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ABSTRACT 

The program described i n  t h i s  repor t  i s  p a r t  of an attempt t o  
solve the  neutron t ranspor t  equation i n  a s  general a manner a s  present  
day machir,e capacity w i l l  permit. The simple i t e r a t i v e  technique 
employed i s  equivalent  t o  t h e  EQUIPOISE method modified by a form of 
blozk relaxation.  The block re laxat ion method is extremely simple and 
should be generally applicable not only t o  t r anspor t  equation programs 
but a l so  t o  heat  conduction problems and neutron d i f fus ion  programs i n  
more than one dimension, I n  terms of mesh sweeps, t he  procedure i s  
extremely rapid by comparison with a s imi la r  program. Two energy groups, 
16 angular d i rec t ions ,  and 400 mesh points ,  a r e  provided. Anisotropic 
sca t t e r ing  i s  permitted, and an a r b i t r a r y  one-dimensional d i s t r i bu t i on  
of mater ia l  prcpert.ies can be used, Checks of t h e  r e s u l t s  of the  program 
against, published ana ly t i c a l  r e s u l t s  f o r  both i so t rop i c  and anisot ropic  
s ca t t e r i ng  ha,ve been in  exce l l en t  agreement. 

NOTICE 

This  document contairls information of a preliminary nature and was 
pr imari ly for internal  use at the Oak Ridge Nat ional  Laboratory. It i s  subject 
to  revis ion or correction and therefore does no t  represent a f ina l  report. The 
information i s  not to  be abstracted, reprinted or otherwise g iven public d is -  
semination without the approvai of the ORNL patent branch, Lega l  and lnfor- 
mation Control Department. 
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L E G A L  N O T I C E  I-- 

- 

T h i s  report was prepared a s  an  account  of Government sponsored work. Nei ther  the Uni ted Stotes, 

nor the Commission, nor any person act ing o n  behalf of the Commission: 

A. Makes any worronty or ,eprcrcntotion, expressed or implied, w i t h  respect  to t he  accuracy, 

completenes i ,  or usefu lness o f  the in format ion conta ined i n  t h i s  report, or t ha t  tho use o f  

ony informotion, apparatus, method, or process d i sc losed  in th i s  repor t  may no t  in f r inge 

pr ivate ly  owned r ights ;  or 

8 .  Assumes any l i ab i l i t i es  w i t h  respect  t o  the use  of, or for damapes resu l t i ng  from the use  o f  

any informotion, apparatus, method, or process d i sc losed  i n  t h i s  report. 

A s  used i n  the above, "person ac t i ng  on  behalf of t he  Commiss ian"  inc ludes any employee o r  

contractor of t he  Commission, or employee o f  such  controctor, t o  t h e  ex ten t  t ho t  such employee 

or contractor of t h e  Commission, or employee o f  such  cont ractor  prepares, d isseminates,  or 

provides access to, any in format ion pursuant t o  h i s  employment or cont roct  w i t h  the Commission, 

or h i s  employment w i t h  such contractor. 



SWAPS - AN EXPERIMENTAL PROGRAM FOR NUMEFECAL SOLUTION OF 
THE TRANSPORT EQUATION W I T H  ANISOTROPIC SCATTERING I N  

ONE- DIMENSIONAL SLAB GEOMrmRY 

I. Introduction 

1 
The EQUIPOISE method has been successfully appl ied  t o  the  problem 

of solving t he  neutron t ranspor t  equation i n  s l ab  geometry including 

the  e f f ec t s  of anisot ropic  s ca t t e r i ng  i n  t he  laboratory  system. The 

present  program permits t he  use of an a r b i t r a r y  d i s t r i bu t i on  of 20 ma- 

t e r i a l s  i n  up t o  100 regions over 400 mesh points .  Two energy groups 

a re  considered and a s  many a s  16 angular d i rec t ions  may be used. Two 

types of  anisot ropic  co l l i s i on  a r e  t r ea ted ,  one of which i s  s ca t t e r i ng  

from group t o  group (both ways) while the  other  i s  s ca t t e r i ng  within a  

group. Permitted boundary conditions a t  e i t h e r  o r  both faces  a r e  zero 

re tu rn  current ,  zero ne t  current ,  and a r b i t r a r y  incoming current .  

Succeeding sect ions  of t h i s  r epor t  w i l l  describe the  equations 

upon which the  program i s  based, t he  i t e r a t i v e  method (including the  

new block re laxat ion technique), a comparison of program r e s u l t s  with 

published ana ly t i c a l  r e su l t s ,  and ins t ruc t ions  f o r  program input.  

It must be pointed out  t h a t  SWAPS i s  a t  the  present  time an experi-  

mental code and does not  have b u i l t  i n t o  it a l l  the  refinements of  a  

f in i shed  program. It i s  nevertheless easy t o  use and t he  answers a r e  

c l e a r l y  iden t i f i ed .  The program requires  between 0.009 and 0.016 sec 

pe r  point  per  angular d i rec t ion  per  i t e r a t i o n  f o r  anisot ropic  s ca t t e r i ng  

problems and about 0.002 sec per  point  per angle pe r  i t e r a t i o n  f o r  i so -  

t r op i c  s ca t t e r i ng  problems. Ins t ruct ions  f o r  input preparation and a 

sample problem a r e  given i n  t he  Appendix. 

11. Difference Equation Form of t he  k l t zmann  
Equation f o r  Slab Geometry 

The bas ic  technique used t o  t r e a t  t he  k l t zmann  equation n m e r i -  

c a l l y  i s  very s imi la r  t o  the  methods used i n  t he  SNG and DSN codes of 

~ a r l s o n . *  The di f ference equations w i l l  be derived d i r e c t l y  r a t he r  

than by di f ferencing the  i n t e g r ~ - d i f f e r e n t i a l  form of the  Boltzmann 



equation. This procedure i s  used t o  make ce r t a in  t h a t  the  r e su l t i ng  

difference equations a r e  an approximation t o  the  physical process. 

( ~ l l  symbols a r e  defined i n  a t ab l e  of notation a t  the  end of Sec. VII.) 

In  one-dimensional s lab  geometry it i s  necessary t o  consider 

var ia t ion  of angular f l u x  i n  only one o f  the  three  coordinates and only 

one angular d i rect ion.  For, i f  a s l ab  i s  i n f i n i t e  and uniform i n  the  y 

and z coordinates, the  angular f lux  i s  constant f o r  a given x and i n  a 

cone having a given generating angle a with the  x axis .  (see  Fig. 1 )  

Fig. 1. AnguLar Flux i n  Slab Geometry 

The t o t a l  of 431 s teradians  of s o l i d  angle i n  which neutrons can 

move i s  divided i n to  n equal p a r t s  each of s i z e  2nA(cosa), where 

-1 g cosa ,<  1. For the  purposes of calcula t ion,  the  physical  p ic tu re  of 

neutrons moving i n  a l l  possible d i rec t ions  i s  replaced by a model i n  

which the  neutrons a r e  permitted t o  move making one of n poss ible  angles 

with the  x axis.  The d i rec t ions  a r e  chosen by taking them a t  t he  



midpoints of the cosine increments. For instance, i f  two direct ions  are  

used, then neutrons a re  supposed t o  t r ave l  t o  the  r igh t  i n  Fig. 2 a t  an 

angle of 45 deg with the posi t ive  x direct ion or  t o  the l e f t  a t  an angle 

of 135 deg with the posi t ive  x direction.  If 16 direct ions  a r e  used, 

one group of neutrons is  sa id  t o  t rave l  with a cosine of -13/16, etc.  

o m - L R - D W ~  . 67169 
Unclassified 

I-& -4 
Fig. 2. Volume Element fo r  Neutron Balance 

The complete sequence would be 4 5 / 1 6 ,  -13/16, -11/16,. -9/16, -7/16,. . . 
adding increments of 1/8 u n t i l  .+15/16 i s  reached. An even number of 

angular increments I s  used, half  on one side of a material  in terface 

and half  on the other  so t h a t  possible ambiguities connected with 

neutrons moving p a r a l l e l  .to an interface a re  avoided. The in te rva l  

along the x ax is  i s  divided in to  k par ts ,  not necessari ly equal. It i s  

assumed tha t  the average angular f lux in .  a par t icu la r  direct ion i n  one 

of these pa r t s  may be estimated by the arithmetic mean of the  values 

f o r  the  angular f l ux  a t  the ends. Alternatively, one may say t h a t  the  

neutrons t ravel ing i n  a given range of so l id  angle behave on the average 



l i ke  tha t  d i f f e ren t i a l  f ract ion of them which have a direction i n  the 

center of t h a t  range. It is in tu i t ive ly  obvious tha t  the accuracy of 

the procedure wi l l  increase a s  the number of both angular and space 

increments used increases. 

The i t e ra t ion  equations used i n  the SWAPS program a re  based upon 

neutron balances taken over volume elements which are  directed along 

the n direct ions and whose length i s  bounded by the increments along 

the x axis. Two energy groups are  used i n  the present program but 

extension t o  larger  number of groups i s  easy (in principle) .  Consider 

a neutron balance taken over the volume element shown i n  Fig. 2. The 

number of neutrons entering a t  M and traveling i n  direct ion p i s  
J 

-I = cos a). 

The number leaving a t  x + h i s  

The number of neutrons removed from direction p i s  taken a s  
J 

The number of neutrons scattered in to  direct ion p i n  the volume 
J 

element which were moving in  other directions i s  

The number of neutrons born from f i ss ion  i n  the volume element which 

take direct ion p is 
J 

Isotropic generation of f i ss ion  neutrons i s  assumed. (1n the present 

program X1 = 1.0 and X2 = 0.0.) 



The number of neutrons sca t t e red  from the o ther  groups i n to  group 

g is  

The balance equation f o r  a given group, d i rec t ion ,  and space i n t e rva l ,  

( g ,  pj, and x. t o  x ) is then, canceling the f a c t o r  dA, 
1 i.+E 

n Ng(xi9 vp) + ~ ~ ( x ~ + ~ '  vp 
+ AXg C C Ax 

2n vc - 
g-p P-1 fg  'j 

If the re  a r e  two energy groups, n angular I.ncremen.t;s, and k space 

in te rva l s ,  .Were a re  a t o t a l  of 2nk balance equations l i k e  (1). 

111. The I t e r a t i v e  Procedu~e  

The i t e r a t i v e  procedure used t o  f ind  the angular f l u x  d i s t r i bu t i on  

i s  ba s i ca l l y  the  same a s  t h a t  used .in FQUIPOISE.~ An important modf- 

f i c a t fon  has been made by t he  introduction of a form of block relaxa.tion.. 

The procedure cons i s t s  of rewri t ing Eq. (1) i n  t h e  form: 



where the superscript  t re fe rs  t o  the i t e r a t i o n  number. The program i s  

wri t ten so tha t  the most recently computed values of f luxes a r e  always 

used. Equation (2 )  i s  used f o r  the values of p > 0, For values of 
j 

p. < 0 the  equation used is: 
J 

The r e s t r i c t i on  i s  made t h a t  

The program assumes a uniform angular f l ux  d i s t r ibu t ion  i n i t i a l l y .  In 

eigenvalue problems, a value of  A i s  then estimated by adding up a l l  

the equations and solving f o r  A, which is  equivalent t o  wri t ing 

- Absorptions + Leakage 
h - Productions . 

This value of h i s  then used wherever applicable i n  the  equations f o r  

one "mesh sweep". The sweep i s  conducted by proceeding from one s ide  

of the s lab  t o  the  other  and returning. The angular f luxes i n  a l l  

posi t ive  p direct ions  a t  point 2 a r e  computed from those at point  1, 

those a t  3 from those a t  2, e tc .  On reaching the other s ide of the  

s lab  (point k + l ) ,  the angular f luxes i n  a l l  negative p direct ions  a r e  

computed at point  k from those of k + 1, those a t  k - 1 from those a t  

k, etc. ,  u n t i l  point  1 i s  reached again. When these computations have 

been completed f o r  both groups, the new s e t  of angular f luxes  i s  used 



t o  o b t a i ~  a new estimate of A. The process i s  repeated until the values 

of the  angular f l u x  cease t o  change within some prese t  convergence 

c r i t e r i on .  

Subject t o  the  res t r ic t ior!  cf  inequal i ty  (4), it i s  seen t h a t  a 

s e t  of pos i t ive  f luxes  inse r ted  In the  right-hand s ide  of the  i t e r a t i o n  

Eqs. ( 2 )  and (3)  w i l l  always produce a new s e t  of pos i t ive  f luxes.  

F'urther, use of a s e t  of pos i t ive  f luxes  i n  (5) w i l l  always produce a 

pos i t ive  eigenvalue estimat,e. The i t e r a t i v e  procedure represented by 

Eqs. (2), ( 3 ) ,  and ( 5 ) )  which i s  ca l l ed  here the  EQUIPOISE method, i s  

believed t o  be s tab le  and always convergent because of these two f ac t s .  

While no proof present ly  e x i s t s  f o r  t h i s  conjecture, an impressive mass 

of empirical evidence e x i s t s  t o  support it. 

Unlike the  d i f fus ion  codes, no over-relaxation is  used. I t  was 

found empirical ly t h a t  su i t ab le  over-relaxation coef f i c ien t s  were close 

t o  one and d i f f i c u l t  t o  est imate accurately.  (The work of  ~ a ~ e m a n ?  i n  

t,his connection i s  of spec ia l  i n t e r e s t . )  Further, t he  speed of  t he  

program was s u f f i c i e n t l y  g r ea t  i n  eigenvalue problems t h a t  the re  ap- 

peared t o  be l i t t l e  need t o  accelera te  convergence, Non-eigenvalue 

problems, s u c ~  a s  Milne's problem, proved t o  be qu i te  another matter. 

The same procedure t h a t  produced convergence i n  1 0  i t e r a t i o n s  i n  an 

eigenvalue problem appeared t o  converge with extreme slowness f o r  f ixed 

incoming current  problems. This same d i f f i c d t y  appears i n  heat  con- 

duction problems as  well  as neutron di f fus ion problems. The remedy 

employed i n  SWAPS i s  an extremely simple but  h ighly  e f f ec t i ve  form of 

block relaxation.  The technique cons i s t s  of f inding a number by which 

a l l  the  neutron f luxes  i n  a given region and group* must be mul t ip l ied  

t c i  provide a neutron balance. As the  problem converges, t h i s  number 

becomes 1. The number i s  found as follows. Let (D (IN) denote f l u e s  

ins ide  a region i n  a given group and ~ ( O L T )  denote f luxes  i n  o ther  ad- 

jacent  regions o r  i n  the same region but  o ther  groups. The "driving 

fac to r"  D F  i s  found by obtaining the  r a t i c  

.* 
In the  SWAPS program, both groups were lumped together f o r  -the block 
re laxat ion procedure f o r  simplici ty.  



where 

= the formula for  calculating the current of neutrons 

into the region. It i s  a f'unction of f l u e s  out- 

side the region, @(OUT). 

= the formula f o r  calculating slowing down in to  the 

group inside the region. It i s  a function only of 

fluxes i n  other groups, ~ ( o G ) .  

X {@(IN)} = the formula fo r  calculating removals by absorption 

and slowing down inside the region. It depends only 

on fluxes i n  the group o r  region under consideration, 

Q( IN). 

LO ( e ( I N ) }  = the formula for  calculating the flow of neutrons 

out of the region. It depends only on the fluxes 

inside the region. 

The drivlng factors  a re  used to  multiply a l l  the fluxes in  a given 

region. It i s  used a fo r  regions in  which there i s  no fissionable 

material. (Fissionable regions are  omitted because the driving factor  

could conceivably become negative i n  such regions.) In  SWAPS, "driving" 

i s  done region by region i n  the following Zashion. Suppose a 30-point 

reactor i s  composed of two materials, one of which covers points 1-17 

and the other from 17-50. Region 1-17 could be divided up in to  two 

regions, 8-17 and 1-17, while the other region might be divided 38-50, 

21-50, 17-50. A factor  i s  found fo r  points 8-17 and a l l  fluxes i n  t h i s  

range a re  multiplied by it; another fac tor  i s  found for  points 1-17' and 

a l l  fluxes from 1 t o  17 are  multiplied by it. Similarly, fac tors  a re  

found f o r  38-50, 21-30, and 17-50 and superimposed on one another i n  

the same way. Disposition and the frequency of use of the driving 



reg: os 1s a t  the  d i sc re t ion  of the user  of the program. The authors1 

prazt4:\:e has been to  kse regions about 10 mean f r ee  paths th ick  and 

abcut. every 10 i t e r a t i ons .  There 4s no t heo re t i c a l  reason why the  

"driving" regions should coincide with mater ia l  regions; they happen t o  

do so i n  t h i s  program a s  a matter of convenience only. It i s  worth 

noting t h a t  i n  c e r t a i n  simple problems, the  "driving" procedure, suf- 

f i c i e n t l y  elaboraxed, could lead t o  an exact solut ion t o  the  f i n i t e  

d i f ference equations i n  a f i n i t e  number of s teps .  An exact  solut ion i s  

not obtainable, however, i n  more than one dimension by t h i s  means. 

While the dis t~ibu- t ; ion of the dr iv ing function regions has been 

l e f t  t o  the  user,  the re  i s  nothing of a c ruc i a l l y  optimal nature i n  

laying out  these areas.  The e f f e c t  of t h e i r  use i s  t o  a f f e c t  p a r t s  of 

the  reac to r  d i s t a n t  from t h e  boundaries a s  qufckly a s  poss ible  and t o  

force a condit ion t h a t  must be t rue  a t  convergence. This condit ion i s  

t h a t  any subregion of  the reactor  must s a t i s f y  a neutron balance. The 

suggested procedure is generally applicable and should prove useful  i n  

more than one dimension, t o  heat  conduction problems a s  well  a s  t o  

neutron diff'usion problems. Problems such a s  Milnels  problem, previ-  

cus ly  qu i te  in t rac tab le ,  a r e  now solvable i n  a reasonable amount of 

machine time. 

I V .  Program Speed 

A t  the  present  ti.me the  prc.gram takes o.oor875 see per  point  pe r  

angular increment pe r  i t e r a t i  on f o r  isot .ropic problems. For an aniso- 

t ropfc  scat;terfng problem the  computi.ng :rate f s 0.009 t o  0.016 sec per  

point  pe r  i t e r a t i o n .  These computing ra.tes cauld doub.tless be improved, 

bu t  the  present  prcsgram i s  only a pro.toty-pe and does not  warrant reffne- 

ments . Some s t a t i s t i c s  concerni.ng mesh sweeps requf red  f o r  convergence 

a r e  of in te res . t  and may be found i n  Table 1. Comparison with one version 

of DSN i s  a l so  given. Cases 3 and 4 a r e  W.Lrrets problem cases, where it 

i .s  des i red to f i n d  the  angular f l u x  dis t r ibu- t ion In  a very thick s l ab  

having an i so t rop ic  source on one fa,c:e, The e f f e c t  of using dr iv ing 

regions i s  evident. 



Table 1. Convergence Rates i n  SWAPS and Comparison with Other Programs 

Number of Number of Number of Anisotropic Eigenvalue Convergence Number of 
Problem Mesh Points Angles "Driving Regions" Scat ter ing Problem Level I t e r a t ions  

100 16 5 

400 16 o 
400 4 0 

400 4 8 

300 16 o 
.Same as 5 but on DSN program 

101 16 1 

Same a s  7 but on DSN program 

51 16 o 
51 16 o 
31 16 o 

101 16 o 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

a The type of  convergence leve l  c i t ed  i s  not exact ly  the  same i n  SWAPS and DSN but  is su f f i c i en t ly  
close t o  be comparable. The number of i t e r a t i o n s  c i t ed  f o r  DSN a r e  inner i t e r a t i ons .  

 he convergence l eve l  c i ted  f o r  SWAPS r e f e r s  t o  convergence of the  individual angular f luxes.  
The program had apparently reached the l i m i t  o f  machine numerical significance a t  t h i s  convergence 
level .  The DSN convergence i s  convergence on the i n t eg ra l  of the  f l - a .  



V. The - Trea,tmert, ,-.S kale  tropic Scatt,ering --- and of Anisotropy 
i n  the  C ~ C S S  Sections f o r  Group-tc-Group Removal 

Anisotropy i s  accounted f o r  by assuming t h a t  t he  cross  sect ion f o r  

t r an s f e r  from one direct5on t 9  another i s  a ctitric polynomial i n  t he  

cosine of t he  angle between the enter ing and leaving d i r e c t i m  of the 
2 

co l l id ing  neutron, It follows that,  i f  ~ ( x ,  p ) neutrons per  crn per i 
second a r e  t r ave l ing  i n  a corie havfng d f r e e t i m  p i n  t h e  range 

i 

p i  
- &i/2 t o  pi + & . / 2 ,  the  number ef  such neutrons having an angle 

1 

Bi ( see  Fig. 1) which w i l l  be sca t t e red  i n t o  d i r e c t i s n  6 and p. per 
5 J 

u n i t  path lengSh i s  expressed by the  fomu la  

where p u  - p o p .  f 
1 J r/L- cos(fii - fij) i s  the  cosine of the  

J 
angle between, the i n i t i a l  and f iml d i ree t i cns .  I f  (7) i s  in tegra ted  

over pi Tram pi - mi /2  t o  ui + & 2 over u . fn.m p . - &L j/2 t o  
1 J 2 

i; + 4 ~ ~ 1 2 ~  and $ and @ .  from 0 t a  271, assumicg NLx, p ) i s  constant  
j  rl i J i 

over the  i n t e r v a l  of in tegra t i cn ,  the re  r e s u i t s  the  f o m u l a  

where Z(bi-+ p j )  i s  the  cross s ~ c t i o n  f o r  scazter ing from a cone 

having angle cos-lP t o  a ccne having an angle c~s - 'p .~ .  
i - 

The input numbers t o  the  prcgran whlch a r e  t o  be emplsyed to char- 

a c t e r i z e  the s ca t t e r i ng  o r  the  remaval cross  sect ions  a r e  ad al, a2, 

and a Calculat ion of an i so t rcp ic  sca t t e r ing  i s  c a r r i ed  out i n  the 
3' 

program according t o  fornula (8). Mote t h a t  i f  the  s ca t t e r i ng  o r  re-  

moval i s  l i n e a r ,  th rn  a, i s  the toxa l  cross sect ion f o r  the  process. 
\J 



(1f a Pn expansion had been used, t h i s  would have been t rue  f o r  any 

degree of non-linearly.) I n  SWAPS, = Uj and 2 / 4 i  i s  the  number 

of angular increments used. 

VI. Checking the  Program f o r  Accuracy Against 
Known Analytic Solutions 

A. Milne's Problem Comparison 

The program has been checked against  Milne's problem by using the 

case of a s lab  about 78 mean f r e e  paths th ick with no absorption and 

with an i so t rop ic  plane source of  neutrons a t  one face and zero incoming 

current a t  the other. Four angular increments were used. The emergent 

angular f l ux  of the face of zero incoming current and the  t o t a l  f l u x  a re  

compared i n  i s b l e  2 with r e s u l t s  obtained by the Wiener-Hopf 

The agreement i s  excel lent  considering t ha t  only four angular increments 

were used. 

Table 2. Comparison of  Results Obtained f o r  Milne's Problem 
Using Four Angular Increments with Theoretical Answer 

Distance from Boundary, 
Mean Free Paths SWAPS Result Wiener-Hopf Percent Error 

a. Total F l u  

b. Eheraent Angular Flux 



B. I so t rop ic  and Linear Anisotropic Sca t t e r ing  Eigenvalue Problems 

2 6 
Carlson and Dresner have published r e s u l t s  concerning the  c r i t i -  

. . 

c a l  thickness of s labs  i n  which sca t t e r ing  was i so t rop i c  o r  l i n e a r l y  

anisotropic.  Table 3 compares the  r e s u l t s  they obtained using v a r i ~  

a t i o n a l  methods with those obtained using t h e  SWAPS program. 

Table 3 ,  Comparison of Variat ional  Estimates of  C r i t i c a l  
Thickness &n Slabs with SWAPS Calculat ion 

Total  Slab Thickness, 
Mean Free Paths 

Secondaries pe r  Col l i s ion 

Analytical  Methods 2 SWAPS 

a .  I so t rop ic  Sca t t e r in6  

b, Anisotropic Sca t t e r ing  - 
- 
p = 0.3 

- -I 
where P = l 

C r i t i c a l  Number of  Secondaries 
Total  Slab Thickness, 

Mean Free Paths 
pe r  Col l i s ion  

Var ia t ional   sti in ate^ SWAPS" 

- - - - -- --- 

a A small amount of in te rpo la t ion  was used t o  p lace  the  answers 
a t  TI = 0.3. 



C. Thermal Ut i l i za t ion  Problem 

An ad hoc version of the  SWAPS code was used t o  solve the  problem 

of thermal u t i l i z a t i o n  i n  a s lab  l a t t i c e  re fe r red  t o  i n  Table 18.4, 
p. 642, of Weinberg and ~ i ~ n e r . ~  Using 400 points  and 16 angular i n -  

crements, a value of 0.8557 was obtained, which i s  i n  excel lent  agree- 

ment with t he  t e x t  answer of 0.8$0. 

VII. Conclusions 

A simple and e f f i c i e n t  method of computing the  flux d i s t r i bu t i on  

and c r i t i c a l  eigenvalue i n  s lab  geometry using a numerical solut ion of 

the  Boltzmann equation has been devised. The i t e r a t i o n  procedures used 

should be applicable t o  more elaborate programs involving more energy 

groups and dimensions. 



Table of Notation - 
Cartesian coordinates. 

Angle between a l i n e  i n t e r s ec t i ng  the  x ax i s  and 
the  pos i t i ve  x di rect ion.  

Increment of d is tance  along x ax i s ,  cm. 

Number of i n t e rva l s  i n t o  which t h e  range -1 < cosa ,<l 
i s  divided. 

Number~of i n t e rva l s  i n to  which the  thickness of the  
s lab  reac to r  along t he  x ax i s  i s  divided. 

(cosa) where the  subscr ip t  j denotes one of t he  
n a n g u i k  in te rva l s ;  01 = 2/n. 

Po in t s  i n  Fig. 2. 
2 

Dif fe ren t ia l  element of area ,  cm . 
The dis tance  along t he  x ax i s  from the  o r i g i n  t o  
t h e  i t h  space in te rva l ,  cm. 

2 
Angular neutron f lux,  neutrons per  cm per  second 
moving i n  d i r ec t i on  l~ a t  po in t  x i n  neutron 
veloci ty  group g. j i 

Total cross  sect ion f o r  group g, rec ip roca l  
centimeters. 

Cross sect ion f o r  s ca t t e r i ng  from d i r ec t i on  i n t o  
d i rec t ion  p P 

j 

Number of neutrons produced pe r  f i s s i on .  

Eigenvalue; the  number by which v must be mul t ip l ied  
t o  make an assembly c r i t i c a l ;  the  rec iprocal  of t he  
e f f ec t i ve  mul t ip l ica t ion constant. 

The f r ac t i on  of neutrons generated by f i s s i o n  which 
a r e  born i n to  g rmp  g. I n  the  present  program 
X = 1 , O  and X = 0.0. 1 2 

Fiss ion cross  sect ion f o r  group g, r ec ip roca l  
centimeters. 

Removal cross  sect ion from group g' t o  g from 
d i rec t ion  in to  d i rec t ion  

P J ' 
Cosine of  t he  angle between the i n i t i a l  and f i n a l  
d i rec t ions  of a neutron which has undergone a 
s ca t t e r i ng  co l l i s ion .  

The angle made by the  project ion of t he  d i rec t ion  
of neutron motion upon t h e  y-z plane with the  
pos i t ive  z direct ion.  



APPENDIX 

Code Operation 

SWAPS was programmed i n  FORTRAN t o  be run under con t ro l  of t he  

IBM-7090 FORTRAN Monitor System. The only tapes used by the  program 

a r e  tape 9 f o r  output and tape  10 f o r  input.  

Input 

Figure A.2 i s  a SWAPS input form f i l l e d  out  f o r  t he  sample problem. 

In  t he  ins t ruc t ions  given below, the  number formats a r e  given i n  FORTRAN 

nomenclature and a r e  wr i t t en  i n  parenthesis  immediately following t he  

input number symbol. 

Card 1 - T i t l e  Card 

Column 1 - blank. 

Columns 2 through 72 - any des i red information. 

Card 2 - Control Card 

Columns 1 through 3 - ANG(IJ) 5 16; number of angles f o r  which 

the  f luxes  a r e  t o  be computed. 
< 

Columns 4 through 6 - P T S ( I ~ )  = 400: t o t a l  number of points .  The 

mesh runs from l e f t  t o  r i g h t  beginning with 1 f o r  t he  lef t -most  point  

and ending w i t h  PTS, 
< 

Columns 7 through 9 - REG(I~)  = 100: the  number of regions i n t o  

which the  mesh i s  divided. 
< 

Columns 10 through 12  - MAT( 13) = 20: the  number of  d i f f e r e n t  

mater ia ls  t h a t  a r e  speci f ied  below. 

Columns 13 through 15 - L B I ( I ~ )  : le f t -hand boundary condit ion 

indicator .  If LBI i s  0 o r  blank, the  lef t -hand boundary i s  a zero 

re tu rn  current  boundary. If LBI i s  +1, the  left-hand boundary i s  a 

zero ne t  current  boundary. A -1 f o r  LBI spec i f i es  an a r b i t r a r y  incoming 

current  boundary condition which i s  spec i f i ed  below. 

Columns 16 through 18 - RBI(I3): right-hand boundary condit ion 

indicator .  The right-hand boundary condit ions a r e  speci f ied  i n  the  



same manner a s  t ha t  given above fo r  the l e f t  boundary. 

Columns 19 through 21 - F'XI(13) : previous f lux  indicator.  I f  FXI 

i s  a 0 or  blank, the code supplies an i n i t i a l  f l a t  f l ux  guess. A +1 

for  FXI indicates  t ha t  the i n i t i a l  f lux  guess i s  taken from the  preceding 

problem. The preceding problem must have the same number of points and 

angles, and the same boundary conditions a s  t h i s  problem. 

Columns 22 through 24 - ITR(I~)  : the t o t a l  number of i t e r a t ions  

the problem i s  t o  be run. If a problem has not converged before ITR i s  

reached, it i s  terminated automatically and the normal output i s  written. 

Most problems converge i n  fewer than 100 i te ra t ions .  

Columns 25 through 27 - D R V ( I ~ ) :  the block relaxation i t e r a t ion  

cycle. The calculation proceeds normally (point relaxation) f o r  DRV 

i te ra t ions ,  a t  which time the  block relaxation procedure i s  applied t o  

a l l  specified ( see  below) non-source regions. This cycle i s  repeated 

u n t i l  the  problem reaches convergence. A value of 10 appears t o  be 

reasonable f o r  t h i s  number. 

Columns 28 through 30 - oUT(13) : output information indicator,  

Convergence information, the eigenvalue, the  total. f lux a t  each mesh 

point, and the neutron balance a re  always pr inted out. OUT indicates  

other output t ha t  may be desired. A 0 or  blank fo r  t h i s  number indi-  

cates no additional output. If OUT is  +1, the d i rec t iona l  f luxes w i l l  

be included i n  the output. I f  OUT i s  -1, the  d i rec t iona l  f luxes plus 

the angular dependent macroscopic removal and scat ter ing cross sections 

w i l l  be pr inted out. 

Columns 31 through 48 - FACTOR(EL~ .6) : normalization factor.  For 

output, the t o t a l  f luxes a re  normalized by multiplying each f lux  value 

by FACTOR/S, where S i s  the t o t a l  source, 

The angular dependent fluxes a re  not normalized f o r  output. 

Columns 49 through 52 - EPI(ELO.~) : convergence cr i ter ion.  The 

calculation stops when both of the following conditions a re  sa t i s f ied .  



1 "'3" - 1.0 / < *I, and 

where t i s  the  i t e r a t i o n  number and DRV i s  a s  defined above. 

I 
Nt-l 

(xi) pj)  - l.o 
N i b i '  v j )  

Columns 53 through 62, and 63 through 72 - ~ ~ ( E 1 0 . 4 ) ,  and 

~ ~ ( E l 0 . 4 )  : extrapolated Liebmann coef f ic ien t s  f o r  groups 1 and 2. I f  

< EPI, 

max 

these numbers a r e  0 o r  blank, the  code uses values of 1.0 f o r  p1 and B g j  

otherwise, the  input  values a r e  used. It i s  s t rongly  recommended t h a t  

these  numbers be l e f t  blank f o r  input.  

Cards 3 and 4 

These two cards a r e  used t o  specify values of constant  incoming 

angular f luxes  i f  LBI (con t ro l  Card) i s  -1. If LBI i s  0 o r  +1, omit 

these cards. 

Columns 1 through 9, 10 through 18, e tc . ,  supply values of the  

group 1 angular  f luxes  (I@.?) f o r  a l l  p > 0 using card  3. Repeat f o r  
J 

group 2 using card  4. For a two angle problem, only one number on each 

card would be wr i t t en  i n  columns 1 through 9 corresponding t o  the  

constant angular f l u x  f o r  p For a s i x  angle problem, th ree  numbers 
2 ' 

corresponding t o  p , p , and y6 would be wr i t t en  i n  columns 1 through 
4 5 

27 f o r  each group. 

Cards 5 and 6 -- 
These two cards a r e  used only i f  RBI i s  -1. In  t h i s  case t he  

numbers a r e  spec i f i ed  as  above and apply t o  the r i gh t  boundary. These 

angular f luxes  correspond t o  a l l  y < 0. 
3 

Cards 7+ - Mesh Specif ica t ion Cards 

The regions a r e  speci f ied  beginning with region number 1 ( the  l e f t -  

most region) and ending with region number REG ( t he  right-most region) .  



Each card spec i f i es  th ree  regions. 

Columns 1 through 3 - ~ ~ ( 1 3 ) :  l e f t  mesh point  number of  the 

region. 

Columns 4 through 6 - RPT(I~) :  r i g h t  mesh po in t  number of  t he  

region. 

Columns 7 through 9 - sUB(I3): subregions f o r  block relaxation.  

This number may be ignored f o r  regions which have a value of vCf. For 

regions which have no f i s s ionab le  material ,  a 0 o r  blank f o r  SUB speci- 

f i e s  t h a t  t h i s  region i s  not  t o  be "driven". If SUB > 0, t he  region 

w i l l  be divided i n t o  SUB subregions and t he  "driving fac to rs"  computed 

and appl ied  a s  described e a r l i e r .  SUB must be l e s s  than RPT - LPT. 

Columns 10 through 12 - MNO(I~) :  mater ia l  number o f  the  region. 

The mater ia l  constants a r e  spec i f i ed  below and a r e  numbered from 1 t o  

MAT. 

Columns 13  through 24 - FEG wIlX'H(~12.8): the  t o t a l  width of t he  

region. The r e s t r i c t i o n  on t h i s  number i s  

Repeat t he  above spec i f i ca t ions  using columns 25 through 48 and 

columns 49 through 72 f o r  the  next two regions, and continue with t he  

next card u n t i l  a l l  regions have been speci f ied .  

Cards 8 and 9+ - Material  Specif ica t ion Cards 

Two cards a r e  required t o  speci fy  the  constants f o r  each d i f f e r e n t  

mater ia l  and group. For t he  f i r s t  card, specify: 

Columns 1 through 3 - MAT N O ( I ~ ) :  mater ia l  number. The mater ia ls  

a r e  numbered beginning with 1 and ending with MAT; however, the  p a i r s  

of cards specifying each mater ia l  and group may be i n  any order  i n  the  

deck. 

Columns 4 through 6 - GRP N O ( I ~ )  : the  group number. 

Columns 8 through 16 - Za(~10.6):  t h e  macroscopic absorption 

cross  sect ion f o r  t h i s  mater ia l  and group. 

Columns 17 through 26 - ~ ~ ~ ( ~ 1 0 . 6 )  : v times the  macroscopic 

f i s s i o n  cross  sec t ions  f o r  t h i s  mater ia l  group. 



For t he  second card of the  p a i r  specify: 

Columns 1-9, 10-18, 19-27, 28-36 - Ro, q, R2, ~ ~ ( ~ 9 . 5 ) :  the  

constants used i n  Eq, (8) t o  compute the angular dependent removal 

cross sect ion (.ZR(gs'.- g, p p . ) )  f o r  t h i s  mater ia l  and group. 
P J  

Columns 37-45, 46-54, 55-63, 64-72 - So, S,, s,; ~ ~ ( 2 9 . 5 )  : the  

constants used i n  Eq. (8) t o  compute t he  angular dependent s c a t t e r i n g  

cross sec t ion  (X ( p  -r p . ) )  f o r  t h i s  mater ia l  and group. If 5 = R2 = 
S P  J 

R = S = S = S =-0, then the  problem i s  assumed t o  be i so t rop i c  and 
3 2 3  

the  angular independent removal and s ca t t e r i ng  cross sect ion a r e  computed 

Successive Cases 

Successive cases may be run simply by stacking t h e  case da ta  decks. 

To end the calcula t ion,  fol low the  da ta  deck with two blank cards. 

Sample Problem 

The diagram of  the  sample i s  shown i n  Fig. A.1, The s m p l e  

problem input i s  shown i n  Fig. A.2, and the  output  i s  shown i n  Fig. A.3. 

Zero Net 
Current 

Zero Return 
Current 

Mesh f Reg 1 5p Reg 2 $O Reg 3 lo Reg 4 100 

Point I 
I I 

Mat 1 I Ma-t; 2 M a t  3 M a t  3 

1- 25 cm - 4 d 0  cm +++lo cm 4- j~ crn -4 
Fig. A.1. Diagram of Sample Problem 
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SWAPS CODE S A M P L E  P R C B L E C  FOR R E P C R T  

C O N V E R G E N C E  L E V E L S  E V E R Y  2  I T E R A T I C h  

D R I V E  R E G  SUB REG S b B R E G  BNOS C R I V E  F A C T O R  I T E R  F L L X  C C N V R  L b M e C A  C C k V R  LAMBDA 
2 1 . 1 6 C O E  00 9 . C 0 7 6 E - 0 1  l . 0 0 7 6 E  C 1  

1 . 2 0 3 5 E  C I  

Fig. A . 3  (continued) 



APS CGCE S A M P L E  P R O B L E C  F O R  R E P C R T  

AST FLUX(J),J#Ir100 N C R M A L I Z A T I O M  FACTOR 7oO93C7E-02 

Fig. A. 3 (continued) 



SWAPS CODE S A M P L E  PROBLEC FOR REPORT 

StOk FLUX(J),J#lrlOC N C R M A L I Z A T I O N  FACTOR 7.09307E-02 

Fig. A. 3,  (continued) IU CD 
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SWAPS C O O €  S b M P L E  P R C R L E C  F O R  R E P C R T  

O I R E C T I C N A L  F A S l  F L U X ( C L * J )  r J # I ,  1 0 0  

3 (continued) 



Fig. A . 3  (continued) 



DIRECTICNAL S L O h  F L U X ( P L I J ) , J # I ~ I O O  

nur 41 
2.57C6E 
2.5e I 4~ 
2.5861E 
2.5FC7E 
2.5F53E 
2.5FF7E 
2.8549E 
2.17242E 
2.513eE 
2..4t2 1E 
2.24626 
I ,9636E 

2.5782E 
2.5829E 
2.5876E 
2.59235 
2.5968E 
2.6011E 
2.9201E 
2.5866E 
2.5242E 
2.4021E 
2 .1564 t  

Fig ;. A.3 ( con t in  



Fig. A.3 (continued) 



MAPS C O D E  SAMPLE PROBCEC FOR R E P C R T  

FAST GRCUP SIGR(C0MPpN) r K # l  21 

COMP I 
2. IC73E-C5 l .F357E-05 1.691 I € - 0 5  1,7930E-05 1.7C12E-C5 1,6151E-I35 I093F9E-E5 1 ,Ee20€-05 l0t?225E-05 
1.7C20E-05 1.7012E-05 1,8673E-05 1.8b7LE-05 3,8225E-05 1.7930E-05 1.8673E-C5 l~€!@20E-05 1.R911E-05 
1,9359E-C5 1. Y957E-05 2.1073E-05 

COMP 2 
5. IC67E-Cb 5.1667E-04 5,1667E-04 5.1667E-C4 5,1667E-04 5,1667E-04 5. jC67E-c4 5,1667E-Cb 5.1'667E-04 
5.IC67E-C4 5.1667E-04 5.1667li-04 5.1667E-04 5.1067E-04 5,1667E-04 5.1C157E-Cb 5,1667E-04 5.1667E-04 
5- IC67E-C4 5. lh67E-04 5.1667E-04 

COMP 3 
I.F5e3E-C5 7.7C83E-05 704583E-05 7,2083E-05 6-9583E-05 C.7C83E-03 7.55e3E-C5 7.4CR3E-05 7.2583E-05 
7. I Ce 3E-C5 6.15RZE-05 7.3583E-05 7.3083E-05 7.25R3t-Q5 7.2Ce3E-C5 7.35e3E-CS 7-4C83E-05 7.45838-05 
7.5583E-C5 7.7083E-05 7,9583E-05 

Fig. A. 3 (continued) 



SWAPS CODE SAMPLE P R O B L E P  FOR REPORT 

SLOk GROUP SIGR(COMP,N).oNll r 21 

COMP I 
2-2865E-E5 2-1698E-05 2-6603E-05 1-9577E-85 Oe861SE-8% ls771GE-05 2.lllbE-CS 2-GSE7E-05 1.9Ee4E-OS 
109250E-05 1e8613E-05 200352E-05 2-014bE-C15 5e9e84E-85 1e9577E-GS 2rQ352E-65 2eCSQ7E-05 2oC663E-05 
2.1 l l4E-C5 2.1698E-05 2.2865E-05 

COMP 3 
1-1523E-C4 ~e1181E-04 1-0838E-04 1-0495E-04 3.0153E-64 9e@lC2E-05 I - O F 7 5 E - C 4  1-0769E-04 1-a564E-04 
1-0358E-a4 I-C153E-04 1.C7aIE-04 1-0632E-04 1-8564E-04 1aCb9SE-04 I.C?ClE-Cb IeG769E-04 1-0838E-04 
I-G9?5E-C4 le1181E-04 1.1523E-04 

Fig. A . 3  (continued) 



WAPS C O D E  SAMPLE PRCBLEP FOR REPCRT 

F A S T  GROUP S I G S ( C O M P , k )  , k # !  v 21 

I O M P  1 
I .  9 e 4 9 ~ - o s  
J 7FC2E-C5 
1.8512E-G5 

I O M P  3  
9.74C 7E-C5 
8. 7333E-C5 
9 0 2 C d 7 E - C 5  

Fig. A. 3 (continued) 



SWAPS C C C E  SAMPLE PRCRLEC FOR REPCRT 

S L O k  GROUP S I G S ( C O M P e K 1  r h # l  r 21 

COMP I 
2-1777E-C5 2-1C56E-05 2-C371€-05 I - 9 7 J 9 E - 0 5  1*9C99E-C5 1.8510E-Q5 2.C6eIE-CS 21C295E-C5 1-99C1E-05 
1-F5CIE-05 I-9C99E-05 7-C190E-05 2-G058E-05 1,9901E-05 1.9719E-Q5 2mCI9CE-C5 2.C295E-05 2.,0371E-E5 
2.CbE IE-C5 2. 1056E-05 2.1777E-05 

COMP 2 
5-5CCCE-C4 5.5COOE-04 5.5CCOE-04 5-5@C?0E-04 5.5COOE-C4 5-SUCOE-C4 5.5CfCE-64 5-5COUE-04 5-5CCGE-04 
5-5CCCE-C4 5-5COOE-04 5-5COOE-04 5-SGOOE-04 5-5CCOE-04 5-SGCCE-C4 5.5CCCE-C4 5-5CCOE-04 5*5CCCE-04 
5 0  5CCOE-G4 5o5CCOE-04 5-5CCOE-04 

COMP 3 
1 -4CLOE-C3 1 o4000E-03 I.4COGE-03 1-4C!CIlE-03 I -4CCUE-C3 I,4CCCE-C3 1 -4CCCE-C3 1-4COOE-C3 1,4CCCE-03 
1-4CCOE-0.3 1-4COOE-03 1-4000E-03 I-4COOE-03 1-4COOE-03 1-4CCOE-03 1.4CCQE-03 1-4COOE-03 1*4CCOE-03 
1.4CCCE-03 1.4COOE-03 1.4000E-03 

Fig. A. 3 ( continued) 
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