~
2z

- R;gﬁ(R) d%;%yR»QR .( -&“ﬁkm »
- A R) - 14 di,(aR) /AR ]-.15
T R 13” dWr)/AR JeSAR] i)

N

— K Rl“_‘!.(k) &;’_’, [ikR) L
9" +K* ﬂZhKQ) ¢
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This is the expression given by Butler(l)(g) for the amplitude. Values of
Rb/-li(ﬁ)/Afe(R))l have been tabulated by Lubitz.(29) A more severe ("surface")
approximation is sometimes made by replacing the integral (A./4 ) by the value
of its integrand at the interaction radius, so :12 =4 je ‘?R) . Expression
(A.15 ) only leads to this form if the log derivative of w, (+) at r =R is

large compared to q, for then the factor in brackets may be written

* d_. ) ~ \ R/
31{4”3) + §R Aﬁ[jﬂ(ﬂ)] =9, (7 )
where A fikR)
d R’ /cxR) /dR
In general then this surface approximation will require a larger interaction
radius than the more complete (A.15).

Finite-range effects on stripping reactions in the plane wave limit are

easily seen. Using eqs. (55) and (59),

f (in,20) = Vi) ¢a/ux)g/*x»)§m7%)f/?o.

L

Inserting this in eq. (A. 1] ), we soon find

B, = /& N B) I, Gix) /D,

where

C(x) = [dr Vi fro) e %2

K= b ko~ kg

a4

and

Ma
) ?/: &ﬁ— M’B .)341

——

and I/P is the same as for the zero-range approximation. Thus the only effect
of finite rénge is to modulate the amplitude by the fourier transform G(K)/Do,

as discussed on page 27.
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With k as z-axis and k x k as y-axis, it follows from (A.12 )

that the plane-wave amplitudes (as calculated by SALLY) are

N / ()l p
R = L ) Pza (6), =30
L :
= (~)h1/3
where QD? 7_ is real,

¢ _ k=
Ba, = g 4 =
and OR is the angle between_ga and q. All the m-dependence is thrown into

the Y

. . bo_ 0
/y + Referred to‘g‘as z-axis (option KB4 = 1 in SAILLY), only /3 Uﬁ?”

is non-vanishing.

An immediate consequence of the reality of the /60M is that the polariza-

tion n vanishes (although the tensor polarization moments t2q in general will

not be zero). It also follows that when referred to q as z-axis the dp<&

vanish unless Q = O and K is even, a~d

d = ] K oeven ,  For all v

Ko J

N ”~ . P '\ﬁw\ M’\j—M
AReferred to Ba X'Bb as z axis, q as X-axis we now have /3 = k)/@

with plane waves, so that gﬁ(Q is real and vanishes if K is odd. We soon

-\

find for the d,q that
A A
L - )
de = =% . du s /7,
for all 4.
~ . i ~ B c -~ 35
dl;o £ d4¢2 - \/?2 > dlf‘r = 22

Since they are real, their phases ¢i = 0. When measured from ka as x-axis

the [d,4) are unchanged but we then have 9% = -6 .
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