L

for the

OAK RIDGE NATIONAL LABORATORY
operated by
UNION CARBIDE CORPORATION

UNION
CARBIDE

U.S. ATOMIC ENERGY COMMISSION

+

ORNL- TM- 244" |
COPY NO. -~ t_:j C'—

DATE - May 28, 1962

Water Requirements for a Radiochemical Processing Plant

F. E. Harrington

ABSTRACT

The water requirements for a hypothetical plant processing
all the fuel from a 15,000 Mwe nuclear economy were estimated to be:

gpm gpd

Fire protection 1, 500 -
Potable 7 10,000
Boiler feed 136 196, 000
Process cooling 350 504, 000
Process makeup 59 85, 000
High-level waste cooling 1,500 2, 160, 000

Total 2,955,000

The high-level waste storage cooling water is the amount
required for a tank farm containing waste accumulated over 20

years processing.

NOTICE

This decument contains information of o preliminary noture and was prepared
primarily for internal use at the Oak Ridge MNational Laborotory. It is subject
to revision or correction and therefore does not represent a final report, The
information is not to be abstracted, reprinted or otherwise given public dis-
semination without the approval of the ORNL patent branch, Legal and Infor~

mation Control Department.
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This report was prepored os an occount of Government sponsored work., MNeither the United States,

nor the Cammission, nor any person octing on behalf of the Commission:

A. Makes ony warranty or representation, exprassed or implied, with respect to the accuyracy,
completeness, or usefulness of the information cantained in this report, ac thot the use af
ony information, apparatus, method, ar process disclosed in this repart moy not infringe
privately owned rights; or

B. Assumes any licbilities with respect to the use of, or for danages resulting from the use of
any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on beholf of the Commission’” includes ony employee or

cantroctor of the Commission, ~- employee of such contractor, to the extent thot such employee

or controcter of the Commission, or smployee of such controctor prepares, disseminotes, or
pravides occess to, any informotion pursuant ta his employment or contract with the Commission,

or his employment with such contractar.
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1.0 INTRODUCTION

This report surveys the water requirements for a hypothetical plant proc-
essing all the fuel from a 15,000 Mwe nuclear econoz:nyl:'2 to obtain & limited
answer to the question, "What are the water requirements for a radiochemical
processing plant?" This question cannot be answered as x gal of y quality
water. As in the case of a steel processing plant, where the water require-
ments range from 1,400 to 60,000 gal/ton of finished steel, only a range can
be given per unit of uranium recovered. For each processing plant considered,
the specific requirements must be based on a detailed water survey which in-
cludes: (a) the water supply quality at the various sites under considera-
tion; (b) the requirements for the process, and its supporting facilities, as
it is to be installed; and (c) the plans for water conservation within the
plant. The third point is extremely important in radiochemical processing
where all water could conceivably become radiocactive waste. Water require-
ments and liquid waste disposal plens should be combined in one survey. All
plant operations should be studied in detail to find ways to reuse as much
water as possible and to ensure a rigorous separation of the nonradiocactive
and various levels of radioactive wastes.

Bach year the hypothetical plant would process 1,500 metric tonnes of
uranium converter fuel, irradiated to a burnup of 10,000 de/tonne, and 270
metric tonnes of thorium converter fuel, at a burnup of 20,000 de/tonne. The
uranium, plutonium, and thorium would be recovered as purified and concentrated
metal nitrate solutions. The great bulk of fission products would be stored
as liquid high-activity-level waste2’3o The plant would operate ~250 days on
uranium fuel and 80 days on thorium fuels each year. The uranium fuels would
be processed by the Purex processl*’5 at a plant throughput rate of 6 tonnes/
day. The flowsheet assumed for this hypothetical plant is shown on Pigs. 1,
2, and 3. The water requirements for this flowsheet are adequate to cover
the change in dissoclution procedure for other than aluminum fuel cladding and
for the smaller throughput thorium processing. The cooling water requirement
for maintaining a maximum temperature of 140°F in the tank farm agueous waste
from 20 years of plant operation :.is based on the arrangement shown in Fig. k.
This requirement is estimated separately from the processing plant water needs.

In practice, the water system for a new plant is always designed with

sufficient excess capacity to cover peak demands and limited plant expansion
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such ag the preparation of radioactive isotopes. These fealtures are not
includes in this survey.
2.0 PROCESS FLOWSHEETS

2.1 Uranium Fuel Processing

Uranium and plutonium are separated from each ither and from fission
products by the "Purex" solvent extraction process. One of several
feasible chemical flowsheets for the hypothetical plant, taken from the
p)

open literature, includes dissolution of the metallic fuel elements

in nitric acid, preparation of the solvent extraction feed solution, and

a first cycle of extraction and partitioning of the uranium and plutonium
(Fig. 1). This figures is based on aluminum clad elements but the water
requirements will be essentlally the same for the dissolution of more
exotic cladding materisls. Solvent extraction partitioning is followed:
for the uranium by stripping, feed adjustment, a second solvent extraction
cyele, and concentration of the product by evaporation; and for the
plutonium, a second solvent extraction cycle, an anion exchange cycle, end
evaporation to product (Fig. 2). Finally the high activity waste is con-
centrated and neutralized for storage, nitric acid is recovered from
wastes and backcycled, and the organic extractant is purified for reuse
(Fig. 3). A flow of 100 on these flowsheets is equal to T47 gal for each
tonne of uranium processed. Although this over-all chemical flowsheet
contains fewer solvent extraction cycles than are used in most currently
operating plants, it does not attempt the ultimate in reduction of water
usage and waste volumes.

2.2 High Activity Waste Storage

Heat generation and removal is one of the serious problems in tank
storage of high activity waste from high burnup power reactor fuel proc-
essing. The figures in a previous Study3 show that the system shown
in ¥ig. 4 will maintain the 5 Purex and 5 Thorex waste storage tanks
filled during 20 years of processing at a maximum of 140°F. The total
water requirement for the 20.yr tank farm is slightly less than twice the
rate required for single newly-filled tanks of each waste and is close to
the amount for a plant at equilibrium.

3.0 WATER REQUIREMENTS
Any radiochemical plant will require at least five distinct

categories of water usage; namely, plant fire protection, potable, boiler
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feed, cooling water, and process makeup water. In this study the cooling
water is further divided into process cocling and high-level waste tank
farm cooling.

3.1 Fire Protection

Water requirements for fire protection5 ~ vary with plant location,
insuring firm, operating company policy, and other factors. Raw water,
or certainly water with a minimum of treatment, is satisfactory for fire
water. A 6—ton/day uranium plant would likely have a 1500 gpm supply.
The discharge of water during a fire must be studied in detail, consider-
ing the possible effects on the waste collection system.

3.2 Potable Water

Potable water will be required for drinking, showers, lavatories,
and a laundry, if one is provided, for contaminated clothing. This water,
of course, must be of approved biological quality and should also bhe free
of objectionable tastes and odors and not unduly hard. Where softening
is required, the hot water supply only is softened by the sodium cation
exchange process. The hypothetical plant under consideration is conceived
as a production plant with laboratories for control purposes only and with
no service facilities such as a laundry. A plant of this type would em-
ploy less than 200 people and require less than 10,000 gpd of potable
water.
3.3 Boiler Feed Water

Boiler feed water requirements for quality depend on the steam pres-

sure required and for quantity on the sum of all of the system water losses.
Good boliler feed water will not cause appreciable scale formation, ccrrosion.
priming, or foaming. In the hypothetical plant 125 psl steam will satisfy
all requirements. Treatment by sodium cation exchange followed by deaera-
tion is sufficient for most water supplies and is assumed for this plant.

The quantity required is 196,000 gpd as shown in Appendix A.

3.4 Process Cooling Water

Cooling water used in this plant consists of both makeup water for an
open recirculation system and a supply for once-through usage. Cooling
water used in single-purpose equipment, such as condensers, is monitored
and recycled through a cooling tower. The quality and treatment of this
water are best determined by scaling tests conducted on the supply water

available, concentrated by re-use, and normal cooling tower considerations.
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As shown in Appendix B, the cooling water system will require:

3500 gpm recirculation system, 3OOF AL

175 gpm makeup for recirculation system

175 gpm once-~through
The once-through usage is usually on-off type usage, and the system should
have excess capaclty to cover these surges. It is possible to use a closed
circuit recirculation system with air-cooled finned exchanger and to recir-
culate all cooling water.

3.5 Process Water

Process makeup water is used to make up nonradioactive chemical
solutions used throughout the process. The calculation of the quantity
required, 86,000 gpd, is presented as Appendix C. At least the portion of
this water used in the final purification cycles, 19,000 gpd, must meet

the following specifications:

Constituent Amount, ppm

Total hardness 0-2

Ca O.h4

Mg 0.25

Cl (as NaCl) 0.6
soh (as Naesou) 1.5
Total dissolved solids 1-4.5 exclusive silicates
Silica (Siog) 7.5
'COE 100
Na“(as equiv. CaCo.) 1
Total cation (as eéuiv. CaCo,) L

HCO., (as equiv. CaCO.) 3 2
Total anion (as equiéo CaCO3) L

This portion of the water usually requires purification by hydrogen
cation exchange and strongly basic anion exchange.

3.6 High-Level Waste Storage Cooling Water

Heat generation is one of the more seriocus problems in the tank
storage of waste assumed for this hypothetical power reactor fuel proc-
essing plant. In a report6 now in preparation, the system shown in
Fig. 4 is proposed for dissipating the total heat from an accumulation
of 20 years of plant operation. The makeup water required for this
system is 1.2% for evaporation loss, 1% for wind loss, and an estimated
488 gpm for blowdown for a total of 1500 gpm.



3.7 Other Considerations

In the process flowsheets the condensate from the evaporators is col-
lected as 1ow~activity waste and disposed of to the ground. It is possible,
and at some sites mandatory, to recover and re-use this water.

Schematic drawings of the combined water supply and waste disposal
flows are shown in Figs. 5 and 6 for the processing section of the hypo-
thetical plant and of a more complete water recycle plant, respectively.
Appendix D outlines the calculation of waste volumes. The more complete
recycle plant is not based on a completely calculated concept but is con-
sidered to be a desirable goal.

The design of the laboratory section of a plant must give close atten-
tion to water distribution and waste collection. Here, as in the processing
canyon, indiscriminate collection of wastes could result in unnecessarily
large volumes of low-activity waste. The laboratory would also be equipped
with a small still for the preparation of distilled water.

In cooling the stored high-activity waste, water requirements can be
reduced by operating with the waste tanks at a temperature higher than
1hOOF and/or by using an alr-cooled exchanger. If the tanks were operated
at boiling with the reflux condenser's cooling water removing the heat in
an open recirculation system, the cooling water AT could easily be eight
times the 120 shown on Fig. L. This, of course, would reduce the volume
recirculated and the wind loss by a factor of 8 but there would be no
change in evaporation loss and only a small reduction in the required
blowdoun.

The actual extent one is willing to go to reduce water consumption
will be decided upon economic factors related to the water supply and
waste disposal potential of each potential site. Most sites will find it
economical to utilize open recirculation as indicated herein, but in some
cases where water supply is short or waste disposal is difficult closed

recirculation is best.
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APPENDIX

A. Estimate of Boiler Feed Water Volume

Process Condensates Figure Flowsheet Flow
Dissolver 1 450 (estimate)
1UD 2 324
2UD 2 268
XPD 2 0.8
2WF 3 385

OWD -AAF 3 385
AAD 3 438
AFD 3 98
3WD 3 147
WsC 3 L50

Total flowsheet flow = 29L6

Estimate steam required = 120% of heat for above evaporations and blow-
down of 10% of the steam for evaporation.

(29.46)(747)(6)(971)(1.2)(1.1)
obo

Boiler feed water =

- 1.96 x 10° gpd

B. Estimate of Process Cooling Water Volume

Cooling water for condensers in Appendix A:

29.46 (747)(6)(1000) _
(1.hh x 103)(30)

3060 gpm

Cooling water for other uses, such as cooling compressors, estimated =
440 gpm.

Both requirements are fulfilled by a 3500 gpm open circuit recircu-
lation system. The makeup water requirements are 3% for evaporation
(3OOF AT), 1% for wind loss and 25 gpm blowdown for a total of 175 gpm.

An additional 175 gpm is allowed for once-through use in dual-
purpose process heat exchangers.

This water and the heating steam condensate, as well, could be
recirculated in either closed or open recirculation systems after moni-
toring. Heating steam condensate could be recirculated to the boiler

feed water makeup system,
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C. Process Solution Makeup Water Estimate

Stream Flowsheet Flowsheet Flow
NaNO4 1 17.5
NaOH 1 L.L
Jacket rinse 1 6.85
Reaction water 1 3
Dissolution acid 1 7.7
Dilution water 1 8.9
Absorber water 1 49.3
Cake wash 1 0.31
Slurry wash water 1 0.15
HNO3 addition 1 2.7
NaN02 addition 1 0.78
HSS 1 29
IBX 1 0.20
NaNO,, addition 1 0.78
HSS 1 59

IBX 1 0.20
NaNO2 addition 1 0.78
ICX 2 398
Fe(SA) addition 2 0.55
2 Ds 2 33%

2 DIS 2 25%

2 EX 2 317*

2 As 2 3.10%
2 BX 2 2.52%
XAF~HN03 2 2.28%
XAS 2 0.85%
XCX 2 1.2
NaOH addition 3 1.7
AAR 3 109
Backup facility acid 3 53
AFR 3 3k
Na2003 addition 3 23.
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Stream Flowsheet Flowsheet Flow

K0, addition 3 1.6

108 3 23

I0C 3 a5

208 3 18
Total 1263.29

*Must meet high-quality specification given in Section 3.4, total =
384.95 flowsheet flow.

Allow 50% excess for unlisted process water requirements and 10% for
high purity uses:

Total makeup water volume = 12.6329(T747)(6)(15) = 85,000 gpd
Total high purity volume = 3.8495(747)(6)(1.1) = 19,000 gpd

D. Waste Volume Estimate

1) Low-Activity Waste

Stream Flowsheet Flow
IUD 2 324
2UD 2 268
AAD 3 438
AFD 3 98
3WD 3 147
Total 1275
12.75 (747)(6) = 57,200
Other, i.e., laboratory sources = 27,800
Volume = 85,000
2) Intermediate-Activity Waste
Stream Flowsheet Flowsheet Flow
Cooling waste 1 2.9
Cake slurry 1 0.27
IOW 3 55.5
20W 3 18
Total 116.67

Volume = 1.1667 (7h47)(6) = 5230 gpd.
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3) High-Activity Waste

Waste self-concentration flow = 7.35 (Fig. 3)
Volume = 0.0735 (747)(6) = 330 gpd.
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Fig. 4 Schematic of High-Activity Waste Tanks Water Cooling System.
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Fig. 5. Water-waste schematic flowsheet hypothetical 6 ton/day Purex Plant.
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