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THE DISTORTED-WAVE THEORY OF D-T NUCLEAR REACTIONS 

I: "Zero-Range" Formalism without Spin-Orbit Coupling, 
and the Code SALLY 

R. H. Bassell, R. M. Drisko, and G. R. Satchler' 

AElSTRACT 

The distorted-wave theory of direct nuclear reactions is pre- 

sented in a unified manner in which the effects of assuming various 

reaction mechanisms and nuclear models appear only in certain radial 

form factors. The zero-range approximation is used, and spin-orbit 

coupling is neglected in the distorted waves. Formulae are given 

for transition amplitudes, cross-sections and polarizations. Then 

a description is given of the IBM-704 computer code SAUY which is 

based on these formulae. 
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PART I: The Distorted-Wave Theory 

1. Introduction 

In recent years the broad class  of reactions called "direct" has be- 

come of great importance as a source of information about nuclear structure.  

There a re  two reasons f o r  t h i s ;  firstly, since they do not pass through an 

intermediate or compound nucleus stage, they a re  dominated by a d i rec t  over- 

lap between the i n i t i a l  and f inal  nuclear s ta tes ,  and provide information 

i n  a way comparable t o  electromagnetic t ransi t ions.  Secondly, they suffer  

no inhibit ion when feeding low-lying states of the residual  system ( i n  fac t ,  

a large energy loss is  unfavorable). 

t o  be populated by more complicated processes such as compound nucleus forma- 

t ion  and decay, yet they a re  the ones we most wish t o  study i n  terms of 

nuclear models. 

These s t a t e s  i n  general are least l ike ly  

One may say") that d i rec t  reactions only involve a few i n t e r n a l  degrees 

of freedom of the system. Whether it i s  appropriate t o  describe these i n  

terms of single par t ic le  or col lect ive modes of motion, only one o r  two are 

involved i n  any par t icular  reaction. 

assume weak-coupling; that is ,  they assume tha t  e l a s t i c  scat ter ing is  the  

most important process which occurs, and that ine las t ic  or  reaction events 

Most of the  current theories fur ther  

can be t reated as perturbations. This leads fo r  example t o  the so-called 

distorted-wave Born-approximation expression fo r  the t rans i t ion  amplitude 

i n  which the interaction responsible fo r  the reaction appears once; that is, 

it describes a simple one-step process. 

the ine las t ic  event is  described by distorted-waves, which include the e l a s t i c  

scat ter ing (usually calculated i n  an opt ica l  model approximation), so the 

(1) 

The re la t ive  motion before and a f t e r  
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transition is one between elastic scattering states. The name Born-approxi- 

mation, however, may be misleading. For example, the interaction one uses 

may be an "effective" interaction, in close analogy to the residual inter- 

actions one introduces into shell-model calculations. The theory is, perhaps, 

more closely akin to the impulse approximation. A great deal more has been 

done, in principle, than is usually implied by the term Born-approximation. 

For some years theories have been used which are based upon plane waves 

instead of distorted waves. (2) 

assumed to be small. At the same time it was usually argued that one should 

exclude the nuclear interior from the integrals because of strong absorption. 

That is, the elastic scattering is also 

This basic inconsistency no longer appears in the distorted wave theory. 

Any strong absorption present is automatically taken care of by using the 

appropriate distorted waves. 

the shapes of differential cross-sections. 

Distortion effects often considerably modify 

In addition they give rise to 

polarization effects not allowed by the plane-wave theories (such as vector 

spin-polarizations) and modify others which are allowed (such as the angular 

d i s t r ibu t ion  and cor re la t ion  of y-rays following the reaction).  

important feature of the distorted-wave theory is the possibility of predict- 

ing absolute cross-sections (apart from nuclear structure factors, and it is 

often the purpose of experiment to extract just these). 

A f'urther 

The plane-wave theories had one advantage that their results could often 

be expressed in simple analytical terms. (*) 

waves, and unless very dubious approximations are made it is impractical to 

carry out these calculations without the aid of a high-speed computer. For 

This is not possible with distorted- 

. 

. 
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t h i s  reason codes have been wri t ten fo r  use on the IBM-704 or  7090 computers. 

The present report  describes the simplest of these, cal led SALLY, which was 

original ly  wri t ten fo r  the IBM-704 but a l so  may be used on the  7090 with 

compatibility . 
It is  based on the  theory using the so-called zero-range approximation, 

and neglecting the e f fec ts  of spin-orbit  coupling on the e l a s t i c  scattering. 

It may be used f o r  i ne l a s t i c  scattering, s t r ipping (and pick-up) or  knock- 

on reactions. It calculates d i f f e ren t i a l  cross-sections, polarizations, and, 

where appropriate, y-ray correlat ion parameters, and i n  addition the e l a s t i c  

sca t te r ing  cross-sections fo r  incident and outgoing channels. 

t i m e  fo r  this  i s  typical ly  2 or  3 minutes on the 704 and l e s s  than 1/2 minute 

on the  7090. A var ie ty  of interact ion models fo r  the reaction, and a var ie ty  

The running 

of opt ica l  models fo r  the e l a s t i c  scattering, a re  available as options, as 

described below. Up t o  49 p a r t i a l  waves may be used. 

Later reports w i l l  describe developments including (I) the e f fec ts  of 

spin-orbit  coupling i n  the d is tor ted  waves and (ii) the e f fec ts  of f i n i t e  range 

of the interactions.  

2. The Distorted-Wave Theory 

The distorted-wave theory of a d i r ec t  nuclear reacton A ( a , b ) B  i s  based 

upon a t rans i t ion  amplitude of the form 

. 
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. 

fo r  par t ic le  a_ incident w i t h  r e l a t ive  momentum&a and - b emitted w i t h  re-  

l a t ive  momentum&. 

waves, outgoing or  incoming denoted by the superscript (+) - respectively).  

We assume they a re  functions only of the  separation of the centers of mass 

of the coll iding pair ,  and independent of their  spins. 

generated from optical-model potent ia ls  such as describe the observed e l a s t i c  

scattering. They then sa t i s fy  Schrodinger equations of the form 

The @ a re  dis tor ted waves (plane plus spherical  scattered 

In pract ice  they are 

where U ( r )  i s  the optical-model potential ,  p the reduced mass of the pair, 

and 3 the Coulomb parameter, = 2, z2 e7k-u . Asymptotically, 7 

which i l l u s t r a t e s  the general re la t ion  

The remining factor  i n  (1) is the matrix element of the interact ion 

$ (-’*(A, S) = Jd ‘+’(- A, 2) , 

taken between the in te rna l  states of the coll iding pairs,  

- - -  ( 3 )  

It plays the ro le  of an effect ive interaction fo r  scat ter ing from one e l a s t i c  

scat ter ing state t o  another, and contains a l l  the information on nuclear 

structure,  angular momentum selection rules ,  and even the type of reaction con- 

sidered (whether stripping, ine las t ic  scattering, e tc . ) .  By having a number 
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. 

of form factors  available as options fo r  t h i s  part of the matrix element, 

we may study a variety of nuclear models and reactions. 

The effect ive interact ion (3)  is  i n  general. a function 01 both - raA and 

S b B  ; however we assume here (as i n  a l l  current dis tor ted wave calculations) 

that we may put these two vectors para l le l ,  ,-.., rbB = (mAbB),raA, where mA, 
r?, a re  the masses of A, B. We c a l l  this. the "zero-range" approximation. 

It reduces the amplitude (1) t o  a single (3-dimensional) integral ,  which 

greatly f a c i l i t a t e s  i ts  computation. 

ing, so 

V i s  local,  and neglecting exchange terms, fo r  then the coordinates of the 

incoming and outgoing par t ic les  a re  the same. For a knock-on reaction, i n  

When the reaction is  ine las t ic  scat ter-  

=m , t h i s  approximation corresponds t o  assuming the interaction A B  

which - a knocks - b out from the target  A - through an interact ion Vab, and is 

itself captured, we have t o  assume that Vab is  of zero-range (and local)  i n  

the separation of the centers of mass of a and b, V a b K  &(za - T ~ ) ,  which 

gives r In  a stripping reaction, we have - a = 3 + 5, where 

x is  the par t ic le  transferred, so that B = A + x also. The interaction is  

generally assumed t o  be Vbx, and the factor  (3) reduces t o  a "spectroscopic 

amplitude" (or nuclear overlap sometimes called a r e l a t ive  reduced width), 

= (mApB),a. -bB 

- _ - -  

times 
- '  [4) 

where 'c, i s  the bound-state wave function fo r  the captured pa r t i c l e  - x within 

B, and D is the product of the interaction and the internal wave-function 

fo r  the re la t ive  motion of b - and - x within - a, 

- 
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The usual zero-range approximation consists of putting D equal t o  a del ta-  

function, D( rbx)  = Do& (rbx), which leads t o  I rbB = (flA/flB),raAo 

t h i s  a l so  implies the neglect of tensor terms i n  Vbx and of a l l  but S-states 

i n  va. We note that x - (and/or _b) m y  be a complex par t ic le ,  such as i n  

so-called "double-stripping" where xis a pa i r  of nucleons. These cases 

a re  discussed i n  more d e t a i l  i n  Section 5. Because of t h i s  zero-range 

approximation, this  version of the theory is  inadequate t o  deal  w i t h  heavy- 

par t ic le ,  or target ,  str ipping i n  which the emitted pa r t i c l e  i s  supposed 

t o  originate from the ta rge t  nucleus ( i . e .  the ta rge t  is  stripped instead 

of the project i le) .  

analog of ( 5) by a de l ta  function. 

S t r i c t l y  - 

In  th i s  case it i s  never reasonable t o  replace the 

3. The Transition Amplitude 

We must now specify the amplitude (1) more carefully. If the spins 

of the par t ic les  are designated JA, JB, sa, sb and t h e i r  corresponding z- 

components by 

(J is  the Jacobian of the transformation t o  the re la t ive  variables raA and - 
) xbB It is convenient t o  expand the effect ive interaction (v> in to  terms 

corresponding t o  t ransfer  t o  the ta rge t  nucleus of a t o t a l  angular momentum 

j comprised of an o rb i t a l  part 1 and spin par t  - s, according t o  the vector 

coupling 

- - 
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- - - (7) 

(Often only one value j ,  1 and s i s  important ( o r  allowed) i n  a t ransi t ion.)  

Then we may write, w i t h  Clebsch-Gordan  coefficient^'^) corresponding t o  

where of course m = % + ”p - M A  - m .  

A and the form fac tor  f is  one of convenience, so that fo r  example universal  

form fac tors  w i t h  simple normalization may be used i n  computation. 

w i l l  include both the s t rength of the interact ion V and a spectroscopic 

amplitude (which depends upon the  in te rna l  nuclear s t ruc ture)  a r i s ing  from 

the overlap of the nuclear wave functions i n  eq. (8). 

The separation in to  the coeff ic ient  a 

Then A 

Some examples are 

studied i n  section 5. By construction the fac tor  h B ,  ? L A )  be- 

haves under ro ta t ion  of coordinate axes l i k e  the spher&al harmonic Gh: 
We now define matrix elements f o r  the t ransfer  of de f in i t e  angular momentag$, 

(The normalization adapted is  fo r  la ter  convenience.(4)). 

made the zero-range approximation. 

W e  have not ye t  

When we  do, the form fac tor  becomes 
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where 3 appearing as the argument of a spherical  harmonic denotes the polar 

angles o f z .  

c i ty .  

We use (10) from now on, and drop the subscripts a A  fo r  simpli- 

To evaluate (9) we need the partial-wave expansions of the  d’lstorted- 

waves, 

(-1) 
Each partial-distorted-wave xL ( k + )  
equation w i t h  a central  potent ia l  U i ( r )  (which may be complex) 

is  a solution of a r ad ia l  Schr;dinger 

The CMS kinetic energyis 

pair, and 

, where pi is the reduced mass of the 

. t h e i r  Coulomb parameter 2, Z,e I/k V . A t  large r a d i i  where 74 . 



. 

. 
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where “;=T r(l+ L +iy)  is the Coulomb phase-shift and where HL= GL+i FL 
and fL) GL are the regular and i r regular  Coulomb functions, respectively. 

4 K‘ The scat ter ing amplitude c, = e k, ; the phase s h i f t  KL is intro-  

duced by the nuclear potent ia l  U ( r ) ,  and i n  the absence of U we have % = 0. 

On the other hand, i f  the par t ic le  i s  uncharged, so = 0, F and become 3 L H L  
the spherical  bessel  and hankel functions, respectively, 

and 

Thus i n  the absence of both Coulomb and nuclear interaction, = U = 0, 3 
xL(kr) = (kr) jL ( k r ) ,  corresponding t o  plane waves, $b fd) (41) = e*p(i_k.X). 

Insertion of (10) and (11) into ( 9 )  gives immediately 

This expression simplifies i f  we choose the z-axis along k and the y-axis 

along & x k+, and put 0 as the angle between &a and -%. 
-8. 

For m > 0 .we 

can then write 
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the ?, @)are  associated Legendre functions, and the  radial in t eg ra l  i s  

l\ 
For low values of J! the  coeff ic ients  TZ,~& have simple exp l i c i t  forms; 

these a r e  given i n  Appendix I, f o r  1 = 0 through 4. 

"parity conserving" Clebsch-Gordan coeff ic ient  ( L A )  0 O/&, 0 > 
that only even values of La + 

the par i ty  change i n  the  t rans i t ion .  

the  or ig in  of the o r b i t a l  angular momentum t ransfer  

change i n  the r e l a t ive  o r b i t a l  momentum before and a f t e r  the co l l i s ion ,  

The occurrence of the 

ensures 

+ ,@ contribute; that is  t o  say, (-)' i s  

a l s o  shows The exp l i c i t  form of p 
; it comes from a 

a, The code SALLY computes the matrix elements f3 defined by (l5), (16) 

and (17). 

F( r )  are avai lable  as options as described i n  Section 11 below. 

the 'various /..'- and in tegra ls  f LlcL, ' may be pr inted out. 

For t h i s  purpose a var ie ty  of op t i ca l  potent ia ls  U(r) and form fac tors  

If required, 

4. Cross-Sections and Polarizations 

The t r ans i t i on  amplitude (1) or  (6) now has the form 

T 5 (Je Mb, i h w h ;  h k J  V/ JA M A , S - W C *  ; - 

(This form does not depend upon the zero-range assumption(''), so the r e su l t s  

of t h i s  sect ion are subject only t o  the neglect of spin-orbit  coupling.) 
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The d i f f e r e n t i a l  cross-section 

then becomes 

. 

We note there  is no interference between t rans i t ions  with d i f fe ren t  1 5 J  of I v l .  

SALLY computes (6)) , f o r  a given choice of form fac tor  F where J s j  > 

when energies are i n  MeV, lengths i n  fermis and masses i n  p.m.u. (proton mass) 

This  nornalization is  so chosen tha t  f o r  deuteron s t r ipping 

and s = i f  we take F t o  be the  radial wave function of the captured 

nucleon (and assume it independent of j ) the quantity < /Aj5j v[(&+j 5 093 X 107 

is  j u s t  the  spectroscopic factor(5)  3 
units ,"  although t h i s  notation is somewhat misleading); see Section 5 fo r  

de ta i l s .  

(where sa = 1 

2 J S J  

J 
( o r  "reduced width i n  single pa r t i c l e  4 

The vector spin-polarization of the emitted pa r t i c l e s  - b, - 
only has a non-zero component along k x %, of value ,a - 
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X 
C s j  I / A I J j / L  & / P : , / ~  

The w are Racah coupling  coefficient^,'^) and ensure that P vanishes if 
1 = 0 or sb = 0 or s + s 
s values. 

stripping) with only one ,! contributing, 

/ 
= 0. There is now interference between different 

1 1 In the special case s = s '  = E ,  sa = 1, and sb = E ,  (e.g. deuteron 

where 

- --(.5) 
- - 2  - Go m .Jle+h+r)(l--) 9, [&/3JJi' *I 
R & IP.p,J /' 

is the average projection of the vector1 along k X %, -a - 

If the form factor is independent of j, so is A, and (24) becomes 

I 
' II) 

- - -  I T )  

- - 4 7 )  

3 - 

If the form factor is independent of j, so is A, and (24) becomes 

;f j =a4: I 
- - -  I T )  

3 - 
- - 4 7 )  
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. 

. 

O f  course, P vanishes (but 

R= 0. 

form factor  FpIj I+). 

does not) if sb = 0, while both vanish if  

SALLY a lso  computes the quantity YC as defined by (25), f o r  a given 

If the spin sb is greater  tPian $, other tensor polarization moments m y  

be produced, but only of rank 2 2 s  , where s i s  the maximum value of the 
br* max 

spin t ransfer  s. 

only.. However they could 1 (n,d), fo r  even though sb = 1 here, we have s = E 

appear i n  reactions which allow s >/ 1, such as (a,d) or  (d,d') (and the (p,d) 

and (n,d) i f  viewed as knock-on rather  than pick-up processes). If sb = 1, 

the tensor polarization moments a r e  the expectation values of the operators 

Thus they are not allowed i n  deuteron pick-up, (p,d) and 

-- -@ 8) 

SA/ = 7 (Sxi5isy)/Ja . Then t2%=(T ) i s  the s o =  sz, 29 
where 

same quantity that Lakin and Wolfenstein define. ( 6 )  With the amplitude (18) 

these become ( w i t h  z-axis alongZa, y alongJa x-%) 



9 [ l s j  ) a ' s ' $  ) 
.I ea,-., 

- - -@) 

be shall require these tensors again later. They give a convenient way 

of describing the polar izat ion properties of the reaction. The rl 1 of 

eq. (25) is proportional t o  e,,,  while the  d i f f e r e n t i a l  cross-section i s  pro- 

port ional  t o  

(with our choice of axes) that 

9 

. It a l so  follows from the  symmetry 
Po01  

and hence from the symmetry of the Racah coeff ic ients  i n  eq. (29)  t h a t  
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e%' and hence 
the t are real. From the def ini t ion (30) we see the 

2q 
t vanish i f  4 +d '< d , i n  par t icular  fo r  d=l'= 0 . Further the 
2q' 

Racah coefficients impose the selection ru le  t = 0 if  s + s t  < 2, as re- 
2q 

marked above. Just as with the vector polarization P, these t may be de- 
I*r 2q 

tected by a second scattering. ( 6 )  

Usiw an incident polarized beam induces an asymmetry i n  the d i f f e ren t i a l  

cross-section given by 

i s  the d i f f e ren t i a l  cross-section, (19) or (20) ,  with 

unpolarized par t ic les  incident. c p'*'''is the vector polarization of the in- 

cident beam, P "'= ( s c / S ,  > 4rl 

where ( d r / d d )  Ul lpOP- .  

t ih) 
are the tensor polariza- 

2% , while the 

t ion  components, defined as i n  (28), $J[h)= ( %t>n . O f  course the 
(io) 

vanish i f  sa = 0 or  z. The vector p has a non-zero component along fa %. ' -  

&a x,% only, whose value is  given by the expression (23 )  i f  sa and sb are 

interchanged, and AA 
tensor c o e f f i c i e n t s T  

replaced by sb and 

i s  replaced by [ (-) a-' AJ 5 i  
a re  given by eq. (29) ( f o r  sa = 1) if  sa i s  there 

A j s  I h j  [ds A l , j ]  . Hence the same select ion J 

. Sfmilarly the si 
zq 

(Note a l so  t h i s  implies 
2q' 

rules  operate fo r  the p a n d T  as fo r  P and t 
v 2q rrJ 

the choice of z-axis along ka and y-axis along ka x %.) 
spin s 

i n  (32). 

If the incident 

7 ) 1 (fo r  example, L i  ions with S,= $ ), additional terms could appear a 

. 
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An expression s i m i l a r  t o  (32) i s  obtained f o r  the d i f f e ren t i a l  cross- 

section when the ta rge t  nucleus is and the coeff ic ients  may 

el?& again be expressed i n  terms o f  the 

In  general the residual nucleus B is  a l so  polarized, and th i s  may be 

studied by observing the angular d i s t r ibu t ion  or  correlation of any de-excita- 

t i on  7-rays. ( 8 )  

tensors(') of rank G< < 4 JB , with z-component 

The or ientat ion of B is conveniently described by s t a t i s t i c a l  

-K< 9 < L( , 

behaves under coordinate rotations l ike the spherical  
elx 4 *. 

By construction 
* Y 

harmonic Y:* and has the symmetry tKQ = c-) f'k-4. Then, f o r  example, 

the angular diskribution of y-rays i n  coincidence w i t h  pa r t i c l e s  b emitted 

along 5, is given by - 

where 

and C: is  

JB+ Jc* 

L the  r e l a t ive  probabili ty of a 2 -pole 7-ray i n  
a 

Then F~ = 1 if Z C, = 1. The 7-correlation 
L 

- -  ( 3 4 )  

the  t rans i t ion  

coeff ic ients  
~ 

and only even values of K enter. FK(LL'JCJB) have been tabulated ( 9 )  I . 
Tensors with odd K are needed t o  calculate, f o r  example, the c i rcu lar  polariza- 

t ion  of the y-rays. ( 10) 
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Using the amplitude (18), (24) becomes 

. 

where the 

tensors a re  proportional t o  the d i f f e ren t i a l  cross-section, 

K Q  ( 12 SJ ~ Q’sj‘) have been defined i n  eq. (30). The zero-rank 

and 

We notice that while there is  interference between different  1, j i n  (26) ,  

there is  none between d i f fe ren t  spin-transfers s. If A! = l’, and a l so  

j = j ’  and s = s ’ ,  or  the form factor  is  assumed independent of j and s, it 

is  convenient t o  define (8) 

when y is  even, so do,= / . 
for  then <a!Oo / KO> vanishes. 

This normalization i s  not possible fo r  odd K, 

However, we may normalize the odd rank tensors 

as 

K o d d  : - - -  (39)  

. 
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With the re-definit ion (38) the angular correlation (34) m y  be rewrit ten 

for  the special  cases with,!=R and e i ther  (i) only one value of j = j t  

contributing, or  (ii) the form factor  (and hence d and s = s ’  

of s and j ,  

1 

) independent 
K Q  

w i t h  A. = 1 

When s = 0, we have j = j t  = ,( and 

i n  terms of the tabulated Z coefficients.  (l1) Again, for  s = $ we can write 

A K  i n  terms of tabulated 

cj j’JkJ3)  . - --(43) A, 7 K  

. 
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Q-m. PO" = L- l /3 , we have that d is ( r ea l /  Because of the symmetry K Q  

imaginary) as K i s  (even/odd), when we use a z-axis along k and y-axis along -a 

-ka x-%. 

k x % as ;-axis and k as x-axis.(5) The /3 -a - -a 

a re  given i n  terms of the ca lcu la tedf3  

format ion 

However, it i s  more convenient t o  have the tensors referred t o  
A - J m  referred t o  these new axes 

Pm by the coordinate ro ta t ion  trans- 

. - - (44) 

where ( -  ' 
in to  the  new. In t h i s  way we obtain expressions f o r  d referred t o  the new 

0) are the Euler angles of the ro ta t ion  taking the old axes 
A 

2' 2' 

KQ 

axes. Detailed r e su l t s  are given i n  Appendix I and 11. The symmetry/$?= qp-, 
i n  the other coordinate system leads t o  /3 = o i f  @-m) is  odd, so that: 

n n 

dLta=O i f  Q is  odd. The non-vanishing d,, a r e  now complex, and may be 

- - - (45) 

Because the number of tensors one can define i s  greater  than the number 
trvl 

of independent p 
hence between experimental r e su l t s )  which depend only upon the general assump- 

t ions of the theory f o r  t h e i r  val idi ty . (8)  

matrix elements, one is  led t o  re la t ions  between them (and 

Then it i s  not necessary t o  compute 

a l l  the tensors; again details a r e  given i n  Appendices I and 11. SALLY computes 

the tensors d,, f o r  1 = 1 and 2 ( there  a r e  none f o r  R = 0) .  Those f o r  other 

,!could be obtained by a t r i v i a l  extension of the program, or by hand from 
4b.X 

the  computed /3 . 
Another quantity of i n t e re s t  is the or ientat ion of the residual  nucleus 

averaged over the angular d i s t r ibu t ion  of the outgoing pa r t i c l e s  b_. This 
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determines the angular d i s t r ibu t ion  of any ensuing radiat ion when - not measured 

i n  coincidence w i t h  particles b. For t h i s  we need the  average values of the 

of (33) and (35) ( re fer red  t o  k as z-axis; the Q = 0 terms vanish when ?KQ. -a 
vanish; f o r  odd K ) ,  

?KO 
averaged i n  azimuth aroundJa. Also the  

so (e,,, = 

formula (34) we f i nd  the angular d i s t r ibu t ion  of y-rays t o  be 

Here 8 is  the angle between.sa and-%. From the  correlat ion 

- - - ( 4 7 )  

O f  course w- i s  symmetrical around k 

t i on  t o  even K a l s o  ensures wis symmetrical about 0 

normalization ( 3 8 ) ,  then from (40) we ge t  the expression equivalent t o  (47), 

and 0 is measured from k . The r e s t r i c -  - a' Y -a 

= 90'. If we use the 
Y 

- - - (4 8) 

and u ( Q )  i s  given by (21). SALLY computes the (dKo>for = 1 and 2 t ransfers .  

SALLY a l s o  computes the coeff ic ients  f o r  the correlat ion (40), i n  the 

scat ter ing plane, for the special  case j =  2 and JA = 0, J = j = 2, s = 0 

o r  1, corresponding t o  ine l a s t i c  exci ta t ion of the first s ta te  i n  even nuclei, 
B 

- / A , l q A  1' I($) = (d + yp) + y -+Y-#o) 4- p- $ 3  h2 a@-bJ ; y - 
203 ' 

, y i s  the r a t i o  of spin-f l ip  t o  spin-independent intensity.  1 For spin - par t ic les  
. 

If y = 0 (as f o r  alphas),  t h i s  becomes the  well-known 

J ( $ )  = A + 3 S A ~ J ( $ - ~ , )  > A / 6  = 

The a,  @, y, 8, are given i n  terms of the  i n  Appendix 11. 
9 
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5. Form Factors f o r  Various Reaction Models 

The character is t ics  of the par t icular  reaction under study are  ex- 

pressed en t i re ly  i n  the radial form factors  Fy .(r) defined by eqs. (10) 

and ( 8 ) ,  within our zero-range approximation. 
SJ 

In t h i s  section we shall 

derive expressions f o r  some typica l  types of reaction and nuclear models. 

Other reaction models may eas i ly  be dea l t  w i t h  along s i m i l a r  l ines.  

5.1 Stripping Reactions ~ A ((I, & ) 3 - 
Here the pro jec t i le  a is assumed made up of the emitted pa r t i c l e  b 

and another pa r t i c l e  x which is captured by the target ,  so a = b + x and 

B = A + x. 

x = n. 

In deuteron stripping, (d,p) f o r  example, a = d, b = p, and 

The interact ion responsible is taken t o  be Vbx. For the present 

= V ( r b x ) ,  and that b, x 'bx 
purpose we shall assume Vbx t o  be central ,  ( 1 3 )  

a re  i n  an s-state of r e l a t ive  motion within a. 

(8) is. then 

The matrix element ( 3 )  or 

- - -  (so) 

where f represents the in te rna l  coordinates of the ta rge t  and 0 the in- 

t e rna l  coordinates (e.g. spin) of pa r t i c l e  i. From the position-vector 

diagram 

i 

. 
, 
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where a, A, --- represent the masses of the corresponding particles. 
Jacobian of the transformation from the “natural#variables zx A 

The 

and e... r 4 A 

and r ) is just - I X  

- --[59 

The integral over 7 
in terms of angular momentum states of the extra particle x. (5)  

simplicity we omit explicit reference to isotopic spin -- see ref. (5)) 

in (50)  may be carried out formally, and expressed 

(For 

- -  (52) 
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The factor  i ' is  included t o  ensure that J(1.S) i s  real.(') u X represents 

any in te rna l  variables f o r  pa r t i c l e  x (e.g. i n t r in s i c  spin). The par t ic le  

x moves within B with t o t a l  angular momentum j comprised of an o r b i t a l  part 

and a spin S . When x is  a composite pa r t i c l e  or  c lus te r  (such as i n  

so-called "double-stripping" where x is a pa i r  of nucleons(14)), the "spin" 

or in te rna l  an@.dsr momentum s of the cluster  need not have a unique value 

i n  general. (14) 

The parentage coefficient j @ s $ )  i n  the expansion (52) selects  out 

a par t icular  par t ic le  x. 

the cross section is  proportional t o  the spectroscopic factor 

If we consider n ident ical  par t ic les  x w i t h i n  B, 

(5)  

- - -  (53) 

6 m y  be called a spectroscopic amplitude. 8 is  analogous t o  a reduced 

width measured i n  "single par t ic le"  units.  A similar expansion can be 

carried out f o r  par t ic le  a. 

of re la t ive  motion, we may integrate over t h e i r  in te rna l  variables 

If we assume the pair b, x are i n  an s-state 

where 

the internal  s t a t e s  of - b and - x when i n i t i a l l y  forming$, and when f ina l ly  f ree  

(21) or within B(_x). 

@a (+) +' d p  = 7 . .  The constant a&) includes the overlap of 

If x_ and/or - b a re  composite, o r  c lusters ,  these overlaps 
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may be l e s s  than unity (e.g. a c lus te r  - x may be smaller when par t  of - a 

than when part of B ) ,  but of course for  s ingle  nucleons the overlaps a r e  

unity (as f o r  deuteron stripping).  

probabili ty amplitude of finding - a made up of 2 a n d x  i n  th i s  way. 

The remainder of a(S) represents the 

Again, i f  there a re  3 ident ica l  par t ic les  x - within - a, the cross- 

section is  proportional t o  

In  deuteron stripping, for  example, t h i s  factor  becomes unity. 

9 and the effect ive overlap becomes f i  b(5). 

Inserting (52) and (54) i n  (50) we obtain exactly the form of (8) 

where J i s  the Jacobian (51) and the w e i g h t s 6  f i  have been included. 

The zero-range approximation consists here of putt ing 

- --(sk) 
Since = ~ ( S - J , -  , we have 

I 6 (%> - - l 3  CX U S l “ , n - r + 0  ) ’ J  - S(kaLCSp) - - -  67) 

Then the Jacobian J cancels out from the amplitude (55). Comparing these 

equations with eq. (10) we may ident i fy  the form fac tor  (noting f X A  =-fGs 
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and the coeff ic ient  A, 

The r a d i a l  function u (+ may i n  general be expanded i n  terms of the 

r a d i a l  eigenfunctions f o r  the  pa r t i c l e  - x moving i n  some cen t r a l  po ten t ia l  
.-e 

(i.e.,  s h e l l  model o rb i t a l s ) ,  

&A(+) = z, c,  ccN2(+ )  
@) 

where N is the pr incipal  quantum number. 

t ions it i s  assumed only one such o r b i t a l  

CN = 1). 

Of course i n  p rac t i ca l  applica- 

UNP(+)  contributes, (with 

I n  SALLY these a r e  computed as harmonic osc i l l a to r  functions f o r  

where f3 i s  adjusted so that U,,,@ rpatches smoothly on t o  a negative-energy 

Coulomb function (or  hankel function i f  - x is uncharged) of given binding 

energy, f o r  r >, RN. Then the function is  normalized so that 

oc, 

0 

Further, if  V is  r e a l l y  the poten t ia l  binding b_ and - x t o  form a - ( ra ther  

than some effect ive interact ion) ,  some estimates of the magnitude of Do 

nay be made. $da then s a t i s f i e s  the Schrodinger equation (with the reduced 
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Two procedures a re  possible. F i r s t  we may use 

where E- = O ( ' ~ L ' , / ~ , K  

i n  V'vanishes upon applying Green's theorem). 

is the binding energy of - a -+ b + 5. (The term 

If we choose the form fo r  
- di- 

@-which i s  correct asymptotically, g(~-) =A% e /+ , we get  

(This form is  equivalent t o  assuming V ( r )  itself has zero-range, Y= V,g/.t)), 

Alternatively we may improve @ f o r  smll separations r by taking the Hulthen 

form (which also changes the magnitude, but not the form, a t  large r ) ,  

e -Hac - e-P+ 
d ?T p - p p  -P 

which gives 

- - -  (63) 

and reduces t o  (62) when f3 >> a. 
sider the fourier  transform of V@, 

An al ternat ive point of view is  t o  con- 
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. 

i 
the last s tep  following from (60) and the Hermitian property of v . 
Do = G ( 0 )  and corresponds t o  taking only the zero momentum components of 

V@. 

Clearly 

The Hulthgn wave function leads t o  

so  the correction f o r  f i n i t e  momentum components K is /J'/(U~+~') . In 

the plane wave theory there is a unique value of K a t  each scat ter ing angle, 

namely 

and the "zero-range" amplitude should be multiplied by G(l(,)/Do t o  correct 

for  th i s .  With dis tor ted waves many other components K a r e  introduced, 

although the plane wave value of K m y  indicate roughly a lower limit on 

the correction factor. It i s  worth noting, however, that i f  only the very low 

momentum components of V# contribute then the so-called zero-range approxi- 

mation becomes exact. 

( so  both ka and -&, were small i n  magnitude) i f  the captured particle 'was 

loosely bound (so the reaction proceeds a t  large distances from the nucleus 

This would be the  case f o r  low energy, low Q reactions 

where the dis tor t ion does not introduce momenta much different  from k and,kb). -a 

. 
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For deuteron stripping, (d,p) or  (d,n), a binding energy of & = 2.23 MeV 

For the single exponential eq. (62) with p = 

then gives Do2 zz 1.0 X 10 MeV f e r m i 3 ,  which i s  the value used i n  deriv- 

ing eqs. (21) and (22) fo r  the amplitudes computed by SALLY. For the 

Hulthgn f'unction with ,3 

leads t o  a = 0.23 fermi-'. P 
4 2  

* 2  4 7a, eq. (63) gives Do KZ 1.5 x 10 . This and other 

values of Do2 may be incorporated-very simply, since the cross-section i s  
2 proportional t o  Do . Then for  the general stripping reaction we have from 

( 5 3 )  and (59) 

2 which fo r  (d,p) or  (d,n) reactions, with our choice of Do (n,p), reduces t o  

If the  Hulthgn f'unction i s  preferred*, multiply (67) by 1.5. 

5.2 Pick-Up Reactions 

These, of course, a r e  j u s t  the inverse of the s t r ipping processes dis-  

cussed i n  the previous section. The analysis of Appendix I shows tha t  fo r  

the pick-up reaction B(b,a)A we should use the spectroscopic amplitude 

2 *Application of effect ive range theory'') gives the same value f o r  Do . 

. 
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where Aos (a,b) is  the s t r ipping amplitude f o r  which expressions were given 

i n  the previous section. Then f o r  example the d i f f e r e n t i a l  cross-section 

f o r  B(b,a)A is 

3 

which f o r  (p,d) or  (n,d) becomes (with our choice of Q ' ( m , p ) ) ,  

* 5.3 Ine las t ic  Scattering, A ( a , a l ) A  

In  t h i s  sect ion we consider i ne l a s t i c  scat ter ing,  but neglecting (i) ex- 

change of the scat tered pa r t i c l e  with one i n  the t a rge t  nucleus, and (ii) non- 

loca l  interactions.  

as discussed i n  Section 5.4). 

and xbB =& and the "zero-range" assumption (10) is automatically sa t i s f ied .  

(Also, the Jacobian of the transformation t o  the variables,raA =zbB is unity.) 

(Ekchange may be regarded as a knock-out process, (16) 
* 

We have b = a ' ,  and B = A , so that % = MA 

The general interact ion which induces the sca t te r ing  may be expanded i n  

multipole s 

. 
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where 

the scat tered pa r t i c l e  - a. 

represents the in te rna l  coordinates of the target ,  and aa those of 

The spin-angle tensor i s  constructed as 

where Sae= 1, and for  we use the Xth.component of the spin operator f o r  t i  
1 a (o r  the Pauli spin operator i f  Sa= z), etc.  

5 < 2 S, . By construction, both V i s s  and 9 ro t a t e  l ike the spherical  

harmonic Y ’, and (71) has the correct scalar-product form. (3)  

case s = 0, e%$ (72) 9 ’ I V ~ S  

O f  course, we can only have 

,cL S h c L  

For the special  
j 

- - -  (73) 
so i f  we only have s = 0 (e.g. i f  sa = 0, as fo r  a-par t ic les)  we may abbreviate 

where, of course, 

yam (+, - - J! JJ W q )  y,”(ed s,eded# + 

The terms with s # 0 we may c a l l  “spin-fl ip,” although t h i s  notation is  not 

l i t e r a l l y  correct because of the uncertainty principle. The t ransfer  of spin 

angular momentum s f 0 includes some t ransi t ions i n  which the z-component of 

the spin of the scat tered pa r t i c l e  does - not change, ma = u j ,  as may be seen 

from the general amplitude (18). 

Taking the matrix-element of the interact ion (71) between the in te rna l  

s t a t e s  of the coll iding pair immediately gives the form (8), (10) with 
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where we use the Wigner-Eckart theorem(3) i n  the form 

or ($  I \  S,.I\ $> = 4 3  

(74) i n  which s = 0, 

if  3 =CY and Sa= Thus fo r  the special  case -7 - 

We now proceed t o  some spec ia l  nuclear models i n  order t o  obtain exp l i c i t  

expressions fo r  (75) or (77). 

5.3.1 Collective Rotations 

We derive the interact ion from a deformed, or  non-spherical, po ten t ia l  

(17) w e l l  which has a de f in i t e  shape i n  a body-fixed coordinate system, 

V = V ( r  8 ’  $I) .  

we mention two only. 

distance from the nuclear “surface,” which is  allowed t o  be non-spherical and 

defined by r = R ( € J 1 g l )  where 

There a r e  various ways of defining the shape of such a potent ia l ;  

The first assumes the poten t ia l  depends only upon the 

For example, f o r  a quadrupole deformation k = 2 w e  have 

i n  terms of the familiar deformation f3 and asymmetry y .  Then w e  take 

\J =’ v [?  - . The much-used Woo&-Saxon poten t ia l  is a spherical  

form of t h i s  type, 
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- - -  (80) 

Inserting (78) and expanding i n  a Taylor se r ies  about R = R,, 

We note that, on t h i s  model, a given multipole d e f o r k t i o n  k of the surface 

R ( Q l @ l )  contributes, i n  second and higher orders, t o  other multipole terms, p, 
i n  the interaction. In second order, fo r  example, it contributes t o  even 

values of ,! i n  the range 0 2k. However, i n  first order ,( = k, and we 

have i n  body-fixed axes 

W e  may identify V ( r  - Ro) as the spherical  op t ica l  potent ia l  which gives rise 

t o  e l a s t i c  scattering. The other terms w e  ro ta te  i n to  space-fixed axes 

where fR is the rotat ion taking the body-fixed axes in to  the space-fixed axes. 

We can then identify 

The spherical-harmonic addition theorem may be applied t o  the second- 

- 

order terms i n  the expansion (81), t o  give 
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- - - (83) 

- which for k = k’ = 2 and an axially symmetric deformation; = B, a2 + - - 
- 0, becomes 2 + 2 -  a 

Rotating (83) into space-fixed axes now enables us to identify the second- 

order interaction terms 

which for the axially-symmetric quadrupole deformation k = k’ = 2, as in 

(84), becomes 

for even 1, and zero otherwise. 
If we take the Wood-Saxon form (80) for the potential V(r - Ro), then 
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- - - @ 7) 

(The form factors F(*) and F(') a re  options available i n  SALLY.) 

An al ternat ive way t o  define the potent ia l  V ( r Q t g t )  is i n  terms of 

the volume-conserving equipotential surfaces 

so that 

where 
- - -  (88) 

Thus t o  first order the only e f fec t  is  t o  replace the R of eq. (82) by r, 
0 

which tends t o  give the interaction a longer "tail." 

be Woods-Saxon, the corresponding form factor,  F (.) = ro xX e>%l 

When V is  taken t o  

I!, I = 5 F(2j(+) 
R O  ) 

is available as an option i n  SALLY. Contributions from (88) which a re  second- 

'L dV/J a order i n  the deformation are associated w i t h  both lc dV/dc. and rl' +: 
I ' is  a l so  available i n  SALLY. the form factor  f (")(-E) = (z0) ' d '  zccl e -  

It now remains t o  calculate the matrix element <JB // % // 4). Here 

we shall only consider t ransi t ions induced i n  even-even nuclei considered as 

asymmetric rotators.  (17) The extension t o  odd nuclei i s  straightforward. 
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(18) The wave function for any asymmetric rotator may be written 

The (real) mixing coefficients A are given in references(18). For 

axially symmetric nuclei, only K = 0 enters, and A. = 1. 

(82) and (85) can be written 

The interactions 

which has matrix elements 

where 

= 0, so we must have JB = ly and A = KA For even nuclei, J 

In the axially symmetric case, % = 0 only,' so (91) becomes 

- - - (91) 
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According t o  eq. (90)  the  V .  are obtained from eq. (82) t o  f i r s t -order  
CL 

i n  the  deformation, and from eq. (85) t o  second-order. For convenience, we 

summarize here the r e su l t s  for  sca t te r ing  from even nuclei  w i t h  an axial ly-  

symmetric quadrupole deformation, and thus K = 0, using the Woods-Saxon 

potential .  If we ident i fy  the form fac tor  F (f-) i n  eq. (77) with the  options 

F ( i ) ( r )  available i n  SALLY and defined by eqs. (87), we have f o r  the spectro- 

scopic amplitudes A 

1 

(remembering s = 0 i n  th i s  model) /e 

- - 4 3 )  

5.3.2 Collective Vibrations 

The interact ion model adopted here is  the same as i n  the  previous section, 

namely a non-spherical po ten t ia l  w e l l ,  except t h a t  the  deformation parameters 

t 

%q a r e  now t rea ted  as dynamical variables, creat ing and annihi la t ing phonons. (19)  
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where kq* Olkq' So we now write a 

* 
and bkq, bkq are the usual boson annihi la t ion and creat ion operators f o r  

a 2 -pole osc i l l a t ion  w i t h  angular momentum k and z-component q. k 

Since the  deformation is no longer s t a t i c ,  the expressions (78) and 

(81) may now be regarded as re fer r ing  t o  space-fixed coordinates, and t o  first 

order we have 

while t o  second-order, the  analog of (85) is  

Again, we shall only discuss matrix-elements f o r  even nuclei, but again extension 

t o  odd nuclei  is straightforward. We denote the s t a t e s  by \N,JM) , where N 

is the number of phonons present. The ground s.tate has zero-spin and no 

phonons, J = 0 and NA = 0, and the first order interact ion (94) can only 

exc i te  one 2 -pole phonon, so t o  first order we must have NB = 1, JB =p . 
A 

1 Since 
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eq. (77) then gives fo r  s ingle  phonon excitation 

. 

JaL+ I 
Using the Saxon form f o r  V, and taking F (r)  = d2) ( r )  of eq. (87), R 

- - -(46) 

- - 4 7 )  

If we compare (97) for  a quadrupole t ransi t ion,  1 = 2, with the analogous 

ro ta t iona l  excitation, O++ 2+, of eq. (93), we see the phonon t rans i t ion  

strength is the same as fo r  an equivalent deformation f3 where 

- - - f i g )  

k For the excitation of two 2 -pole phonons by the second-order interact ion 

(95), we soon f ind 

i f  Ais  even, and zero otherwise. 

J= 0, 2, 4; a l so  

For quadrupole phonons, k = 2, we can have 

Again taking the Saxon form fo r  V and putting F i ( r )  = F(')(r) of eq. (87), 

the excitation of two quadrupole phonons leads t o  

. 
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Since the second-order interact ion is  quadratic i n  the a it cannot fis’ 
contribute t o  the exci ta t ion of a s ingle  phonon state. 

have diagonal elements (exc i ta t ion  and subsequent annihi la t ion of a phonon) 

which w i l l  a f f e c t  the e l a s t i c  sca t te r ing  from the s t a t e .  

sca la r  part of (95) contributes a poten t ia l  t o  the  N-phonon s t a t e s  of 

It does, however, 

For example, the 

It is  easy t o  see t h i s  has the  e f f ec t  of making more diffuse the surface 

of the cent ra l  potent ia ls  seen i n  the higher excited s t a t e s ,  as would be 

expected on physical grounds. 

5.3.3 Excitation by Two-Body Forces 

The interact ion here is  taken t o  be a sum of interact ions between the  

incident pa r t i c l e  and the pa r t i c l e s  i n  the ta rge t  nucleus. 

In general, isotopic-spin variables w i l l  enter  also. (I6) An example of such 

a n  interact ion is  the nucleon-nucleon sca t te r ing  amplitude used i n  the  impulse 

-approximation description of the ine las t ic  sca t te r ing  of high-energy nucleons. ( 20) 

The spatial dependence of such interact ions may be expanded i n  multipoles, 
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- -403) 

)v\ 
and the YA 

(72). 

taken w i t h  the various spin-dependent terms t o  form the  tensors 

For example, f o r  nucleons, an interaction of the form 

zr;, = . 9 ( /Z -?J )  [ I I  + 3 ga+-.J 
- -.(;ob) 

(where A, B may be i-spin dependent, A = Aa + A 3 *xi, etc.) becomes 
B a  

if a = A, al = B, and TIOQ,m - - ip gh.  Then V has the  form (71) i f  
0 

1 s o  tha t  from (75), remembering s = here, a 

Further development requires a specif ic  model f o r  the nuclear wave-functions, 

:or example i n  terms of a single-particle or  a ro ta t iona l  

excitation w i t h  deformed-nucleus orb i ta l s  fo r  the in t r in s i c  structure.  (22) 

The corresponding radial form factors  w i l l  have the same general features 

as those discussed fo r  the col lect ive model, namely F( r )  zero a t  the origin, 

r = 0, and peaking inside or near the nuclear surface, r = Ro. Thus the same 

form factors  may often be used, with sui table  adjustmnt  of parameters, t o  

represent these more detai led models. 

-4 



5.3.4 Coulomb Excitation 

The inelastic scattering of charged particles is also accompanied by 

coulomb excitation(23) ; indeed at energies well below the Coulomb barrier 

this is the main mode of excitation. When both nuclear and coulomb forces 

contribute, their amplitudes are coherent and interfere. We here indicate 

how the coulomb excitation may be included in distorted-wave approximation. 

Since the calculation is carried out by partial-wave expansions, the coulomb 

contribution is only accurately assessed for scattering angles 0 > 8 ,  = 

the classical deflection angle (when -y (c L,,) 

For 0 angular momentum LmX which is used. 

is underestimated. 

~ 

for the maximum orbital 

Oc, the coulomb excitation 

An associated restriction is imposed by the upper cut-off, 

(23) ' 

on the radial integrals. This corresponds to neglecting impact distances Rmxj 
> R-, o r ,  classically, neglecting angular momenta L > k R-, and so 

underestimates the cross-section for 0 < d - 3 / k R h a X  . 
The non-relativistic Coulomb interaction may be regarded as a special 

case of the two-body forces of the previous section. 

where Zze is the charge on the projectile, and ei the charge of the ith nucleon 

in the target, while r,, r( are the greater and the lesser of ri, r. Thus, 

. 

for r > ri, 
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where me(!""') 
tions.(19) 

t ransi t ions.  

have 

?.+!&*.(?;) is  the multipole operator f o r  e l e c t r i c  t r ans i -  

We note that i n  t h i s  approximation de) only contributes t o  s = 0 

Then denoting the purely nuclear s = 0 interact ion by Vam , we (N) 

where the  l a t t e r  form i s  va l id  i f  we neglect contributions from r ( ri. 

nuclear amplitude is  defined (as i n  the  preceding sections) by 

The 

IN) - (AJ) - - $ 1 1 )  / l L  1- (4 = &-z- (JB /I  b l N ) / J A >  

and the coulomb exci ta t ion parameter by 

- -  - (I 12) 
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The well-known reduced transition probability for de-excitation 

n 
The radial form factor .in (110), 

is just ( 19) (23) 

- _. (113) 

d /  is available in SALLY for t= 2 and 3 with the shape ( 8 7 ) ,  Fy)(r) = gX x, ~ 

. The chief feature of the coulomb term is its long tail, so >c = < z Q o  
Q o  

its effects should be seen mainly at small scattering angles. Since the Coulomb 

potential is repulsive, and the nuclear potential attractive, the interference 

between them is mainly destructive. 

Explicit expressions for b may be obtained if the collective model is 

used. Equating the deformation variables to the mass-moments (19) 

and assuming the charge and mass distributions coincide, gives 

Using the vibrational model of Section 5.3.2 to first order, eq. (94), with 
64 d the Saxon form factor (87) ,  F4 = z,( &, , and hence the nuclear ampli- 

we soon find for tude (97 ) ,  e?’ 8;’) = /z?sa+l ; ‘ !@o a el 1 

the Coulomb parameter 

n 
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An analogous derivation fo r  the ro ta t iona l  model of section 5.3.1 leads 

t o  the same expression (116) f o r  b - . 
5.4 Knock-On Reactions, A ( a , b ) B  

These a re  visualized as processes i n  which the target  is  comprised of 

a core plus the emitted par t ic le ,  A = C + b, the lat ter being ejected by the 

incident par t ic le ,  which is  itself captured so that B = c + a. 

is  taken t o  be that between - a and - b, Vab. 

and the struck target  nucleon i n  ine las t ic  scat ter ing is a special  case of 

this  type. (16)(21) 

formalism i f  the interaction Vab is i t s e l f  taken t o  be of zero-range i n  the 

separation of the centers-of-mass of par t ic les  - a and / b. 

The interact ion 

Exchange between an incident nucleon 

These reactions may be included i n  the "zero-range'' 

The parentage expansions of the nuclear wave functions corresponding t o  

A = C + b, and B = C + a are of the same type as already discussed f o r  s t r ipping 

reactions, eq. ( 52). 

and an analogous 

core a re  denoted 

expression fo r  B = C + a. The in te rna l  coordinates of the 

Fc, those of - b by ab. This expansion se lec ts  out a parti- 

cular par t ic le ;  i f  there a re  ?&identical  par t ic les  a within B, and nJ identi-  

tal par t ic les  b within A, the cross section is proportional t o  nanb. 
- - 

We - - - 
shall account fo r  t h i s  by including the factor  Jflln,& i n  the t rans i t ion  amplitude, 



. -45- 

. 

which then includes two "spectroscopic amp1itudes"fl =A 9 , each s i m i l a r  

t o  the one (53) appearing i n  a stripping amplitude i n  Section 5.1. If these 

expansions are introduced in to  the matrix element (8) of V, and i f  we assume 

V i s  scalar  i n  spin-space ( i . e .  contains no spin-orbit  or tensor terms), some 

straightforward Racah algebra' 3, leads t o  the following expression 

summed over Jc , j e  ' ~ -!&,j,,!, ~ 2 , and where 

A becomes j u s t  &"(", . We have When .t,= f4 -r -t 

a lso  put for the value of Vab i n  the state with t o t a l  spin 2, 
A / \  

(Since w e  assumed V scalar i n  spin-space, it is diagonal i n z  ). For example, 
I for spin - 

V = A + B s a  -,ab, and we have 

par t ic les ,  s,= scG = $ , the general interaction of t h i s  type is  

4-38 if "0,  s:\gget 

A t 8  ;-c L=l ,  fdp le t - ,  
-.{ll9) V' = A + [22(Z+1)-373 - 

. 
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Because Vab does not involve the core coordinates it is  diagonal i n  the 

core s ta tes ,  so that the ta rge t  A and r e s idua lB  nuclear s t a t e s  must have a t  

l eas t  one parent core s t a t e  i n  common fo r  the t rans i t ion  amplitude not 

t o  vanish. 

To introduce the zero-range approximation we put 

For the position-vector diagram we have 

. 
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The complexity of t h i s  expression a r i s e s  en t i r e ly  from the  recoupling of the 

. 

various- angular momenta involved, from the coupling scheme appropriate t o  the 

nuclear s t a t e s ,  

JB = J + ja J i& - =  I” 
ru 

t o  that exhibit ing the angular momentum t ransfers  i n  the t r ans i t i on  between 

them, (which a l so  displays the select ion ru les  f o r  j, l a n d  s) ,  
, \ j= J,- J - - -4+s 

CL - 4  - J Q - J R  - cu- 
0 

/rr t 

Some simplification is obtained by taking spec ia l  cases; f o r  example, i f  the 

interact ion is  spin-independent so that G, = G., independent of 

over 

, the  sum 

i n  (El) m y  be carr ied out, 

Again, i f  only one core state, of zero spin, contributes, Jc = 0, we have 

JA = jb, J = ja, and B 

In  many cases it w i l l  be possible t o  assume only one o r b i t a l  la and only one 

o r b i t a l  tb contribute, so the radial form fac tor  is basical ly  u (a/, y (r) 
(where the -2 (+ m a  be taken as s h e l l  model o r b i t a l  wave-functions), and the 

remainder of (121) may be taken as the amplitude Aisj: 

1, 4 
4 )  
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PART 11: The Code SALLY 

6. Method of Calculation 

The amplitudes and cross-sections described i n  Pa r t  I a re  computed by 

the code called SALLY. It was written for  the IBM-704, (with 8000-word fast 

memory; a 16,000 o r  32,000-word machine would require revision of the program) 

but may a l so  be used on the IBM-709 or 7090 w i t h  compatibility. 

time fo r  a typ ica l  case, with about 15 partial waves i n  both entrance and e x i t  

channels, i s  about 2 or 3 minutes on the 704 and less  than  1/2 minute on the 7090, 

with the minimal output. 

p a r t i a l  waves used, de t a i l s  of the integration intervals  and step-lengths and 

the amount of output demanded. 

The running 

O f  course, these figures depend upon the number of 

The code calculates the amplitudes described i n  Section 3, eq. (15) and 

(16), using the coefficients tabulated i n  Appendix 111. 

L =  0 

_ -  

From these the various quantit ies specified i n  Section 11 and Appendix I1 a re  

calculated, including the cross-section (21) 
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r 
where - - -  035) 

-1 with the  masses i n  p.m.u., the  wave numbers i n  (fermi) . 
Because of the l imited storage of the 704, SALLY is conveniently broken 

in to  three parts. 

r a d i i  and stored on a drum ( i n  the 7090 F (r)  is s tored i n  core).  

is then ca l led  from tape and i s  wri t ten over A. 

In  part A the form fac tor  F ( r )  i s  computed a t  specif ied 1 
Program B 1 

B first calculates  the 

op t i ca l  model 

as a function 

f o r  each ri. 

partial waves 

and stored on 

functions f o r  

functions and 

normalizes by 

wave functions f o r  the incident channel and s tores  them on h p e  

of radius, i n  blocks 

On completion of the integration, the normalizations of the various 

a r e  computed, (by matching onto the asymptotic coulomb functions) 

tape. This program then returns t o  compute the op t i ca l  wave 

the oukgoing channel a t  rl, c a l l s  i n  the incident channel wave 

the form fac tor  a t  t h i s  radius t o  calculate  the integrands, 

the incident channel normalizations and accumulates the integrals  

by the trapezoidal rule .  

lower) radius i s  reached, a t  which point the in tegra ls  a r e  s tored on tape. 

The calculation then continues, outputting in tegra ls  a t  every specif ied cutoff,  

i f  any, u n t i l  Rmax is  reached. The normalizations of the outgoing wave functions 

a re  then computed and stored. 

This calculat ion proceeds u n t i l  a cutoff (upper or  

Program C is  then called,  obtains the integrals  from tape, applies the 

normalizations from the second op t i ca l  model pass and proceeds t o  calculate  

the amplitudes and other quant i t ies  of physical i n t e re s t  specif ied (see Section 11). 
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. 

If lower cutoffs  a r e  cal led for ,  Program C differences the integrals  

t o  obtain the in tegra ls  needed. Throughout the calculation, and Rcutoff a t  R- 

precautions have been taken t o  insure t h a t  underflow w i l l  not introduce errors.  

Overflow is, of course, monitored but no remedial act ion can be taken. In  

t h i s  case, the calculat ion is  stopped and a message printed, identifying the 

s top and the routine i n  which it stopped. 

The code makes use of a Kutta-Simpson integrat ion method t o  solve the 

r a d i a l  Schrodinger equation. 

mesh, s o  that sens i t ive  regions of the potent ia l ,  e tc . ,  can be investigated 

carefully.  

guess made f o r  the function. 

the un-normalized wave functions. 

partial waves w i l l  not be s t a r t e d  u n t i l  they make a f i n i t e  contribution t o  

the t o t a l  wave function. 

This has the advantage of using a variable r a d i a l  

In addition t h i s  method i s  r e l a t ive ly  insensi t ive t o  the s t a r t i ng  

The solutions a r e  scaled t o  prevent overflow of 

This  feature  a l so  guarantees that the higher 

The coulomb f'unctions Fo, G , F1 and G a r e  computed using asymptotic 
0 1 

formulae . (24) The solutions 

chosen as 

a r e  of high accuracy if = k K a x  is  

3= f 4 9  -t 3 )  if 9 > 3, 
- --&j 

> t o  ' if 7 < 3  
i s  the Coulomb parameter. The Coulomb functions f o r  the higher angular 

where 7 
momenta a r e  found by recursion relations;(25) (upward recursion f o r  GL, down- 

ward f o r  FL) . Here the program assumes values f o r  F and F,,,, , with 

L '  > Lm. 

FLll and FL,l+l, with L" ) L', and recalculates.  

t o  suf f ic ien t  accuracy the  calculation passes on t o  the next phase. 

L' 
On completion of t h i s  calculat ion the program assumes values f o r  

If the two r e su l t s  compare 

If not, 
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the program trys 5 times t o  compute these functions. If s t i l l  unsuccessful, 

and t rys  again. SALLY is pre-set t o  try t o  e max the program increments 

f ind Coulomb functions 25 times. If s t i l l  unsuccessful, the  program stops. 

i s  not large enough o r  i f  the function has a 

The remedial action suggested i s  t o  t r y  a larger  
pmax 

These fa i lures  occur i f  

zero i n  t h i s  range of rmX. 
(but one within the bounds of the physics). e max' 

The most common remarks (messages) output by SALLY a r e  the following: 

"Remark# 11 i n  subroutine 1 

- 
Increase e m a x -  emax+ %naxtt 

This remark occurs because of the f a i lu re  t o  f ind Coulomb functions of 

suf f ic ien t  accuracy (see above). 

"Remark # 1 i n  subroutine 11" 

This routine checks whether Lmax is suf f ic ien t ly  large t o  include a l l  

partial waves affected by the potential .  

is  large enough so tha t  the nuclear potentials a r e  negligible. 

It a l so  checks t o  see whether p,, 
According t o  

by 6?, and try emax which fa i lure ,  the program w i l l  increment L by 1 or 

again. 

max 
Again SALLY is  pre-set t o  make only 25 such increments. 

"Ekror # 2 i n  subroutine 10" 

C 
This routine calculates 7 , k, ka, kat, 2 7/mc. If E, a, a' ,  or r 

a re  input as zero, i n  the course of calculation there is  a divis ion by zero. 

Check the input parameters! 

7. Input fo r  SALLY 

The New York input routine NY-INp1 is used f o r  SALLY. Each row of the 

input sheet corresponds t o  an 80-c0iumn card. The input is scanned so that 

one may enter any integer e i ther  with or without a decimal point. Negative 
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t 

parameters a r e  simply preceded by a minus sign. 

comma, except the last i n  each row. A n y  entry l e f t  blank is read as zero, 

e.g. --- a)) b--- i s  eauivalent t o  ---a, 0, b--- so t h a t  it is never necessary 

t o  f i l l  i n  zeros. (A comma a t  the end of a row w i l l  be interpreted as being 

followed by a zero: 

per row (card),  but ce r t a in  sections of data must start on a f resh  row (card). 

Each row of input numbers shoulcl start i n  the 12th column, and the 11th column 

is  l e f t  blank. 

BCD (binary coded decimal) or  DEC (decimal). 

Each entry is  followed by a 

---a , = --- a, 0 ). There i s  no specified number of en t r ies  

The preceding columns 8, 9 and 10 a r e  used f o r  the instruct ions 

The first two rows (cards) a re :  

BCD 

D E  0 

The X ' s  may be replaced by 6 other symbols (e.@;. f o r  ident i f ica t ion  of the 

coder) but these are not pr inted on the  output. They may be followed by up 

t o  11 symbols ( fo r  designation of the run) which are printed on the output 

sheets. .  N o  commas are necessary on these two cards. 

The next three sections of input contain parameters f o r  the (i> form factor  

and integrat ion intervals ,  ( i i )  op t i ca l  m o d e l  f o r  the entrance channel, and 

( i i i )  op t icd l  model f o r  the e x i t  channel. E%ch sect ion must start on a new 

row (card) ,  but each may occupy more than one row (card). 

(i) Form fac tor  and integrat ion controls:  F1 through F5 a r e  parameters 

f o r  the form factor ,  and F6 controls the choice of form fac tor  ( see  Section 9 ) .  
i s  the o r b i t a l  angular momentum t ransfer  ( i n  uni t s  of 5) .  The last nine 

en t r ies  control the integrat ion intervals  (see Section 8). 

Total: 27 ent r ies  (including zeros). 

. 
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(ii) Optical model for  entrance channel: Ea i s  the laboratory energy 

(MeV) of the incident pa r t i c l e  - a,ma i ts  mass (amu) and mA the mass of the 

ta rge t  nucleus (Pmu).  

t a rge t  nuclei ( i n  uni ts  of e ). 

model potent ia l  fo r  the pa i r  a, A (see Section10). 

ZaZA i s  the product of the charges of incident and 
2 Next follow the parameters f o r  the opt ica l  

(Note: even i f  the pa r t i c l e  

is  uncharged, Z Z 

radius rc; f o r  example, put rc = ro). 

momentum ( i n  uni ts  of 5)  considered fo r  the pair a, A, and so  controls the 

= 0, a non-zero number must be entered for  the charge 

La is  the maximum o r b i t a l  angular 
a A  

number of partial waves used i n  the entrance channel. 

physical grounds; a rough guide i s  that La should be of the order of 2kaR, 

where ka is the wave number and R the nuclear radius. 

may be used, provided La & 3. 

La should be chosen on 

Values up t o  La = 49 

KA1 controls the choice of op t ica l  model (see Section lo). 

Total: 24 en t r ies  (including zeros). 

(iii) Optical model fo r  ex i t  channel: as fo r  last section, except the 

first entry is the &-value of the reaction (MeV) and the last four en t r ies  

are used as option controls. 

channel, i s  a l so  chosen on physical grounds and should be of order 2%R. 

values up t o  

h, the' mximum angular momentum i n  the e x i t  

Again, 

= 49 may be used provided $ 3. 

KB1 controls the choice of op t ica l  model fo r  the e x i t  channel (see Section 

10). 

KB2 controls the choice of lower o r  upper cutoffs on the r ad ia l  integrals;  

enter 0 f o r  upper, 1 fo r  lower. 

out fo r  0 ,< r ,< R, while lower cutoff R means R < r ,< Rwx). 

a r e  required (see below), enter 0. 

(Upper cutoff R means the integrals  a r e  carried 

If no cutoffs 

. 
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KB3 controls the output; entry 0 gives the cross-section, polarization 

and tensors (where applicable), while entry 1 gives i n  addition the matrix - 
elements $", f3; and the radial integrals  fL 1 L/ (see Section 11). m e n  cut- 

offs a r e  employed, t h i s  data is  printed out fo r  each value of the cutoff as 

. w e l l .  The form factor,  and the e l a s t i c  cross-sections and partial-wave 

scat ter ing amplitudes are always printed out. 

KB4 controls the choice of quantization axis fo r  the matrix elements 
c 

f3" and f3: (and the tensor phase angles Bi) but f o r  1 = 1 and 2 only; entry 0 

gives them referred t o  the incident beam as axis, entry 1 refers  them t o  the 

rn r eco i l  direction Q = k--4 as axis (see Section 5) and also pr in ts  out the 

r eco i l  angles. 

- -a mB% 
For other ,( values, enter 0 here. 

KB5 controls the angular intervals a t  which the reaction cross sections, 

etc., a r e  evaluated; entry 0 outputs them a t  every 5' from 0' t o  180°, entry 1 

a t  every 2.5' for  the same range. 

and A@ i n  the places preceding More control over the angular intervals  

is provided by entering Qo, the smallest angle a t  which output is  required, 

and AQ the interval,  i n  these positions, and entering the number of angles 

required (up t o  75) i n  KB5. 

With these two options, enter zeros f o r  Q 
0 \ 

If cutoffs are t o  be employed, up t o  29 of these ( i n  fermis) may be 

entered on the next row or  rows (cards). If no cutoffs a r e  required, these 

rows( cards) may be omitted. Finally a t ransfer  card is  required: TRA 3,4 

Thus the input requires a minimum of 6 cards ( i f  no cutoffs) or 7 cards 

( w i t h  cutoffs).  This input is summarized i n  columns on the following page, 

and on a key input sheet. A sample input f o r  a typ ica l  case is also shown. 
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. 

1. Form factor  and 
integration controls 

F1 
F2 

F3 
F4 

F5 
0 

0 

0 

form factor  
parameters 

angular 
momentum 
transfer  

0 

F6 
0 

0 

0 

0 

0 

0 

0 :I d 

e 

h 

i 

form factor  
option 

integrat ion 
controls : 

radii ( f )  

number of 
intervals  

2. Entrance Channel 
option model 

Ea (MeV) - lab. energy 
incident mass 

t a rge t  mas s 
charge product 

op t ica l  

potent ia l  

fo r  

a + A  

maxim 
angular 
momentum 

0 

La 
0 

KA1 I mode 1 
loption 

24 en t r ies  

Q (MeV) Q-value 
f14 (?mu) outgoing m s s  

mg (py) residual  mass 

%% ( e  ) charge product - 
V 

W 

r 
r 
a 

0 

0 

r t  
a '  

W '  

0 

C 

0 

0 

0 (de!) i n i t i a l  angle 
0 

(des) angle in te rva l  

(Q max. ang. mom. 
0 

KB1 model option 
KB2 cutoffs 

KB3 output 
K B ~  quant. axis 

E35 angle control 

24 en t r ies  

- 13 (f = fermi = 10 cm; pmu = pfoton mass uni t )  

27 ent r ies  
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8. Integration Controls f o r  SALLY 

The last 9 entr ies ,  a through i, i n  the  first section of input parameters 

afford f u l l  control over the rad ia l  integration intervals.  

(radii i n  fermis) 

The complete input 

1 I 

corresponds t o  four integration regions: 

; - c r e a - r l x g  + \ 

Not a l l  of these have t o  be used (see simplified input below). 

The starting value fo r  the Lth partial-wave radial function i n  each 

channel i s  taken t o  be f y ' / JL (L+ ! ) !  a t  the first pL f o r  which t h i s  quantity 

The quantity 8 must be greater than zero and small enough t o  allow the waves 

t o  start. Normally 

i n  the r e a l  part of the s-wave phase sh i f t  of order 10 

= 0.0625 is  satisfactory,  only introducing an error  
-4 

e1 

radian. 

- i n  each channel should - For charged par t ic les ,  the value of 

satisfy the inequalit ies (126), 
max 

or  10, whichever is great- 5 -  65, 2 fkx Is  ,a L?' + 47 +3] 
er. (Values of 3 up t o  approximately 11 can be handled by SALLY.) 

The other c r i t e r i a  fo r  R- are physical. It must be chosen suf f ic ien t ly  

large that the optica1,potentials and the form factor  have f a l l en  t o  negligible 

values. The form factor  is  usually the over-riding consideration here (remember 
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it is weighted by r2 i n  the r ad ia l  integrals) .  

i n t e re s t  R- should be chosen a t  l ea s t  twice the nuclear radius, and pre- 

ferably three times it; i n  some circumstances larger values may be needed. 

In  most cases of physical 

The N intervals  between R1 and % are chosen t o  be small t o  ensure 1 
accuracy i n  s t a r t i ng  the integration of the r ad ia l  d i f f e ren t i a l  equations; 

they should be approximately $z 

it is suggested t h a t  the value of 

channel. A t  low energies, when k 

se 0.0625 (or  $-1-xo.o625/k) or  

f 2  = kR2 should be a t  least 

is  small, the more important 

less. Also, 

0.5 i n  each 

parameter is  

the loca l  wave number K inside the opt ica l  potential ,  which may be considerably 

larger than  k. 

of & r  = 0.0625/~ m y  be advisable. 

Then a s t a r t i ng  radius of R1 = 0.0625/~ and an in te rva l  s i ze  

The remaining intervals  must be chosen so tha t  they a r e  small compared 

t o  (i) the wavelength i n  e i ther  channel, and (ii) distances over which the 

opt ica l  potentials or form factor  vary appreciably. Condition (i) appears t o  

be sa t i s f i ed  i f  0.25 (or &-A 0.25/k), while fo r  Saxon potent ia ls  with 

a typ ica l  surface diffuseness a % 0.5, a s tep  length as large as 6 r z 0.35 

(provided &e 
greatly, although a smaller in te rva l  would be advisable. 

- 
0.25 simultaneously) does not seem t o  i m p a i r  the accuracy 

(Note a l so  tha t  the radius R is part of the form factor  input f o r  options N 

0, 7, 12 and 13, although w i t h  other options it i s  a f r ee  parameter.) 

N o t  a l l  these parameters have t o  be used. A useful combination is  effect ively 

t o  omit R entering 3' 
I I I I 



-61- 

. 

These,three regions a re  suf f ic ien t  t o  allow the use of smaller intervals  i n  

the range R1 t o  %, where the form factor,  op t i ca l  potent ia ls  and d is tor ted  

waves may be varying rapidly ("inside the nucleus"), than i n  the "external" 

region % t o  R-. 

t o  be somewhat larger than the nuclear radius. 

Then R should be chosen (except with options 0, 7, E, 13) N 

A f lexible ,  simplified, system of preset  values fo r  the r a d i i  and the  

intervals  is  a l so  available.  This is based on the  three integrat ion regions 

above with R1 = 0.0625/ka, R2 = 0.5/ka, R- = 30./ka, and using N1 = 7 and 

N2, N as the smallest integers fo r  which 6 r2, 6 r3 < 0.25/ka respectively. 

(Note that f o r  charged par t ic les ,  
3 

= 30 is  too small if  the Coulomb e= 
parameter 7 > 6.5. A l s o  note that R- = 30/$ leads t o  e- = 30 \/'a 

i n  the  ex i t  channel.) 

between €$ and R- may be used for  it (except that fo r  options 0, 7, 12, 13, 

% has the  usual significance (Section 8)) .  

Only R needs t o  be entered as input, and any value 
N 

The input is  now writ ten: 

I 

corresponding t o  

-062S/ka s/k, 30/k 0- 

I I I I 

. 
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w i t h  N2, N rounded upward. More control may be gained by entering a value 
3 

I I I 

1 -  r I 

I n  e i ther  of these, o r  the more complete input, any of the Ni can be entered 

as 0, when it w i l l  be taken as ka(Ri + 

i 3 2, o r  ka(R2 - ~ ~ ) / 0 . 0 6 2 5  (rounded upward) for i = 1. 

Example 1: 

- Ri)/0.25 (rounded upward) for 

(d,p) deuteron stripping, incident energy 8 MeV 

For th i s  energy, C5 0.8, so the preset  value of R = 30/kaz 37.5. 

For the e x i t  channel 
ka max 

The preset in te rva l  s i ze  of 0.25/ka % 0.3 may be adequate. 

consider two Q values: 

(.) Q = 0, so zz 0.6, and the preset  value of R leads t o  a max 

emax %/ 22.5, 

7.- 

(ii) Q = 8 MeV, so  % %0.8 and the preset  e ntax 30. The Coulomb para- 

f o r  the deuterons is  approximately ZA/12, so  is  w e l l  below the l i m i t i n g  meter 

value of 11 even for the heaviest nuclei. For the protons, is  even smaller. b 
We could then use the input: 

While these preset  integration controls a re  adequate, the Rmax is much 

L 

larger than i s  usually necessary, and the running time could be reduced by about 

40% by using Rmax Z 20, say. This leads t o  f - zz 16 for the  deuterons and 
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4 

CL 16, ( f o r  Q = 8) f o r  the protons. The emax zz 12, ( for  Q = 0) or  emax 
input is  then 

E, i n  addition, the interval s i z e  of 0.3 is  inadequate f o r  the nuclear 

in te r ior ,  a smaller in te rva l  may be used by expl ic i t ly  writing input f o r  R2 

and N2. 

0.5/ka% 0.63. 

the required interval.  The input is  then 

Suppose RN = 5.3 and we require 64- = 0.15. The preset R2 is 

We may take R2 = 0.65, then RN - R2 = 4.65 and N2 = 31 gives 

Example 2: Inelast ic  a-scattering, incident energy 40 Mev 

Here ka z 2.7, so the preset  value of R- = 30/ka s 11 is rather  small, 

although experience has shown it adequate for l igh ter  nuclei (say MA 5 50). 

For heavier nuclei a larger  R The l imitation emax^. 6 5  

allows Rmax < 24. For small energy losses, ka % %, so e max f o r  the e x i t  

channel has a value similar t o  the entrance channel. The preset in te rva l  of 

&e= 0.25/ka N, 0.1 is cer ta inly adequate. Since options 0, 7, 12, 13 w i l l  

not be used generally for t h i s  reaction, the value assigned t o  R 

(between 0.5/ka and R-) and the simplified input may be used: 

should be used. max 

i s  a rb i t ra ry  
’ 

N 
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9. Form Factor Options i n  SALLY 

Ten interaction form factors F ( r )  a r e  available, choice being controlled 

by entry F6 as follows : 

%vd 1-4 Bound - state wave - function 

V 
e x +  I 

Saxon 

L V e - x  Gauss 
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The parameters fo r  these options a re  entered i n  the locations F 1  through F5 

F1  = 

F2 = 

F3 = 

F 4 =  

F 5 =  

F 6 = O  

according t o  the following table: 

% Ro Ro Ro Ro Ro 1"N Ro Ro Ro BN BN 

9N 
I N  b b b V V p N I  a % p N  

0 RCE RCE RCE O O a O O O O a N  N 

a a. 7 N  % a o &o zlz2 Y 2  a a a  
0 0 0 0 

N 0 0 0 0 0 N 0 0 0 N N 

1 2 3 4 5 7 8 9 10 12 13 

Option 0 o r  12 i s  designed fo r  s t r ipping (or  pick-up) reactions and represents 

the bound-state wave-function for  the captured pa r t i c l e  of reduced mass p(amu), 

Coulomb charge parameter 2 2  and binding energy BN = h k N/2% (MeV). The 7 N  

. 

uni t s  of % a re  inverse fermis, so 

k, 0.a19.5 

where Zle is the charge on the captured pa r t i c l e  and Z2e the charge of the 

nucleus t o  wliich it i s  bound. 

B and Z Z a re  entered. 

In  option 0 one enters  and pN; i n  option 12, 

N 1 2  

. 
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The function is calculated as an harmonic osc i l l a to r  radial function 

of pr incipal  quantum number N, o r b i t a l  angular momentum /, matched smoothly 

on t o  a hankel function (o r  i t s  Coulomb analog) a t  r = R 

integrat ion controls section) w i t h  the  required binding energy B 

asymptotically it falls off  as e N /r). 

(entered i n  the N 

( i . e .  N 
-kr 

F is a confluent hypergeometric function, and W the r e a l  Whittaker function; 

l / Z K  (kr). p is chosen by the program s o  the log 
2 

R+ 1/2 
i f  7 = 0, w = (2kr/n) 

derivatives match a t  r = RN and the function normalized s o  that ( r )  r dr = 1. 

N is  the number of o sc i l l a to r  quanta plus one; the  number of r a d i a l  nodes (ex- 

cluding r = 0 and r = 

notation is as follows 

) i n  pNR i s  ; [N-4-1) . The r e l a t ion  t o  a more conventional ' 

+ ' P  
IS IS 

h'/ 4 Conventional - 
This option i n  SALLY w i l l  compute 

of output, below the values of 4,,,1(+}, a r e  a l so  pr inted out the  values of 

f o r  N $6,  44 4 .  On the first page 
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. 

and R ,  d (AIP-u)/~-F- 

RN’ 

No simple ru le  ckn be 

although it w i l l  be of 

of a neutron or  proton, it 

1 “=S, . 
given fo r  choosing values of the matching radius 

the same order as a nuclear radius. For the capture 

has been found empirically that i n  order t o  reproduce 

approximately the wave function of a nucleon bound by a f e w  Mev i n  a Saxon 

potent ia l  of radius 1.3 A l l 3 ,  the  values of % needed are approximately 

RN/A1I3 .”, 1.75 1.7 1.65 1.6 1.55 

when A N 10 25 60 100 200. 

In  de ta i l ,  however, it is possible f o r  R t o  depend upon N, 1, and BN, as w e l l  

as A. 

N 

Options 7 and 13 are the same as options 0 and 7 except t h a t u  (r) is N f  
multiplied by the damping factor:exp - (‘dNRN7 1 f o r  r < R N .  This allows 

contributions from the nuclear i n t e r io r  t o  be reduced smoothly. 

Options 1, 2 and 3 were designed especially as form factors  fo r  ine las t ic  

scat ter ing (see Section 5.3), but may of course be used f o r  other purposes. 

The terms i n  _b take account of Couiomb excitation t o  first order, but excluding 

contributions from r < RCE (see Section 5.3.4). 

par t ic les  of l i ke  charge, is negative. The form b/r  i n  options 1 and 2 is  

appropriate t o  an ,!= 2 t ransi t ion,  the b/r  

For interact ion between 

3 

4 i n  option 3 t o  an y= 3 t ransi t ion.  

b_ may be put zero, but RCE must remain f i n i t e  ( fo r  example, 

. These options may be used with any &4. put RCE = RO) 

Option 8 i s  similar t o  options 2 and 3, but with b - = 0, and d i f fe ren t  

values fo r  a,inside and outside the peak r = Ro, allowing more f l e x i b i l i t y  i n  

the choice of shape. 



-68- 

Option 9 is  the  derivative of  the  form fac tor  2 and 3 (with b_ = 0) ,  and 

again was designed f o r  i ne l a s t i c  scat ter ing (Section 5.3). 

changing sign there. 

It is zero a t  r = Ro, 

2 
Option 10 is  j u s t  ( r / R o )  

Options 4 and 5 are Saxon and Gaussian respectively. 

times option 9 (see Section 5.3). 

10. Optical Model Options i n  SALLY 

There a re  three choices of op t i ca l  model po ten t ia l  U ( r )  f o r  each channel, 

Each has a Saxon-Woods form f o r  the real part: chosen by en t r ies  KA1 and KB1. 

For the imaginary (absorptive) part we have the choices 

7, 

Put v'= 0 ,  



. 
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These give adequate control over the d is t r ibu t ion  of surface or volume 

absorption. 

and r '  = r 

r;, a '  when these a re  equal. 

( w i t h  W' = 0). 

gives an a t t r ac t ive  potential .  

absorption) or W' = 0 (pure volume absorption). 

given by any model with W = W' = 0 (however, - a '  must not be entered zero unless 

Model 2 is used). 

(arbi t rary)  f i n i t e  value. 

Model 7 it should be remembered that, while (ex + 1)'l has the value 

r = R, d/dx (e" + 1)'l has the value 

Of course, Model 2 is a special  case of Model 7 ( w i t h  W' = 0 

a t  = a),  but i ts  use avoids having t o  enter both ro, a and 
0 0' 

Similarly, Model 4 is  a special  case of Model 7 

The signs are chosen so that a posit ive entry f o r  V or W 

In  Model 7 we may put W = 0 (pure surface 

A purely real poten t ia l  is 

Similarly, V may be made zero, but a must remain some - 
When considering values of W and W' t o  enter fo r  

1 at 
1 

In addition t o  t h i s  potential ,  there is i n  the entrance channel a Coulomb 

potent ia l  due t o  a uniform sphere of radius Rc = rc?6A1/3 and t o t a l  charge 

(zazAe ), that is  2 

c 

and similarly fo r  the e x i t  channel. 

rc must be entered; it is suggested t o  put rc = r . 
For neutral  par t ic les  ZaZA = 0, but a f i n i t e  

0 .  

Putting both V and W (and Wl) equal t o  zero is equivalent t o  using just 

Coulomb distorted-waves. 

waves. 

always. ) 

If ZaZA = 0 also,  it is equivalent t o  using plane 

(Again, a, a'  and r must be non-zero, except fo r  Model 2 where a '  = 0 
C 
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11. Output from SALLY 

SALLY always outputs the form fac tor  used, the e l a s t i c  scattering i n  

entrance and e x i t  channels, and the  reaction d i f f e r e n t i a l  cross-section 

(and polarizations were applicable).  

and radial integrals  may be printed out. 

In addition under option, the amplitudes 

On the  first page are printed the form fac tor  controls F1 through F6, 

and values of the form fac tor  F(r)  a t  each integrat ion step,  s t a r t i n g  a t  

r = R 

the form : 

and f inishing a t  r = R- (see Section 8). These numbers appear i n  1 

= a x loy ( w i t h  the  radii i n  fermis), 
-2 

9 

a E >  
e.g. 1.23 --- E-02 = 1.23 --- X 10 

-4.56 --- E 09 = -4.56 -0- X 10 

When the form fac tor  options F6 = 0, 7, I2 or  13 

function) are used, R ( r )  = UNp(r) is followed by some 

( the  bound-state wave 

addi t ional  data 

INTAREA = c J*" Urre e' d-r 
0 

(where the normalization constant C = M T  AREA + INT AREA) 

I RN= %, matching radius 

ZETA (RN/RN = Jc u/.& ( %) 

BETA = p, osc i l l a to r  parameter 

Below a r e  printed the  (dimensionless) integrat ion intervals ,  and step- 

J 

Section 8) t o  be used i n  the  entrance channel. > 
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. The next page car r ies  data f o r  the entrance channel elastic scattering. 

These are expressed i n  the form: 3 a = . a x  103 
3 e.g. -3 I23 --- = .K3 --- x 10- 

2 2 -456 --- = -.456 --- >( 10 

A t  the top of the left-hand column is the reaction or absorption cross-section 

= SIGMAR ( i n  f2 = 10 mb un i t s )  predicted by the opt ica l  model. 

of the column contains input-, reduced-, and integration-data i n  the following 

The remainder 

OPTION x: 

ELAB 

%UBI 

MSUBB 

ZZP 

v 
W 

RO 

RC 

E M  

ETA 

K 

KA 

KB 

RHOBN 

RHOBC 

RHOBG 

the opt ica l  model (see Section 10) ( x =  < A I )  

energy of incident pa r t i c l e  i n  lab. system (MeV) 

x, mass of incident pa r t i c l e  (pmu) 

m , mass of ta rge t  nucleus (pmu) A 

'aZA 

V (MeV);  A = a(f)  

W (MeV); RG = rol(f)  

ro( f) ; B = a t ( f )  

rC( f )  ; 

2 , product of charges of pro jec t i le  and target  (e ) 

parameters fo r  op t ica l  model 

for  a + A (See Section 10) 

TAU1 = Wt(Mev) 

energy i n  CMS (MeV) 

7 ,  Coulomb parameter = 0-15 8 0 5 0 8 6  J"."-" 
E&) (EJf4 

kaa 

. 
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RHOIN = kaR1, lower l i m i t  of radial integration - followed by the 

other kaRi (unlabelled) - (see Section 8) 

RHOMAX = kaR- 

DRHOIN = ka&rl ,  the  i n i t i a l  s tep  length - followed by the other 

ka& ri (unlabelled) - (see Section 8) 

The next three columns contain the CMS scat ter ing angle THETA = 8 (a t  

CMS intervals  of bo), the e l a s t i c  d i f f e ren t i a l  cross-section ( = SIGMATH) i n  

f2  = 10 mb. units,  and, f o r  charged par t ic les  (ZaZA # 0), i t s  r a t i o  t o  the 

Rutherford scat ter ing cross-section ( = SIG - SIGC). Finally are printed the 

r e a l  and imginary parts of the partial-wave elastic-scattering-amplitudes 

CL = e iKL s i n  5, and the normalizing factors  obtained when the integrated 

partial waves a r e  matched on t o  the exter ior  wave functions. A t  the bottom 

of t h i s  page are then printed the (dimensionless) integration intervals  and 

s tep lengths t o  be used i n  the e x i t  channel, &e:, - ~ etc. ,  where 

The th i rd  page carr ied equivalent information f o r  the e x i t  channel, except 

that ELAB is t o  be interpreted as the lab. energy which would give the s a m e  

CMS energy i f  the residual nucleus were stationary i n  the laboratory, (i.e. 

the lab. energy f o r  the inverse reaction). In  the exit  channel, E C M  is  the 

ECM of the entrance channel, plus the Q-value of the reaction. 

The fourth page car r ies  the r e su l t s  of the calculation of the reaction, 

f o r  an upper cut-off a t  R-, i.e. the radial integrals  are over the range 

0 d r d R-. 

r e su l t s  of calculation w i t h  these a r e  printed on the following pages. 

top appears the angle-integrated cross-section f o r  the reaction 

If other cut-offs (upper or  lower) a r e  employed also,  similar 

A t  the 
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TOTAL SIGMA = uT = 2n a(0) s i n  0 d 0, 

also,  fo r  k =  1 and 2, the tensors averaged 

s 
over the d i f f e ren t i a l  cross- 

section (and referred to&a  as z-axis, see Section 4 and Appendix 11) 

AV D20 = (d20) = 2n Ja( 0) d20' sin0 d O/aT 

AV &O = (d40) = 2n Ju(0) d40 sin0 d O/aT 

f o r  p =  1 .and 2, 

f o r  -P= 2 o w .  

Then arranged i n  columns a re  the CMS scat ter ing angle, THETA = 0, the 

d i f f e ren t i a l  cross-section SIGMA = a(0) defined by eqs. (21) and ( 

(except f o r  != 0) the, "polarization" POL = n ( 0 )  defined by eq. (25). 

,!= 1 we a lso  have LAMBDA = A(  0) and 2PHIO = 2g0, while f o r  j= 2, there 

), and 

For 

and 2PHI2 = 2 4  (see Appendix 11). The phase angles y i  a re  given i n  degrees, 

and a r e  physically unchanged by the addition or  subtraction of 360' (that 

is, go and go - + 180°, or  g1 and gl - + goo, a re  physically equivalent). When 

control KB4 is  s e t  as zero, the PI. a re  measured from the incident direct ion 

k a right-hand rotat ion about k x being positive. When KB4 is  set t o  -a' -a Jb 

1, the gi are  measured from the direction of ' the r eco i l  momentum q(0) = k - 
(m,/Mdk,; a lso  the r eco i l  angle between q and k i s  printed out on a separate 

page preceding the reaction resu l t s  a t  the same values of 0 (see Appendix 11). 

When plane waves are used ( that  is, both opt ica l  potent ia ls  and the charges a re  

set zero), we have go = g1 = -(angle of recoi l )  fo r  K B ~  = 0, or  go = g1 = o 

f o r  KB4 = 1 (see Appendix IV). 
For R= 0 and R= 1 the amplitudes ( r e a l  and imaginary par t s )  f3 !m (0) 

1 

- -a 

c -a 

are a lso  printed out on the same page. 

For ,!= 2, the. additional angular correlation parameters a,  (3 and y defined 

on page 20 (see Appendix 11) are  a l so  printed out. 
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When the control Kl33 i s  s e t  as zero, this  is  the only output. If KB3 

i s  s e t  as 1, the r e a l  and imaginary parts of a l l  the amplitudes /3p"/e) and 

/J2 
or  ( 

r a d i i  i f  these are employed. 

of 1 along k , but when KB4 = 1, m is  the component of ,!along the r e c o i l  

Q - 
, and the r ad ia l  integrals  fLL/ , defined i n  eqs. (15), (16) and (17), 

), are a lso  printed out. This is  repeated f o r  each value of the cut-off 

When KB4 is  set zero, then m is the component 

-a 
direct ion q( e) .  ( In  both cases the y-axis is  taken along - 

. 
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APPENDIX I 

Some General Properties 

We consider here some general properties of the  amplitudes f3 (e),  
defined by eq. (30). ?UQ defined by eq. (14), and the tensors 

( i )  Special coordinate systems. By construction, both ppM and eKa behave 

l i k e  the complex conjugate of a spherical  harmonic under rotat ions of coordi- 

nate axes, 

- - - (A.  1) 

where (a f3 7) a re  the Euler angles of the ro ta t ion  which has t o  be applied 

t o  s e t k  1 of coordinate axes t o  make them coincide w i t h  set # 2. Two 

coordinate systems a r e  par t icu lar ly  useful; the first has x and z-axes i n  

the sca t te r ing  plane (defined by sa and %) and y along_ka x &. 
puts a longSa x % and leaves f ,  i n  the scat ter ing plane. Quantities 

referred t o  the l a t t e r  axes we denote by a circumflex, 

The other - 
- 

A , those referred t o  

the former w e  leave unmarked. 

In  the former coordinate system we then have 

and it follows fo r  the tensors which are diagonal i n  !, s, j (or diagonal 

i n  .! and independent of s, j )  , 
- - -  ( A . 3 )  

. 
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is  r e a l  i f  K i s  even, imaginary i f  K i s  odd, and eKo= 0 i f  K el( Q so that 

is odd. 

In  the  l a t t e r  corrdinate system we have instead 

= 0 )  4'4 ( 1 - m )  i s  o d d ,  ---(A.4) 

and hence 

- - - ( A . .  5) 

A 
but the fKQ a r e  now complex i n  general. 

r e s t r i c t ed  so that E;. is  parallel t o  z, the ro ta t ion  from ( x y z )  t o  ( x y z )  has 

Euler angles ( -  

If the two s e t s  of axes a re  fur ther  
A/. .- 

x x - p, 0), and f o r  example A . l  gives 

- 

, which i s  proportional t o  the cross-section, is sca la r  - 6 0  O f  course, 

and invariant under ,rotations,  p. = r o o  9 e tc*  

(ii) Transition amplitude for inverse reaction. If the  wave functions used 
J 

behave under time-reversal i n  the conventional way, (9) 4 lLJM = t)J-M F 4 - M  J 

the  t r ans i t i on  amplitudes (6) have the symmetry (27)  

( T ~  M O ,  "4; h b /  v/J,M4,sama ,--a 

- - - ( A $  
. k  > 

-J&-Jfi t s.&-s, 
M6-w 8 +h&-w& 

(3 = (-) 

. 
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re la t ing  the t r ans i t i on  A(a,b)B, sa+ - %, t o  the inverse B(b,a)A, --'"p-+ 

with reversed spins (i.e. M 3 -M), but w i t h  the  same quantization axes 

used t o  define z-components i n  both amplitudes. 

leads t o  

=ka, 

With the e w n s i o n  (8) t h i s  

N 

where we  use t o  denote quant i t ies  from the inverse reaction, namely the  
(-) * 

right-hand-side of (A.7) .  Using fo r  the 

d is tor ted  waves, t h i s  becomes w i t h  the  normalization ( 9 )  

cv 

The form ( r a d i a l  and angular) of $sj,m and CIJJ, m must be the same, so 

i f  we choose them t o  be ident ica l  ( i n  "zero-range", we choose Fk (r)  = SJ 
N 

FRsj(r)), we have 

- - - (A. Ioa)  

and 

The property (A. lOb)  was used on page 15  i n  r e l a t ing  expressions fo r  the 

polarization of emitted par t ic les  t o  those f o r  the asymmetry induced by an 

incident polarized beam. Eq. ( A . l O a )  a l so  gives k 3 ( 6 )  = k,' e(@), 
The equality (mi k:)$- = (VI: kipJn holds i f  we use the same quantization 

But axes fo r  both amplitudes, f o r  example with z alongAa, y alon@;&a x &. 
the  corresponding choice fo r  the inverse reaction would have been 

(now the incident direct ion)  and 

along -5 
along -% - x +a =-'"p xAa. 

. 
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The Euler angles f o r  the ro ta t ion  in to  these axes are ( 0 ,  n + 0 ,  n) 

where 0 is the angle between_ka and &, so the  FAb referred t o  them become, 

and other quant i t ies  are re la ted  i n  a similar way. 
?K 9 The tensors 

The (dimensionless) 
A z x along kaj the  corresponding choice f o r  the inverse would have been z along 

calculated by SALLY a r e  referred t o  2 along lsa x &, 

- 
x $a, Z along -%, requiring a' ro ta t ion  ( 0 ,  n, -e>. The ro ta t ion  has 

a simple exp l i c i t  f o r m  then, changing only the  phase 

(iii) The "adiabatic" symmetry. A spec ia l  symmetry i s  displayed when the 

d is tor ted  waves f o r  the incident and emitted pa r t i c l e s  are s i m i l a r .  (28)  This 

that is  an energy release of rnFI 
- G i B  1Cb) requires ka = 

and op t i ca l  potent ia ls  re la ted  by 

When the par t ic les  are charged there is  the addi t ional  condition on the Coulomb 

interact ion 
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In  practice t h i s  last is  only satisfied i n  ine las t ic  scattering, where 

z,=z,, 2 4 - 2  M a =  q&) otherwise the symmetry w i l l  only 
5, 

apply when Coulomb ef fec ts  a r e  negligible. The other two conditions a re  

approximately sa t i s f i ed  i n  ine las t ic  scat ter ing i f  the energy loss is small, 

/Q I (( E ,  (the adiabatic condition). 

Under these circumstances the t rans i t ion  amplitudes,and hence observables 

from the reaction,are invariant under a rotat ion of 180' about the r eco i l  

w i t h  odd Q vanish (with z i n  
eK.4 

direction q = ka - m!-s. Thus the 
e - -  

(with K n  
e Y - Q  

the scat ter ing plane and y along k x_kb); o r  i.̂ = t-) -a 
0- h 

z along_ka x .&,, x along q). The consequences of t h i s  a r e  discussed i n  

ref. (28); i n  par t icular  the polarization n vanishes and the phase angles $i 
of the %Q become j u s t  the r eco i l  angle ( the  angle between ka and 9). 

- 
A 

- c 
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Appendix I1 

Formulae for = 0 through 4 

(i) Transfer of I =  0 
There is only one amplitude, M = 0, 

The computed cross-section is, from eq. (l25), 

and the polarization vanishes, n = 0. 

(ii) Transfer of l'= 1 
There are now two amplitudes, nz = 0 ,  1 

so that: 3 9 0  + & d , ,  = 1 .  
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Referred t o  the other axes, 

. 

J 

A If we have 2 parallel t o  Z, z para l l e l  t o  y, 

It i s  convenient(8) t o  compute parameters and , where 

d,, = -z-.Ja h ' 3  [ ~ I ~ O I ~ - I ~ ~ I ~ ]  + ~ ( / j * ~ l * ) ]  = /XJ2 I e - 2 b  $0 
A 

> - 
= Ig2;1) = /l-Fz; 0 & < 1 4 A =  I Gt e= 0" of 1800.  

) 

The l a t t e r  a l so  shows the re la t ion  between ),and the polarization YC. 

referred t o  the r eco i l  q,= k4- % kk as z-axis, the  amplitudes pR are 

related t o  those computed with ka as z-axis by 

When 
h 

- f l B  - 
- 

where 8, is the angle between q and ka. 

(iii) 

- ..-. 
Transfer of 1 = 2 

There a r e  now three amplitudes, and 

. 
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which gives the relat ions 

Referred t o  the other axes, 



. 
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. 

A 

Hence the tensor d,, referred t o  the "hatted" axes can be expressed i n  

terms of the amplitude /3"5 referred t o  the other axes, and are computed i n  

t h i s  way by S U Y ,  

These a re  re la ted t o  the polarization by 

A t  0 = 0' or 180' they always take t h e i r  plane wave values, 
_L 

. 
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For the odd-rank tensors, normalized as in eq. ( 3 9 ) ,  
A 4 h 

d30 = I d , ,  = 46 7r A31 = $3; = $,, = 0 , and SALLY 

computes 

( =  0 at e =  O W O - r I ~ O " ) .  

The angular correlation for an R= 2 transition with zero-spin target and 
s = 0 and/or 1, followed by a quadrupole 7-ray, (21) involves the coefficients 

a, p, 7 (and phase angles #o, #1) as described on page 20. These are given by 

4 At 8 = 0' or 180°, these take their plane-wave values, a = 0, p = and 3' 
2 

7 = - 3 '  
p = k, - ' I ) / M  k as z-axis (as under option When referred to the recoil 

are obtained from the p" referred to k by a 
.- b -1 

I 

m4 = 1) the amplitudes /3: -a 

. 
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rotat ion ( 0, -GR, 0) , where 8 is the angle between &a and q. R - 
= : ( 3 ~ o J ) O ~ - l )  f i0 + /$ 5 - J Q R  /3 I i 4: 

p' . )  

A 

For the 

rotat ion of ( 0, 0 ,  - &), so the /dva / (and  hence a, p, 7) are unchanged, 

but the #i,R a r e  now measured from q (right-hand rotat ion about Ja x -\ 
being posit ive) 

d,, t h i s  corresponds t o  using q instead of k as $-axis, (i.e. a - -a  

- 
$i,R = j2$ t OR , and i n  the plane wave l imi t  the 

8,,, = 0. 

(i .V.) Transfer of 1 = 3 and 4 

The only quantit ies computed are the cr2ss-section 

and the polarization 

= 2 2  $=' j ( ? + m + p - q -  &@"p""+) , 
Ra w = o  

77- (e) 
0 0 which always vanishes, x = 0, a t  8 = 0 or  180 . 

i 
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. 
Appendix I11 

Tables of I? Coefficients 

The coefficient is  defined by eq. (16), 

We give here algebraic expressions fo r  .! = 0 through 4. 

1 roo = (2L + 1) 
Lz, 

L' = L only; 

( i i )P=  1 
L' = L +  1 only;  - 

1 r1° = L t l  
L , L t l  

L + d  

L 

- -a  

0 I d 

I Jf 2 ( a ~ + 3 )  

. 

. 
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Appendix IV 

Plane-wave limits 

For convenience i n  comparing the resu l t s  of distorted-wave calculations 

with those obtained w i t h  the ea r l i e r  plane-wave 

plane-wave limits of the formulae discussed i n  Part I. 

we give the 

The plane-wave l i m i t  

i n  the expressions (6), (g), etc., means putting /b(*)(k,f) = e L jl.2 
fo r  the amplitudes, and corresponds t o  neglecting the scattered waves (or, 

equivalently, neglecting the d is tor t ing  opt ica l  and Coulomb potentials i n  

eq. (E)). 

4, = 7; = 0 
a re  unnecessary. Inserting plane waves i n  eq. (9) leads t o  

O f  course, these resu l t s  can be obtained from SALLY by putting 

i n  the input, but the partial wave expansions (11) used there 

- - - (A- I / )  

The zero-range approximation (10) gives immediately 



. 
-go- 

m %B hh. If q is  chosen as z axis ,  t h i s  becomes where q = k - - - -a 

so  that only t ransfers  w i t h  zero component of fa long  q a re  allowed. 

popular way t o  evaluate t h i s  in tegra l  has been t o  apply a lower cut-off a t  

some interaction radius R (of the same order as the nuclear radius),  usually 

A 
Y 

on the grounds that strong absorption makes negligible the contributions from 

the nuclear in te r ior ,  although t h i s  is  inconsistent w i t h  the use of plane waves, 

Now, f o r  example, i n  s t r ipping ' react ions we m y  assume the wave-function of 

the captured pa r t i c l e  is  

with a) = hi (R)/~:(;KT) ) a n d  %;c%r- the binding energy, which should be a good 

approximation f o r  the capture of neutral  par t ic les  provided R i s  somewhat 

larger than the nuclear radius. (Options 0, 7, 12, 13 i n  SALLY give t h i s  form 

for  r 

i n  Wronskian form 

% for neutral  par t ic les ) .  The in tegra l  (AI+) is  then readi ly  evaluated 

Y 
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This is  the expression given by Butler (1)(2) f o r  the amplitude. 

R 3  I Il (R) /k4 ( R )  / ' have been tabulated by Lubitz. (29)  A more severe È surface'^) 

approximation is  sometimes made by replacing the in t eg ra l  (A./& ) by the value 

of i t s  integrand a t  the interact ion radius, so I4 j, (5R) . Expression 

(A. 15 ) only leads t o  t h i s  form i f  the log derivative of up(+) a t  r = R i s  

large compared t o  q, f o r  then the fac tor  i n  brackets may be wri t ten 

Values of 

In  general then t h i s  surface approximation w i l l  require a la rger  interact ion 

radius than the more complete (A. I S ) .  

Finite-range e f fec ts  on s t r ipping reactions i n  the plane wave l i m i t  a r e  

eas i ly  seen. U s i n g  eqs. (55) and (59), 

Inserting t h i s  i n  eq. (A. I I ), we soon f ind  

and 

and IR i s  the same as f o r  the zero-range approximation. Thus the only e f f ec t  

of f i n i t e  range i s  t o  modulate the amplitude by the four ie r  transform G(K)/Do, 

as discussed on page 27. 
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With k as z-axis and k x-% as y-axis, it follows from ( A . 1 3  ) -a -a 

tha t  the plane-wave amplitudes (as calculated by SALLY) are 

i s  rea l ,  

and 8 is  the angle between ka and q. A l l  the m-dependence is  thrown in to  
I R I 

the xM . Referred t o  q as z-axis (option KB4 = 1 i n  SALLY), only /3 P P  o=p7K 
- 

is  non-vanis hing . 
An immediate consequence of the r e a l i t y  of the PQM is  that the polariza- 

t i on  st vanishes (although the tensor polarization moments t 

not be zero). 

vanish unless Q = 0 and K is  even, 

i n  general w i l l  
2q 

K Q  
It a l so  follows that when referred t o  q as z-axis the d 

ah4 

K e v e n ,  +pc a11 -P . d,o = 7 I 

Referred t o  k x l& as 2 axis, q as z-axis we now have /3  ̂ e w  = e) M P “1-.. 
-a - 

with plane waves, so that i s  real and vanishes i f  K is  odd. We soon 

f ind f o r  the d,, t ha t  
4 

A 

J,, = - 1 . 1  

Since they a re  real, their  phases e(r = 0. When measured from k as ;-axis .-a 

the a re  unchanged but we then have a’,. = - 0 R .  
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