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ABS TRACT 

The "plasma eater"  i s  a device which measures the r a t e  of flow of 

a neutralized plasma. 

it, and yields a current equal t o  the  number of electrons entering the 

device per second. An experimental model of the device has been suc- 

cessful ly  used with a mode I arc  , a re f lex  discharge, t o  measure steady 

s t a t e  plasma flow ra t e ,  ion density, and plasma decay time. 

The device absorbs or "eats" the plasma entering 
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"THE PLASMA EATER: A DEVICE TO ,MEASURE 
THE RATE OF FLOW OF A PLASMA 

I. Alexeff and R. V. Neidigh 

I. INTRODUCTION 

Measuring the  propert ies  of a dense plasma supported by a magnetic 

f i e l d  i s  d i f f i c u l t .  Therefore, new diagnostic methods have been devel- 

oped a t  Oak Ridge National Laboratory. This report  discusses one such 

method, t he  "plasma ea t e r . "  Although t h i s  method i s  very simple and 

easy to use, it appears t o  y ie ld  r e l i ab le  information on plasma flow 

rate, ion density, and plasma decay t i m e .  

11. THEORETICAL DISCUSSION 

The "plasma ea t e r "  i s  composed of c losely spaced metal p la tes ,  as 

shown i n  Fig. 1. Alternate p l a t e s  a re  connected t o  a source of voltage.  

The device resembles a radio tuning condenser connected across a ba t te ry .  

Plasma i s  directed between the  p l a t e s .  If conditions a re  correct,  t he  

ions and the  electrons can be pulled to a l t e rna te  p l a t e s  across a re-  

s t r a in ing  magnetic f i e l d .  For ions and electrons enter ing the  gap with 

negl igible  velocity,  t h e  spacing of t he  p la tes ,  R(cm) should be smaller 

than t h e  value 

2 E me C 
R <  2 

e H~ - 

Here E i s  the  e l e c t r i c  f i e l d  between p l a t e s  (esu) ,  me is  the  e lec t ron  

mass (grams), C i s  the  speed of l i g h t  (cm/sec.), e i s  the  electron 
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charge (esu) and H i s  the  magnetic f i e l d  (gauss).  The first experimental 

model operated a t  a lower e l e c t r i c  f i e l d  than t h a t  predicted by t h e  for- 

mula. 

111. TESTS ON THE FIRST EXPERIMENTAL MODEL 

A "plasma eater" w a s  constructed out of 16 p l a t e s  of sheet tantalum. 

The p l a t e s  were 0.005-in. th ick  and were separated by mica s t r i p s  O.Ol7-in. 

th ick .  The depth,,!, of t he  device w a s  1/2-in. 

Tests of t h e  "plasma ea t e r "  w e r e  made i n  a mode I arc', as shown i n  

-4 Fig. 2 .  The sustaining gas w a s  argon a t  a pressure of 6.5 x 10 torr. 

The cathode voltage w a s  85 vo l t s  and the  a rc  current w a s  1.05 amps. 

magnetic f i e l d  of 3000 gauss r e s t r i c t e d  the  a rc  diameter to t h e  defining 

hole diameter, 1/4-in. 

lO.25-in. With the  "plasma ea t e r "  i n  place, t he  a rc  length w a s  8.75-in. 

A 

The a rc  length (cathode to anticathode) w a s  

Test 1. Visual check to see i f  "plasma eater" absorbs plasma. 

If the  "plasma ea te r"  had no voltage across i t s  p la tes ,  but w a s  

l e f t  e l e c t r i c a l l y  f loa t ing ,  plasma would stream through the  device. The 

plasma emerging toward the  anticathode w a s  observed as a br ight  glow. 

This could be extinguished by placing about 200 vo l t s  across t h e  p l a t e s  

of the  "plasma eater." Switching t h e  voltage across the "plasma ea te r"  

on and off had no percept ible  e f f ec t  on t h e  main plasma colmn on t h e  

cathode s ide  of t he  "plasma ea t e r .  

R.  V. Neidigh, The OIWL Thermonuclear Program, OR?XL-2457, P. 55, 164-5, 
January 15, 1952. 

R.  V. Neidigh, The Effect  of a Pressure Gradient on a Magnetically 
Collimated Arc, om~-2288, May 27, 1957. 
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T e s t  2 .  Character is t ic  curve f o r  t he  "plasma ea t e r . "  

The voltage vs .  current cha rac t e r i s t i c  curve of t he  "plasma ea te r"  

i s  shown i n  Fig. 3. The curve i s  ra ther  symmetric, and indicates  t h a t  

t he  current of t he  device approached a sa tura t ion  value. A current 

sa tura t ion  i s  t o  be expected, i f  t h e  "plasma ea te r"  i s  eat ing a l l  t h e  

plasma entering it. 

T e s t  3. Measuring the  steady s t a t e  plasma flow rate. 

The sa tura t ion  current,  observed i n  Test 2 above, should be equal 

t o  the  number of e lectrons reaching the  device per  second. This assump- 

t i o n  was  ve r i f i ed  by a t e s t  made with a "plasma sweeper;" a device d is -  

cussed i n  d e t a i l  elsewhere . A b r i e f  descr ipt ion of t he  "plasma sweeper" 

i s  given i n  t h e  appendix. Ike average steady state current yielded by 

the  "plasma ea te r"  w a s  62 milliamperes. The r a t e  of steady state l o s s  

of plasma ions from t h e  end of t h e  column as measured with the  ''plasma 

sweeper" w a s  Tlmil l iamperes .  

apparatus and under the  same conditions. The agreement i s  good, and 

suggests t h a t  t he  "plasma eater" does y ie ld  the  steady s t a t e  plasma flow 

2 

Both measurements were made with the  same 

r a t e .  

T e s t  4. Measuring t h e  ion density and the  plasma decay time. 

The "plasma ea te r"  w a s  used t o  measure both the  ion density and t h e  

plasma decay time i n  mode I arc ,  and t h e  r e s u l t s  agreed w e l l  with m e a -  

surements made with a "plasma sweeper." Measurements were made by turning 

Thermonuclear Division Semiannual Report for Period Ending October, 1961, 
i n  press .  
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off t h e  source of plasma, then co l lec t ing  t h e  plasma. 

mount of charge by the volume of t h e  column y ie lds  t h e  average ion den- 

s i t y .  Measurements with the  "plasma eater" and the  "plasma sweeper" were 

made with the  same apparatus and under t h e  sme conditions. 

Dividing t h e  t o t a l  

To measure ion density and plasma decay time with t h e  "plasma ea t e r , "  

t he  device was placed i n  a mode I arc  as shown i n  Fig. 2 .  me cathode 

of t he  a rc  w a s  shorted t o  ground with a fast closing switch, and t h e  cur- 

r en t  flow through t h e  "plasma ea te r"  w a s  observed with an oscil loscope. 

Presumably half  t he  plasma i n  t h e  column reaches the  "plasma eater" ,  t h e  

other half  being l o s t  on the  cathode. Precautions were made s o  t h a t  no 

sweeping e l e c t r i c  f i e l d  would be present along the  plasma column. Both 

t h e  "plasma eater" with i t s  associated electronics ,  and the  anticathode 

electrode, were e l e c t r i c a l l y  f loa t ing .  To measure ion densi ty  and plasma 

decay t i m e  with a "plasma sweeper", both sets of "plasma ea te r"  p l a t e s  

were connected to t he  anticathode, and measurements were made as described 

i n  the  appendix. 

The charge densi ty  i n  the  plasma column can be computed from the  

area under the  decay curves f o r  t he  "plasma eater" ,  and f o r  t he  "plasma 

sweeper". Some decay curves a re  shown i n  Fig.  4. Assuming t h a t  t he  

"plasma ea te r"  absorbs - half  t he  plasma i n  the  column, and assuming t h a t  

the  column has a volume of 7 em 3 , the  ion densi ty  i s  1.1 x lo1' ions/cm 3 . 

Assming t h a t  t he  "plasma sweeper'' absorbs ha l f  the ions i n  t h e  plasma 

column, t h e  ion density i s  1.1 x lo1' ions/cm3. 

- 
Thus the  "plasma ea t e r "  

and the  "plasma sweeper" give t h e  same ion density.  
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The decay times f o r  t he  "plasma ea t e r "  and the  "plasma sweeper" a re  

a l so  shown i n  Fig. 4. The decay f o r  t h e  "plasma ea t e r "  i s  30% longer than 

t h a t  f o r  t he  "plasma sweeper." Perhaps, the  sweeping f i e l d  of t h e  "plasma 

sweeper" penetrates  the  plasma t o  some exten t .  

newness of t he  two devices, agreement on plasma decay times t o  within 30% 

can be considered qui te  good. 

However, i n  view of t he  

Iv. SUMMARY 

The "plasma ea te r"  i s  a device which measures the  rate of flow of 

a neutral ized plasma. When t e s t ed  on a mode I arc,  it appeared t o  absorb 

or "eat" a l l  t h e  plasma enter ing it, and t o  y ie ld  a current equal t o  the  

number of e lectrons enter ing it per  second. The device gave values f o r  

t he  plasma steady s t a t e  f l o w  ra te ,  ion density, and plasma decay time, 

which agreed with the  values found by a Ilplasma sweeper." 

V. APPENDIX - "PLASMA SWEEPER" 

Measurements are made with a "plasma sweeper" by turning off t he  

source of plasma, then sweeping out t he  plasma along l i n e  of magnetic 

flux and co l lec t ing  it. The schematic of a "plasma sweeper'' i s  shown 

i n  Fig. 5 f o r  a mode I ref lex  a rc .  Instead of e l e c t r i c a l l y  insu la t ing  

the  anticathode electrode, it i s  connected t o  ground through a r e s i s t o r  

and a ba t te ry .  However, t h e  voltage of t h e  ba t t e ry  i s  s o  chosen t h a t  

the  anticathode electrode draws no ne t  current;  effect ively,  it i s  s t i l l  

f loa t ing .  In  pract ice ,  t he  correct  ba t t e ry  voltage i s  a f e w  vo l t s  grea te r  

than t h e  cathode po ten t i a l .  
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Measurements a re  made by short ing t h e  cathode t o  ground by a fast  

closing switch. 

was used. 

f l e c t s  t he  e lec t rons .  

t o  t he  anticathode. The current to t h e  anticathode as a function of t i m e  

i s  recorded as a voltage drop across t h e  resis tance,  €$, i n  t h e  anticathode 

c i r c u i t .  

ways along the  plasma column . 
i n  a uniform plasma column i s  obtained by in tegra t ing  and doubling the  

area under the  current vs .  t i m e  decay curve. Dividing the  t o t a l  pos i t ive  

charge by the  volume of t he  plasma column y ie lds  an average value f o r  t h e  

ion charge per  u n i t  volume. 

I n  our measurements a re lay  with mercury wetted contacts 

Since the  anticathode b i a s  remains, a sheath forms which re- 

There i s  a flow of plasma ions across t h e  sheath 

Subsequent invest igat ions suggest t h a t  the  ions migrate both 

3 Thus the  t o t a l  pos i t ive  charge contained 

Possibly, t he  "plasma sweeper" may y ie ld  both t h e  steady state r a t e  

of plasma flow out of t h e  ends of t he  column, and t h e  ion temperature. 

Subsequent investigations3 suggest that the rate of ion  flow is  not affected 

by the  sweeping f i e l d .  Apparently, t h e  sweeping f i e l d  appears only across 

short  sheaths a t  t h e  ends of t he  plasma column. The peak current observed 

with the  "plasma sweeper" probably y ie lds  t h e  steady s t a t e  loss of plasma 

out of the  column ends. The shape of t he  current vs .  time decay curve, 

under ce r t a in  assumptions', gives the  ion temperature. 

Thermonuclear Division Semiannual Report f o r  Period Ending October, 1961, 

Not ye t  published. 

i n  press .  
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Fig. 1 .  Schematic of Plasma Eater. 
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Fig. 2. Plasma Eater Tested in Mode I Arc. 
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U N C LASS I F I E D 
PHOTO 56193 

PLASMA EATER 

PLASMA SWEEPER 

Fig. 4. Observed Decay of Plasma Current. Five traces were recorded on each 
picture. Horizontal scale - 10 microseconds per large division. Vertical scale - 2 
volts per large division. A 96 ohm load resistor was used. 
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Fig. 5. Plasma Sweeper Arrangement on a Mode I Arc. 
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