
..

..

..

OAK RIDGE NATIONAL LABORATORY
operated by

UN ION CARBIDE CORPORATION

for the

U.S. ATOMIC ENERGY COMMISSION •
ORNL- TM- ~;o~J)
COpy NO. _ /J

DATE - April 2, 1962

An ALGOL Processor for the Control Data Corporation 1604

Progress Report

L. L. Bumgarner
A. A. Grau
M. P. Lietzke
R. G. Stueland*
K. A. WoU*

Abstract

This report summarizes the progress to date on the
ALGOL processor for the Control Data Corporation 1604
Camputer, based on machine-independent specifications
developed at ORNL. Included are:· (1) a brief description
of the structure of the processor, (2) the hardware language
representation, and (;) ,tl].e required equipnent confj,guration.
Examples illustrate the object program instructions generated
in actual compilations.

* Control Data Corporation

NOTICE

This document contains information of a preliminary nature and was prepared
primarily for internal use at the Oak Ridge National Laboratory. It is subject
to revi sion or correction and therefore does not represent a final report. The
information is not to be abstracted, reprinted or otherwise given public dis
seminotion without the approval of the ORNL patent branch, Legal ond Infor·
mation Control Department.

An ALGOL Processor for the Control Data Corporation 1604

Progress Report

April 2~ 1962

L. L. Bumgarner
A. A. Grau
M. P. Lietzke
R. G. Stueland*
K. A. Wolf*

General Considerations

The design and construction of the 1604 Algol Processor has been

motivated by the following goals:

1. The implementation of all features of Algol 60 that are clear~

unambiguous, and not controversial. The main exceptions are recursive

procedures and dynamic own arrays.

2. The production of a useful translator as soon as possible.

3. The production of efficient machine object program. Some

features of Algol are quite general and complete optimization can be obtained

only by providing for many special cases. In the light of point 2 the

consideration of some of these special cases has been deferred.

4. Fast compilation. This requirement has been relaxed somewhat to

include a very complete syntax check for the source program.

5. The inclusion of desirable programmer options. One of these is

a choice between a fast compile and run mode useful for short programs and

check out, and a compile to symbolic mode .. which permits later editing of the

* Control. Data Corporation

•

..

-4-

target program.

Processor Organization

The processor consists of two main subprograms: (1) the syntax

checker and (2) the translator, each of which makes one pass through the

Algol 60 source progr.am.

The first subprogroam converts the source program into an internal

format and checks the program for syntactical errors. The conversion is

performed by two subroutines 11 CNVRT and SKIP. CNVRT contains an error

correcting routine which handles certain errors: missing escape symbol

preceding or following a 1604 Algol word del::lmiter, incorrect spelling of

such del::lmiters, and certain abbreviations. SKIP assigns serial numbers

to external identifiers and constants, converts constants to internal f'ormat,

and drops out comments. The syntax checker discovers a syntactical error

in the source program when an incaning symbol does not match any of' those

permissible at that point in the processing. In many cases the syntax

checker attempts to correct the error. If the error is serious, the syntax

checker signals a supervisor to block the translation phase, and syntax

checking continues. The output fram. the syntax checker is of' course the

input to the translator, and this is built up in core.

The form of the output fram the translator is subject to programmer

option. It will produce a machine language program in core ready for

execution or a COMP program in BCD form on tape ready f'or input to the

assembly program. The translator, however l' operates essentially independently

•

•

"

-5-

of the output mode. ~ the output and label handling subroutines operate

differently in the two modes.

The design of the translator has used very general solutions to

the problems of translation, and has avoided the use of brute-force methods.

The general organization is based on the principles of Bauer and Samelson [1]

and techniques derived fran these principles [2]. The techniques have been

expanded conSiderably, particularly as related to Algol procedures.

Both the syntax checker and the translator consist of a set of

recursive subroutines based on the syntactical rules defining the Algol

language. The recursive nature of these subroutines reflects the recursive

definitions of the language 0 One consequence of this recursiveness is the

use of push-down lists for bookkeeping tasks 0 A push-down list is used, for

e:xamp1e" to keep a record of recursive subroutine entries: when a subroutine

is entered, its entry address is placed in the top of the push-down list

("pushing down" any previous entries). When an exit is performed fran the

subroutine (possibly after other entries and exits of other recursive sub

routines)" the top entry of the push-down list is deleted and control passes

back to the subroutine corresponding to the new top entry.

The correspondence between syntactical units of the language and

subroutines in the processor means that check-out can proceed at almost the

same pace as coding. When the arithmetic expression subroutines in the

translator, for e:xamp1e, were canp1eted, they were ready for check-out

independent of other subroutines.

•

•

•

•

•

•

-6-

Hardware Algol Language

Algol word delimiters are recognized by the fact that they must be

enclosed in "escape symbols. n The escape symbol consists of a key punch

character represented as an 8-4 punch on cards and printed on available

equipnent as an apostrophe or a dash. The present hardware representation

was made necessary by the very limited character set available on existing

key punch machines, although a larger character set is available for output

on the line printer.

The philosophy behind the hardware language was based on the

experience gained in the use of Algol on the Oracle at CSk Ridge [3]. This

philosophy has been supported by a report fran users of the KDF9 computer

of the English Electric Canpan;y, Ltd. [4]. When the reference language

symbol is available, it is used; otherwise, a substitution must be made.

The rules of transliteration are so simple that they may be applied by the

key punch operator: "If a symbol in the manuscript exists on the keyboard,

use it; if not, refer to the card containing the rules and make the appropriate

substitution" [4].

The word delimiters includes all of those delimiters designated in

the reference language by bold face type such as BEGIN and END. In add! tion,

it is necessary to represent the relational and logical operators and the

separator, 10' by word delimiters:

Reference Algol

<

Hardware Algol

LS

LQ.

"
•

•

•

•

•

-7-

Reference Algol Hardware Algol

= EQ

2: GQ

> GR

+ NQ

-c Nor

A AND

V OR

:::::> IMP

- EQV

10 E

In some cases where the reference language delimiter cannot be

represented by the same character in hardware language I a substitution of

one character or a combination of two characters was made:

Reference Algol

x

T

+

o ,
0-.-
[

]

Hardware Algol

..

....
II
o.

=
(/

/)

c

•

•

Target Programs

-8-

Reference Algol

(string quote)

(string quote)

Hardware Algol

(*

*)

For reasons of efficiency, integer quantities are represented in

fixed-point and real quantities in floating-point.. This resul.ts in sane

slight redefinitions of exponentiation and the matching of types in parameters

of procedure calls.

The block structure of Algol provides a natural scheme of storage

allocation. Storage is assigned to simple variables, constants, and infor-

• mation vectors for arrays during processing, overlapping whenever possible.

•

It

Array storage is handled ~ical1y, that is, during the execution of the

target program.. Upon entry to a block, the arrays declared in that block

head are at that time assigned storage. A check is kept on whether the

available storage area is exceeded.. own arrays are arranged in a different

area of memory.

Target Subroutines

At present plans are to have standard functions (such as Sine,

cosine, etc.) on a master tape in relocatable binary format. The list of

built-in functions available in Fortran w1l1 be examined to consider the

inclusion of those desirable for this system. Input and output subroutines

can be handled much the same as standard functions. Input-output facilities

•

•

-9-

should be as flexible as those used by Fortran, and sane simpler system

ought also to be available, similar to those mentioned in [3]:1 [5], and [6].

The idea of the simpler system is that the basic ideas of Algol are quite

easy to learn, and a person to whom a canputer is available should not be

dissuaded fran using it only because he cannot determine how to get numbers

in and out of the machine ..

other target subroutines will include fix-to-float and float-to-fix

conversion routines, and a go to statement interpreter (made necessary by

bookkeeping related to Algol block structure).

Status

The first subprogram has been completely coded. The CNVRT subroutine

has been canpletely checked out. The rest of the syntax checker is in the

check-out phase. More than half of the translator has been coded and checked

out at this pOint. This covers the follOWing features:

10 arithmetic expressions (excluding functions)

2. assignment statements

3.. go to statements

40 condi tiona.l statements

5. simple variable declarations

6. array declarations

7. switch declarations •

Plans are nearly complete for procedure declarations, procedure state

ments and function designa.torso

..

•

•

•

-10-

The use of general methods of translation has resulted in rather

Simple checking out of the logic. After the inevitable coding errors are

discovered in testing s:imple cases, more difficult examples are handled

with almost no further discovery of errors. The use of these methods does

not, however, result in inefficient target code. Every effort has been made

in the work so far completed to produce a target program which is as short

and as fast as possible.

The syntax checker consists of 3500 words of instructions and tables

and 600 words of temporary storage and constants. At its present stage of

development, more than half canplete, the translator contains 1400 words of

instructions and tables and 500 words of temporary storage and constants.

The work which remains includes the for-statements, Boolean ex

pressions, standard functions (as mentioned in the Algol 60 report and perhaps

a few others), input-output routines J1 structure of subroutine libraries, and

a supervisory program.

Equipment Configuration

The system has been designed to operate most efficiently from five

magnetic tapes, but it may very easily be operated fram four magnetic tapes.

The tape configuration is:

Tape 1:

Tape 2:

Tape 3:

Master tape

Output from the translator which is CODAP
input. (Used only in Algol-to-CODAP mode)

List tape containing Algol source program
along with diagnostics, as well as assembled
CODAP listing in Algol-to-CODAPmode.

•

..

•

Tape 4:

Tape 5:

-11-

Punch tape from CODAP. (Used only in Algol
to CODAP mode)

Algol input.

In the event that only four tapes are available, the input tape may

be replaced by an on-line card reader or paper tape reader. In the Algol-

to-Run mode, tape five may be replaced by tape two or tape four.

Sample Compilations

The sample programs included in this report are actual test cases

'Which have been run on the translator. However, a variable will not appear

on the actual output as shown here, but will be represented by a V followed

by a serial number. For example, C will appear on the listing as VI. other

representations will appear as they are in this report. Temporary locations

are designated by a T, labels by an L, and generated labels by a GL.

The first sample program contains same unnecessary parentheses, but

these were inserted to test the translator's use of temporary storage.

Algol Source Program:

BEGIN INTEGER C; REAL X, A, B" R, D, M, N, Z, T, J;

X := A + B + (CXA)/(R+A+(C+D+(M+N-(Z+.R)-J)+X))

END' -'

-12-..
,. Target Program:

LDA B

FAD A

STA T1

LDA C

SLJ 4- FLOAT

+]l.1U A

STA T2

LDA A

FAD R

• STA T3

J LDA C

SLJ 4- FLOAT

+ FAD D

STA T4

LDA N

FAD M

STA T5

LDA R

FAD Z

SCM ALLONES

• FAD T5

FSB J

FAD T4

•
Target Program:

Algol Source Program: ,.

Target Program:

•
'1

~13-

FAD X

FAD T3

STA T3

LDA T2

FDV T3

FAD Tl

STA X

BEGIN BOOLEAN T; ~ Xi INTEGER A, Bj

X : = IF T THEN A ELSE B

END--'

LOA T

AJP 2 GU

LDA A

SLJ GL2

GLl LDA B

GL2 SLJ 4 FLOAT

+ STA X

-14-

•
~ References ~ Eibliograpny

•
I

[1] F. L. :Bauer and K. Samelson, "Sequential Formula Translation," Camnunic.
Assoc. Camp. ~. 3 (1960), no. 2, pp. 76-82.

[2] A. A. Grau, liThe Structure of an Algol Translator," ORNL-3054 (1961).

[3]

[4]

ORAC~ AWOL Translator 1 (Preliminary Report). Multllithed Mathematics
Panel Report, 0Rm., Sept:- 1960.

F. G. Duncan, "AWOL Translation for KDF9" II Autcmatic Programming
Information :Bulletin, May 1961, no. 7, pp. 31-32.

[5] R. H. Bottenbruch, "Structure and Use of Algol 60," ORNL-3l48 (1961).

[6] !:. Sim.ple Introduction to Algol PrOgramming !2::!!!2., The English EJ.ectric
CampaI\Y, Limited, D:l.ta Processing and Control Systems DiviSion, Dec. 1961.

-15-

Distribution

1. F. S. Acton, Princeton University
2. G. J. Atta
3. R. L. :Berggren, Rocketdyne
4. L. L. Bumgarner
5. W. R. Busing
6. H. P. Carter
7., Robert Church, Control I8ta Corporation
8. Tony Conner, Atlantic Refining Company
9. N. M. Dismuke

10. A. C. Downing
li. I8vid Drake, National Bureau of Standards
12. T. H. Elrod, Control I8ta Corporation
13. M. Feliciano .. 14. C. H. Finnie, Jr., Lockheed Missiles and Space Campany
15. Rex Franciotti, International Business Machines
16. A. A. Grau
17 • J. C. Gysbers, Rocketdyne
18. B. K. Hain, Max Planck Institute
19. M. I. Halpern, Lockheed Missiles and Space Campany
20. Donald Harrison, Atlantic Refining Campany
21. Leigh Hendricks, Sandia Corporation
22. P. Henry" ElectriciteJ'de France
23. Albert Hirsch, General Electric Company
24. A. S. Householder
25. W. H. Jordan
26. M. P. Lietzke
27. B. Mittman" Armour Research FO\Uldation
28. C. L. Ferry, University of California
29. R. M. Price, Control Data Corporation
30. I. P,yne, Princeton University
31. B. D. Rudin, Lockheed Missiles and Space Ccmpany
32. Judith Spall, Massachusetts Institute of Technology
33. R. G. Stueland, Control I8ta Corporation
34. J. G. Sullivan
35. :Bernie Tiefa, Control Data Corporation
36. J. H. Wegstein, National Bureau of Standards
37. W. H • Whitaker, Control Data Corporation
38. J. R. Whitney" Rocketdyne

I 39. G. Wiederhold, University of California ,

..
J.

J
J

-16-

40-59. K. A. Wolf, Control IB.ta Corporation
60. V. J. Zapotocq, McDonnell Autanation Center
61. R. A. Zeml1n" Control IB.ta Corporation

62-6;. Central Research Library
64. Document Reference Section

65-84. laboratory Records
85. laboratory Records - Record Copy

86-100. Division of Technical Information Extension
101. Research and Developnent Division

