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Nine samples of Tho2-U02 prepared a s  par t  s f  the sol-gel  process 
development s tudies  showed no consistent e f f ec t s  from small var ia t ions  
i _ n .  several  process paraneters. The reaction o f  methane and copper oxide 
was studied. Engineering studies o f  the  co_.ltinuous dissolution of 
simulated U-Zr-Sn fue ls  i n  6.5 M hX4.F, 0.6-1.0 M - NH4N03, 0 .1  M H202 
vere continued i n  modified 6-in:-dia equipment. A t o t a l  of 1524 kg of  
uranium from NaK bonded SRE Core I f . ~ e l  rcds has been dejacketed t o  
r7ate. I n i t i a l  operabi l i ty  t e s t s  of .the 250 ton prototype shear un i t  
showed a number of minor modificati3:?s a re  w a r ~ ~ t e d .  Center tube 
temperatures measured i n  a ve r t i ca l  54 tube e l e c t r i c a l l y  heated sim- 
ulated fue l  elemect, bundle have beer!, veq- near those previously obtained 
ir! the  horizontal  posit ion.  A 304 SS tube containing eu tec t ic  NaK was 
fiissolved by HF i n  f'used salt a t  a t.~ibe wall penetration r a t e  of -2 mils/ 
hr . Par t i a l  d i f f e r en t i a l  equations xere derived from. t he  concentration 
of unreacted UFB as  a fmct.ion OF time and posit ion fa a sphere of Na? 
during sorption of UF6. Ca1ciu.m nitraJce solution -as added d i r ec t ly  t o  
t h e  pot calciner during Purex feeding t o  give smoother operation of the  
feeding system. 
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SUMMARY 

1.0  FUEL CYCLX DEVELOPMENT 

The r e su l t s  of nine samples of Tho2-U02 prepared a s  par t  of  the sol-  
ge l  process development studies showed no consistent e f f ec t s  from the 
precursor oxide N / T ~  mole r a t i o ,  precursor oxide air  f i r i ng ,  s o l  N / T ~  
r a t io s  of 0.09 t o  0.13, s o l  depth at the s t a r t  of drying, o r  small v i s ib le  
porosity o r  shape differences.  Small process variations do not appear 
c r i t i c a l  with respect t o  obtaining the 8.5 g/cc minimum density required 
f o r  the  BNL ~ h 0 2 - ~ ( 2 3 3 ) 0 2  elements. 

2.0 GCR C O O W  PLTRIFICATION STUDIES 

The reaction of methane and copper oxide was studied under conditions 
expected in  Gas Cooled Reactor systems and reaction r a t e  constants were 
determined. An act ivat ion energy of 1 5  k ~ a l / ~ - m o l e  CuO reacted was 
predicted from the  var ia t ion of the r a t e  constant with temperature in  
the range 400 t o  600°C. 

3.0 POWER FGACTOR FUEL PROCESSING 

3 .1  Continuous Modified Zirflex 

Engineering s tudies  of the  continuous dissolution of simulated U-Zr-Sn 
fue ls  i n  6.5 M NH4F, 0.6-1.0 M NH4N03, 0.1 M H202 were continued i n  modified 
6-in. -dia equipment. Stable performance and sa t i s fac tory  steady-state 
operation was achieved. The r a t e s  measured were those predicted by experi- 
ments i n  2-in.-dia equipment with but l i t t l e  increase when the NH40H-con- 
ta ining overhead condensate was withdrawn rather  than refluxed. Steady- 
s t a t e  operation at F/S = 0.08 produced reaction ra tes  -5.6 mg/cm2-min 
resul t ing i n  loadings -70 g zircaloy-2/ l i ter .  The loading was raised 
t o  -75 g zircaloy-2/ l i ter  by lowering the feed r a t e  (F/S = 0.06) but the 
throughput was lowered also (reaction ra te  = 4.5 mg/cm2-min) . 

3.2 SRE Dejacketing Studies 

Mechanical dejacketing of NaK bonded SRE Core I fue l  rods progressed 
sa t i s f ac to r i ly  by the dejacketing of -9-5/7 c lus te rs ,  producing 668 kg 
of  uranium f o r  aqueous dissolution. A t o t a l  of 1624 kg of uranium has 
been dejacketed t o  date, and only -200 kg of the SRE fue l  remains t o  be 
processed. The experimental production r a t e  was -6.0 kg U/hr, about 3 
times t h i s  r a t e  would be expected from ac tua l  assembly l i n e  processing. 
Analysis from the 100 ml NaK eutec t ic  bond per rod shows a cslg7 concentra- 
t i on  from 2 x lo7 t o  2 x lo8 dpm/ml. 

3.3 Shear and Leach 

The economic and technological f e a s i b i l i t y  of shearing and leaching 
spent reactor fuels  i s  t o  be determined i n i t i a l l y  i n  a "cold" chop and 
leach f a c i l i t y  consisting of a shear, feeder, leacher, and compactor. 



In i n i t i a l  operab i l i ty  t e s t s  of the  250 ton prototype shear t he  un i t  
performed sa t i s f ac to r i l y ,  but a nmber of minor modifications a r e  warranted 
t o  f a c i l i t a t e  be t t e r  operation. Modifications include improving the  opera- 
t i o n  of the  feed mechanism and fue l  assembly length indicator and re -  
machining the inner gag t o  f a c i l i t a t e  eas ie r  removal from the  shear. 

4.0 REACTOR EVALUATION STUDIES 

Heat Transfer from Spent Reactor Fuels during Shipping 

Center tube temperatures measured i n  a v e r t i c a l  64 tube bundle h8ve 
been very near those previously obtained i n  t h e  horizontal  posit ion.  A 
proposed calculat ional  procedure fo r  predicting the  temperature d i s t r i bu t ion  
gives values i n  very good agreement with experimental temperatures near the  
center of t he  bundle, but aear  the  outside of the  bundle the  predicted 
temperatures are  too optirnistic. The good agreement near the  center prob- 
ably r e su l t s  from an accidental  canceling of an opt imist ic  e r r o r  i n  ca l -  
culating the  outside tube temperatures and a conserva+,ive e r ro r  i n  ca l -  
culating the  tenperature increases within t he  'bundle. 

Convective current e f f ec t s  have been demonstrated by temperature 
d i s t r ibu t ion  measurements a t  various posit ions up the  bundle. 

5.0 VOLATILITY 

A 304 SS tube containing eutec",c NaK was  dissolved by HF i n  fused 
s a l t  at a tube wall penetration r a t e  of -2 mils/hr. A molten s a l t  splash 
in to  t he  off-gas l i n e  occurred during the  d i ~ s o l u t i o n  run, apparently a t  
the  time tha t  t he  NaK was released from the +,ube. This was a minor event, 
since there  were only about 3 in .  freeboard i n  the  vessel .  No change i n  
reactor  temperature was noted. 

P a r t i a l  d i f f e r en t i a l  equations were derlved for  t he  concentration of 
unreacted UF6 a s  a function of time a d  posi t ion i n  a sphere of NaF 
during sorption o f  UF6. T ~ C  model. i ~ c i u d e s  tke  e f f ec t s  of (1)  stagnant 
gas fi lm resis tance,  (2)  ra te  of dif fusion of UF6 i n  pores of sphere, 
(3) reaction r a t e  a t  tile pore hn.lls, and (4 )  e f f ec t  of l oca l  UF6 loading 
on the  r a t e  of  transport and r a t e  (sf rt?ac+,iox. The equations were converted 
t o  f i n i t e  difference form 111 preparatior~ c f  numerical solut ion.  

6.0 W+STE PROCESSING 

Calcilm n i t r a t e  solution w a s  added d i r ec t ly  t o  the  pot calc iner  during 
Purex feeding, ra ther  t h m  adding tto the  feed pr ior  t o  evaporation, r e s u l t -  
ing i n  smoother operation of the  f e e d h g  system. Sulfate bas retained by 
the  so l ids  although the calciurn and su l f a t e  were not added t o  t he  calciner  
i n  stoichiometrfc balance throughout tke  t e s t .  An interrupt ion of  the  
t e s t  a t  the end of the firs",our tamed a, nmber of  d i f f i c u l t i e s  when 
the  t e s t  was res ta r ted .  



1 . 0  FUEL CYCLE DEVELOPMENT 

in to  
ing 

Preparation of high density Th02-UO2 p a r t i c l e s  and v ib ra to ry  compaction 
1 cladding tubes w i l l  be pursued by development of  f u e l  elements contain- 
U-233 f o r  BNL. The present emphasis i s  on process development necessary 

f o r  t h e  conceptual design of t h i s  p i l o t  p lan t .  The Unit Operations s tud ies  
include den i t ra t ion ,  s o l  d ispers ion,  s o l  drying, and ca lc ina t ion  procedures. 
Oxide products on a kg s ca l e  a re  being supplied f o r  v ibra tory  compaction 
development. 

1.1 Sol-Gel Process Development - C .  C .  H a w s ,  Jr . ,  J. W. Snider,  R .  D .  Arthur 

A s e r i e s  of  mixed oxide samples was prepared from trough den i t r a t o r  
products representing the  following var ia t ions  i n  feed mater ia ls :  

1. A low N / T ~  r a t i o  standard product  a able 1.1, run 27) 

2 .  A high N / T ~  r a t i o  product, standard except f o r  an overnight a i r  
f i r i n g  a t  7 0 0 ' ~  (run 1 6 ) .  

3 .  A low N / T ~  r a t i o  standard product except f o r  an overnight f i r i n g  
a t  700°C (run 35-1). 

4. A low N / T ~  r a t i o  standard product except t h a t  the  usual  den i t ra -  
t i o n  s t ep  was followed by a 3-hr a i r  f i r i n g  a t  425O~. This post 
den i t ra t ion  air f i r i n g  was done i n  t he  trough den i t r a t o r .  

The s o l s  obtained from two of t h e  above mater ia ls  were a l so  d r ied  from 
d i f f e r en t  depths t o  determine t he  e f f e c t  o f  depth upon shard proper t ies  
and production r a t e .  

The samples prepared from the  700°C a i r - f i r e d  feed mater ia l  did not  
reach any higher p a r t i c l e  density nor any higher v ibra ted dens i ty  than 
d id  the  o ther  mater ia ls .  The two samples taken from these  batches, 
however, d id  show exce l len t  reproducibi l i ty  of  r e s u l t s .  These r e s u l t s  
show t h a t  t he  700°C f i r i n g  s t ep  i s  not required t o  obta in  a s a t i s f ac to ry  
compacted densi ty .  

After  t h e  1 1 5 0 " ~  s i n t e r i ng  s t ep  all samples of  t h i s  s e r i e s  were 
examined v i sua l ly  f o r  porosity and shape. The two samples se lec ted  a s  
t h e  bes t  i n  appearance were run 27, 1 in.; and run 40, 3/4 i n .  The other  
samples had varying degrees of  porosity,  but were not  s i gn i f i c an t l y  i n f e r i o r  
i n  shape. The only sample not  meeting the  8.5 g/cc minimum vibra tory  
densi ty  requirement was t he  apparently excel lent  run 27, 1 i n .  The vibra-  
t o r y  compaction r e s u l t s  on t h i s  s e r i e s  show t h a t  appearance i s  of question- 
able  usefulness a s  a means of predic t ing t he  compactibi l i ty o f  a prepara- 
t i on .  

The sampling-analytical e r r o r  i s  apparently l a rge  enough t o  obscure 
any re la t ionsh ip  between par t f  c l e  ( toluene) densi ty  and any o ther  shard 
property  a able 1 . 1 )  . 



Table 1.1. Proper t ies  of  Mixed Oxides ( T ~ O ~ - U O Z )  Prepared by Sol-Gel Process 

Conditions: 1. Thoria precursor prepared i n  a g i t a t e d  t rough d e n i t r a t o r  
2. Uraniu? added a s  ammoniu? diuranate  
3. Shards s i n t e r e d  at  1 1 5 0 ' ~  before  Hz reduct ion 

a 
P a r t i c l e  Density, 

I n i t i a l  Dispersed Sol Drying g/cc Vibrated Density, g / c c  
Run N / T ~  N / T ~  W-i; $ Depth , Before H2 Afte r  H2 5/16--in. -d ia  1/2-Tn. -d ia  
No. Ratio Rat i o  U in .  Reduct ion Reduct ion  Tube Tube 

a 
Dete rminedpycn~rne t r i ca l l~wi th  toluene.  

b ~ h i s  composite saxiple w a s  prepared from equal wei-ghts taken from each o f  t h e  t h r e e  preceding run 40 
batches.  



The 1/2-in. tube i s  the  f u e l  rod diameter intended f o r  fu ture  applica- 
t i ons  of Sol-Gel mater ia ls  and the  tube has consis tent ly  given higher 
dens i t i es  than the  5/16-in. -dia t e s t  i n  t he  pas t .  The vibratory compactions 
above a re  anomalous, i . e .  t he  density of one product increased (run 27, 
1 i n . )  while t he  other  run (run 40 composite) decreased when going from 
5/16-in. t o  1/2-in.  tubes.  B t h  these t e s t s  gave r e s u l t s  > - 8.5 g/cc 
which i s  the  minimum acceptable density.  

Within t h e  range of  t he  study there  w a s  no s ign i f ican t  e f f e c t  a r i s i n g  
from e i t h e r  the  i n i t i a l  N / T ~  r a t i o  of a precursor mater ia l  o r  the  N / T ~  
r a t i o  a t  which a preparation i s  dispersed. The 0.13 N/Th d i spersa l  r a t i o  
has been accepted as an optimum and yet  t he  0.09 material  appears equal 
t o  the  0.13 material  i n  a l l  respects.  Similarly the  properties of t he  
samples prepared from low N / T ~  r a t i o  precursor mater ia ls ,  i . e .  0.035, a r e  
the  equal of those prepared from the  higher, i . e .  0.09, precursors. 

The so l  depth a t  the  'beginning of the  evaporation-drying s t ep  has 
no e f f ec t  upon the  yie ld  of  shards f o r  the  mixed oxides. This i s  contrary 
t o  experience with pure thor ia  sols .  The throughput fo r  t he  evaporating 
Oven f o r  an i n i t i a l  1 i n .  s o l  depth was 60 g/hr-ft2 of evaporating-drying 
surface  a able 1 . 2 ) .  

Plunge heating of t he  500°C pre-f i red mater ia l  t o  - 1 2 0 0 ~ ~  has been 
practiced.  I n  order t o  heat t h e  pre-f i red mater ia l  a s  quickly as possible 
the  s ize  and bed depth of the  sample t o  be plunged have been l imited.  
In  a s ingle  t e s t  on t h i s  process var ia t ion ,  run 35-1 product consist ing 
of 937 g was plunge heated i n  a 2-in. deep bed. Pr io r  samples have 
weighed -200 g and were f i r e d  i n  1 - in .  beds. No ill e f f ec t s  were apparent 
i n  t h i s  s ing le  t e s t .  Further t e s t i n g  of t h i s  var ia t ion  w i l l  be made. 

The t en t a t i ve  conclusion reached i s  t h a t  the  present Sol-Gel procedure 
w i l l  provide mater ia l  compacting t o  the  minimum required densi ty  (8.5 
g/cc) i n  a 1/2-in.  tube and t h a t  the  variables examined above have l i t t l e  
s ign i f ican t  e f f ec t  upon product qual i ty  over a reasonable range. 



Table 1 .2 .  The Effect  of  I n i t i a l  Sol  D e ~ t h  uDon Shard 

Size and Sol Drying Rate 

Conditions : 1. Oven a t  80°c 
2. 2.0 M - thor ia-urania  i n  o r i g i n a l  s o l  

Original  g Sol ids  Produced 
Run Sol Depth Percent of Shards per hr  pe r  f t 2  
No . ( i n .  ) > 16 Mesh Drying Surface 



2.0 GCR COOLXTI' PURIFICATION STUDIES 

J. C . Suddath 

Di f fe ren t ia l  Bed Tests on CH4-CuO Reaction Scott 

A s e r i e s  of t e s t s  were made i n  which flowing streams of He containing 
l e s s  than 5% CH4 were sent through d i f f e r e n t i a l  beds of CuO p e l l e t s .  These 
t e s t s  were made i n  the  temperature range of  400-600'~ and at  two pressures,  
1 a t m  and 20.4 atm. The t e s t s  made a t  1 a t m  used a thermal balance 
(Figure 2.1) i n  which the  weight change of t he  bed was per iodical ly  recorded 
and the  t e s t s  made a t  20.4 atm were i n  a closed reactor  with i n i t i a l  and 
f i n a l  bed weights taken. Operating conditions f o r  these t e s t s  a r e  l i s t e d  
i n  Table 2.1. 

The thermal balance runs were made by introducing 5.0 slpm of pre- 
heated He a t  1 atrn containing CH4 i n to  the  heated react ion tube which con- 
ta ined the  d i f f e r e n t i a l  bed i n  a platinum basket. The platinum basket was 
connected t o  a balance whose accuracy was + 0.01 g. Bed weights were 
determined every 10 min and the  CH4 concentration i n  the  enter ing and 
e f f luen t  gas was determined by a gas adsorption chromatograph. 

The high-pressure t e s t s  were made i n  t he  oxidizing vessels of the  
Helium Coolant Pur i f ica t ion  Test Fac i l i t y  (un i t  Operations Monthly Progress 
Report, May 1961). In  these t e s t s ,  the  preheated helium, contaminated 
with CH4,was introduced t o  the  2-in.-dia react ion vessel  where it passed 
through a d i f f e r e n t i a l  bed of CuO p e l l e t s  with a su f f i c i en t  veloci ty  t o  
prevent ex te rna l  mass t r ans fe r  res is tance.  Each run l a s t ed  a spec i f ic  
length of  time  a able 2 .l) and the  CH4 concentration of t he  e f f luen t  
stream w a s  measured per iodical ly  by a gas adsorption chromatograph. 

2.2 Kinetics of the  CH4-CuO Reaction 

Unlike the  mass t r ans fe r  dependence of t h e  react ions  of H2 o r  CO with 
CuO, the  CH4-CEO react ion appears t o  be dependent on t he  a v a i l a b i l i t y  of 
ac tua l  CuO surface area .  Microscopic examination of  the  copper oxide 
p e l l e t s  a f t e r  p a r t i a l  reduction by CH4 showed t h a t  there  was no Cu-CuO 
in te r face  i n  t h e  p e l l e t  a s  a whole but ra ther  i n  the  individual CuO par- 
t i c l e s  which made up the  p e l l e t .  This indicates  t h a t  mass t ransport  of 
CH4 t o  and through t h e  p e l l e t  i s  not a fac tor .  Since mass t ranspor t  
through the  small CuO p a r t i c l e s  was not a f ac to r  f n  the  CO-CuO reaction,  
it i s  assumed t h a t  i n  t he  CH4-CuO reaction,  a much slower react ion,  the  
t ranspor t  of the  CH4 through the  small CuO p a r t i c l e  was a l so  not a fac tor .  
There were individual Cu-CuO in te r faces  i n  each small CuO pa r t i c l e ,  
therefore ,  it w i l l  be assumed t h a t  t he  CH4-CuO react ion i s  dependent 
on the  amount of Cu-CuO in te r face  o r  on the  amount of ac tua l  CuO surface 
avai lable  f o r  react ion.  I t  w i l l  a l so  be assumed t h a t  t he  reaction r a t e  
i s  dependent on the  CH4 concentration i n  the  gas phase. 

On t h i s  basis ,  the  reaction r a t e  of CH4 with CuO may be expressed as 
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Fig. 2.1. Thermal balance set-up used in  differential bed tests of the CH4- 
Cu 0 reaction. 



Table 2.1. Ex~erimental  Conditions of CHa-CuO 

Dif fe ren t ia l  Bed Tests 

CH4 
R u n  Temperature, Concentration, Pressure, 
No. Type of Test 'C g-moles/cc & t m  

TB-1 Thermal balance 500 2 . 1  x 1 .0  
TB-2 Thermal balance 600 6.5 x lo-7 1.0  
TB-3 Thermal balance 400 2.5 x 1 .0  
TB-4 Thermal balance 500 1.37 x 1.0  

DR-1 Closed vessel  400 4.26 x 20.4 
DR-2 Closed vessel  500 2.02 x 10- 20.4 
DR-3 Closed vessel  500 5.05 x 10'~ 20.4 
DR-4 Closed vessel  500 1.64 x 20.4 
DR-5 Closed vessel  600 2.42 x loq6 20.4 



where 

n = molar volume of unreacted CuO, g-mles /cc  bed 

t = run time, sec 

C = CH4 concentration, g-mles /cc  

S = spec i f i c  surface  a rea  based on average s i z e  o f  CuO p a r t i c l e  i n  
p e l l e t ,  cm2/cc bed 

k = react ion r a t e  constant, cm/sec 

The spec i f i c  surfece area ,  S, may be shown t o  be 

where 

E = small CuO p a r t i c l e  densi ty ,  pa r t i c les /cc  bed 

d = densi ty  o f  small CuO p a r t i c l e s ,  g-moles/cc bed 

Let 

then eq. ( 1 )  becomes 

Equation (4) can be in tegrated aqd t h e  r e su l t i ng  expression can be solved 
f o r  t he  reac t ion  r a t e  constant ,  k, 

Equation (5 )  i s  va l i d  i f  t he  CH4 concentrat ion,  C ,  i s  constant .  

Equation ( 5 )  can be used t o  deternine t he  react ion r a t e  constant ,  k, 
f a r  each o f  t h e  d i f f e r e n t i a l  bed t e s t s .  In t he  case o f  t he  thermal balance 
t e a t s ,  severa l  experinental  points  ca? be used t o  determine k f o r  each 
tes t  while f o r  the  high pressure t e s t s  only  one point  w i l l  be ava i l ab le .  



It was found t h a t  t he  react ion r a t e  constant ,  k, was not a function 
of CH4 concentration o r  pressure,  however, it d id  vary with temperature 
eo able 2 . 2 ) .  An Arrhenius type expression can be used t o  express k i n  
t h e  temperature range of  400-600'~ ( ~ i g u r e  2 .2 )  

This represents  an ac t i va t i on  energy of  -15 k ~ a l / ~ - m o l e  CuO reacted.  

Equation ( 5 )  can be rearranged t o  give t h e  CuO molar volume, n 

Equation (7 )  with t he  values of  k predicted from eq. (6)  can then be used 
t o  compare experimental weight losses  i n  t h e  thermal balance runs with 
t h e  predicted weight l o s se s  based on t he  assumed react ion r a t e  depend.ence. 
It was found t h a t  the re  was fair agreement i n  t he  two values ( ~ i g u r e s  2.3- 
2.6) . Thus, it is  assumed t h a t  t he  react ion r a t e  dependence can be 
expressed by eq. (1) and t h i s  expression w i l l  be used t o  p r ed i c t  e f f l uen t  
CH4 concentrations i n  deep bed t e s t s .  



Table 2.2. Reaction Rate Constant as Determined 

from Differential  Bed Tests 

Run Run Time, Temp. , k 7 

NO . ~ e c  "C cm/ sec 

3000 
6000 
9000 

12000 
Average 

3000 
6000 
9000 

12000 
15000 
18000 
Average 

3000 
6000 

Average 

3000 
6000 
9000 

12000 
15000 
18000 
Average 
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Fig. 2.2. Arrhenius plot of reaction rate constant for the reaction of CH 
4 

in  a flowing stream of  helium wi th a f ixed bed of CuO as determined from dif- 
ferential bed tests. The reaction rate was assumed to be proportional to CH 
concentration and CuO surface area. 
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Experimental Conditions 

System Pressure - 1.0 atm -7 
CH4 Concentration - 6.5 x 10 g-moles/cc 
System Temperature - 600°C 
Diluent Gas - Helium 

Experimental Points 

- / 
Predicted Curve 
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Fig. 2.4. Comparison between experimental results for thermal balance Run TB-2 and results ~ r e d i c t e d  from the 

reaction rate being proportional to CH4 concentration and CuO surface area. 
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25.06 

Predicted Curve 

W 

f5 24-98 - Experimental Conditions 
LL 

5 System Pressure - 1.0 atm 

E CHq Concentration - 2.5 x 10-7~-moIes/cc 

!- 
System Temperature - 400°C 

II Diluent Gas - Helium 
(3 24.94 - 

Fig. 2.5. Comparison between experimental results for thermal balance Run 
TB-3 and results predicted from the reaction rate being proportional to CH4 
concentration and CuO surface area. 
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3.0 POWER REACTOR FUEL PROCESSING 

C .  D.  Watson 

3.1 Continuous Modified Zirflex - F. G .  K i t t s ,  F. L. Rogers 

Modified Zirflex i s  a process fo r  the  recovery of uranium from U-Zr-Sn 
fuels  involving dissolution i n  NH4F-WH4N03-H202 solutions, s tab i l iza t ion  
with KN03-A1(~Os)34 Hydrogen peroxide i s  added t o  the dissolvent t o  
oxidize uIV t o  the more soluble uVI so tha t  fuels  containing higher per- 
centages of U (up to  10s) can be processed without the intermediate pre- 
c ip i ta t ion  of UF4 which would occur i f  t h i s  oxidant were not added. 
Presently, the relationship between reaction ra t e  and dissolvent feed 
ra t e  t o  specimen surface area r a t io  i s  being investigated by dissolving 
Zircaloy-2 i n  a 6-in. -dia dissolver. 

The reaction ra t e  increased as  F/S increased but the increase was 
not l inear  so that although the amount dissolved ( t o t a l  throughput) 
increased with increasing F/S, the loading decreased leaving a rather 
narrow range of operation giving pract ical  dissolution ra tes  and loadings 
high enough t o  avoid excessive waste volumes. A reasonable approximation 
of steady-state operation was shown i n  a l l  three runs. Apparently a small 
beneficial  e f fec t  was observed when the NH40H-containing overhead 
condensate was withdrawn and an equal volume of water was returned to  
the dissolver. 

The complete data for  two runs i n  engineering-scale equipment and 
the analyt ical  data from a previous run (unit  Operations Monthly Report, 
August 1961) are  reported i n  Table 3 -1 and Figures 3.1 and 3.2. The 
reaction ra t e  (R),  feed ra t e  (F),  and specimen surface area (s) a re  
shown i n  Table 3.1 along with various solution compositions. These three 
are  correlated i n  Figure 3.1 as  reaction ra t e  vs F/S. Figure 3.2 shows 
the instantaneous zirconium concentration in the dissolver a t  5 min in ter -  
va ls  over the period of steady-state operation for  the three runs. The 
curved l i n e  i n  Figure 3.1 i s  the relationship between reaction r a t e  and 
F/S established by previous work i n  2-in.-dia equipment with t o t a l  reflux 
of &OH-con-ining overheads. This shows reaction ra t e  increasing with 
F/S but a t  an ever decreasing ra te .  This means tha t  although t o t a l  through- 
put increases, solution loading [L = R/ (F/s) ] decreases with attendant 
increase i n  chemfcal costs and waste volumes. The s t ra ight  l i n e s  a re  
l ines  of constant zirconium loading and f ree  F' concentration. The three 
runs i n  the 6-in.-dia equipment (indicated on Figure 3.1) probably f i t  
the curve within experimental error;  however, some differences should be 
pointed out. Run 1 was made a t  t o t a l  reflux (with rec t i f ica t ion)  while 
i n  runs 2 and 3 the overhead condensate was withdrawn and an equal volume 
of water was returned. Runs 2 and 3 indicate tha t  higher ra tes  and load- 
i n g ~  might be obtained operating a t  a higher F/S with condensate withdrawal. 
Run 2 was an exceptional run in t ha t  it gave a higher reaction r a t e  than 
run 1 (made a t  higher F/S) and a higher loading than run 3 (made at  lower 
F/s). The superiority of run 2 i s  probably explained by the hump i n  the 
curve of dissolver solution Z r  M vs time, Figure 3.2. Runs 1 and 3 show 
relat ively steady-state operation while run 2 which should have produced 
a horizontal l i n e  between runs 1 and 3 i s  displaced upward and m r e  e r ra t i c .  



Table 3.1. Continuous b d i f i e d  Z, i r f lex Runs i n  6 - in . -d ia  Equipment 

Conditions: Ebi l ing,  batch d i s s o l u t i o n  o f  Z,ircaloy-2 t o  provide i n i t i a l  d i s so lve r  charge 

Dissolvent Spec - Reaction Solvent Ex t rac t ion  Balance 
Feed imen Diss Rate Dissolver  ~ r o d u c t ~  S t a b i l i z e r  ~ e e d ~  Mater ia l  

Run Rate NLF NHINO? b 0 2  Area Time AWt Zircalov-2 F/S Loading F r e e F -  Vol KN03 A l ( ~ 0 3 ) 3  V01 Zr T o t a l F  Zr F . -. - 
NO. cm3/min M M - - -  M em2 min g mg/cm2-;in cmlmin g z.ly-27e M_ e !! !5 e !! - M % % - 

a ~ v e r a g e  values  ca lcu la t ed  from L = &. See Figure 3.1 f o r  ins tantaneous experimental values .  

bAlso contained -1 M HNO3 and -1 ~ 1 ( ~ 0 3 ) 3 .  

'A po r t ion  o f  t h e  d i s s o l u t i o n  product was l o s t  before s t a b i l i z a t i o n .  

' ~ o t a l  r e f l u x  (with  r e c t i f i c a t i o n ) .  

e ~ v e r h e a d  condensate withdrawn, equal vmlune of &O added. 
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Jn 1 - Overhead condensate refluxed 

/ Dissolvent introduced cold thru bottom flange 

Product take-off: overflow 
Run 2 - Overhead condensate withdrawn - water added 

Dissolvent preheated thru bottom flange 
Product take-off: l iquid seal 

Run 3 - Overhead condensate withdrawn - water added 
Dissolvent preheated - introduced above l iquid level 
Product take-off: jack-leg 

0 0.02 0.04 0.06 0.08 0.10 

F DISSOLVENT FEED RATE cm - 
s (SPECIMEN SURFACE AREA)' ~n 

Fig. 3.1. Continuous modified zirflex: correlation of reaction rate dissolvent feed rate and specimen surface area. 
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Fig. 3.2. Continuous modified zirflex: steady state Zr concentration i n  dissolver solution. 
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Run 1: F/S = 0.0816, Feed Cold, Condensate Refluxed 
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A l l  three runs were made by f i r s t  producing by batch dissolution a 
dissolver charge of the volume and composition estimated as the steady- 
s t a t e  condition. These compositions are  shown as time zero i n  Figure 3.2 
and were relat ively accurate except i n  run 1 where a steady reduction i n  
Z r  M characterized the approach t o  steady s t a t e .  This should r e su l t  i n  
a l o w  observed dissolution ra t e  since for  the f i r s t  portion of the run 
dissolution was occurring i n  a free F' concentration l e s s  than tha t  
calculated for the steady-state condition. After the batch dissolution 
was completed the element was charged ( t o t a l l y  immersed) and feed was 
begun; the dissolver effluent flowed into a batch of s t ab i l i ze r   a able 3.1) 
whose volume was 0.8 of the volume expected t o  overflow from the dissolver. 
The elements (multiplate, Zircaloy-2, -0.060-in. thick) were attacked 
-0.015-in. so that the error  introduced by assuming constant area through- 
out a run should be l e s s  than tha t  caused by changing surface roughness. 

The equipment fo r  the three runs differed significantly only i n  the 
method of  product withdrawal. In run 1 a simple overflow w a s  used with 
cold dissolvent fed a t  the bottom; the simple overflow technique with 
the absence of a l iquid sea l  allowed NH3 t o  contact the s tabi l ized product 
and a flocculent white precipi tate  was formed. In run 2 a jackleg entering 
the dissolver adjacent t o  the  reaction zone was used as the overflow device 
providing a l iquid seal,  with preheated dissolvent entering the bottom, 
but operation was hydraulically unstable due to  intermittent blowing of 
the shallow sea l .  In run 3 satisfactory operation was achieved using a 
jackleg entering the sidewall of the dissolver near the bottom flange, and 
feeding preheated dissolvent above the l iquid level .  The feeding of 
dissolvent from above should provide fo r  some attack of the ZrQcoated 
elements stacked in  the dissolver before they are immersed i n  the d is -  
solvent. 

3.2 SRE Dejacketing Studies - G. A. West 

Mechanical dejacketing techniques are  being demonstrated i n  the ORNL 
High Level Segmenting Faci l i ty ,  Bldg. 3026-D, by processing NaK bonded, 
s ta in less  s t ee l  clad uranium fuel  f r o m  the Sodium Reactor Experiment (sRE) , 
Core I, burned t o  -675 mwd/ton and decayed -2 years. 

Approximately 1630 kg, 91$, of the 1786 kg of uranium delivered t o  
ORNL has been dejacketed, canned and stored for  future aqueous dissolution 
and recovery. The experimental production r a t e  fo r  the past month was 
-6.0 kg ~ / h r  at ta ined during the de jacketing of 668 kg of uranium. Down 
time was -14% of the t o t a l  operating hours and included time f o r  photographs, 
movie shots and equipment repair  which included changing torn manipulator 
gauntlets and boots, replacing a decladder cut t ing wheel, renewing a 
tef lon l i n e r  i n  a valve and O-rings on both the jackscrew and expanding 
unit  of the pusher cylinder. A production plant processing ra t e  would be 
expected t o  exceed the experimental r a t e  by a factor  of 2 t o  3. A t o t a l  
of 6.5 l i t e r s  of the  l iquid metal NaK eutect ic  discharged from the fue l  
rods was collected and destroyed i n  batches of -100 m l  by reacting it with 
steam. Analysis of the NaK shows a csla7 concentration of 1 x lo6 t o  
6 x 10' cpm/ml with no detectable plutonium o r  uranium; gross l3 of 5 x lo6 
t o  3 x 107 cpm/g and gross y a t  6 x lo6 t o  2 x lo8 cpmIg. 



Radiation measurements made on a can of 12 slugs from a s ing le  fue l  
rod and a can of i n e r t  s t a in l e s s  s t e e l  scrap mater ia l  from a c lu s t e r  
(about 4.5 kg) was 480 and 120 r l h r ,  gamma, respectively a t  contact .  
Radiation measurements were a s  follows: 

Scrap 
Distance Y B, 7 7 B, 7 

Contact ( r l h r )  480 5,160 120 1,380 
0 .5  f t  ( r l h r )  150 660 37 156 
1 . 0  f t  ( r l h r )  66 270 21 87 
2.0 f t  ( r l h r )  18 90 7 30 

3 .3  Shear and Leach - B. C ;  Finney 

A shear and leach program t o  determine the  economic and technological 
f e a s i b i l i t y  of  continuously leaching the  core mater ia l  ( ~ 0 ~  o r  U O ~ - T ~ O ~ )  
from re l a t i ve ly  shor t  sections (1-in. long) of  f b e l  elements produced by 
shearing i s  continuing. This processing method has the  apparent advantage 
of  recovering f i s s i l e  and f e r t i l e  material  from spent power reactor  f u e l  
elements without dissolut ion of  the  i n e r t  jacketing mater ia l  and end 
adapters. These unfbeled portions a r e  s tored d i r e c t l y  i n  a minimum volume 
form a s  so l i d  waste. P. "cold" chop leach complex consist ing of  a shear, 
conveyor-feeder, and leacher is  being evaluated p r io r  t o  "hot" runs. 

The shakedown operations of  the  250 ton prototype shear a r e  continuing. 
A number of  minor m d i f i c a t i o n s  a r e  being made t o  f a c i l i t a t e  b e t t e r  opera- 
t i o n  o f  the  shear. These changes include such items as improving the  opera- 
t i o n  of  the  f u e l  assembly length indicator ,  i n s t a l l a t i o n  of a second 
hydraulic cylinder a t  the  f ron t  of  the  feed mechanism t o  provide a smooth 
motion, and enlarging the  arm s l o t  i n  the  inner  gag f o r  ea s i e r  removal. 

The r e l a t i v e  posi t ion of the  primary pieces of  equipment indicat ing 
flow of  mater ia ls  i n  the  shear and leach complex i s  presented i n  Figure 3.3. 
The 250 ton prototype shear consis ts  primarily of  a remotely operable 
shear powered by a hydraulic ( o i l )  system and a hydraulic (water o r  a i r )  
operated feed mechanism (Figure 3.4). The sequence of operating t he  shear 
follows: a f u e l  assembly i s  picked up with a crane and inser ted  i n to  t he  
f u e l  element envelope by means o f  the  loading arm. The pusher arm i s  
moved in to  posi t ion where it pushes t he  fue l  assembly in to  the  shear 
against  a s top i n i t i a l l y  and a f t e r  each cut i s  made ( ~ i g u r e  3 .5) .  A s t ep  
shaped movable blade shears the  f u e l  assembly i n to  short  sect ions  of  
114-in. t o  1- in .  Both the  s top and s t ep  blade a r e  mounted on the  r a m  
( ~ i g u r e s  3.6 and 3.7) . The f u e l  assembly i s  held during shearing by an 
inner and ou te r  gag and by the  f ixed blade. After t he  ram has made a 
complete s t roke (forward and backward) the  gags a r e  released so t h a t  t h e  
f u e l  assembly can be moved forward against  the  s top  f o r  the  next cut .  
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PRODUCT OVERFLOW 
/LIQUID DRAIN 2 . O M  HN03 : 1 . 8 M  U02(N03)2 

Fig. 3.3. Shear and leach complex indicating relation position of major equipment components and flow of materials. 
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Fig. 3.4. 250-Ton prototype shear and feed mechanism. 









Sheared product obtained from shearing a porcelain f i l l e d  ORNL Mark I 
prototype fue l  assembly i s  shown i n  Figure 3.8. The product consis ts  of 
short  sections of porcelain f i l l e d  s ta in less  s t e e l ,  porcelain f ines ,  end 
pieces with s t a in l e s s  s t e e l  plugs, f l a t tened  fe r ru les ,  and magnetic s ta in-  
l e s s  s t e e l  f ines .  

The conveyor-feeder has been fabricated and assemblied. It w i l l  be 
i n s t a l l ed  i n  Cel l  1 of  Bldg. 4505 and checked out  using batches of chopped 
porcelain f i l l e d  s t a in l e s s  s t e e l .  

Tests have been concluded on the  leacher rotary drum using 1- in .  
sections of  s t a in l e s s  s t e e l  rod and it was concluded that there  i s  
essen t ia l ly  no back mixing when using 2.5 l i t e r  batches. Additional 
t e s t s  w i l l  be conducted using chopped sections of porcelain f i l l e d  s t a in -  
l e s s  s t e e l  and water t o  simulate acid t o  study the  behavior of the  leacher 
when feeding both so l ids  and l iqu ids .  





4.0 REACTOR EVALUATION STUDIES 

J. C . Suddath 

4 .1  Heat Transfer from Spent Reactor Fuels during Shipping - J. S. FTatson 

After  completing a s e r i e s  of  temperature measurements with a 12- in . -  
I D  x 2 f t  simulated hor izonta l  shipping cas t  and bundles containing up t o  
64 tubes o f  mock spent f u e l  pins,  t h e  c a s t  w a s  inver ted  and measurements 
s t a r t e d  i n  t he  v e r t i c a l  posi t ion.  Tables 4 .1  through 4.4 show temperatures 
measured a t  a cross sect ion a t  t he  midpoint i n  t he  bundle (12 i n .  from the  
bottom) with various heat  generation r a t e s .  The center  tube temperatures 
a r e  very near those observed i n  t he  hor izonta l  posi t ion.  The surrounding 
tube temperatures a r e  symetrical but average very near ly  t he  same as i n  
the  hor izonta l  measurements. Shown along with t he  da t a  a r e  temperatures 
ca lcula ted with t h e  procedure described i n  t he  Unit Operations Monthly 
Progress Report, June 1961. Here it i s  obvious t h a t  these  approximate 
rad ia t ion  ca lcu la t ions  a r e  op t imis t i c  a t  l e a s t  near t he  ou t s ide  of t he  
bundle. It may be noted t h a t  t he  predicted temperatures near t h e  center  
of t h e  bundle a r e  s t i l l  reasonably good. It appears t h a t  a l l  conservative 
o r  sa fe ty  fea tu res  i n  the  rad ia t ion  calcula t ions  within t h e  bundle ss well  
a s  convective e f f e c t s  a r e  almost exact ly  balanced by t he  op t imis t i c  e r r o r s  
involved i n  ca lcu la t ing  t he  temperatures i n  t h e  outs ide  tubes o f  t he  bundle. 

In  t he  hor izonta l  pos i t ion  the re  w a s  a s i gn i f i c an t  amount o f  convective 
heat  t r a n s f e r  demonstrated by t he  nonsymetrical temperatures measured. 
However, because precise  evaluation of t h e  r ad i a t i ve  and conductive f luxes  
have not  ye t  been made, t he  r e l a t i v e  e f f e c t s  of  convection have not  been 
assessed.  With t h e  bundle i n  t h e  v e r t i c a l  posi t ion,  t h e  e f f e c t s  of  con- 
vect ive  currents  should be noted from var ia t ions  i n  t he  measured tempera- 
t u r e s  up t h e  bundle. This e f f e c t  can be seen i n  Tables 4.4 through 4 .6  
where temperature d i s t r i bu t i ons  measured a t  t h r ee  posi t ions  up t he  bundle 
(12, 15 ,  and 18 i n .  from t h e  bottom) but with t h e  same heat  generation 
r a t e  of  0.012 watts/cm a r e  shown. The temperatures increased approximately 
7 O C  over t h i s  range. The temperatures i n  t h e  bundle w i l l  be highest  a t  
t h e  very top  o f  t h e  ca s t ,  and probably longer c a s t s  would give higher 
m a x i m u m  temperatures. However, obviously t he  bundle temperatures can not  
increase without l i m i t  s ince  rad ia t ion  and conduction w i l l  eventually be 
capable of t r an s f e r r i ng  a l l  of  t he  generated heat  from t h e  bundle. 



Table 4.1. Temperature Distribution in 64 Tube Vertical Bundle 

at the Midpo int 

Heat generation rate 0.02158 wattsltube-cm 
Average wall temperature 53. oO@ 
(~easured temperatures are boxed and calculated temperatures open. ) 
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Table 4.2. Temperature Dis t r ibut ion i n  64 Tube Vert ical  Bundle 

a t  the  Midpoint 

Heat generation r a t e  0.0337 wattsltube-cm 
Average w a l l  temperature 6 4 . 6 ' ~  
( ~ e a s u r e d  temperatures are  boxed and calculated temperatures open.) 



Table 4.3. Temperature Distribution in a 64 Tube Vertical Bundle 

at the Midpoint 

Seat generation rate 0.04852 watts/tube-cm 
Average wall temperature 79. kOc 
(~easured temperatures are boxed and calculated tenperatures open. ) 



Table 4.4. Tem~erature Distribution in a 64 Tube Vertical Bundle 

at the Midpoint 

Beat generation rate 0.01212 watts/cm 
Average wall temperature 41.2"C 
(~easured temperatures are boxed and calculated temperatures open. ) 



Table 4.5.  Temperature Distribution in a 64 Tube Vertical Bundle 

15 in. from the Bottom 

Beat generation rate 0.01212 wattsltube-cm 
Average wall temperature 37.4 "C 



Table 4.6. Temperature Distribution in a 64 Tube Vertical Bundle 

18 in. from the Bottom 

Heat generation rate 0.01212 watts/tube-cm 
Average wall, temperature 41.0 O C  



R.  W.  Horton 

5.1 Sorption of m6 on NaF - L. E. McNeese 

Determination of the  fac tors  which control  the  r a t e  o f  removal of 'm6 
from a flowing gas stream by a f ixed bed of  NaF has been the  subject  of 
a number of recent s tudies .  To date ,  no physical model has been s e t  f o r t h  
which adequately explains the  observed charac te r i s t i cs  of  the  sorption 
phenomenon. These charac te r i s t i cs  w i l l  be reviewed a f t e r  which a possible 
model w i l l  be discussed. Equations based on t h i s  model w i l l  be derived 
and preliminary solutions discussed. 

Character is t ics  of  the  Sorption Phenomenon. The sorption of  UF6 by 
NaF was f i r s t  reported by Martin, e t  al,l who observed the  formation of  
a lemon-yellow product i n  which the  molar r a t i o  of  UF6 t o  NaF was 0.333 
whereupon it was concluded t h a t  a complex having the  formula UFsm3NaF 
was formed. Sorption was carr ied out  a t  20-120°C and it was observed 
t h a t  desorption could be effected b ra i s ing  the  tenperature t o  400°C. 
Subsequent study by Cathers, e t  a l J 5  o f  the  formation and decomposition 
react ions  of  the  complex showed t h a t  the  dissocia t ion pressure of  m6 
above the  complex was a function of  temperature only, and was expressable 
a s  log P = A + B/T'K. The dissocia t ion pressure i s  only 1 rnrn Hg a t  195 '~ .  
The dissocia t ion pressure was notably independent of the  f r ac t i ona l  
conversion of NaF t o  complex i n  a sample. The sorption reac t ion  was 
observed t o  be reasonably exothermic (-23.2 kcal/mole me). The f i r s t  
r a t e  s tud ies  were those of  ~ o r t h i n ~ t o n 3  who measured the  r a t e  o f  sorption 
of pure UF6 a t  56 mm Hg pressure on f i ne ly  divided NaF powder i n  the  
temperature range 80-130'~. The f r ac t i ona l  conversion ms observed t o  
depend on time i n  a logarithmic manner, with f rac t iona l  conversion i n -  
creasing with an increase i n  temperature a t  a constant react ion time. 
The product of the  reaction was observed t o  be UF6-3NaF. 

4 
Subsequent r a t e  s tudies  wers carriet: oxt  by Massoth and Hensel on 

NaF powder, p e l l e t s ,  and crushed p e l l e t s  using pure m6 a t  90 mm Hg i n  
the  temperature range 24-68'~. The reaction r a t e  fo r  the  powder was 
observed t o  follow the  parabolic r a t e  law, i . e .  

x = thickness of  product f i l n  due t o  p a r t i a l  react ion 

t = time 

k = constant 

The react ion with crushed p e l l e t s  followed the  logarithmic r a t e  law, 
cix -bx - = ae i n i t i a l l y  but a f t e r  -200 sec followed the  parabolic r a t e  law. d t  
The sorption r a t e  was observed t o  depend inversely on t he  ? a r t i c l e  s i ze .  



The r e a c t i o n  o f  w6 with NaF p e l l e t s  produced r e s u l t s  q u i t e  d i f f e r e n t  
t o  those  observed f o r  t h e  powder o r  crushed p e l l e t s .  The reac t ion  was 
observed t o  proceed rap id ly  a t  f i r s t  and then  t o  apparently s t o p  a t  -40~; 
conversion. A small inverse e f f e c t  of  temperature upon ex ten t  o f  r e a c t i o n  
w a s  noted. A physica l  blockage due t o  buildup o f  complex on t h e  ou t s ide  
o f  t h e  p e l l e t  was suggested a s  an explanation o f  t h e  incomplete r eac t ion .  
?Yo explanation o f  t h e  inverse  temperature e f f e c t  was given. 

Recent s t u d i e s  i n  t h e  Unit Operations Section on t h e  removal o f  I F 6  
from a flowing w6-N2 stream by a f i x e d  bed o f  NaF p e l l e t s  have i n  general  
subs tan t i a t ed  most of  t h e  c h a r a c t e r i s t i c s  noted by t h e  previous inves t iga -  
t i o n s .  Notably, t h e  e f f e c t s  o f  s t rong inverse  temperature dependence o f  
the  r a t e  and ex ten t  of  r eac t ion  over the  range 30-125'C have been observed. 

In summary, it may be concluded t h a t  a complex o f  t h e  formula UFG.3NaF 
i s  formed by a chemisorption reac t ion .  Reasons f o r  t h i s  conclusion a r e :  

1. Non-dependence o f  d i s s o c i a t i o n  pressure  on extent  o f  conversion. 

2 .  Nagnitude of heat  sor:ption. 

3. Color change due t o  r eac t ion .  

From t h e  r a t e  s t u d i e s  on powder and crushed p e l l e t s  of  NaF, t h e  
e f f e c t  o f  an increase  i n  temperature i s  t h a t  o f  inc reas ing  t h e  l o c a l  r a t e  
of  sorpt ion .  It is  probable t h a t  t h i s  i s  t r u e  i n  t h e  case of  p e l l e t s ,  
and t h a t  some mechanism o the r  than k i n e t i c s  i s  responsib le  f o r  t h e  inverse  
temperature e f f e c t  . 

In  at tempting t o  expla in  t h e  temperature e f f e c t ,  one can r u l e  o u t  
l a r g e  temperature g rad ien t s  i n  t h e  s o l i d ;  t h e  maximum temperature d i f f e r -  
ence between t h e  i n s i d e  o f  t h e  p e l l e t  and t h e  su r face  i s  of  t h e  o rde r  o f  
1'C o r  poss ib ly  much l e s s .  Therefore, t h e  e f f e c t  can not be due t o  d i s -  
s o c i a t i o n  pressure  which i s  only  1 mm Hg a t  195OC. 

One can a l s o  observe t h a t  t h e  sorbed UF6 i s  concentrated around t h e  
periphery o f  t h e  NaF p e l l e t ,  and t h a t  t h e  cen te r  appears completely 
mconverted. It i s  a l s o  evident  t h a t  t h e  r a t e  of  r eac t ion  between UF6 
and a clean NaF surface  i s  q u i t e  f a s t ,  but t h a t  appreciable  r e s i s t a n c e  
t o  3:eaction i s  afforded by a f i l m  o f  t h e  complex. 

Model o f  Sorption Process.  In  choosing a model t o  represent  a physica l  
system, one invar i ab ly  at tempts t o  cont r ive  a s impl i f i ed  p i c t u r e  of  r e a l i t y ,  
which never the less  must s a t i s f y  and account f o r  t h e  observed c h a r a c t e r i s t i c s  
o f  1:eality. 

The present  model i s  based on a very simple idea .  Consider t h e  move- 
xent  o f  gaseous UF6 i n  an open pore within t h e  NaF p e l l e t .  One fo rce  
con t r ibu t ing  t o  t h e  movement i s  t h a t  o f  Fickian d i f f u s i o n  along t h e  gas 
phase concentra t ion  g rad ien t .  If t h e  NaF at t h e  pore wal ls  i s  not  com- 
p l e t e l y  reac ted ,  t h e r e  w i l l  a l s o  be a n e t  movement toward t h e  pore wal l  
d7.e t o  r eac t ion  of  UF6 st t h e  wal l .  One can v isu&ize  t h e s e  ,two f o r c e s  
as vec to r s  



Reaction 
k ine t ics  

Diffusion 

and obtain t he  magnitude and r e l a t i v e  d i rec t ion  of movement of  m6 in to  
t he  NaF p e l l e t .  An increase i n  temperature w i l l  cause an increase i n  the 
magnitude of both the  dif fusion vector and the  reaction k ine t ics  vector; 
however, not by the  same r e l a t i ve  amount. Since the  d i f f u s i v i t y  var ies  
a s  and the  r a t e  constant a s  A - - 

RT 
e 

a change i n  temperature w i l l  cause a l a rge r  r e l a t i ve  change i n  t he  react ion 
kinet ics  vector than i n  t he  dif fusion vector. Thus the  magnitude of  the  
ac tua l  movement w i l l  become greater ,  but more important, the  d i rec t ion  of 
the  ac tua l  movement w i l l  become more nearly toward the  pore w a l l .  This 
is the  expected r e s u l t  and represents nothing new. 

Measurements of t he  c r y s t d l i n e  density of t he  complex indicate  t h a t  
the  open pore volume i n  a NaF p e l l e t  would be f i l l e d  with complex before 
complete conversion of the  NaF. It is  with t h i s  condition t h a t  t he  r e l a t i ve  
movement and d i rec t ion  of the  m6 i n  the  pores becomes important. The 
apparent sorption capacity i s  d i r ec t l y  re la ted  t o  the  d i rec t ion  o f  the  
ac tua l  movement of UF6. For, i f  the  d i f fu s iv i t y  were i n f i n i t e  compared t o  
the  r a t e  of react ion a t  the  pore w a l l ,  t h e  UF6 concentration i n  t h e  pores 
throughout t he  p e l l e t  would be constant and when the  pores a t  t h e  p e l l e t  
surface became f i l l e d  with complex, a s  a l so  would t he  pores a t  t he  center  
of the p e l l e t .  The point-to-point conversion of NaF t o  complex would be 
invar iant  and one would observe the  maximum f r ac t i ona l  conversion of  NaF 
t o  complex. I f ,  on the  other  hand, the  r a t e  of reaction a t  the  pore w a l l  
were i n f i n i t e  when compared t o  the  r a t e  of di f fusion along the  pore, the  
pores at  the  surface would become f i l l e d  whereas those a t  the  center  wauld 
be completely unreacted. One would observe an in f in i tes imal ly  t h i n  layer  
of  complex-filled pores around the  periphery o f  t he  p e l l e t  and the  average 
f r ac t i ona l  conversion of NaF i n  the  p e l l e t  t o  complex would be i n f i n i t e s -  
i m a l .  Clearly,  t h i s  would represent the  case of minimum f r ac t i ona l  con- 
version. The t a c i t  assumption has been made i n  the  foregoing t h a t  t he  
r a t e  of di f fusion of  m6 through the  so l i d  phase is  negl igible  when com- 
pared t o  the  r a t e  through the  open pores i n  the  p e l l e t .  

Thus, the  present model accounts fo r  t he  inverse temperature e f f e c t  
and ye t  r e t a in s  t h e  ac tua l  k ine t ic  cha rac t e r i s t i c s  of the  system a s  shown 
by s tudies  with NaF powder and crushed pe l l e t s .  The cha rac t e r i s t i c s  of  
the  sorption r a t e  becoming negl igible  before complete conversion is  a l so  
explained a s  i n  the  physical appearance of  the  reacted p e l l e t .  



Derivation of  Equations. P r io r  t o  t h e  de r iva t ion  o f  t h e  p a r t i a l  
d i f f e r e n t i a l  equations f o r  the  system, one must w r i t e  an expression f o r  
t h e  l o c a l  react ion r a t e  within t h e  p e l l e t .  There a r e  a t  l e a s t  two poss ib le  
r e l a t i o n s  whkch should be considered.. The f i r s t  i s  o f  t h e  form 

where 

r = reac t ion  r a t e ,  g moles ~ ~ ~ / s e c - c m ~  p e l l e t  

g moles UF6 a = constant ,  
g mole UF6 

sec -cm2 i n t e r n a l  a r e a  
g mole gas 

S = i n t e r n a l  surface  a r e a ,  p e l l e t  

' N ~ F  
= p e l l e t  densi ty ,  g/cm3 p e l l e t  

x = f i lm thickness o f  product,  cm 

b = constant ,  cm-l 

C = UFG concentrat ion i n  open pore space, g moles UF6/g mole gas 

y = r a t i o ,  i n t e r n a l  surface  a rea /o r ig ina l  i n t e r n a l  surface a rea  

The second r e l a t i o n  i s  of  t h e  form 

g moles UF6-cm f i l m  th ickness  
a t  = constant ,  

g mole m6 
sec -cm2 in ternal .  a r e a  

g mole gas 

b '  = constant ,  cm f i l m  thickness 

The q u a n t i t i e s ,  a ,  b, a ' ,  and b ' ,  a r e  functions o f  temperature. 

The d i f fe rence  between t h e  two r a t e  equations l i e s  i n  t h e  e f f e c t  o f  
product f i l m  th ickness .  The second case i s  simply t h a t  o f  s l a b  conduction 
and considers t h e  product l a y e r  t o  be i n t e g r a l .  The f i r s t  case has been 
observed when t h e  reac t ion  product f i lm cracks so a s  t o  a f fo rd  l e s s  r e s i s t -  
ance t o  d i f fus ion  o f  t h e  reac tan t  than would otherwise be expected. Thus 
f a r  i n  t h e  study, only  t h e  f i r s t  case has been considered. 

For convenience, P w i l l  be defined 



so t h a t  the  react ion r a t e  equation becomes 

Before proceeding f'urther with the  der ivat ion,  one must f ind  t h e  var ia t ion  
o f  7 with f r ac t i ona l  conversion, and one must f ind the  var ia t ion  of  t he  
open void volume tr. with f r ac t i ona l  conversion. 

Although one 1s dealing with NaF p e l l e t s  which a r e  118-in. r i gh t  
c i r cu l a r  cylinders,  i n  order t o  simplif'y the  system it w i l l  be assumed 
t h a t  one i s  dealing with a  sphere having the  same volume a s  a  p e l l e t .  
The external  surface area  of t h i s  sphere i s  11.4% l e s s  than that of t he  
cylinder . 

Consider a  sphere of NaF of  volume V cm3 and weight W grams. The 
surface area  per un i t  weight w i l l  be S cm2Ig. I f  the  t heo re t i ca l  densi ty  
of NaF i s  pth g/cm3, then the  f rac t ion  of  the  volume V which i s  void i s  

Let f  represent the  f rac t ion  of  t h i s  void volume which i s  open, i . e .  
connected with the  external  surface. It w i l l  be assumed t h a t  t h e  i n t e rna l  
surface a rea  SW bounds the  e f fec t ive  void volume 

Assume t h a t  t he  d i s t r i bu t ion  o f  e f fec t ive  void volume i s  homogeneous 
and consider a  un i t  a rea  from a spher ical  s h e l l  of  thickness Ar cm. The 
unit a rea  can be f l a t t ened  in to  a  s lab  of  thickness A- cm which w i l l  contain 
an e f fec t ive  void volume of  f ( l  - w/vPth). Assume t h a t  t h i s  volume i s  
taken up by N cylinders of  length Ar and diameter 6cm.  

Then 

Associated with t h e  element of thickness Ar i s  the  i n t e rna l  surface a rea  
o f  

If the  above N cylinders have t h i s  surface area ,  then 



Dividing the  two re la t ions ,  one has 

-1 

i l 

L _ J  
Thus, one has assumed t h a t  the  t o t a l i t y  of the  open void volume of the  
p e l l e t  i s  contained i n  pores of  diameter 3 cm. 

In a  s t r a igh t  forward manner, one can show t h a t  the  maximum f r ac t i ona l  
conversion of NaF t o  complex i n  a  pe l l e t  which r e t a in s  i t s  o r ig ina l  d i -  
mensions i s  

1 - 1 
' c  126 : 1- --- 

' N ~ F  
q3 1 

C- 
f r ac  s a t  = 

"th st- - 

where 

c  = density of complex, g/cm3 

' N ~ F  
= densi ty  of o r ig ina l  p e l l e t ,  g/cm3 

"th = t heo re t i ca l  density of  NaF = 2.79 g/cm3 

f  = f rac t ion  of void volume which is  connected t o  external  surface 

Similarly,  a, the  r a t i o  

oDen void volume 
t o t a l  volume 

may be expressed a s  



The f i l m  thickness of complex a s  a function of f r ac t i ona l  conversion F 
can be expressed a s  

Also, y, t he  r a t i o  i n t e rna l  surface a r ea lo r ig  i n t .  surface a rea  can 
be obtained from t h e  f i lm thickness and t he  expression f o r  8, t h e  o r i g i n a l  
pore diameter, by using a l og  mean average of  t h e  i n t e rna l  and ex te rna l  
diameters of t h e  reacted zone a s  shown i n  Figure 5.1. The r e l a t i o n  i s  

One can now proceed with the  main der ivat ion,  i . e . ,  t h e  r e l a t i o n  
specifying t he  concentration C of unreacted UF6 i n  t h e  open pore volume 
a s  a function of r a d i a l  pos i t ion  and t i m e .  

Consider a spher ical  s h e l l  of  thickness Ar cm with inner radius  r cm 
and ou te r  radius  ( r  + Ar) cm as shown i n  Figure 5.2. 

Spherical  symmetry w i l l  be assumed. A t  t h e  r ad i a l  pos i t ion  r,  t h e  
concentration of  unreacted UFs i n  t h e  open void volume w i l l  be taken a s  
C g moles U F ~ / ~  mole gas and t he  f r ac t i on  of t h e  t o t a l  volume which i s  
open void volume w i l l  be taken a s  ~ ( r ) .  Then, a t  t h e  r a d i a l  pos i t ion  
( r  + Ar) t he  concentration w i l l  be C + ac/hr Ar and t he  f r ac t i on  of t h e  
t o t a l  volume which i s  open and void w i l l  be a ( r )  + a l ( r ) A r .  

The open void volume i n  t h e  s h e l l  i s  then 

open void volume = 4nr2 Ar  + a " ( r )  

Since t h e  medium i s  assumed t o  be homogeneous, t h e  r a t i o  of  open a rea  t o  
t o t a l  a rea  a t  ( r  + Lw) i s  
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a(r)  + ( r )  & 

Thus t he  r a t e  of d i f fus ion  of IF6 i n to  the  s h e l l  i s  

a2 

1 a(c  + 
r a t e  i n ,  + o t ( r )  & D I  ' 

rmles = 4 n ( r  + &)2 
sec d r  

where 

D v  = e f f ec t i ve  d i f f u s i v i t y  of m6 through the  open pore volume, 
g  moles gas/sec-cm gas 

It should be observed t h a t  D' w i l l  be a f r ac t i on  of t h e  value o f  t he  
d i f f u s i v i t y  of w6 i n  N 2  due t o  t he  elongated and p a r t i a l l y  blocked nature 
of t h e  ac tua l  d i f fus ion  path. The value of Dl  would be the  ac tua l  d i f -  
f u s i v i t y  only i f  a l l  o f  t h e  pores were al igned r a d i a l l y  from t h e  center  
of t h e  sphere. Similarly,  t he  r a t e  o f  d i f fus ion  of  w6 out of t he  s h e l l  
i s  

r a t e  out ,  g *les = 4 n P  a ( r )  D I  
a2 

sec 37 

The r a t e  of react ion of m6 within t he  s h e l l  i s  

r a t e  of react ion,  g  m l e s  UF6 = 4 n P  & p c sec 

The r a t e  o f  accumulation of  unreacted w6 i n  t he  s h e l l  i s  
n 

a r a t e  of accumulation, = 4.3 & b ( r )  + a l ( r )  ;- 
sec 'r]]22~:20K 

Then, s ince  

Rate o f  accumulation = Rate of d i f fus ion  i n  - Rate o f  d i f fus ion  ou t  - R a t e  
of  react ion 

& a(c  + 
4n( r  + h)" ra(r) + a 1  ( r )  & 1 D I  a r - 4nr2 a(r)  D1 - hnr2 & p C 

a r  

Dividing by 4 n r 2  &, and taking the  l i m i t  as & -+ 0, one obta ins  t he  fun- 
damental equation governing t he  concentration of  unreacted UF6 i n  t he  
p e l l e t  as a function of time and posi t ion:  



where 

D = ef fec t ive  d i f fu s iv i t y  of UT6 through NZ i n  t he  p e l l e t ,  cm2/sec 
e 

It should be recal led t h a t  U and B a r e  functions of  the  f r ac t i ona l  con- 
version so t h a t  the  equation has non-constant coeff ic ients .  Achievement 
of  an ana ly t ica l  solut ion t o  t he  equation seems highly improbable. Thus, 
i n  order t o  in tegra te  the  equation over time and space, one must r e so r t  
t o  a numerical solution.  

After one obtains the  solut ion of  the  r e l a t i on  f o r  ~ ( r , t )  one can 
use t h i s  t o  f ind  the  r a t e  of  loading of  the  pe l l e t  and the  d i s t r i bu t ion  
of reacted UF6 i n  t he  p e l l e t .  

5 The f i n i t e  difference method of DuFort and Frankel has been used i n  
order t o  allow a p rac t i ca l  in tegrat ion time f o r  the  system of  f i n i t e  d i f -  
ference re la t ions .  The f i n i t e  difference equations were coded f o r  solut ion 
on the  IBM-7090 computer allowing fo r  a f i lm type res is tance t o  mass t r ans fe r  
a t  t he  exte a1 surface of t he  sphere. The code was checked against  
Danckwertsl'analytical solut ion fo r  the  equation 

where k and D a r e  constants 

Sat isfactory convergence was observed. 

Preliminary solutions of the  system of  equations have t he  observed 
charac te r i s t i cs  of the  experimental system. Loading curves f o r  s ing le  
l ayers  of  NaF p e l l e t s  at  constant temperature, flow r a t e ,  and UF6 concentra- 
t i o n  w i l l  be used t o  t e s t  t he  model fu r ther  and s e t  values f o r  the  constants 
within it. 
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5.2 Dissolution of EBR-1 Core I1 Meltdown - W. W. P i t t ,  Jr. 

The Vola t i l i ty  P i lo t  Plant has available fo r  processing the  residue 
of t he  s t a in l e s s  s t e e l  jacketed Core I1 from the  EBR-1. Laboratory experi- 
ments and other  s tudies  indicate  there  should be no , :d i f f icu l t ies  associated 
with the processing of t h i s  fue l  with the  exception of a possible violent  
reaction of NaK. Hence these s tudies  were conducted t o  determine possible 
hazards presented by the  NaK i n  the  core residue. 

The EBR-1 i s  a NaK cooled, so l id  fueled, f a s t  breeder reactor  with 
depleted U blanket. It was designed and b u i l t  by Argonne National Laboratory 
and put in to  o e ra t ion  by APSL at the National Reactor Testing Stat ion i n  
Idaho i n  1951.' Core I1 was a hexagonal array of 217, SS 347 tubes of 
0.021-in. wall each containing two 0.384 diameter enriched uranium 2 wt '$ 
zirconium a l loy  fue l  slugs 4-1/k-in. long; one 4-114-in. long lower blanket 
s lug of s t a in l e s s  s t e e l  jacketed unenriched U-Zr  al loy; and two, 3-314-in. 
long upper blanket slugs,  a lso s t a in l e s s  s t e e l  jacketed unenriched U-Zr  
a l loy.  The 0.012-in. annulus was f i l l e d  with NaK. Due t o  the  economic 
advantage, the  reactor  was constructed of  347 s t a in l e s s  s t e e l ,  even though 
it was known t h a t  uranium forms low-melting eu tec t ics  with i ron,  nickel,  
and chromium ( three main consti tuents i n  s t a in l e s s  s t e e l ) .  On November 29, 
1955, during experiments a t  high core temperatures and a short  reactor  
period, a p a r t i a l  meltdown of  t he  fue l  occurred and damaged the core 
assembly. ~3 

After t h i s  incident and a reasonable decay time, the  core was removed 
from the  reactor an disassembly began. Disassembly was completed a t  the  
Lemont s i t e  of ANL.' An a r t i s t  I s  reconstruction, based on observations 
during disassembly, was made a t  ANL ( ~ i ~ u r e  5.3) . 

Present Condition of Core I1 Fuel. The material  from t h e  fue l  section 
of the  core e x i s t s  a s  a nonhomogeneous mixture of s t a in l e s s  s t e e l ,  uranium, 
zirconium, and NaK sealed i n  enameled s t e e l  cans 2-in. high by 3-in. dia .  
There a r e  105 of these cans containing various weights of material  between 
93 and 1100 g, with t he  average can containing -1000 g. The weight of each 
f i l l ed  can i s  an indication of the  r e l a t i ve  volume of NaK which might 
possibly be entrained ( the  heavier the  can the l e s s  NaK entrained; Sp. G.  
nTaY < 1, sol ids  ~ 1 5 ) .  

NaK Considerations. It i s  the  unknown quantity of NaK i n  t he  EBR-1 
cans t ha t  causes concern whenever a paper study of processing these cans 
i s  made. Chemical analysis of samples from the  meltdown indicated t h a t  
some of t he  sponge l i k e  sol id  material  contained a s  much a s  35 vol  % NaK, 
and possibly more. 

The reaction of HF and NaK i s  very rapid and exothermic, but since it 
requires 2 moles of HF fo r  each mole of & evolved, there  would be no pres- 
sure increase due t o  gas evolution. Since the vapor pressure of  NaK a t  
1?0O0F i s  only 200 rnm Hg, there  would be no pressure increase due t o  
vaporization of TJaK. This leaves us with the poss ib i l i t y  of an exp!.oslve 
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Fig. 5.3. Artist's reconstruction of a vertical cross section through the 
damaged EBR-l core. The most reliable values for the densities of  the vari- 
ous areas are shown at the left. 



type react ion,  a rapid expansion of  gases due t o  an extreme r i s e  i n  tempera- 
t u r e .  While t h i s  might occur, it i s  extremely unl ikely  t h a t  more than a 
s m a l l  f r a c t i on  of  l a r g e  quan t i t i e s  of NaK w i l l  r eac t  instantaneously,  
due t o  t h e  low surface t o  volume r a t i o  o r  low quan t i ty  o f  HF ava i lab le .  
For any reasonable react ion time, t he  140 kca l  evolved per  g mole of  NaK 
reacted, would be e a s i l y  absorbed i n  t he  fused salt bath. 

NaK Dissolution Experiment. A 6 i n .  length  of  304 SS tubing o f  10 
m i l  w a l l  thickness containing 8 cc of  NaK was dissolved with HF i n  a fused 
salt bath. The vessel  used w a s  t h e  3.5 i n .  d i a  by 12  in .  deep INOR-8 pot  
previously used f o r  Zr02 d i s so lu t ions .  The 4 kg of  26-42.5-31.5 mol % 
NaF-LiF-ZrF4 s a l t  was maintained at  -500°C f o r  4 h r s  d i s so lu t ion  time and 
then ra i sed  t o  - 6 0 0 " ~  f o r  4 hrs .  The HF flow r a t e  w a s  0.25 lb /h r .  After  
5 h r s  of  d i s so lu t ion  time a salt splash caused a p a r t i a l  plugging of  t h e  
off-gas l i n e  and subsequent r i s e  i n  vesse l  pressure.  However a f t e r  r emva l  
of  t h e  plug, t h e  pressure returned t o  normal, and HF flow was resumed and 
continued f o r  3 more h r s .  Though t he r e  i s  no way o f  knowing when t h e  SS 
tube was penetrated,  it i s  believed t h i s  occurred a t  t h e  time o f  t h e  s a l t  
splash.  It i s  known t h a t  t he  SS was not penetrated a t  t he  end o f  4 h r s  
and no t r a c e  o f  t h e  tube was found a f t e r  8 hrs .  The 5 h r  d i s so lu t ion  
time f o r  t h e  tube corresponds t o  t h e  2 mil/hr  r a t e  reported f o r  304 SS. 
The salt splash was probably caused by t he  evolution of a l a rge  quant i ty  
o f  Hz from t h e  NaK and HF react ion,  though t he r e  was not  enough t o  give 
a not iceable  pressure increase .  There a l so  was no increase i n  salt 
temperature due t o  t h e  exothermic react ion.  

While t h i s  one experiment i s  not conclusive, it does ind ica te  t h a t  
t he  ent ra ined NaK i s  not  l i k e l y  t o  produce an explosive reac t ion  during 
d i s so lu t ion  o f  t h e  EBR-1 can by HF i n  fused sal t .  
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6.0 WASTE PROCESSING 

J. C .  Suddath 

The purpose of the  waste processing program is  t o  develop equipment 
and produce design data  su i tab le  fo r  the  f i n a l  design of a waste calcina- 
t i on  p i l o t  p lant .  Test R-41, reported t h i s  month, was a Ca-Purex calcina- 
t i o n  t e s t .  

6.1 Evaporator-Calciner Test R-41 - C .  W .  Hancher 

Evaporator -calciner t e s t  R-41 was a Purex calc inat ion with calcium 
added t o  decrease su l f a t e  v o l a t i l i t y .  When c ~ ( o H ) ~  i s  added t o  Purex 
feed the  resu l t ing  CaS04 s lur ry  is d i f f i c u l t  t o  handle because it s e t t l e s  
f a s t  and tends t o  plug feed l i n e s .  

Calcium i s  be t t e r  than Na o r  Mg f o r  decreasing su l f a t e  v o l a t i l i t y  
because the  resu l t ing  CaS04 i s  more s table ,  and operating experiences 
show l e s s  i n t e rna l  corrosion of the  calc iner  vessels.  Therefore, Ca was 
used and was added d i r e c t l y  t o  the  calc iner  i n  the  form of Ca(No3)2 
because a soluble addi t ive  was eas ie r  t o  handle. 

Calcium n i t r a t e  was prepared by dissolving c ~ ( o H ) ~  (hydrated l ime) 
i n  concentrated HN03 (slowly).  The resu l t ing  3 t o  4 molar solut ion was 
an idea l  addi t ive .  In  a plant  operation t he  recycle n i t r i c  acid  from the  
d i s t i l l a t i o n  column could be used t o  make up the  C a ( ~ 0 3 ) ~ .  C a ( ~ 0 3 ) ~  was 
added through the  ex t r a  l iqu id  l eve l  probe l i n e  into  t h e  ca lc iner  pot. 
About 50% of  ~ a ( N 0 3 ) ~  was precharged t o  the  calc iner  pot before t he  t e s t  
was s t a r t ed .  The remaining 50% was added a t  a f ixed continuous r a t e  
throughout the  t e s t .  A ~ ~ ~ - 1 - 3 / 8  i n .  piston Lapp pump was used t o  feed 
t he  c ~ ( N o ~ ) ~  t o  t he  calc iner  pot. 

Test Results 

Test R-41 calc inat ion of Purex waste  a able 6.1) with calcium was 
not  completely successful. The system was jus t  about i n  cont ro l  one hour 
a f t e r  s ta r t -up  when there  was a plant wide evacuation d r i l l ,  Table 6.2. 
The system was completely shutdown and s t a r t ed  up 20 min l a t e r .  This 
shutdown period caused a number of  d i f f i c u l t i e s ,  the  major d i f f i c u l t y  
being t h a t  the  calc iner  l i qu id  l e v e l  probes plugged a number of  times 
during the  remainder t o  the  feeding period, however, 391 l i t e r s  of  feed 
went i n to  the  system i n  6 hrs ,  which gave t he  high average feed r a t e  of 
65 l i t e r  per hour ( ~ a b l e s  6.3 and 6.4 and Figure 6.1). The usual r a t e  
i s  20-25 l i t e r s  per hour. The mater ia l  balances f o r  the  t e s t  were not 
sa t i s fac tory :  

Ni t ra te  108% ( t h i s  about cor rec t )  
Iron 78% (low) 
Sulfa te  67% (low) 
Ruthenium 61-74 (low) 
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Table 6.1. R-41 Feed Concentration 

H HN03 Fe Na so4 Ru 
molar molar g/ J g l  R dl @;/a 

As madeup 5 . 1  6.1 25.0 13.1 96. 0 0.15 
A s  analyzed 

Tank 1 5.38 6.1.7 27.5 12.8  104.0 0.110 
Tank 2 5.26 5.91 27.5 12.4  94.9 0 ,126 

Table 6.2. Test R-41 Operation --- Log 

Precharge C ~ ( N O ~ ) *  -20 l i t e r s  of 3 M - 
Evaporator f u l l  - calciner  heat  on, s t a r t  t o  f i l l  ca lc iner  
Calciner l iqu id  up t o  operating l e v e l  
Shutdown - Laboratory evacuation d r i l l  
S t a r t  -up a f t e r  d r i l l  
Feed a l l  i n  system 
Evaporator on standby 
Stopped calcining 



Table 6.3. R-41 System Balances and Results 

NOs Balance 
Input : 3066 g moles 
Recovery : 

Condensate 
Solid 
Evap . 
Off -gas 

3458 g moles 
163 g m l e s  

82 g moles 

Fe Balance 
Input : 
Recovery : 

Condensate 
Solid 
Evap . 

195 g moles 

0.8 g moles 
148 g moles 
0 .2  g moles 

N a  Balance 
Input : 
Recovery : 

Condensate 
Solid 
Evap . 

189 g moles 

1.0 g moles 
126 g moles 
0.4 g moles 

Ca Balance 
Input : 
Recovery : 

Condensate 
Solid 
Evap . 

- - 
421 g moles 
0.9 g moles 

SO4 Balance 
Input : 
Recovery : 

Condensate 
Solid 
Evap . 

403 g moles 

2.4 g moles 
268 g moles 
1 . 2  g moles 

Ru Balance 
Input : 0.442 g m l e s  
Recovery : 

Condensate 
Solid 
Evap . 

- 
0.237 g moles 
0.031 g moles 



Table 6.3. Continued 

Average Feed Rate 
391/6 = 65.17 l i t e r /h r  average 

Water Feed Rate 
1453 l i t e r  of water, water t o  feed r a t i o  = 3.7 

Calcined so l ids  
80 kg sol id/& l i t e r s  = 1.33 g/cc bulk density 



Table 6.4. Test  Results  f o r  Tes t  R-41 Purex + Ca(N03)2 

- - 

Water 
System t o  Evap Evap Evap Evap Evap 

Test  Feed Water Feed System Evap NO3 ?Jog Evap Evap Steam Steam H+ Fe Ru 
Time System Feed Ratio Condensate Press Input  Condensate Density Temp Temp Cond Conc Conc Conc 
h r s  l i t e r s  l i t e r s  Ratio l i t e r s  p s i g  g mol g g/cc "C O C  l i t e r s  molar g/k g / l  
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Of the  su l f a t e  recovered, 99% was i n  the  so l i d .  

The ruthenium i n  t he  evaporator condensate was below detectable  l i m i t s  
( l e s s  than 0.001 g / l i t e r ) .  

6 .3  Evaporator and Calciner Control 

The evaporator was about i n  control  when the  evacuation d r i l l  occurred. 
The shutdown and s ta r t -up  caused an upset which l a s t e d  f o r  3 t o  5 hours. 
The calc iner  feed l i n e  and l i qu id  l e v e l  probe l i n e s  had so l ids  calcined 
on them during the  shutdown, causing malfunction throughout t h e  t e s t .  

The control  s e t t i ngs  f o r  the  t e s t  a re  given i n  Table 6.5. The 
evaporator temperature was control led on manual t h i s  t e s t  because it 
could not be adjusted properly on automatic control  (Figure 6 .2 ) .  The 
evaporator densi ty  varied from 1.38 g/cc t o  1 .16  g/cc (Figure 6 .3) .  The 
s e t  point  was 1.30 g/cc. The evaporator l i q u i d  l e v e l  control  varied from 
a high of 80% t o  a low of 40%. The s e t  point was 50% (Figure 6 .4 ) .  

The wet t e s t  meter f o r  measuring t he  off-gas volume corroded out a t  
the  s t a r t  of t he  t e s t ,  therefore  the  off-gas volumes a re  unknown. 

6.4 Calcined Solids 

The so l ids  from 391 l i t e r s  of feed plus  109 l i t e r s  of  3 M C ~ ( N O ~ ) ~  
weighed 80 kg. The bulk density of 1.33 was calcula ted on a bas i s  of 
-60 l i t e r s  of  volume t o  t h e  l i q u i d  l e v e l  control  point .  About 10% of 
the  volume ac tua l ly  was a cone shaped hole down the  center of t he  so l i d .  
From the  so l i d  analysis   a able 6 .6 ) ,  it appeared t h a t  the  su l f a t e  migrated 
t o  t he  bottom and t he  so l id  a t  t h e  b t t o m  was very hard. The bottom 
maximum temperature was 850 O C ,  t h e  top was 500 O C  . There was no evidence 
of i n t e rna l  ca lc iner  pot corrosion i n  t h i s  t e s t .  



Table 6.5. Control Set t ings  f o r  Test R-41 

Evap. density control l ing 
Evap. l i qu id  l e v e l  control l ing 
Evap. temperature control l ing 
Evap. pressure control l ing 
Calciner l i qu id  l e v e l  control l ing 

feed addit  ion 
steam heating 
water addi t ion 
off-gas by-pass 
calc iner  feed 

Set Prop. Reset 
Point Band Rate 

$ % min 

Evap. density 60-70 90 5 
Evap. l i qu id  l e v e l  50 200 5 
Evap. temperature 33 Manual 
Evap. pressure 40 2  5 0 .3  
Calciner l i qu id  l eve l  50 200 5 

Table 6.6. R-41 Solid Analysis 

TOP 8.18 25.5 0.024 1.23 19.9 3.12 19.0 < 0.1 
Center 7.00 22.6 0.034 1.24 31.0 1.35 18.9 < 0 . 1  
Bottom 15.8 48.6 0.033 1.26 12.4 6.42 0.9 < 0 . 1  
Average 10.33 32.2 0.030 1.24 21.1 3.63 12.9 
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Fig. 6.4. Evaporator l iquid level control for Test R-41. 
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