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ABSTRACT

A model was derived for the diffusion of gases in porous media in the
absence of temperature and pressure gradients, in which portions of the medium
are visualized as a collection of uniformly distributed "dust" particles (giant
molecules) which are constrained to be stationary. Thus, it was possible to
derive all the desired results from rigorous diffusion equations for multi-
component mixtures. The results apply over the entire pressure range from
the Knudsen region to the normal diffusion region. This model permits a
satisfactory derivation of the fact that, at all pressures, the flux ratio of
two counter-diffusion gases is (mo/m1)1/2 in porous media under steady state
and uniform-pressure conditions.

The effect of non-zero pressure gradients on the diffusion equations is
to introduce into the fundamental kinetic theory equations both a pressure
diffusion term and an external force term. Somewhat surprisingly, there is a
considerable cancellation of terms, and the final diffusion equation has the same
form as in the uniform pressure case. No additional parameters beyond those
necessary to define a diffusing system at uniform pressure are thus required to
compute the diffusion rates when pressure gradients are present. A complete
solution requires also a forced flow equation giving J (the net flux) as a
function of the pressure gradient. A forced flow equation is derived on the
basis of the dusty-gas model, but one parameter must be made disposable in
order to compensate for the fact that the model permits only a diffusive
mechanism for flow,never a viscous mechanism. A series of experiments with
one gas mixture 1s discussed as well as the possibility of extending the model
to include the effects of temperature gradients.

NOTICE

This document contains information of a preliminary nature and was prepared
primarily for internal use at the Oak Ridge National Laboratory. It is subject
to revision or correction and therefore does not represent a final report. The
information is not to be abstracted, reprinted or otherwise given public dis-
semination without the approval of the QORNL potent branch, Legal and Infor-
mation Control Department.
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INTRODUCTION

Studies on the counter diffusion of argon and helium in graphites2 have
continued with respect to both theory and experimentation. The theoretical
studies have advanced from isothermal uniform-pressure conditions to isothermal
conditions where the pressure i1s non-uniform and, more recently, to conditions
where the temperature is non-uniform. The experimental work has progressed at a
somewhat slower pace than in the past as the experiments are being:carried out
with low permeability graphites which are slightly more difficult to handle than
the highly permeable materials used in the initial experiments. The current
experimental work concerns isothermal cases of diffusion in the presence of total-
pressure gradients in regions where Knudsen and Poiseuille effects control the
forced-flow parts of the problem, while Knudsen and normal effects control the
diffusion parts of the problem. These experiments could be of considerable
significance since they could lead to modifications of the most recent theory
advanced for these combined effects.

Theoretical treatments of superposed flow problems within the Knudsen region
are gquite simple because, in this region, forced and diffusive phenomena are the
same. In the normal region, the superposed theory for capillaries is well under-
stood, and the theory for porous media has been appreciably advanced. The
intermediate case, which is very applicable to nuclear reactor problems, remains
as the most difficult of all. A good deal of the difficulties stem from the fact
that the overall superposed problem must be approached from five different stand-

points, two with respect to geometry and three with respect to flow behavior. The
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flow phenomena, which have been mentioned before, are: Poiseuille (forced-viscous)

flow, Knudsen (forced and/or diffusive) flow, and normal diffision; the

3,

geometrical models are the "bundle of identical capillaries

5

and a recently
devised "dusty-gas" model. The immediate problem of designing reactor components
precludes the luxury of restricting the present studies to a simple geometry-flow
mechanism pair. Indeed, in view of a desire for utilization of earlier results to
maximum advantage, one must be able to pass freely back and forth between the two
geometries and various flow mechanisms in such a way that these different concepts
complement, rather than contradict, one another.
FORCED FLOW WITHOUT SEPARATION

To fix ideas, one may give consideration to the forced-flow part of the
problem first - in particular to the differences between the viscous flow and
diffusive phenomena which are observed when a single gas (or gas mixture which is
not allowed to separate) is forced through a porous medium under a total-pressure
gradient. Isothermal experiments of this type are generally predicated, both in
theory and practice, on the first assumption that flow will be controlled by the
viscous mechanism. Thus, Poiseuille's model for a single capillary will be
followed. This is a continuum theory, wholly unrelated to the diffusive mechanism,

but related to momentum transport via shearing forces. For a capillary, one writes

dv
dp _ 129 'z
dz ~ T or (nr ar ) (1)

for linear flow along z (cm). The viscosity of the gas is 7 (poise);

3y . -1,
dp/dz (dynes/cm”) is the pressure gradient along z; de/dr (sec” ™) is the rate of
change of the mass average veloclity along z with respect to the radial direction

r(em). Two integrations of Eq. (1) give the relationship
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v, () - vy = (2 > (%g : (22)

The average v with respect to r is:

2
e (B)(2):

The constant vo(cm/sec) at TS (the capillary wall) turns out to be very
important for the case of superposed flow since vy is utilized to allow for the
mass average velocity resulting from diffusive flow when dp/dz = 0., It is not at
all necessary to take v, as representative of viscous slip at this point because
the latter may be developed in different fashions. Also, the viscous slip depends
on dp/dz which is not apparent from Eg. (2b).

With the v, = 0 in Eq. (2b), it is quite easy to write down the analogous
equation for porous media by replacing the ri/Bn term by B where v is now referred
to the gross area and length of the medium. For porous media,

v:—%%. (3a)
The constant B (cmg) is (e/q)(ri/Sn) where ¢ is the open porosity of the medium
and g is the square of the ratio of the average capillary length to the medium
length. A bundle of capillaries, all of radius s is envisioned at this point.

In these experiments, the mass average velocity, v, is identical to the
particle velocity, u = Jf/n, where Jf (atoms/cmgsec) is the forced flux, n
(atoms/cm3) is the gas density given by gas law as p/kT. An expression for
isothermal flow may be developed from Eg. (3a) by substitution of JfkT/p for v

and integrating over the length, L (cm). The result is

B<p>N
J kT = —n'P_EE’ (3b)

where < p > is 1/2 [p(0) + p(L)] and Ap is p(0) - p(L).
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Plots of the experimentally determined B versus < p >-l for highly permeable
graphites result in nearly horizontal lines (zero slope) as indicated on Iig. 1.
Thus Eq. (3b) gives a fair estimate of forced flow behavior of permeable graphites.

Forced~flow experiments with high permeability graphites are carried out with
the diffusion apparatus (Fig. 5) with the inlet on one side, and the outlet on
the other side, closed. For low permeability graphites, the apparatus indicated on
Fig. 2 is utilized because the flow rates are relatively low and important
sub-atmospheric experiments can be performed with ease.

Plot of B versus < p >_l for low permeability graphites result in curves with
considerable slope as shown in Fig. 3. However, the curves are linear, thus
B =3B, (1 + a/ < p>) and Eq. (3b) may be written as

B <p> Ba
_ o o \&p _ . Ap
J KT = <- - + = ) - KAL , (La)

where K (cme/sec) is a new constant (actually a coefficient) which exhibits a
linear relationship with < p > as shown in Fig. 4. The K's of Fig. 4 are merely
the B's of Fig. 3 multiplied by < p >/n. It turns out that aBo/n =L4/3 ¢ K,

1/2_

where ¢ is the mean thermal speed (8kT/mm) The parameter K_ is given by
(e/q) rh¢; where r, is the mean hydraulic radius, B = 3n/16[(2 - @)/¢1, & is the
fraction of diffusive wall collisions, 1 - @ is the fraction of specular

reflections. For a single capillary, 4/3 EKO becomes nr03/8, when ¢ = 1.

For porous media,

B <p > N\
_(o "~ Lk = Vop
J KT = < - + 3 Ko ) . (4b)

The B_ < >/n term gives the viscous flux, the L4/3 KOE gives the"diffusive flux",

and the sum of the two gives the total flux measured.
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A very important piece of information over and above an accurate description
of forced flow behavior can be gained through the experimental determination of
Bo and KO. These parameters may be written in terms of Ty the hydraulic radius,
and ko, a shape factor, as
(¢/a)(m”fx,) emd K = (e/a)(B)(r),

which may be combined to giveu:

e}

'Z':kOB 0)° )
According to Eq. (5), €/q (the porosity-tortuosity ratio) can be obtained through
permeability data alone if O and ko are known. It shall be shown later that the
Dlg(cmg/sec) values obtained experimentally (with a given graphite) should be

equivalent to the mutual diffusion coefficients, D (cmg/sec)J multiplied by the

12

same €/q determined through permeability measurements (with the same piece of

graphite). Since D12 for most of the gas pairs of interest are known, and,
furthermore, since the (4/5)(Ko)(2) term turns out to be the Knudsen diffusion
coefficient, all the experimental information required to solve the diffusion and
the diffusién plus forced-flow problems might be given, at least approximately,
by a series of forced-flow experiments with one gas.
NORMAL DIFFUSION

The selection of suitable flux equations which describe steady-state flow in
porous media is an Important facet of these studies; therefore, it is pertinent to
review the basic relationships6 Trom which our working equations are derived. This
review may be conveniently restricted to binary gas systmes (gas 1 and 2) in the

normal region without great losses of generality. All the analytical results

(viscosity effects excluded) which have been utilized in this work are directly
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related to the basic definition of the mass flux ji (grams/cmgsec, i=1or 2)
in terms of the diffusion velocity, Vi (cm/sec). For gas 1,

= nmV,. (6a)

The expression for j, is given as above with the subscripts interchanged. This
2

relationship is not too useful as it stands because v

l’ls not the Jl/nl measured

in the laboratory; rather, it is a velocity referred to v (See Eq. 1) such that

Vl = Jl/nl - v and the same for Vg. This definition of mass flux, ji, is based

on the requirement that the changes in momenta associlated with diffusive fluxes

are zero. In other words, the sum of jl + j2 or dl + d2 must be zero at steady

state.

nymV, + nmV, = 0=md +md, - pv, (7

where p = nlml + ngmg.

theoretical result of dp/dz = O in large tubes when Vo = 0 (See Eq. 2b). Also,

This reveals that Jl/J2 = - mg/ml when v = O which is the

for binary systems, one may express ji in terms of the binary diffusion coefficient,

ﬁij’ and a driving force, dj (cm-l), as

jy = (0%/p)mmD d,. (6b)

The diffusion coefficient varies with Xy = ni/n when more than two gases are

+d_ = 0. The Maxwell

considered. In the present case, D 1 o

10 = D215 thus, d

diffusion equation develops from Egs. (6a) and (6b) when one solves for Vl and V2

then writes the difference such that

— - ) o) —

Vy - V) = Jg/n2 - Jl/nl = (n /nlng)Dlgdl , (8a)
which gives

(%D, )™t

10 U

P R ke (8b)

For linear flow, in general6,
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a /™M oMM Ndamp MM Sp .
di:d_z<n_>+<_n' o > dz " pop (miFi'Z nka>' (92)
k=1
For linear flow in binary systems,

. 1 dnl i nlml dn i anl i nlml anl + n2F2 (9b)
1 n dz np dz nkT np kT ’

The drivipg force is given here as the sum of a concentration term, a pressure

diffusion term, and a special kind of external force term. The original Maxwell

equation was intended for situations where dn/dz = O and the external forces Fl

and F,. were absent in Eq. (9b). Thus, originally, d. = dxl/dz. The last two terms

2 1

result from rigorous treatments by Chapman and Enskog where non-zero F FE’ and

l)
dn/dz were considered.
NORMAL, DIFFUSION WITH PRESSURE GRADIENTS

The force terms involving the F, and F, (dynes/particle or atom) have been of

1
considerable significance in these studies. The forces are especially restricted
to those which might alter the details of the intermolecular collisions controlling
the diffusion behavior. For example, gravitational forces, Fi = mi(dv/dt), which
should not affect the collision process directly, cancel out to give a zero force
term. The fluxes associated with the viscous mechanism were considered, then
avoided, by taking Vl - VE in Eq.(Ba). The variations in density and/or pressure

are already allowed for in Eqg. (9b). Additional details concerning viscous

mechanisms should not be inserted into the external force group of d Further

1-
discussion of this group will be given in the next section.

As an introduction, let us consider normal diffusion in large tubes wherein

F, = F, = 0 and very small dn/dz give large changes in J. This means that the

pressure diffusion term in Eq. (9b) is negligible.
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Based on the above assumptions regarding di’ a convenient diffusion-flux

equation for the individual components may be developed by substituting J - Jl

for J,, x. for nl/n, 1-x

o Xp for x,, and dxl/dz for d

in Eq. (8b), and then

1 1

rearranging. The equation is

J = - D, dxl/dz + %9, (10)
A similar non-independent equation may be written for J2' An integral form of
Eq. (10) is
- o 1- (J/Jl)xl(L) "
—_—r —_ ,
nD, , T - (J/Jl)xl(o)

which applies to many steady-state flow situations (even when dp/dz # 0), and in
7

particular, to the Wicke' method of performing diffusion experiments which is
utilized in our present studies. When dp/dz = 0, the ratio J/Jl may be replaced by
1 - ml/mg, and Eq. (11) reduces to a relationship in J alone. However, this
condition is difficult to accomplish in the laboratory. When it is, the Jl/J2

1/2

ratio tends toward 1 - (ml/mg) at lower pressures. Nevertheless, Eq. (11)
still holds for capillaries and permeable porous media.

A complete solution to the problem involves the reduction of Eq. (11) to a
relationship incorporating a single flux ~ preferably Jl when dp/dz # 0. This
means that J must be estimated via forced flow information which, in turn, means
that v must be considered. The equation relating the overall particle velocity
u = J/n to the mass average velocity v may be developed through our nrevious

assumptions on di by substituting the Jl and J. relationships given by Eq. (10)

2
in the right hand side of Egq. (7). The latter reduces to

= 4 (1
u= D, -ﬁag—ﬁl + v (12)



=1k

At dp/dz = O, v_ = O for large capillaries, but u 4 0. Actually,
= d 1In Py
o 12 dz )
Thus,

u = uo * D12

d 1n (p/p_)
0 2 dp -
[ —_— ] - (=5/en) 2. (13)
The usual experimental or computational procedure is to consider a series of
fluxes with different dp/dz values at the same boundary concentration. Since the

'512 term is smaller than the viscous term in Eq. (13), one may write
U~ - (r§/8n) dp/dz. (1ka)
The integral form of Eq. (1llka) in terms of the total flux is
J~J - (rg <n >/8 <n >)(P/L), (14pb)
where AP is applied so as to enhance the flow of the heavy gas. A combination of
Eq. (11) and Eq. (1kb) constitute a complete solution for the superposed problem

in the normal region (for theoretical capillary behavior) in terms of the variables

AP and x.. The flow parameters required are D

1 and < n >, which are characteristic

12
of the binary gas system; the required capillary characteristics are the length
and the diameter.

o . oo 1/2

For porous media in the Knudsen region it is clear that Jl/J2 = - (m2/ml)

when dp/dz = O. It turns out that this same condition holds, even in the normal
region. Regardless of this, the results cited for capillaries hold also for porous
and < B > in place of D

media, using8 D and (r§/8 < 7 >), respectively.

12 12

Experimental verification of the applicability of Egs. (11) and (14b) has been
recently published by the authors9’ 10 and Hugo and Wickell
COMBINED NORMAL-KNUDSEN DIFFUSION
A Dusty Gas Model
Extension of capillary theory to cover diffusion in porous media creates a

major discrepancy in theory as the experimental results are contradictory in regard
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to the Jl/J2 condition at uniform pressure. Although the theory predicts a
non-zero Jo’ it alsoc predicts a v of zero; whereas, actually,
vo = - [(mlm2 l/E/p]JO., One might attempt to show the (mg/ml)l/2 condition by
assuming that viscous forces are absent when dp/dz = O and that the second term
in Eg. (4b) is a true diffusive term, with a partial pressure gradient given by
(/3 K E.)-l(J.). Since dp, = - dp., J,/d, = - (c;/c.) = - (m /m )1/2°

oi i 1 2 1’72 1’72 2
On the basis of single gas experiments alone, however, the assumed diffusion term
is only a sufficient (not necessary) condition for its final form (with dp/dz) in
the forced flow equation. It is of greater significance to note that the primary
diffusive parts of the problem have been disregarded completely, e. g., Eq. (10).
One should be reluctant to offer this argument as a proof of the Jl/J2 condition;
however, the fact that the 4/3 Kégi term shows the same temperature and pressure
dependencies as a nDij term strongly suggest that the (mg/ml)l/2 condition arises
as the result of g diffusive flow. If this is so, the diffusion equations
applicable to capillaries are incomplete for cases where porous media are involved;
for one should be able to derive the (mg/ml)l/2 condition from the complete
diffusion equations (which cannot be done via previous relationships) without
having to resort to pleces of the forced flow equations.

Since additional diffusion information is required, it is only logical *o
turn to multicomponent forms of Eq. (8b). This suggests that one might visualize
the pore surfaces, which are associated with the gas-wall collision mechanism, as
being a collection of solid dust particles suspended directly in the path of the

>

flowing gases”. The dust may be treated formally as an additional gas component

subject to very special conditions. It should be pointed out that Waldmann12 has

given extensive treatments to such systems wherein the dust is free to move. 1In
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the present case, the dusty-gas is composed of large spherical particles constrained
to remain stationary (Jd = 0) and uniformly distributed (dnd/dz = 0). Accordingly,
the dust cannot exert a partial pressure, so the total pressure and all related

gquantities are fictitious and are denoted with a prime. For example,

17 7
p' = Zj nf%:=n£h+-zi n.m,
j=1 i+44d

where, in this case, 1 refers to real gases and v is the total number of components.
The fraction of medium considered as dust is very small compared to the medium
as a whole; thus, the original pore geometry as well as relationships like
Dyp = €/a Dpy
are retained. The present treatment is merely an extension of the old capillary
model as far as pore geometry is concerned. The size of the dust particles are
assumed large in comparison to real gases so that the reduced mass, |, and

ccllision diameter, o in the usual expression15 for nDij become m, and r

12’ q’

respectively. This is consistent with the 4/3 K&Ei term. It is not necessary,
but it is convenient, to assume uniformity of particle sizes.

The multicomponent forms of Eq. (8b) for one dimensional flow of v components
are

v

1
Y i Zar) (0,0, - n,J,) = a
149 1j

32 (15)

which are called the Stefan-Maxwell equations. There are v - 1 independent
equations in this set. According to Birdlu, Stefan assumed that the Maxwell
equations could be used for v > 2 conditions without changing the binary
coefficients to multicomponent coefficients. The vallidity of this very important
and convenient decision was demonstrated sometime later by Curtiss and

Hirschfelderl5.
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External Force-Pressure Gradient Relationships

The results based on Egqg. (15) are not restricted to uniform pressure
conditions, but may include situations where forced flow and pressure gradients
are presentl6. It will be necessary to discuss additional features of the dusty
gas which take these situations into account. The additional features involve:
the mode of suspension, the driving force gradient, and the external force terms.

The details of suspension are precise in that the only forces allowed to
operate on the dust particles are assumed to be diffusive forces. If a pressure
gradient exists in a gas-dust system, the dp/dz exerted externally on the gases
is transmitted to the dust in the direction of the forced flow. This force is
counter balanced by an equivalent external force which keeps the particles
stationary. The total clamping force may or may not be the constraining force on
the particles; however, the mode of suspension is such that only diffusive forces
can be applied externally. The external forces which act on the dust in both

directions are

_dp
BeFq = &y o (16)

where Fd is the external force exerted on each dust particle. The Fd does not
depend directly on J, only on the dp/dz. Although the dp/dz may introduce a
viscous component, (Bon/n)(dp/dz), which will drastically alter the Jl/Jg’ this
should not affect Fd. Furthermore, we pretend that the dust does not alter the
parabolic velocity profile associated with viscous effects. Since the wall slip
effects are now counted as dust effects, the v_ remains as - [(mlme l/g/p]JO

because of the dust. Equations (15) and (16) afford a complete solution to the

diffusion part of the problem.
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By substituting Eq. (16) in Eq. (9b), one finds that the external force part

(the last part) of dq is

(R () i (m)- 2 ()]

and that the external force parts of the di’ where i now denotes all the real

gases, are, €.

e (O be2(2))

because all the Fi are zero. Wher all terms in dj are considered, one finds that

a surprising amount of cancellation occurs such that:

1%
1 dn 1 -
> sdy=ag ) di = - n gt }31 dz - 0.
i44d i#4d

One may conclude here that the F_, definition, Eq. (16), is compatible with the

d

diffusion relationships because Eljdj = 0.

The j = d equation of the set given by Eq. (15), with dy = - (1/n')(dn/dz)

and J , glves

a-
L T’T(—d):'d_z' an)
;t

If D, is defined by
1K R
n'D] nD,
id id
DiK = n - "o,
d d
Equation (17) may be written for two real gases as either

J J
1 2 1l dp
1w Dok T kT az
or
m D
1,1/2 3 2K dp
J - [1 - (=) } I = -1 (18b)
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i 1/2 s

where both forms give the Jl/J2 = - (mg/ml) condition when dp/dz = O.

According to the equation, the Jl/J2 condition is independent of pressure,

temperature, and the values of Dld relative to Dl These results follow

o
experimental observations.
The Diffusion Equations
The diffusive-flux equation like Eg. (10) for two gases may be developed
by teking j = 1, in Eq. (15), with d; = (l/n')(dnl/dz):

1 dn

1 1
n'(D;,) (ny3, - 0ydy) + n'(D; ) (a9 - ng7y) = 57 -

. . B _ T _ - _ .
Substituting Jd = 0, J2 =d Jl, and n ny + n, +ny=n+mng, one obtains
after rearrangement
dnl

Jl = - Dl a + SleJ (19)

where
-1 -1 -1

and

(8 )'l =1+ (D, /D).

1 12/ 71K

The same set of~equations ‘apply for J2, but tpE.mustibe careful to interchange
all subscripts. An important trick in getting rid of the prime quantities is to

remember that n'Di'j = nDij' As p increases, D decreases inversely with p,

12

while D . remains constant. Therefore, Eq. (19) takes the form given by Eq. (10)

at high pressures because Dl - D12 (and & - 1 as p-l - 0). At low pressures,

Dl - le and & - 0, the le term vanishes and,only the well known Knudsen diffusion

equation remains. Equation (19) would have been exactly the same had the

development been restricted to dp/dz = O conditions. Thus, the effects of pressure

gradients are introduced via integration.
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To prepare Eq. (19) for integration, it is convenient to use the relationship
dnl dxl

1 - a1 &
dz dz 1 dz °’

which substituted into Eq. (19) leads to

dx
1 1l dn J J
w "hmowm, ) ttm T © (192)

It is necessary to specify n as a function of z somewhere in the integration
process. We have assumed a linear relationship since the An's of interest will
be small in high permeability materials. Also, they will tend toward linearity
in low permeability regions because of the Knudsen characteristics. Thus,

n(z) = n(0) + (&n)(z/L) (20)
where

An = n(L) - n(0).

The integrated form of Eq. (19a) is

wD. . J (5lf + %%) + n(L)[(Jl - Jxl(L)]
ep ()= L : (21)
1o 12J1(51; +55) + n(0)[(3) - 9%, (0)]

When dp/dz = 0, n(0) = n(L) and the above may be written as:

nD, 1-95 Bx(L)
1n
L 1-8 B xl(o) ’

where B = (J/Jl)O = 1- (ml/mg)l/g.

J:

(22)

One may note that the uniform pressure equation with & = 1 is merely Eq. (11).
Equations (21) and (22) constitute a complete solution to the diffusion problem at
all pressures 1f all the J's and coefficilents are known.

The Forced Flow Equation
As mentioned before, it is most convenient to use the diffusion equations

with an auxilliary relationship which will enable one to predict J on the basis of:
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(a) permeability information and (b) An or Ap. This will eliminate one of the
fluxes in Eq. (21). The only forced-flow information carried by Eq. (21) is the
reasonable assumption that n(z) or p(z) should be linear; no other forced-flow
information was required. The effects of the forced-flow problem on the diffusion
problem were buried in J, since the diffusion equations do not require a knowledge
of viscosity, etc. This is one of the beauties of the dusty-gas diffusion model
which is absent in the forced-flow problem.

The development of Egq. (14b) for capillaries indicated that the forced-flow
problem is indeed a difficult one; for one is now concerned with v which varies
from point to point at steady state and is related to J through a variable
<7 >. Attempts to use the same approach used for Eq. (14b) were immediately
abandoned because of the complexity of the resulting equations. Our alternate
procedure is therefore somewhat empirical, but it appears to yield useful results.

A glance at Egs. (17), (l8a), and (18b) will reveal that at least the Knudsen
part of the forced-flow equation is available through the J = d equations of the
model. With this as a basis, one may define 1 - Cl and Cl as the fractions of
Knudsen and viscous forced-flow components, respectively. As p-l - O, Ql - 1;

flow is entirely viscous. As p = O, Cl -+ O; flow is entirely Knudsen.

- B p/n L Doy
17 K 1 K

where K = Bop/n + Dy
For & single gas experiment Eq. (17) gives

Ty = = (D, /AT (ap/a2), (32)

but Jl in the above equation is only the diffusive part of the total forced J.

When J, = (1 - Cl)(J) = (le/K)J is substituted in Eq. (17), the usual permeability
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relationship, Eq. (ha), is recovered. For an experiment with two gases, the
Knudsen part is given by Eq. (18b). The left hand side of Eq. (18b) is treated
as a single flux for convenience. Thus, in close analogy to cases involving g

single gas,

B P/q D
. 2K
t = 2 1 -6, = = (23b)
21 02 21 02
where 02 = Bop/n + Dypr The J - BJ, in Eq. (18) is actually (1 - §2l)(J - BJl)

when viscous effects are present. This results in a tentative expression for the

forced flow experiment which is

d
J= p3) - (D + B /M) 3, (2ba)
or
CE d
J= BJ -7 —de . (2hb)

At present, we denote Czas a disposable parameter to be determined through
experiment.
EXPERIMENTAL WORK

Two sets of diffusion experiments have been completed during the last year.
The experiments involved the counter-diffusion of helium and argon in two graphites
which may be classified as moderately low permeability materials. Insofar as
possible, the total pressure of the gases was maintained uniform. A diagram of
the experimental set-up is presented in Fig. 5. As opposed to our earlier
experiments with high permeability graphites, appreciable Knudsen effects were
observed, not only in the permeability results, but also in the diffusion results.
The diffusion results with these two specimens offered the first opportunity to
verify the validity of the diffusion equations presented in the previous section
for the intermediate region. Experimental verification of the dusty-gas model
constituted one of the major objectives for the experimental work performed during

the previous year.
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Another important, but rather long range objective, exists with respect to
the applicability of the dust-gas model to graphites wherein the permeability
coefficient varies markedly along the flow path. The two low-permeability
specimens were selected with this objective in mind. Both specimens originated
from the same source, which was a piece of thin wall graphite pipe, both surfaces
of which were subjected to a permeability reduction treatment. One piece of the
pipe was mounted as a specimen in the "as received" condition (denoted Specimen IV,
see Figs. 3 and 4). Approximately 10 mils were machined from both surfaces of an
adjacent piece of the pipe prior to mounting as a specimen (denoted as Specimen IIT,
see Fig. 6).

The results of the permeability experiments reveal that the removal of the
coating increases the permeability constant by a factor of 6. From all outward
appearances, howevef, the diffusion results look very much the same with the
expected exception that the diffusion rates were much higher in the uncoated
specimens than in the "as received" specimen. The dusty-gas model was followed
in both cases in the same way. For this reason we have selected the results for
the uncoated (relatively uniform) material for the present discussion.

The counter-diffusion results for Specimen III are shown in Fig. 6. All of
these results were obtained through experiments conducted at 2500 at several
uniform pressures which range from approximately 1.2 to 6.5 atm. A glance at
Eq. (22), which is applicable to these experiments, reveals that a single diffusion
experiment would have been sufficient to evaluate nDHeAr since DHeK and DArK had
been determined previously via forced flow experiments. A single diffusion
experiment, however, would not have been sufficient to verify Eq. (22) over a

range of pressures. Having obtained flux data at several pressures, the problem
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arises as to the acquisition of an average nD but this becomes a simple

HeAr’

matter if the procedure indicated on Fig. 6 is followed.

This procedure involves the computation of an apparent nDHeAr from the flux

and concentration data according to Eqg. (22) under the incorrect assumption that

o)

qe 1S unity (as a first approximation). One then plots the reciprocal apparent

nDHeAr versus the reciprocal pressure (closed points, Fig. 6). It may be shown

that plots of this type should result in a straight line. The value desired is
the intercept since the apparent value becomes a true value at high pressures.

The applicability of the selected intercept may be verified by recalculating nDHeAr

via Eq. (22) with the correct 8, which varied with pressure. A plot of the true

nDHeAr values should result in a horizontal line because the true value is

independent of pressure. Experimental valueswere computed in this manner and are
shown as open points on Fig. 6.

A comparison of the closed and open points on Fig. 6 at low pressures (high
reciprocal pressures) demonstrates the’ importance of the Knudsen effects in

the over-all diffusion mechanism. The apparent nD values, for which Knudsen

HeAr

effects are ignored, differ considerably from those in which Knudsen effects are
considered.

Our current experimental program involves an extension of the Specimen III
data to conditions where pressure gradients exist. The objective of these

experiments is to determine the correct pressure dependence of C, as given by

2

Eq. (2kv) and, in particular, whether or not the intercept of C, versus < p > is

2

actually D__ as given by Eq. (24a). In addition, the effect of graphite non-

2K

uniformity is wunder study. This work is to be based on comparisons of the results

of Specimens III and IV.
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DIFFUSION IN THE PRESENCE OF PRESSURE AND TEMPERATURE GRADIENTS
Thermal Diffusion in the Normal Region

Considerable thought has been given to the possiﬁility of extending our
present theoretical treatment and experimental program to include cases where, not
only pressure gradients, but alsc temperature gradients are present. All of the
effort expended thus far has been toward the theoretical aspects of the problem.
As in the previous treatments, we have encountered the most fortunate circumstance
whereby the solutions to the more difficult parts of the problem are available
in the form of classical theory. Once again the desired results appear in the
Stefan-Maxwell equations with the drivipng force terms as given by the Chapman-
Enskog theory.

The applicable equations are the same as those discussed before with an
additional term added to the driving force. This added term involves the thermal
diffusion coefficient. As opposed to the usual binary-diffusion coefficient, Dij’
the thermal diffusion coefficient, ij, depends in a complicated way on the mole
fraction of the gases. Perhaps for this reason information regarding this
coefficient is available only for binary gas mixtures. This, of course, precludes
an extension of our present model to 1nclude temperature gradients, because thermal
diffusion coefficients for a three component mixture would be required. Never=-
theless, there are a few situations of applied interest which are adequately
described by binary-diffusion equations.

For ease of discussion, it is convenient to write down the applicable binary-

diffusion equations
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The same equation may be written for component 2 with the subscript interchanged,.
but this will not be an independent equation. Considerable care must be taken
with respect to signs, as the heaviest molecules present must tend to move toward
low temperature regions. The usual convention in a 1-2 system is to assign the
subscript 1 to the heavy gas and use the signs as given in these equations.

T T

Again, D,, = D,y and d, = - d;. Thus by Eq. (7N, D, = - D, and Eq. (25) may be

written in the alternate forms:

DT p
1 1 d 1n T
3 (nyd) - mdy) = - {dl "\ . > az } (262)
1 12M1M2
or
nD
— 12 d1lIn T
(Vl -v) - (;2 -v) = - 00, <al * kT Tdz > (26p)

The usual procedure for acquiring information about Dg and/or kT for various
binary mixtures is to conduct an equilibrium experiment in large closed tubes
wherein the concentrations and temperatures at the ends of the tubes are measured.
It is found that the concentration of the heaviest gas is highest at the coldest
end of the tube. The total pressure is uniform because the tubes are large and
closed. The experiment is described by the integral form of Eq. (26b) with

v, -v,= O.

Thermal Transpiration

An analogous situation exists with respect to single gas - porous medis

systems, where portions of the medium are treated formally as a second gas

component (dust). The tendencies for equilibrium separation are the same as in

the previous case; however, the dust is fixed and cannot move and as a consequence
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of this, more real gas (light) particles tend to be present at the hot end than

at the cold end (at equilibrium). As before, the ratio of the amount of heavy
particles to light particles tends to be highest at the coldest end of the tube.

These thermal separation tendencies are always opposed by forced‘flow
tendencies (in the normal region) and diffusive flow tendencies (in the Knudsen
region. For a given medium, subjected to a temperature gradient, one would
expect that the single-gas pressure would be uniform throughout the medium at
high pressures. On the other hand, a pressure difference across the tubes
appears (pA at the hot end > Py at cold end) as the Knudsen limit is approacked.
This difference would be zero at zero pressure; thus, one would expect a maximum
pressure difference at some low pressure. This process was observed by Graham as
early as 1846. 1In 1879 an extensive investigation of this effect was carried out
by Reynolds17 (for whom the famous group Re = Dvp/n was named) using Stucco and
Meerschaum as porous media. Reynolds was responsible for the term: thermal
transpiration. Similar experiments were performed by Knudsen18. The
relationship deduced for regions corresponding to

61 - 0 on the dusty-gas model was
1/2 .
P,/Pp = (T,/Tp) (27)
A derivation of this formula for large tubes is given by Kennardl9, who utilizes
classical capillary arguments. An encouraging development with respect to the
dusty-gas model is that the same result may be obtained from Eq. (26b) and Eq. (16)

with the additional information that kT = 1/2 (x The latter information

real gas)'

comes from the realization that when 61 -+ 0, the gas is under conditions which

correspond to those ofalorentzian gas. At present, it appears that one should be
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able to develop an expression which will describe the thermal transpiration

behavior over the entire region from p, = py (TA/TB)1/2 at by » 0 to p, = p at

&, —~ 1.
i

Figure Captions
1. High Pressure Permeability Data for Graphite Specimen T.
2. Diagram of Pressure Rise Apparatus for Forced-Flow Measurements with Low
Permeability Materials.
3. High Pressure Forced-Flow Data for Graphite Specimen IV at 2500.
L, Low Pressure Forced-Flow Data for Graphite Specimen IV at 2500 Based on
the Intercepts at p = Q, KO = 2.39 x lO-lo cm.
5. Diagram of Steady-State Counter Diffusion Experiment.
6. Results of Counter Diffusion Experiments at 2500 with Graphite Specimen III.

The Flow Parameters for this Graphite are: nD = 4.33 x 10-9 moles/cm-sec;

HeAr

-4 2
Dgeg = 3-2 x 107 cm /sec.
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