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ABSTRACT 

Results of laboratory s tudies  on the  neutra l izat ion of Purex-type 

wastes a r e  reported, including the  radiochemical d i s t r ibu t ion  of the f i s -  

s ion  products i n  the  p rec ip i t a t e  and supernate and the e f f ec t  of sodium 

and calcium neutra l izat ions  on fission-product separation. 

The problem of i n t e r s t i t i a l  p rec ip i ta t ion  encountered when a second 

incompatible l i qu id  i s  in jected i n to  a formation i s  discussed. Results 

indicate a pis ton- l ike  displacement of the  i n t e r s t i t i a l  l i qu id  by the  

injected waste with only a small zone of p rec ip i ta t ion  formed along the 

contacting edge. 

Slurry  t e s t s  were performed t o  determine the  capacity of various 

geologic materials  f o r  sorption of cesium and strontium from a synthet ic  

Purex-type waste containing ca r r i e r s  and t racers .  The materials  s tudied 

include sands, feldspars,  shales, clays, and limestone. The amount of 

cesium sorbed was found t o  be a function of several  variables,  among which 

a re  (1)  concentration of cesium i n  the  waste, ( 2 )  concentration of other  

cations,  (3)  amount and nature of the  c lay material ,  and (4)  composition 

and amounts of other minerals i n  the  disposal  formation. 

Several types of shales and c lay  minerals, including i l l i t e ,  benton- 

i t e ,  montmorillonite, kaol ini te ,  hal loysi te ,  and Conasauga shale, were 

s lu r r i ed  with simulated 6 M Purex waste which had been neutralized.  Sorp- - 
t i o n  of cesium ranged from 0.6 t o  6.3 mg/20 g, respectively,  f o r  the  var i -  

ous materials  tested.  Results of s l u r ry  t e s t s  ind ica te  t h a t  if the  

Purex-type waste were di luted 30-1 with concentrated brine,  the amount 

of cesium sorbed per cubic foot  would be about 2.7 curies.  This i s  within 



the  2-8 cur ies / f t3  estimated t o  be sa fe  from thermal considerations. Core 

t e s t s  on a Berea sandstone showed s imilar  sorptive capaci t ies .  

Sequestering or  complexing agents, t h a t  i s ,  versenes, did not mate- 

r i a l l y  a f f e c t  the  cesium removal, but  did  r e s u l t  i n  a decreased sorption 

of strontium by clays. Strontium sorption i n  systems s tudied ranged from 

l e s s  than 0.2 t o  2.0 mg of strontium sorbed per 20 g of clay, i l l i t e  sorb- 

ing most and ha l loys i te  l eas t .  

Slurry  r e su l t s  indicated (1)  increased H ion concentration decreases 

sorption; (2 )  sorption of cesium i s  a function of the ~ a / ~ a  ra t io ;6  (3) the  

~ a / ~ r  r a t i o  i s  not a s  important t o  strontium removal as  pH of the solution; 

and (4 )  limestone s l i g h t l y  decreases the amount of cesium sorbed per  gram 

of i l l i t e .  

The r e su l t s  of the  sorption s tudies  suggest t h a t  undue local ized heat  

production, due t o  sorption of radioactive materials  near the  well, can be 

controlled so t h a t  it w i l l  not be a serious problem. 



The work completed t o  date on the  in jec t ion  of radioactive wastes 

i n t o  deep permeable formations can be divided i n t o  two main subclasses: 

(1) character izat ion of the  various types of fuel-reprocessing waste and 

(2)  experiments using various techniques. Experiments have been made us- 

ing a dynamic system, an equilibrium system, and, f i na l l y ,  a dynamic sys- 

tem of core tes t ing .  

Sorption of radionuclides on various minerals within the  formation 

must be considered when disposing of radioactive waste by well  in ject ion.  

This problem can e a s i l y  be studied using standard laboratory t r a c e r  tech- 

niques. It i s  generally known t h a t  the  amount of radioactive mater ia l  

sorbed w i l l  g rea t ly  depend on the  type and amount of c lay  within the  dis-  

posal  formation. The sorption of large concentrations of the  f i s s i o n  

products may r e s u l t  i n  a problem of heat  d iss ipat ion.  Such thermal prob- 

lems have been studied by Professor Francis Birch, Harvard University. 
1 

He has concluded t h a t  heat  d i ss ipa t ion  w i l l  have t o  be care fu l ly  consid- 

ered, but  w i l l  not impose serious r e s t r i c t i o n  on the  disposal  method. 

The following investigations were made t o  obtain quant i t a t ive  values 

on the  sorption of radioisotopes by various formation materials .  

2.0 TYPES OF REACTOR WASTES 

There a r e  several  processes i n  current use f o r  the  various types of 

f u e l  elements. Based on the  predictions of people i n  the  chemical proc- 

essing f i e ld ,  the  f i v e  following types of processing wastes a r e  those 

l i k e l y  t o  be important f o r  several  years t o  come. These wastes a r e  from 



t he  Purex (HNO ), TBP-25 (~1-HNO ), STR ( ~ r - H F - ~ l ) ,  Darex ( s t a i n l e s s  
3 3 

s t e e l  - aqua reg ia ) ,  and SIR ( s t a in l e s s  s t e e l  - H SO ) processes. A 
2 4 

report2 has been published on the  chemical composition of these wastes 

and the  heat  output of each; a summary of these charac te r i s t i cs  i s  given 

i n  Table 1. 

For t e s t  purposes Purex-type waste was se lected f o r  fu r ther  study, 
, 

because it comprises the  g r ea t e s t  column of high-level  waste avai lable  a t  

present.  The s to red  Purex waste i s  normally neutra l ized t o  reduce corro- 

s ion of the  tanks, and the waste volume i s  reduced by evaporation t o  con- 

serve tank space and t o  recover n i t r i c  acid. Therefore, it i s  desirable 

t o  use a neutra l ized and concentrated waste so lu t ion  f o r  laboratory work. 

Enpson3 has done addi t ional  work on the  physical  charac te r i s t i cs  of 

these f i v e  synthet ic  fuel-reprocessing waste solutions t o  reduce t he  

volume and make the  residue more su i tab le  f o r  storage or  f o r  treatment 

p r i o r  t o  disposal. 

The main source of high-level wastes today r e s u l t s  from the  process- 

ing of i r r ad i a t ed  f u e l  elements and are, therefore,  evolved primarily a t  

Hanford, Savannah River, and the  National Reactor Testing Station.  I n  

t he  fu ture  high-level  wastes w i l l  come from the  processes mentioned above 

and may occur a t  other AEC i n s t a l l a t i ons .  Table 2 l i s t s  some of t he  per- 

t i nen t  fac to rs  which indicate  the  magnitude of t he  high-level  l i q u i d  waste 

storage s i tua t ion .  The cost  f igures  c i t e d  a re  f e l t  t o  be conservative, 

s ince  t he  cost  of process equipment and f a c i l i t i e s  i n  which both wastes 

and product streams a re  t r ea t ed  i s  not included. 

A t  Hanford the  present plans c a l l  f o r  scavenging cesium and stron- 

t i u m  and discharge of the  supernates t o  s o i l .  I f  t h i s  i s  successful ,  it 



Table 1. A Composite of the Characteristics of Reactor Fuel-Processing 

From a Multipurpose Plant 

Radioactivity 

Gross Beta Activity 

Alpha Activity 

Radioactivity 

6 10 -1 1.6 x 10 to 2.2 x 10 counts min d - l  
3 5 6.0 x 10 to 6.0 x 10 counts min-l ICL-' 

100 to 400 curieslgal (neutralized) 

Chemic a1 

Ions 
Concentration 
(moles/liter) 

Others 

Effective life, about 600 years. 

Heat generation, 1.7 to 88 ~tu/hr/~al. 
Power equivalent, 1 g = 24,000 kwhr (100% efficiency). 

Waste from processing, 0.11 to 3.0 gal of solution per g $35 consumed. 

Specific gravity, 1.1 to 1.4. 



Table 2. High-Level Liquid Waste Handling Data 

Up t o  January 1, 1957* 

HAP0 SRP NRTS Total  

6 Waste i n  Storage (10 ga l )  58.2 3.5 0.38 62.08 
6 Total  Tank Capacity (10 ga l )  90 12.2 1.6 103.8 

Total Number of Tanks 145 16 9 170 
6 Costs - Tanks and Appurtenances ($10 ) 37.5 16.6 6.6 60.7 

Estimated Tank Operating Cost (per  year)  $50,000 

Future Estimates W O  NRTS 

Period of Estimate t o  June 1959 t o  June 1959 
6 Additional Wastes (10 g a l )  9 .1 1 . 5  

6 Additional Cost ($10 ) 7 6.5 

*"Status Report on Handling and Disposal of Radioactive Wastes i n  
the  AEC Program, " Division of Reactor Development, WASH-749, August 
1957. 



6 
i s  l i k e l y  t h a t  the  l a rge  volume of waste i n  s torage (58.2 x 10 g a l )  w i l l  

not  increase over present  l eve l s ,  and need f o r  add i t iona l  tankage may be 

reduced o r  eliminated. A ca lc ine r  i s  being constructed a t  NRTS t o  handle 

the  aluminum-nitrate h igh-ac t iv i ty  waste. The success of t he  operation 

of t h i s  ca lc ine r  w i l l  d i c t a t e  t h e i r  fu tu re  s torage needs; so no long-term 

est imates a r e  given i n  Table 2. 

I n  the  deep-well i n j ec t i on  of neu t ra l i zed  waste, it would be neces- 

s a ry  t o  know the  i d e n t i t i e s  and approximate concentrat ions of the  f i s s i o n  

products. Therefore, the  behavior of f i s s i o n  products during neutra l iza-  

t i o n  was invest igated by using concentrated syn the t i c  Purex waste. Appro- 

p r i a t e  amounts of c a r r i e r s  of the  important high-yield radioact ive  f i s s i o n  

products were added t o  the  waste solut ion;  they include: strontium, 

yttrium, zirconium-niobium, tel lurium, rhodium, cesium, barium, and cerium. 

Enough radioact ive  isotope of each important f i s s i o n  product was added 

t o  the  so lu t ion  t o  serve as a t r a ce r .  Samples of the  so lu t ion  were neu- 

t r a l i z e d  with e i t h e r  a concentrated NaOH so lu t i on  o r  a C ~ ( O H )  suspension. 
2 

The o r i g i n a l  solut ion,  the supernatant  l i qu id ,  and the  p r e c i p i t a t e  a f t e r  

neu t r a l i z a t i on  were analyzed radiochemically. 

When n i t r i c  ac id  waste i s  neu t ra l i zed  with sodium hydroxide, severa l  

p r ec ip i t a t e s  form and tend t o  scavenge many of the f i s s i o n  products. The 

concentrat ion of iron,  which i s  present  i n  a c tua l  waste from the  addi t ion 

of fer rous  sulfamate, i s  more than adequate t o  serve as  a scavenger on 

neu t ra l i za t ion .  In  addit ion,  an appreciable concentrat ion of uranyl ions, 

present  from losses  i n  solvent  ext ract ion,  helps i n  scavenging the  so lu t ion .  



Solutions containing from 50 t o  280 mg per  l i t e r  of the  nonradio- 

ac t ive  c a r r i e r  ( t he  range of f ission-product  concentrat ion i n  a c tua l  waste) 

were t e s t e d  f o r  each radioelement. In  the  laboratory,  the  so lu t ion  was 

adjusted t o  pH 7; i n  production p lan t s ,  enough caus t i c  is  added t o  r a i s e  

the  pH t o  above 10.5, a t  which point  the  amount of strontium and t r i v a l e n t  

r a re  ear ths  remaining i n  so lu t ion  would be reduced by a f a c to r  of 2 o r  3. 

The caus t i c  was added very quickly i n  these  t e s t s ,  and the  samples f o r  

radiochemical analys is  were removed a few hours a f t e r  the  p r ec ip i t a t e  

s e t t l e d .  I f  the  caust ic  were added more slowly and the p r ec ip i t a t e  allowed 

t o  s tand longer, the  cesium removal would probably have been reduced, be- 

cause l e s s  cesium would be occluded i n  the f l oc .  However, the  t e s t  r e su l t s  

from neu t ra l i za t ion  of the waste do give use fu l  values f o r  f ission-product  

scavenging by f e r r i c  hydroxide. The effect iveness  of t h i s  scavenging dim- 

in ishes  with the  age of the waste, because the  more e a s i l y  scavenged f i s -  

s i on  products generally have sho r t  ha l f  l i v e s  and w i l l  have already decayed 

from the  older  wastes. The more ea s i l y  removed f i s s i o n  products with shor t  

hal f  l i v e s  a r e  zirconium, yttrium, niobium, and cerium. Strontium-90 

(28-year, p r i nc ipa l  be ta  emi t t e r )  and cesium-137 ( 3 0 - ~ e a r ,  p r i nc ipa l  gamma 

emi t t e r )  have considerably longer ha l f  l i ve s .  

A gross f ission-product  decontamination f ac to r  (D.F. ) of between 2 

and 10 was expected from neutra l iza t ion.  Neutra l iza t ion and f i l t r a t i o n  

removed most of the  scavengeable f i s s i o n  products i n  one s tep .  The volume 

reduction achieved by repeating the  procedure was l imi ted  by the volume 

of the  p r ec ip i t a t ed  iron,  uranium, and f i s s i o n  products. The nonscavenged 

f i s s i o n  products (mainly cesium and strontium and detectable  quan t i t i e s  

of ruthenium) remained i n  the  l i q u i d  phase. 



The sludge and supernatant l i qu id  from neutra l izat ion by sodium 

hydroxide and by calcium hydroxide were radiochemically analyzed, and 

the r e su l t s  a re  shown i n  Table 3. Both hydroxides gave s ign i f i can t  de- 

contamination fac tors  f o r  strontium, zirconium, niobium, and ra re  ear ths ;  

but  there  was very l i t t l e  decontamination of ruthenium and cesium. So- 

dium neutra l izat ion resul ted i n  a higher D. F. than calcium on Purex waste, 

mainly because the  p rec ip i t a t e  formed with calcium d id  not scavenge as 

much as strontium and zirconium. These r e su l t s  were within the  expected 

range of removal. 

4.0 COMPATIBILJTY STUDIES 

One of the problems i n  deep-well disposal  i s  plugging of the well  

(1) by suspended so l ids ,  (2 )  by chemical react ion of the waste so lu t ion  

with the  s o l i d  matrix of the aquifer,  o r  (3)  by chemical in te rac t ion  

between waste and i n t e r s t i t i a l  f lu ids .  The following are  t yp i ca l  reac- 

t ions  which might br ing about the t h i r d  type of plugging: 

CaCl + Na SO -t CaSO 4 + 2 NaCl 
2 2 4 4 

FeSO + H2S -t FeS 4 + H SO 4 2 4 

An obvious t e s t  would consis t  of mixing a sample of the  i n t e r s t i -  

t i a l  water with the waste solut ion t o  see whether a p r ec ip i t a t e  forms. 

I f  a p r ec ip i t a t e  does form, it might be expected t h a t  d i f f i c u l t y  would 

be encountered i n  in jec t ing  the waste so lu t ion  i n to  a well without plug- 

ging the formation. 



Table 3. Decontamination of Simulated Purex Waste by Neutralization 

Neutralized Neutralized 
Simulated Waste by NaOH by c~(oH)~ 

Activity Activity Activity 
Radiation Activity - 1 

Radioelement Counted (counts min nil-') ($ of total) (counts min-I ml-l) D. F.* (counts min-l ml-l) D.F.* 

Strontium Beta 57.1 x 10 19 12.4 lo7 4 27.7 x 10 3 3 2 

Zirconium Gamma 21.5 x 10 7.7 7 5 290 8.5 x 10 7 2 
2 5 t' 

Niobium G m m a  99.5 x 10 3 5 46 220 15 6.6 x 10 7 3 p  

Ruthenium GLwma 1.1 x 10 0.5 105 11 80 14 3 

Cesium Gamma 27.7 x 10 10 12.7 x 10 2 17.9 x 10 7 5 7 
1.5 

Cerium Beta 2.06 x 10 0.8 24 86 157 13 7 

Trivalent 
Rare Earths Beta 74.2 x 10 27 6.6 x 10 11 1.24 x 10 3 3 5 60 

activity in original solution 
*D.F. = Decontamination factor = 

activity remaining in solution ' 



4 
However, a  paper by Bernard reported r e s u l t s  contrary  t o  t h i s  opin- 

ion ,  Some of Bernard's r e s u l t s  have been confirmed i n  t h i s  laboratory.  

A 0 . 1  - M SrC1 so lu t ion  tagged with radioact ive  sr9@ was i n j e c t e d  i n t o  a  
2 

column containing 6450 g  of c lean Ottawa sand, the  pore spaces of which 

were previously f i l l e d  with 0 . 1  M IVa SO The reac t ion  which would occur - 2 4' 
i f  these  solut ions  were mixed i s :  

-1 + 2 NaCl 

A small quant i ty  (2  mg) of indigo carmine dye was added t o  the  i n j e c t e d  

so lu t ion  t o  serve  as a  v i s i b l e  t r a c e r  of the  flow pa t t e rn .  As the  s t ron-  

tium chlor ide  so lu t ion  displaced t h e  sodium s u l f a t e  so lu t ion ,  t h e r e  was 

no l o s s  i n  permeabil i ty and no plugging of the  column, because t h e r e  was 

only a  small  zone of contact  between the  two solut ions .  The da ta  shown 

i n  Fig. 1 i n d i c a t e  t h a t  during in jec t103 Is a  displacement of t h e  

i n t e r s t i t i a l  so lut ion;  and because the  sand a c t s  t o  prevent  the  two l i q -  

uids from mixing, p r e c i p i t a t i o n  and eventual  plugging of the  column is  

prevented. This indica tes  t h a t  the re  i s  l i t t l e  mixing within the  sand 

bed and very l i t t l e  p r e c i p i t a t i o n  under condit ions of laminar flow. These 

s a l t  concentrat ions a r e  high compared with t h e  concentrat ions of the  i n t e r -  

s t i t i a l  so lut ions  found i n  most formations. 

Af ter  about 3500 m l  of so lu t ion  had passed through the  23-in. sand 

bed, the  sand was r insed  with d i s t i l l e d  water. The column e f f l u e n t  showed 

a  rap id  decrease i n  counting r a t e ,  the  counterpart of the  r a p i d  increase  

8 9 exhibi ted  by t h e  i n i t i a l  breakthrough of S r  . 

From t h i s  it may be concluded t h a t  t h e  p r o b a b i l i t y  of plugging the  

formation, by i n j e c t i n g  a s o l u t i o n  t h a t  normally forms a  p r e c i p i t a t e  with 



Fig. 1. I n t e r s t i t i a l  Solution Compatibility Study Using Ottawa Sand and 

Sr89 a the Radioactive Tracer 



i n t e r s t i t i a l  so lut ion,  i s  l e s s  than expected. Instead of mixing, t h e r e  is  

a  p i s ton- l ike  displacement of the  i n t e r s t i t i a l  l i q u i d  by the  i n j e c t e d  waste 

and only a  small  zone of p r e c i p i t a t i o n  along the  contact  edge, which forms 

a  b a r r i e r  t o  prevent  f u r t h e r  mixing. S t i l l  t o  be considered and s tud ied  

are  the  o ther  processes; t h a t  is, the  i n t e r a c t i o n  of t h e  s o l i d s  within t h e  

formation with the  in jec ted  waste solut ion.  

5.0 SORPTION ST-UDIES 

The so rp t ion  of radionuelides, p a r t i c u i a r l y  by small  amounts 

of c l ay  was inves t igated .  The c l a y  minerals consid.ered t o  be of  g r e a t e s t  

importance included i l l i t e ,  kao l in i t e ,  ha l loys i t e ,  and montmorillonite. 

The procedure was t o  add from 0.3 t o  20 g  of c lay  t o  300 m l  of t h e  Purex 

waste so lu t ion  and t o  s t i r  f o r  2  h r  a t  216 rpm, using a labora tory  s t ir-  

r i n g  device. Af ter  s t i r r i n g ,  t h e  so lu t ion  was f i l t e r e 6  t h r ~ u g h  f i l t e r  

paper, and samples were taken f o r  counting. The counting was performed 

on a  well-type gamma s c i n t i l l a t i o n  counter using an NaI ( ~ 1 )  c r y s t a l .  

Three samples were prepared f o r  counting by p lac ing  1-mi a l iquo t s  i n  

10 x  75-mm g lass  cu l tu re  t,ubes and c c ~ n t i n g  the  l i q u i d ,  It was poss ib le  

t o  determine the  amount of cesium sor5ed pe r  100 g  of c l a y  by t h e  removal 

of  ~s~~~ t r a c e r  from so lu t ion  and knowing t h e  r a t i o  of radiocesium t o  s t a -  

b l e  cesium. This same procedure was used on a l l  the  s l u r r y  t e s t s .  

5 . 1  Cesium Sorption 

Figure 2  is  a  graph showing t h e  so rp t ion  of ~adiocesiurn from a  sddium 

hydroxide neu t ra l i zed  6 - M Purex waste s o l u t i o n  by the c l q  minerals l i s t e d  

above a s  wel l  as  by Conasauga shale .  The Conasauga sha le  contains a  mixture 





of c lay  minerals and quartz. A sample analyzed by ~amura '  using x-ray, 

chemical, and base-exchange procedures was found t o  cons i s t  of about 40% 

i l l i t e ,  25% montmorillonite, and 25% quartz. Its a b i l i t y  t o  sorb  cesium 

from the  waste s o l u t i o n  is large ,  considering the  r e l a t i v e l y  l a r g e  content  

of i n e r t  quartz. The bentoni te  sample i s  a c l a y  of undetermined composi- 

t i o n  from Texas. 

Studies were made on the  so rp t ion  of radiocesium by i l l i t e  from solu- 

t i o n s  having varying sodium n i t r a t e  concentrat ions.  Sodium n i t r a t e  r e s u l t s  

from n e u t r a l i z a t i o n  of Purex waste (which contains HNO ) by sodium hydrox- 
3 

ide. Concentrations of sodium n i t r a t e  ranged from 6 M t o  0.5 M; t h i s  range - - 
of sodium concentrat ions includes neutra l ized,  evaporated Purex waste, 

which is  about 6 - M, and unconcentrated waste, which is  1 M. The r e s u l t s  - 

(Fig. 3)  show a th ree fo ld  increase  i n  cesium sorp t ion  with a t e n f o l d  de- 

crease i n  sodium ion concentration. Next, t h e  e f f e c t  of cesium concentra- 

t i o n  on cesium sorp t ion  from 6 M sodium n i t r a t e  s o l u t i o n  was determined. - 
These concentrat ions ranged from 10 mg p e r  l i t e r  of cesium t o  100 pe r  

l i t e r  of cesium. The 10-mg-per-liter ces i -m concentrat ion l e v e l  is rep- 

r esen ta t ive  of a d i l u t e d  1 N unconcentrated Purex waste, while t h e  - 
100-mg-per-liter l e v e l  i s  s l i g h t l y  more concentrated than t h e  7.0 - M 

evaporated waste. The r e s u l t s  ind ica te  approximately a th ree fo ld  in-  

crease i n  cesium adsorption with a t en fo ld  increase  i n  cesium concentra- 

t ion ,  as shown i n  Fig. 4. The r e l a t i v e  e f f e c t  on the  amount of cesium 

sorbed p e r  gram of clay,  by increas ing t h e  concentrat ion of sodium ion 

by the  same f a c t o r ,  was the  same. 

A s e r i e s  of j a r  t e s t s  were made t o  study t h e  e f f e c t  of calcium car-  

bonates on t h e  so rp t ion  of cesium, as calcium carbonate may be p resen t  i n  







a disposal  formation as a limestone. The carbonate used was calcium car- 

bonate ( C ~ C O  ), as pulverized limestone. 
3 

Three runs were made using 2 t o  2C g of mater ia l  a t  f i v e  d i f f e r en t  

concentrations. The previously described jar-  t e s t  procedure with tagged 

c a r r i e r  solut ions  was used. 

The f i r s t  run was made using only limestone ( C ~ C O  ). This was t o  
3 

determine the  amount of cesium sorpt ion obtained on limestone only. Hun 2 

was t o  study the  sorpt ion of cesium on pure i l l i t e ,  while run 3, which was 

a 1:l mixture of i l l i t e  and limestone, gave experimental values f o r  var i -  

ous weights of the  mixed material .  

These experimental r e su l t s  a re  shown on Fig. 5 as s o l i d  l i ne s .  The 

1:l mixture shows a lower removal of cesium than when i l l i t e  o r  limestone 

a re  used alone. One might expect greater  sorpt ion by the  mixture than 

using the  i l l i t e  alone, because 20 g of limestone removed up t o  0.4 mg of 

cesium from 150 m l  of waste solution.  

The small difference between the  calcula ted r e su l t s  (dashed l i n e )  and 

the  experimental values shown on the  two middle curves ( s o l i d  l i n e )  may 

be due t o  the  hydrolysis of limestone t o  r e s u l t  i n  increased ionic  compe- 

t i t i o n  f o r  the  sorpt ion of cesium on the  i l l i t e .  These t e s t s  indicate  

t h a t  the  presence of calcium carbonate does not increase the  sorption of 

cesium by i l l i t e ,  but  ra ther  it s l i g h t l y  decreases the amount sorbed. 

The s l i g h t  difference obtained suggests t h a t  the  presence of limestone 

within a disposal  formation w i l l  not a f f e c t  the  amount of cesium sorbed 

from neutra l ized Purex-type waste. 

A s e r i e s  of four t e s t s  were conducted using l-molar unconcentrated 

Purex waste t o  compare the effectiveness of i l l i t e  and Conasauga shale  





f o r  the  removal of cesium from an acid and a  neutra l ized solut ion.  Five 

weights of s o i l  material  i n  150 ml of so lu t ion  were used i n  each of the  

four t e s t s .  The beakers were s l u r r i e d  f o r  2 h r  using a  laboratory s t i r -  

r ing  device. Samples of the  i n i t i a l  so lu t ion  and the  f i n a l  supernate 

were taken, dried, and counted. 

The r e s u l t s  show good agreement between the  t e s t s ;  t h a t  i s ,  with 

both materials  the  presence of hydrogen ions decreased sorpt ion (Fig. 6 ) .  

Sorption from 1 - M NaNO was higher than the  sorption from 1 M HNO solu- 
3  - 3 

t i o n  using both i l l i t e  and Conasauga shale.  The cesium sor-ption capacity 

of i l l i t e  from 1 M HNO i s  about hal f  the  capacity from 1 M NaNO while - 3 - 3' 

the  cesium capacity of Conasauga shale  with 1 - M NaNO i s  decreased by a l -  
3  

most 70% when 1 M HNO was used. The r e su l t s  ind ica te  there  would be - 3 

l e s s  cesium sorpt ion on c lay mater ia l  of t h i s  type, i n  a  disposal  forma- 

t ion,  from an acid  so lu t ion  than from a  neutral ized solution.  

To carry  t h i s  one s tep fur ther ,  it has been shown by Jacobs and 

697 Tamura t h a t  sorpt ion or  exchange of cesium by the  collapsed layer  

l a t t i c e  c lay minerals i s  a  function of ionic  radius of the  competing 

ions. For exchange s i t e s  with no s t e r i c  spec i f i c i t y ,  the  t ightness  with 

which an ion i s  bonded t o  a  charged surface i s  an inverse function of the  

hydrated radius of the  ion. However, cations must be dehydrated t o  en te r  

the  f ixa t ion  s i t e s .  Cesium has an ionic  radius of 1.69 A and i s  more 

ea s i l y  dehydrated than the  l i g h t e r  a l k a l i  metal cations.  Thus ~ a +  

( r  = 0.95 A )  o f fe r s  l i t t l e  competition f o r  sorpt ion of small amounts of 

cesium by i l l i t i c  clays. Potassium (r  = 1.40 A )  and rubidium (r  = 1.48 A) 

of f e r  more competition f o r  cesium sorption.  





A s e r i e s  of f i ve  t e s t s  were made t o  determine the  equilibrium con- 

centra t ion of cesium sorbed on Conasauga shale  from a s lu r ry .  The proce- 

dure involved using a 6 M NaNO solut ion t o  which 100 mg per  l i t e r  of - 3 

cesium c a r r i e r  was added and enough cs lJ7  t o  give a low counting error ;  

2 t o  20 g of a i r -d r ied  Conasauga shale were s l u r r i e d  f o r  2 h r  a t  216 rpm 

i n  150 ml of the  solut ion.  The shale  was then separated from the  solu- 

t i o n  by centrifugation,  and three  1 - m l  a l iquots  were taken from each 

beaker f o r  counting i n  a well-type s c i n t i l l a t i o n  counter. 

The amount of cesium adsorbed can be calcula ted by the  following 

method : 

I n i t i a l  Act ivi ty  - Final  Activity 15 mg = mg Cs sorbed 
I n i t i a l  Activity 

The solut ion was discarded; the shale  samples were again placed i n  

beakers, and another 150 m l  of the  so lu t ion  described above was added t o  

each beaker and the t e s t  repeated. This same procedure was repeated a 

t h i r d  time. 

Results a re  shown on Fig. 7. About 50% of the  sa tu ra t ion  value was 

achieved by a s ing le  s l u r ry  treatment; the  two successive s l u r r y  t r e a t -  

ments resul ted i n  an addi t ional  60% removal of the  cesium present o r  

about 90% of the  estimated concentration of cesium remaining solution.  

Therefore, it can be estimated t h a t  approximately 5% of the  shale  was 

s t i l l  unsaturated. 

Although more cesium could be sorbed from a f resh  solution,  one must 

increase the  concentration r a t i o  of cesium t o  sodium or  replenish the  

cesium already removed from the  solution.  The equilibrium value was not 

changed by e i t h e r  increasing the  contact time o r  the  r a t e  of s t i r r i n g .  



Fig. 7. Cesium Sorption by Conasauga Shale from Successive Slurries with 
6 M Neutralized Purex Waste - 



The r e s u l t s  of these  t e s t s  ind ica te  t h a t  i n  a  NaNO system the  C S / N ~  
3  

r a t i o  of the  so lu t ions  determines t h e  capacity of t h e  c lay  f o r  cesium re-  

6 moval. Jacobs observed t h e  same r e s u l t s  i n  a  s e r i e s  of s tud ies  on cesium 

sorpt ion with Conasauga shale .  

5.2 Strontium Somt ion  

The j a r - t e s t  r e s u l t s  covered here ind ica te  t h e  amount of s trontium 

i n  milligrams removed from a  n e u t r a l  Purex so lu t ion  by various c lay  min- 

e r a l s .  Results shown on Fig. 9  ind ica te  the  so rp t ion  of s trontium from 

150 m l  of 6 M NaNO so lu t ion  containing 40 mg p e r  l i t e r  of s trontium - 3 

c a r r i e r .  This is approximately the  sodium and t h e  strontium concentra- 

t i o n s  of Hanford-type neutra l ized Purex waste. 

The c lay  mater ia ls  s tud ied  included: (1) Conasauga shale ,  ( 2 )  F i th ian  

i l l i t e ,  ( 3 )  New Mexico kao l in i t e ,  ( 4 )  montmorillonite (Wyoming ben ton i t e ) ,  

(5  ) North Carolina vermiculi te ,  and (6)  Utah ha l loys i t e .  The ef fec t iveness  

of the  mater ia l  f o r  s trontium sorp t ion  i s  from Conasaugs shale ,  t h e  bes t ,  

t o  ha l loys i t e ,  t h e  poorest ,  i n  t h e  order l i s t e d  above. 

A comparison of t h e  amount of s trontium removed by these  mater ia ls  

t o  t h e  amount of cesium removed under s i m i l a r  t e s t  condit ions ind ica tes  

t h a t  about one-third a s  much strontium as  cesium is  removed by t h e  same 

weight of c lay  mater ia l .  However, the  s p e c i f i c  a c t i v i t y  of sr90 i s  1 . 5  

times t h e  s p e c i f i c  a c t i v i t y  of cs1j7. The ne t  r e s u l t  i s  t h a t  f o r  each 

cur ie  of s trontium sorbed t h e r e  w i l l  be 2 cur ies  of cesium sorbed. 

I n  a l l  coagulat ion s tud ies  on t h e  removal of radiostrontium from 

water, it has been observed t h a t  pH, o r  hydrogen ion concentration, played 

a  major ro le .  Therefore, th ree  s e r i e s  of j a r  t e s t s ,  involving a t  l e a s t  





t e n  beakers per  s e r i e s ,  was made t o  determine t he  e f f e c t  of pH on the  re-  

moval of strontium from a  1 - M sodium neutra l ized Purex-type waste using 

Conasauga shale.  The range of pH values s tudied was from 5.2 t o  1 1 . 5  

using from 1 t o  20 g  of shale,  150 m l  of solution,  and a  s l u r r y  technique. 

Results shown on Fig. 9 indicate  t h a t  the  higher the  p2 the  greater  

the  amount of strontium sorbed on the  same weight of shale.  These r e su l t s  

agree with r e s u l t s  obtained i n  water decontamination s tud ies  where it was 

found t h a t  pH affected the  per  cent  of strontium removed from solut ion.  9,lO 

Increase i n  pH increased the  amount of strontium removed from aqueous 

solut ions .  A t  pH values above 1 1 . 5  l i t t l e  e f f ec t  due t o  pH was observed. 

The experimental r e su l t s  indicated (1) increasing weight of shale  gave in- 

creasing amounts of strontium sorbed but  with diminishing re turns ,  and 

(2 )  high pH values resu l ted  i n  proportionately greater  amounts of s t ron-  

t i u m  being sorbed. 

Other r e s u l t s  were obtained on the study of amount of strontium 

sorbed by various c lay minerals from 1 - M NaNO and the  e f f e c t  of 
3, 

calcium-carbonate-clay mixtures on t he  amount of strontium sorbed. 

In  the  f i r s t  t e s t  i l l i t e  sorbed 1 . 5  t o  2.2 mg of strontium over the  

range of 8 t o  20 g  of material ,  while Wyoming bentonite sorbed 1.0 t o  

1 .2  mg of strontium over t h i s  same range of mater ia l  used. When 10% cal-  

cium carbonate was added t o  the  clays, 0.4 t o  0 , 9  mg of strontium were 

sorbed by i l l i t e  and 0.6 t o  1.0 mg of strontium were sorbed by the  Wyoming 

bentonite.  The same j a r - t e s t  procedure using ha l l oys i t e  resu l ted  i n  no 

change i n  the  amount of strontium sorbed when calcium carbonate was present.  

However, it should be mentioned t h a t  the  amount of strontium sorbed by 

20 g  of hal loysi te ,  from a  1 - M ~ a '  so lu t ion  containing 4 G  mg Sr  per  l i t e r ,  





was 0 . 9  mg. This is  much lower than  t h e  amount of cesium sorbed and 

lower than  t h e  amount of s t ront ium sorbed by most c l ays .  

The experimental r e s u l t s  shown i n  Fig.  10 a r e  f o r  t h e  s o r p t i o n  of 

cesium and s t ront ium on four  types of c l a y  ma te r i a l s  from a  neu t ra l i zed ,  

complexed, and d i l u t e d  waste so lu t ion .  The four  types of  c l a y  ma te r i a l s  

used were ( 1 )  Wyoming bentoni te ,  ( 2 )  i l l i t e ,  ( 3 )  i l l i t e  and limestone, 

and ( 4 )  Conasauga shale .  The s o l u t i o n  was 1 molar of Purex waste t h a t  

had been complexed with c i t r i c  ac id ,  sodium n e u t r a l i z e d  ( p ~  7.51, and 

d i l u t e d  l : 9  with 1 M sodium chlor ide  so lu t ion .  The c i t r i c  a c i d  was - 

added t o  keep i r o n  i n  so lu t ion .  

I n  t h i s  s tudy the  cesium s o r p t i o n  was equal  t o ,  o r  s l i g h t l y  l e s s  

than, the  amount of cesium t h a t  would be sorbed from t h i s  s o l u t i o n  i f  

c i t r i c  a c i d  were not  added. However, t he  amount of s t ront ium sorbed 

was l e s s  by about a  f a c t o r  of 3 when the  waste was complexed with c i t r i c  

ac id .  The r e s u l t s  shown on Fig. 9 ind ica te s  t h a t  under t h e  t e s t  condi- 

t i o n s  c i t r i c  a c i d  does not  not iceabley  a f f e c t  t h e  s o r p t i o n  of cesium, bu t  

does depress the  s o r p t i o n  of s tront ium. This observat ion  agrees with 

the  genera l  theory  of chela t ion;  t h a t  is ,  t h e  h igher  t h e  valence t h e  

g r e a t e r  t h e  ease of chela t ion .  Therefore, it can be assumed t h a t  some 

of t h e  s t ront ium i n  the  waste s o l u t i o n  was che la t ed  by the  c i t r i c  a c i d  

and, the re fo re ,  not  ava i l ab le  a s  a  c a t i o n  f o r  s o r p t i o n  o r  exchange wi th  

the  replaceable  ions of t h e  c l ay  ma te r i a l .  The monovalent cesium and 

the  r e l a t i v e l y  high concent ra t ion  of sodium ions ,  a l s o  p resen t  i n  the  

waste so lu t ion ,  were not  complexed by the  c i t r i c  ac id ,  and no change 

i n  s o r p t i o n  was found. 
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Fig. 10. Sorption of Cesium and Strontium by Various Materials from a 
Citric Acid Complexed, 1 M Sodium Neutralized Purex Waste Solution 
that has been Diluted 9:l-with 1 - M NaCl 



5.3 Column Somtion Studies 

The sorption of radiocesium from neutra l ized Purex waste by quartz 

sand ( S ~ O  ) and mixtures of quartz, feldspar,  mica, and several  types of 
2 

clay was invest igated by means of column experiments. The i n i t i a l  column 

t e s t s  were made with clean Ottawa sand, e i t h e r  water r insed or  acid-leached, 

packed i n  columns of various s izes .  Neutralized Purex waste, 300 t o  

4000 ml,  containing t r ace r  quan t i t i es  of ~s~~~ ( t o  give a count r a t e  of 

-1 -1 - 9OOO counts min m l  ), plus 100 mg per  l i t e r  of cesium ca r r i e r ,  was 

passed through the  sand a t  a low flow r a t e .  Vi r tua l ly  no sorpt ion of 

radiocesium by e i t h e r  the normal or  the  acid-leached Ottawa sand was ob- 

served. Visual .observations indicated no change i n  permeability during 

the  run, and no formation of p r ec ip i t a t e  i n  the  sand; no coating of the  

sand grains could be detected. 

Glass columns, 1 in.  i n  diameter by 10 in .  long, were then packed 

with clean quartz sand and 140-mesh Conasauga shale. These columns were 

used t o  check the  p a r t i a l  sorptive capacity of the  shale  f o r  cesium from 

6 - M NaMO containing 100 mg C s  per l i t e r .  The r e su l t s  of these t e s t s  
3 

indicated a p a r t i a l  sorpt ive  capacity of 2.31 mg Cs per  10 g of shale,  

while s l u r ry  equilibrium s tudies  give a p a r t i a l  capacity of 3.3 mg C s  per  

10 g of shale.  This difference i n  the  lower column value may have been 

due t o  l e s s  effectiveness i n  sol id-solut ion contact  i n  the  column. 

6.0 CORE TESTS 

The next phase of the  laboratory t e s t  program was the  t e s t i n g  of 

cores. The type of data obtained could be generally termed " p a r t i a l  

radionuclide capacity analysis"  and i s  t o  be d i f f e r en t i a t ed  from basic  



core analysis  measurements - porosity,  permeability, and res idua l  f l u i d  

content. It i s  a l so  more simple than the  specia l ized and complex t e s t s ,  

such as  res tored s t a t e  o r  cap i l l a ry  pressure, r e l a t i v e  permeability, and 

water- f lood suscep t ib i l i ty .  

As so many variables a re  connected with coring operations and the  

type of information desired, it is  d i f f i c u l t  t o  obtain spec i f i c  recom- 

mendations on core handling, sampiing, preservat ion procedures, and methods 

of analysis .  However, the  Geochemistry and Petrology Branch of the  U. S. 

Geological Survey agreed t o  make the  basic  core analysis  needed and t o  

m.ke any spec i f ic  mineralogic o r  chemical analysis  requested. 

6 .1  Core Tests on Cesium S o n t i o n  

Several cores of Berea sandstone were obtained from the  Crysta l  Iake 

Laboratories of the  Pure O i l  Companp f o r  preliminary t e s t i n g  and tech- 

nique development (see  Fig. 11. ). The method suggested and adopted f o r  

mounting cores f o r  f l u i d  flow and sorpt ion of ra2ioisotopes consis ted of 

coating the  outside of the  core with an epoxy res in .  After  allowing t he  

r e s i n  t o  harden, two plexiglass  or  s t a i n l e s s  s t e e l  end p l a t e s  with neo- 

prene gaskets were used t o  mount the  cores. A l l  these components were 

held together by four brass t i e  rods threaded a t  both er,ds. Other methods 

of core mounting which may be used include use of Hassler sleeves,  Lucite 

casing, and low melting al loys.  

*Pure O i l  Co. obtained the  cores from S i l i c a  Chemicals, Inc., Amherst, 
Ohio. 
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Fig. 11. Mounting of Berea Sandstone Cores . 



The f l u i d  was pumped through the  core using a Lapp pulsafeede* 

driven by a 1/20 H.P. e l e c t r i c  motor. The in f luen t  so lu t ion  was 1 molar 

sodium-neutralized, c i t r i c  acid  complexed, Purex waste which had been 

d i l u t ed  l : 9  using 1 M NaC1. The solut ion contained 0.67 mg per  l i t e r  of - 
s t ab l e  cesium and su f f i c i en t  cs l J7  t o  give a count r a t e  of - 15,000 

-1 1 
counts min ml- . 

The coated Berea core had an e f fec t ive  volume, the  t o t a l  volume 

minus the  volume occupied by the  epoxy res in ,  of 388 cc. The void volume, 

determined by f i l l i n g  the  i n t e r s t i t i a l  spaces with d i s t i l l e d  water, was 

found t o  be 87.6 cc, corresponding t o  a porosi ty  of 22.6%. The r e su l t s  

of chemical analysis  o r  two d i f f e r en t  samples of Berea is shown i n  

Table 4. 

A photograph of the  experimental setup is shown i n  Fig. 12. The 

so lu t ion  was pumped through the  core a t  a rate of about 25 ml per  hr .  

Samples of t he  e f f luen t  were taken every 50 ml and counted i n  the  

well-type s c i n t i l l a t i o n  counter and 1024 sca le r .  

The r e su l t s  a r e  shown on Fig. 13, as a p l o t  of ~s~~~ a c t i v i t y  i n  

the  e f f luen t  versus the  cumulative volume of so lu t ion  passed through the  

core. The h f l u e n t  so lu t ion  was made up i n  two batches of 2 l i t e r s  each: 

-1 1 
i n  the  f i r s t  batch, the  count r a t e  of ~s~~~ was 15,000 counts min m l -  ; 

-1 d-l 
i n  the  second, 17,000 counts min . However, t h i s  small d i f ference 

i n  count r a t e  would have no detectable e f f e c t  on the  est imation of the  

capacity of the  core f o r  cesium. The r e su l t s  show a t yp i ca l  breakthrough 

curve with the  exception of the  night ly  var ia t ions  a f t e r  2900 m l  of 

*Products of Lapp Insula tor  Co., Inc., Le Roy, New York. 



Table 4. Analysis of Berea Sandstone* 

Per Cent 

Constituent Sample 429 Sample 1931 

C02 
Igni t ion Loss 

Clay Content (~pp rox .  )** 

Trace 

None 

88 

1- 3 
4 
0.88 

0.95 

4 

*A nonswelling type. 

**Reported by the Crystal  Lake Laboratories, Pure 
O i l  Co. , Crystal  Lake, I l l i n o i s .  



Fig. 12. Experimental Arrangement f o r  Core Testing 
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Fig. 13. Effluent Activity Versus the Effluent Volume of Purex Waste 
( ~ e u t r a l i z e d ,  Ci t ra te  ~omplexed) from Sandstone Core No. 1 



solut ion had passed through the core. Throughout the t e s t  runs, no in- 

crease i n  head pressure was detected; no plugging of the leading face of 

e i t he r  core was found. This column, as well  as the second column, worked 

well a t  operating pressures of l e s s  than 80 p s i .  

The following i s  the p a r t i a l  cesium capacity of the core f o r  t h i s  

inf luent  solution: 

(1) Cesium concentration i n  in f luen t  - 0.67 mg/li ter .  

( 2 )  Cesium sorbed - 1.67 mg" 

( 3 )  Core volume - 388 cc. 

( 4 )  Cesium sorbed per  cubic foot - 122 mg. 

I f  the  spec i f ic  ac t i v i t y  of the cesium i n  Purex waste were 40 cur ies  

per gram, then 1 cu f t  of Berea sandstone would sorb about 4.9 cur ies  per 

cubic foot .  

A second core t e s t  was made using the same material  and experimental 

techniques, except the waste was d i lu ted  30: 1 with 1 - M NaCl ins tead of 9 : l  

as i n  the f i r s t  experiment. The r e su l t s  of t h i s  t e s t  a re  shown on Fig. 14. 

Calculations on the amount of cesium sorbed per  cubic foot  of Berea sand- 

stone from a 30 : l  d i lu t ion  of the  waste solutions are  as follow: 

(1) Cesium concentration i n  in f luen t  - 0.22 mg/li ter .  

( 2 )  Cesium sorbed - 1.37 mg. 

(3)  Core volume - 491 cc. 

( 4 )  Cesium sorbed per cubic foot  - 80 mg. 

6.2 Core Tests on Strontium Somtion 

Following the core t e s t i ng  of cesium sorption,  core experiments were 

conducted using strontium c a r r i e r  plus Sr89 as  a t racer .  The concentration 



I- 

L L  
LLJ 

8 

UNCLASSIFIED 
ORNL-LR-DWG 3 5 7 4 4 A  

WASTE, D l  LUTE 30: 1 

0 3 4 5 6 7 8 9 

EFFLUENT VOLUME (l i ters) 

Fig. 14. Eff luent  Ac t iv i ty  V2rsus the  Eff luent  Volume of  Purex Waste 

( ~ e u t r a l i z e d ,  C i t r a t e  ~ o m ~ l e x e d )  from Sandstone Core No. 2 



of c a r r i e r  used was 1.33 mg of strontium per l i t e r ,  which i s  the approxi- 

mate concentration of fission-product strontium present i n  unconcentrated 

Purex waste d i lu ted  30: 1. 

Calculations a re  based on both the  amount of strontium removed from the 

inf luent  solut ion and on the amount of strontium ac tua l ly  sorbed on various 

samples of the core. The calculations showed t h a t  a t  a 9 : l  d i lu t ion ,  0.33 mg 

of strontium was sorbed i n  the core; thus, 1 cu f t  of t h i s  sands-tone would 

sorb 2,4 cur ies  of strontium ( ~ i ~ .  15) .  Similar calculations f o r  the 30: l  

d i l u t i on  showed 0.178 mg of strontium was sorbed. This i s  equivalent t o  

about 1 .9  curies of sr90 per  cubic foo t  of sandstone. These values assume 

the spec i f ic  a c t i v i t y  of sr90 i n  the waste t o  be 80 cur ies  per  gram. The 

r e su l t s  of the 30: l  d i lu t ion  study a re  shown on Fig. 16. 

While r e su l t s  of cesium sorption showed the amount of cesium sorbed 

t o  be dependent on the  N ~ / C S  r a t i o ,  the amount of strontium sorbed i s  only 

s l i g h t l y  affected by the  N a / ~ r  r a t i o .  It may be rloticed on Fig. 16 t h a t  

due t o  the  length of time required t o  complete the experiment ( 9  days) a 

correction was required fo r  the decay of Sr 8 9 
2 

= 53 days). 

The r e su l t s  of these t e s t s  and a comparison t o  the cesium sorption 

s tudies ,  using sandstone cores, shows t h a t  a 9 : l  d i l u t i on  sorbs 2.4 cur ies  

of strontium per  cubic foot and 4.9 cur ies  of cesium per  cubic foot ,  while 

a 30:l  d i l u t i on  sorbs 1 .9  curies of strontium per  cubic foot  and 3.2 cur ies  

of cesium per cubic foot.  I n  the  j a r - t e s t  s l u r r y  s tudies  the r e su l t s  in- 

dicated t h a t  approximately 2 cur ies  of strontium would be removed by var i -  

ous clays f o r  every 3 curies of cesium removed under s imilar  conditions. 

The r e s u l t s  of the  core t e s t s  compared very favorably with the values ob- 

tained by s lu r ry  treatment. 



\ 

C 

w 

I r  

I A@ 0 .- 
I CI, 

I 
E 
d- 
ti. 

w n 
W 

I- - Z 
0 

- 
a 
11- s. 
a z 
0 0 

0 
1 

t- 
Z 
w 
3 
A 
LL 
7 - 

0- 
LL 0- 

7 - 

t b . - - .  

a5 a 

ti 
+ 

n 

m 
t 
'I- 
\ 
V) 

.- 



UNCLASSIFIED 
ORNL-LR-DWG 36632A  

- I N FLUENT ACTIVITY 4948counts /mi n /mI 

CURVE CORRECTED 
FOR DECAY 

INFLUENT CONTAINED 1.33mg of Sr per liter 

,. 
EFFLUENT VOLUME(100ml) 

Fig. 16. Strontium Sorption from a 30 :1 Dilution of 1 M Purex Waste - 
by Berea Sandstone 



7.0 SUMMARY 

A s tudy of the  r e s u l t s  of sodium and calcium n e u t r a l i z a t i o n  of a  

Purex- type waste was made. The d i s t r i b u t i o n  of f i s s i o n  products i n  both 

the  s o l i d  and l i q u i d  phase was determined radiochemically. The labora- 

t o r y  work on the  deep-well program s o  f a r  suggests t h a t  plugging of the  

d isposal  formation by p r e c i p i t a t e s ,  r e s u l t i n g  from chemical i n t e r a c t i o n  

between the  waste and the  br ines  already i n  the  formation, is  not  l i k e l y  

t o  be a problem. This conclusion i s  i n  agreement with the  experience of 

t h e  petroleum industry.  The p o s s i b i l i t y  of plugging due t o  chemical 

react ion between the  waste and the  s o l i d  matrix of the  formation has ye t  

t o  be studied.  The r e s u l t s  of the so rp t ion  s tud ies  suggest t h a t  local -  

i zed  hea t  production, due t o  so rp t ion  of radioact ive  mater ia ls  near the  

well,  can be con t ro l l ed  s o  t h a t  it w i l l  not  be a ser ious  problem. Lab- 

ora tory  t e s t s ,  involving the  use of cores, help confirm the  r e s u l t s  of 

s l u r r y  t e s t s ,  which were used t o  determine the so rp t ive  capacity of  sev- 

e r a l  types of c lay  minerals,  fe ldspars ,  and shales .  The t e s t s  t o  date 

have shown good agreement between capacity values obtained using both 

cores and s l u r r y  techniques and demonstrates t h a t  the  problems connected 

with hea t  production, due t o  f ission-product  so rp t ion  i n  a porous forma- 

t ion ,  may be l e s s  important than some others t h a t  w i l l  be confronted. 
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