OAK RIDGE NATIONAL LABORATORY
operated by

UNION CARBIDE CORPORATION
for the

U.S. ATOMIC ENERGY COMMISSION

“f
Py

COPY NO. - Z2

2

ORNL- TM- 190 }/

DATE - April 2, 1962

An AIGOL Processor for the Control Data Corporation 1604

Progress Report

L. L. Bumgarner
A. A, Grau

M. P. Lietzke
R. G. Stueland®
K. A. Wolf™

Kbstract

This report summarizes the progress to date on the
ALGOL processor for the Control Data Corporation 1604
Computer, based on machine-independent specifications
developed at ORNL. Included are: El) a brief description
of the structure of the processor, (2) the hardware language
representation, and (3) the required equipment configuration.
Examples 1llustrate the object program instructions generated
in actusl campilations.

L)

* Control Data Corporation

NOTICE

This decument contains information of a preliminary nature and was prepared
primarily for internal use ot the Ock Ridge National Laboratory. It is subject
to revision or correction and therefore does not represent a final report. The
information is not to be abstracted, reprinted or otherwise given public dis-
semination without the approval of the ORNL patent branch, Legal and Infor-
mation Control Department,

P

An AIGOL Processor for the Control Data Corporation 1604

Progress Report
April 2, 1962

L. L. Bumgarner
A. A, Grau

M. P. Lietzke
R. G. Stueland®
K. A. Wolf®

General Considerations

The design and construction of the 1604 Algol Processor has been
motivated by the following goals:

1. The implementation of all features of Algol 60 that are clear,
unambiguous, and not controversial. The main exceptions are recursive
procedures and dynamic own arrays.

2. The production of a useful translator as soon as possible,

3. The production of efficient machine object program. Some
features of Algol are quite general and complete optimization can be obtained
only by providing for many special cases. In the light of point 2 the
consideration of some of these speclal cases has been deferred.

L4, Fast compilation. This requirement has been relaxed samewhat to
include a very complete syntax check for the source program.

5. The inclusion of desirable programmer options. One of these is
a choice between a fast compile and run mode useful for short programs and

check out, and a compile to symbolic mode, which permits later editing of the

* Control Data Corporation

ol

target program.

Processor Organization

The processor consists of two main subprograms: (1) the syntax
checker and (2) the translator, each of which makes one pass through the
Algol 60 source program.

The first subprogram converts the source progrsm into an internal
format and checks the program for syntactical errors. The converslon is
performed by two subroutines, CNVRT and SKIP. CHNVRT contains an error-
correcting routine which handles certaln errors: missing escape symbol
preceding or following a 1604 Algol word delimiter, incorrect spelling of
such delimiters, and certain abbreviations. SKIP assigns serial numbers
to external identifiers and constants, converts constants to internal format,
and drops out comments. The syntax checker discovers a syntactical error
in the source program when an incoming symbol does not match any of those
permissible at that polnt in the processing. In many cases the syntax
checker attempts to correct the error. If the error is serious, the syntax
checker signais a supervisor ito block the translstion phase, and syntax
checking continues. The output from the syntax checker 1s of course the
input to the translator, and this 1s buillt up in core.

The form of the output from the translator is subject to programmer
option. It will produce a machine language program in core ready for
execution or a CODAP program in BCD form on tape ready for input to the

assembly program. The translator, however, operates essentlally independently

of the output mode. Only the output and label handling subroutines operate
differently in the two modes.

The design of the translator has used very general solutions to
the problems of translation, and has avolded the use of brute~force methods.
The general organization is based on the principles of Bauer and Samelson [1]
and techniques derived fram these principles [2]. The techniques have been
expanded considerably, particularly as related to Algol procedures.

Both the syntax checker and the translator consist of a set of
recursive subroutines based on the syntactical rules defining the Algol
language. The recursive nature of these subroutines reflects fﬁe'recursive
definitions of the language. One consequence of this recursiveness 1s the
use of pushe~down lists for bookkeeping tasks. A pushe-down list is used, for
example, to keep & record of recursive subroutine entrles: when a subroutine
is entered, its entry address is placed in the top of the push-down list
("pushing down" any previous entries). When an exit is performed froam the
subroutine (possibly after other entries and exits of other recursive sub-
routines), the top entry of the push-down list is deleted and control passes
back to the subroutine corresponding to the new top entry.

The correspondence between syntactical units of the language and
subroutines 1n the processor means that check-out can proceed at almost the
same pace as coding. When the arithmetic expression subroutines in the
translator, for exsmple, were campleted, they were ready for check-ocut

independent of other subroutines.

Bom

Herdvare Algol language

Agol word delimiters are recognized by the fact that they must be

1

enclosed in "escape symbols."” The escape symbol consists of a key punch
character represented as an 8-4 punch on cards and printed on available
equipment as an apostrophe or a dash. The present hardware representation
was made necessary by the very limited character set available on existing
key punch machines, although a larger character set is available for output
on the line printer,

The philosophy behind the hardware language was based on the
experience gained in the use of Algol on the Oracle at Ork Ridge [3]. This
philosophy has been supported by & report from users of the KDF9 computer
of the English Electric Campany, Ltd. [4]. When the reference language
symbol is avallable, 1t is used; otherwlse, a substitution must be made.

The rules of transliteration are so simple that they may be applied by the

key punch operator: "If a symbol in the manuscript exists on the keyboard,

use 1t; 1f not, refer to the card contalning the rules and make the appropriate
substitution” [4].

The word delimiters includes all of those delimiters designated in
the reference language by bold face type such as BEEGIN and END. In addition,
it is necessary to represent the relational and loglcal operators and the

separator, ,, , by word delimiters:

Reference Algol Hardware Algol

< IS

= £

Reference Algol Hardware Algol

= EQ

v

GQ
GR
e
NOT

AND

<>‘3-ﬁ—v

OR

P

U

EQV

1 E

In some cases vhere the reference language delimiter cannot be
represented by the same character in hardware language, a substitution of

one character or & combination of two characters was made:

Reference Algol Hardware Algol

% *
‘]" ¥
+ //

L

¢

(/
] /)

.o

Reference Algol Hardware Algol

(string quote) (*
(string quote) *)‘

Target Programs

For reasons of efficiency, integer quantities are represented in
fixed-point and real quantities in floating-point. This results in some
slight redefinitions of exponentiation and the matching of types in parameters
of procedure calls.

The block structure of Algol provlides a natural scheme of storage
allocation. Storage is assigned to simple varisbles, constants, and infor-
mation vectors for arrays during processing, overlapping whenever possible.
Array storage 1s handled dynamically, that is, during the execution of the
target program. Upon entry to a block, the arrays declared in that block
head are at that time assigned storage. A check Is kept on whether the
available storage area is exceeded. Own arrays are arranged in a different

area of memory.

Target Subroutines

At present plans are to have standard functions (such as sine,
cosine, etc.) on a master tape in relocatable binary format. The list of
built-in functions available in Fortran will be examined to consider the
inclusion of those desirable for this system. Input and output subroutines

can be handled much the same as standard functions. Input-output facilities

-G

should be as flexible as those used by Fortran, and same simpler system
ought also to be available, similar to those mentioned in [3], [5], and [6].
The idea of the simpler system is that the basic ldeas of Algol are gquite
easy to learn, and a person to wham a camputer is available should not be
dissuaded fram using it only because he cannot determine how to get numbers
in and out of the machine.

Cther target subroutines will include fix-to-float and float-to-fix
conversion routines, and a go to statement interpreter (made necessary by

bookkeeping related to Algol block structure).

Status

The first subprogram has been campletely coded. The CNVRT subroutine
has been campletely checked out. The rest of the syntax checker l1s in the
check-out phase. More than half of the translator has been coded and checked

out at this point. This covers the following features:

1. arithmetic expressions (excluding functions)
2. assigmment statements

3. go to statements

4, conditional statements

5. simple variable declarations

6. array declarations

Ts switch declarations.

Plans are nearly camplete for procedure declarations, procedure state-

ments and function desigmators.

=10~

The use of general methods of translation has resulted in rather
simple checking out of the logic. After the inevitable coding errors are
discovered in testing simple cases, more difficult examples are handled
with almost no further discovery of errors. The use of these methods does
not, however, result in inefficient target code. Every effort has been made
in the work so far coampleted to produce a target program which is as short
and as fast as possible.

The syntax checker consists of 3500 words of instructions and tables
and 600 words of temporary storage and constants. At 1ts present stage of
development, more then half camplete, the translator conmtains 1400 words of
instructions and tables and 500 words of temporary storage and constants.

The work which remains includes the for-statements, Boolean ex-
pressions, standard functions {as mentioned in the Algol 60 report and perhaps
a few others), input-output routines, structure of subroutine libraries, and

a supervisory program.

Equipment Configuration

The system has been designed to operate most efficiently from five
magnetic tapes, but it may very easily be operated fram four magnetic tapes,

The tape configuration 1s:

Tape 1: Master tape

Tape 23 Output from the translator which is CODAP
input. (Used only in Algol-to-CODAP mode)

Tape 33 List tape containing Algol source program
along with diagnostics, as well as assembled
CODAP listing in Algol-to-CODAP mode.

-11-

Tape 4: Punch tape from CODAP. (Used only in Algol-
to CODAP mode)

Tape 5: Algol input.

In the event that only four tapes are available, the input tape may
be replaced by an on-line card reader or paper tape reader. In the Algol-

to~Run mode, tape five may be replaced by tape two or tape four.

Semple Compilations

The sample programs included in this report are actual test cases
which have been run on the translator. However, a variable will not appear
on the actusl output as shown here, but will be represented by a V followed
by a serial mmber. For example, C will appear on the listing as V1. Other
representations will appear as they are in this report. Temporary locations
are designated by a T, labels by an L, and generated labels by a GL.

The first sample program contains some unnecessary parentheses, but

these were inserted to test the translator's use of temporary storage.

Algol Source Program:

BEGIN INTEGER C; REAL X, A, B, R, D, M, N, 2, T, J;

X := A + B + (CxA)/(R+A+(C+D+(M+N= (Z4R)-J) +X))

END;

Target Progrem:

=12

FAD

STA

SLT 4

STA
LDA
FAD

STA

SLT &
FAD

STA

FAD
STA
LDA
FAD
SCM
FAD
FSB

FAD

T1

FLOAT

3

FLOAT

-4

~13-

Target Program:

FAD X

FAD %
STA T3
LDA T2
FDV T3
FAD T1
STA X

Algol Source Program:

BEGIN BOOLEAN T; REAL X; INTEGER A, B;

X := IF T THEN A ELSE B

END;
Target Program:
ILDA T
AJP 2 GL1
LDA A
SLT GL2
GL1 IDA B
GLZ2 SLJ 4 FLOAT

+ STA X

o 1

References and Bibliography

[1]

[el
£3]

(4

(5]
(6]

F. L. Bauer and K. Ssmelson, "Sequential Formula Translation,” Communic.
Assoc, Comp. Mach. 3 (1960), no. 2, pp. T6-82.

A. A, Grau, "The Structure of an Algol Translator," ORNL-3054 (1961).

ORACIE ALGOL Translator 1 (Preliminary Report). Multilithed Mathematics
Panel Report, ORNL, Sept. 1960,

F. G. Duncan, "ALGOL Translation for KDF9," Autamatic Programming
Information Bulletin, May 1961, no. 7, pp. 31-32.

H. H. Bottenbruch, "Structure and Use of Algol 60," ORNL-3148 (1961).

A Simple Introduction to Algol Programming for KDF9, The English Electric
Company, Limited, Data Processing and Control Systems Division, Dec. 1961.

-15-

Distribution

1. F. S. Acton, Princeton University

2, G. J. Atta

3, R. L. Berggren, Rocketdyne

4, L. L. Bumgarner

5. W. R. Busing

6. H. P. Carter

T. Robert Church, Control Data Corporation

8. Tony Conner, Atlantic Refining Company

9. N. M. Dismuke

10. A. C. Downing

11. David Drake, National Bureau of Standards

12. T. H., Elrod, Control Data Corporation

13. M. Feliciano

14. C. H. Finnie, Jr., Lockheed Missiles and Space Company
15. Rex Franciotti, International Business Machines
16. A. A. Grau

17. J. C. Gysbers, Rocketdyne

18. B. K. Hain, Max Planck Institute

19. M. I. Halpern, Lockheed Missiles and Space Campany
20. Donald Harrison, Atlantic Refining Company

21. ILeigh Hendricks, Sandia Corporation

22, P. Henry, Electricite’ de France

23. Albert Hirsch, General Electric Company
24, A. S. Householder

25. ¥W. H. Jordan

26. M. P, Lietzke

27. B. Mittman, Armour Research Foundation

28, C. L. Perry, University of California

29. Re M. Price, Control Data Corporation

30, I. Pyne, Princeton University

31. B. D. Rudin, Lockheed Missiles and Space Company
32. Judith Spall, Massachusetts Institute of Technology
33. R. G. Stueland, Control Data Corporation

34, J. G. Sullivan

35. DBernie Tiefa, Control Deta Corporation

36. J. H. Wegstein, National Bureau of Standards

7. W. H. Whitaker, Control Data Corporation

38. J. R. Whitney, Rocketdyne

39. G. Wiederhold, University of California

X
h0-59,
60.
61.
62-6%,
6h.
65‘8!‘1' .
85.
86-100.
101.
-
§

1B

K. A. Wolf, Control Data Corporation

V. J. Zapotocky, McDonnell Automation Center
R. A, Zemlin, Control Data Corporation
Central Research Library

Document Reference Section

Iaboratory Records

Iaborstory Records - Record Copy

Division of Technleal Informatlion Extension
Research and Develomment Division

