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ABSTRACT

A preliminary nondissipative, incompressible magnetohydrodynamic stability
analysis against turbulent breakdown of vortex flow with possible application
to an ionized gas-phase fission reactor is presented.

It is found that a vortex flow enclosed within two concentric cylindrical
walls can be stabilized against possible turbulent breakdown by means of an
axially applied magnetic field. The magnitude of this magnetic field varies
with the density of the fluid, the peripheral velocity of the vortex, and the
radii of the cross sections of the concentric cylindrical walls.

For an actual vortex heat exchanger, the vortex has a small but finite,
radial flow throughout the flow region. Analysis shows that there exists a
possible stationary state of a combination vortex-sink flow with a (1/r)-
characteristic. This means that, in principle, a separate analysis should be
made to consider the stability of such a stationary flow. However, since the
finite radial flow velocity in an actual vortex heat exchanger is expected to
be small compared with the transverse velocity, it might be expected that the
magnitude of the axially applied magnetic field for partial stabilization of
such vortex-sink flow is of the same order of magnitude as that obtained for
confined pure vortex flow.

Forced boundary-layer oscillations and instability due to flow against
concave walls are not considered in this analysis, nor is the effect of the
axial flow in the inner core, These effects will not only introduce instabil-
ity in the boundery layer and the inner core but also will control the effec-
tive radii of the inner and outer boundaries contalning the vortex-sink flow.

NOTICE

This document contains information of a preliminary nature and was prepared
primorily for internal use at the Oak Ridge National Labotatory. It is subject
to revision or correction and therefore does not represent’'a final report, The
information is not to be abstracted, reprinted or otherwise given public dis-
semination without the approval of the ORNL patent branch, Legal and Infor-
mation Control Department, ‘
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MAGNETOHYDRODYNAMIC STABILITY OF VORTEX FIOW — A NON-
DISSIPATIVE, INCOMPRESSIBLE ANALYSIS

*
Tien S. Chang
SUMMARY

It is found that there exists a class of stationary solutions of non-
dissipative, incompressible magnetohydrodynamic flow with cylindrical sym-
metry in the presence of an axially applied magnetic field. Such flow
consists of a vortex-sink combination of (l/f)acharacteristic with a super-
imposed axial flow velocity.

Stability analysis is given for a pure vortex flow against possible
turbulent breakdown. The result indicates that the free vortex flow is
intrinsically unstable without an axially applied magnetic field. An
axially applied uniform magnetic field can, in principle, introduce stabil-
ity against small perturbations for a vortex flow contained within two non-.
permeable concentric cylinders. The magnitude of the magnetic field re-
quired for stability in this case is found to vary 1in proportion with the
peripheral velocity, the square root of the fluid density, and transcenden-
tally with the inner and outer radii of the concentric cylindrical walls.

When applied to a vortex heat exchanger, the nonpermeable wall as-
sumption cannot be introduced. Therefore, there exists in addition to the
perturbation states allowed for nonpermeable walls, boundary perturbations.
The vortex flow with permeable wvalls is intrinsically unstable against
radial boundary perturbations. However, it is reasonable to . expect that
the boundary perturbations will ultimately shift the vortex flow to a new
stationary state with a finite but smmll boundary velocity of the (L/r)a
sink type, since such a stationary state is allowed by the basic equations
of magnetohydrodynamics. Assuming further boundary perturbations from
this new stationary state are small enough to be neglected when compared
with the perturbations in other parts of the flow region, an eigenvalue
stability analysis is again possible with respect to this new stationar&

*
Sumner employee, present address Department of Engineering Mechanics,
Virginia Polytechnic Institute, Blacksburg, Virginia.
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state. However, the radial flow velocity of an actual vortex heat ex-
changer is expected to be small when compared with the transverse flow
velocity, so that the results obtained for the pure vortex flow should
yield a reasonable estimate of the axially applied magnetic field for
ulﬁimate stabilization of the vortex-sihk stationary state with a (L/r)=
characteristic.

In an actual heat exchanger, the cold gas is injected along the
periphery of the vortex causing forced oscillations of the boundary layer
along the peripheral wali. This_effgct is not considered in the present -
analysis.

Additional studies in boundary-layer oscillations and stability
effects of flow against concave yalls4sh9uld be considered before concrete
conclusions can be reached as to whether the method of magnetic stabiliza-

tion is feasible or not for a vortex heat exchanger, fission reactor.

The boundary-layer flow along the outer periphery of the vortex cham-
ber and the axial flow region in the' inner corewéf the vortex determines
the.boundﬁry conditions of the vortex-sink flow contained within them.
These effects should be considered in conjunction with the stability of
the vortex-sink flow.

It is also believed that a study comparing the turbulent eddies in
the vortex flow with and without the magnetic field should be considered.
Since the method of magnetic stabilization is only partially effective,
turbulence will probably always set ih,tﬁrough the finite boundary pertur-
bations. This turbulence can probably be controlled by the magnetic field
but never completely eliminated.
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l. INTRODUCTION

Kerrebrock and Meghreblian (1)* have suggested that a gaseous core
nuclear reactor might be constructed using a vortex flow, heat-exchange
chamber. In such a proposed reactor configuration, relatively cold, light
gas is injected tangentially into a cylindrical heat-exchange chamber along
the periphery of the chamber. This cold gas then circulates and forms a
vortex within the cylindrical chamber while mixing and exchanginé heat with
an annular cloud of heavy fissionable gas which is suspended stably in the
vortex flow by the centrifugal and pressure‘forces. After absorbing a
sufficient amount of heat from the fissionable gas, the dissociated and
partially ionized gas is discharged. o

Due to the high inJecfion velocity of the gas along the periphery,
the high pressure necessary for the stgbilizatioﬁ of the fissionable cloud,
the concave surface of the periphery of the cylindrical heat-exchange cham-
ber, and the high Reynolds number in the flow, the vortex flow in all prob-
ability will breakdown into turbulent motion even with the favorable gas
density distribution which exists in a vortex flow. This turbulent break-
down was demonstrated experimentally by Keyes (2).

The purpose of this report is to discuss the possible stabilization
effects of an axially applied magnetic field against turbulent breakdown
in the free vortex for possible application to the case of a gaseous
fission reactor operating in the ionization region.

_ Stabilization considerations of magnetohydrod&namic flow between
rotating coaxial cylinders have been investigated by Reid (3), Chandra-
sekhar (4), and Velikhov (5). However, they have not considered the case
of magnetic stabilization'of a vorteglflow with or without secondary flows
in the radial and axial directions.

In this report, it is first attempted to search for possible sta-

" tionary solutions of magnetohydrodynamic'flow with cylindrical symmetry

in the presence of an axially applied magnetic field. Stability con-
sideration of the simple stationary vortex flow and of the vortex=-sink

*
Numerals appearing in parentheses refer to list of references
appended to this report. : :



flow will then be considered. In this analysis, the fluid is assumed to

~ be no
flow
wall

be co

ndissipative and incompressible. The nondissipative nature of the
cannot be assumed in the boundary-layer flow along the peripheral

of the vortex chamber. Stability study of flow with dissipation will
nsidered in a subsequent report.

2. GOVERNING EQUATIONS FOR NONDISSIPATIVE, INCOMPRESSIBLE,
MAGNETOHYDRODYRAMIC FIOW

The governing equations for nondissipative, incompressible, magneto-

hydrodynamic flow are glven as5fdiloﬁs:

Continuity Equation for Mass Conservation

2,y = 0, (2.1)*
where (a) a4y is the fluid velocity, and
(b) the density of the fluid is assumed to be a constant.
Equations of Motion
3,

p s;— + p q qi,J = =p’i + eijk Jj Bk , : (2.2)

vhere (a) p is the fluid denmsity,

(b) p is the fluid pressure,

Bk is the ponderomotive force?

(¢) €k JJ

(a) JJ is the current density,

(e) B, is the magnetic induction vector, and

(f) the viscous stress components and other’body forces
are neglected. '

indic

*The three small Iatin suffixes "i »J,k" are used as range or summation
es. The symbol “,i" means
d

oax,

o



where

(a)
(v)
(c)

Maxwell's Equations

€5k Bk, T Mo Y1 v

Ei is the electric field,
Ko is the magnetic permeability in vacuum,

excess charge and Maxwell's displacement current

(2.3)

(2.&)

- (2.5)

(2.6)

are neglected, and

(d) rationalized MKS system of units is used.

Ohm's Iaw '

E, +'eijk a, B, o, (2.7)

where (a) the fluid is assumed to be perfectly conducting, and

(b) the Hall current is neglected.

Continuity Equation of Charge Conservation

J = 0, (2.8)

1,1

where the excess charge is again neglected. We note that Eq. (2.8) is a
direct consequence of Eq. (2.6) and therefore is not.an independent ex-

pression.

Combining Egs. (2.2), (2.5), and (2.6), we obtain an alternative form
of the equations of motion as follows:

9, . B® 1 ‘
P T—+p 4 = <p . = ( ‘> +— B, B
- 3%,0 T 2uy” s my O M

*

- .’p)i.+ ciJ »d 7 (2.9)
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where

B B, B '
c * = - o +i_1 (2010)
Ji : ij

2 ¥y Mo

is the Maxwell's stress tensor.

Combining Egs. (2.1), (2.4), (2.5), and (2.7), we obtain an equation
governing Bi and qi:

bBi

-aT' + q’J Bi,J = BJ q'i,J . o (2«11)

Equation (2.11) is called the induction equation.

Equations (2.1), (2.9), and (2.11) form a complete set of equations
governing nondissipative, incompressible magnetohydrodynamic flow subject
to the solenoidal condition of Bi given by Eq. (2.5).

Since the study of vortex motion is more conveniently discussed in
terms of cylindrical geometry, -the governing equations [(2.1), (2.5), (2.9),
and (2.11)] are expressed in cyiindribal coordinates as follows:

R

+ = + - 4+ =—— = 0 . (2»12)
or r r o6 dz
dB B 1 OB JB
I ., . .- 08, = .9 . (2.13)
or r r 36 dz
'qu ( d o d ;) qéa
— + — + + 9 = - =
dt & T % r 36 Z dz *r r

1 d . d d 1392
=——[<Br—+139 +B — Br-—il
P Ko or r 36 dz r

19 B2 |
== — (p+ ‘) o (2.14%)
p Or 2 py



dB
ot

OB
ot

: 3 3 95 Q.
+ — + ' q - . + . "
(ér or r 30 2 % % T
1 [( d d d B
= — ||{B,—+B +B — )B, +
ougLNTar Prde Za 0
1 3 _ B®
22 G E)
p r oo 2 py
( 9 . d
+ —_ 4+ _ +q — )a
o or r 36 “? oz z
1 9 d d '
= — [(ér _— +,Be + Bz -_— Bz }
P Ky dr r 38 dz
1 9 . B®
AL
p Oz 2 py
( d d o
+ —_— + +q — JB
o or % r 36 Z 3z r
(' d d d ;)
= (B.— + B + B — .
) rar erae Zaz qT
) d 3 qr‘B
(*]
+ —_— + + - J/B, -
(ér dr % r 96 % dz 0 r
.} d d B q
= (ér — +By—— +B, ——‘> gy - — 9
or r 09 oz r
( > d d
+ — +4q +q — )B
*r or ‘.9 r d6 Z dz z
( 3 d d
= |B,— + B +B — Jq
T r 9 r 900 Z 3z z

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)
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Here r, 9, z are the usual cylindrical coordinates. "qr, g, qz" and

1"
Br’ BO

magnetic induction vector, respectively.

, Bz" are the cylindrical components of the velocity vector and the

3. A CIASS OF STATIONARY SOLUTIONS WITH CYLINDRICAL SYMMETRY

let us assume that there'exists-a class of stationary solutions with
cylindrical symmetry of the following type for a nondissipative, incompress-
ible flow of a perfectly conducting fluid in the presence of a uniformly
applied axial magnetic field:

. = Q.(r) , (3.1)
a4 = QE (3.2)
g, = () , (3.3)
B, = 0, | (3.4)
B, = 0, (3.5)
B, = Bo' = constant , (3.6)
p = B(r) . | (3.7)

Inserting Eqs. (3.1) through (3.7) into Egs. (2.12) through (2.19),
we obtain

aq Q , '
<+ - 0o, (3.8)
dr r
0 =0 , (3.9)
2
Q i?‘z - E = --]; E 3’ (3o10)
T ar r p: dr 5
aq Q. Q
@, — + == -0, NCRLY



-Qr ;-z- = o, | (3'12)
i N

0 =0 , (3.13)

0 =0 , (3.14)

0 = 0 . ‘ (3.15)

This means that there exists stationary'states where the applied
magnetic field has no influential effect when perturbations are not,present.

The general solution satisfying Egs. (3.8) through (3.12) is:

K, .
Qr= — (3.16)
r
Ké , ‘
%= T (3.17)
Q= K, , (3.18)
p(K12 + K22) . .
P = K - f—-——;-;;-- s ' (3.19)

where Ki, Ké, Ké, and K4 are constants.

It appears that the only type of flow which has a stationary solution
of cylindrical symmetry is for Qz to be a constant. Actﬁally, the. vortex-
sink solution of (1/})=characteristic given above has singular points along
r = 0. Therefore, Qz is a constant everywhere except at r = O, where the
continuity condition demands that Qz to be very large when compared with
its value in the other parts of the flow region.

L., SMALL PERTURBATION EQUATIONS FOR THE STATIONARY SOLUTION

To investigate the stability of the vortex-sink stationary stafe with
(L/r)-chgracteristic given by Egs. (3.16) through (3.19) and (3.4) through
(3.7), we shall allow the flow velocity, the magnetic induction field, and
the fluid pressure to deviate slightly from their desirable stationary



1k

values. If the flow is stabilized by tﬁe applied axial magnetic field,
then the perturbations should be an oscillatory sfate about the statiohary
values, We want to find out if such oscil}gtory states exist. Therefore,
we shall -assume the following perturbatiég:éolutions:

K, N

Q = — + €4, (%.1)
r .
K2 ~

Qe‘ = = -+ € q'e » (h’.?)
r

Q = € ?l'z s ' (4.3)

B, = €B_, : (4.4%)

By = €By , | (4.5)

B, = By, + € B, , (4.6)

N B® , A B? ~ %

P = (? + ‘> = <§ + = .> + €p , (4. 7)

2 Ho 2 Ho
€ (positive, real constant) << 1 , ’ (4.8)

where KS is set equal to zero without loss of generality, since it repre-

sents & rigid body motion along the axis of symmetry.

‘Substituting Eqs. (4.1) through (4.8) into Eqs. (2.12) through (2.19),
we obtain a set of equations to the zeroth order of € governing the sta-
tionary flow and a set of equations to the first order of € governing the
perturbatiéns. The zeroth order equations are automatically satisfied by
Eq. (3.19). The first order equations are a set of linear partial dif-

ferential equations given as follows:

da q 1 dq 3
_EZ + E-T- 4+ - _..?_9. + _SE = 0 . . (h‘n 9)
odr r r o9 oz o



~

ot

~

ot

Hl\) Il\)Pq

(4.10)

- (4.12)

(4.12)

(4.13)

(¥.14)

(4.15)

(4.16)
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Equations (4.9) through (4.16) together with the boundéry conditions
are equations governing small pefturbaﬁions from the vortex-sink stationary
solution with a (1/r)-characteristic given by Egqs. (3.16) through (3.19)

and (3.4 through (3.7) with K, arbitrarily set equal to zero. -

5. ANALYSIS OF NORMAL MODES FOR THE SMALL PERTURBATIONS OF A FREE VORTEX

For a free-vortex flow, the first-order perturbation equations become:

%,
or

OB
-

or

~

dq,

ot

Hlf?

o

H

Hl\) INN

1 3y  9q, |
+ — — + — = 0,
r o0 dz
1 %,
z
+ = — 4+ — = 0 ,
r 00 dz
bqr ) 2 K, aé i B, OB
o0 r? P Hy dz
ax ,
or ’
3, B, 3¢/, 1 3§
J6 ) p ué dz p r d8
3, B, 3B, 1 ¥
¥ P Ko dz p Oz
3B 3,
— = BO —_,
o0 .
3B 2K, d3q
® . —2 3 -8 =2
30 r? r 0 3z

(.9)

(4.10)

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

./
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—= F I ) (5-6)

where Ké is the only parameter characterizing the free-vortex flow.

We shall assume that the disturbances can be separated into the
following type of convective normal modes: '

'chz Nk 602 Jor

?

e

i

@r ei(at + bz) , (5.7)
~ _i(at + bz) :

qg © R (5.8)
g etlerere) (5.9)
B etleters G0
2 ei(a.t + bz) o

e : » (5.11)
@e ei(at + bz) , | (5.12)
& ei(at'+ bz)

, (5.13)

where all amplitudes are assumed to functions of r.

Inserting Egs. (5.7) to (5.13) into Egs. (4.9), (4.10), and (5.1) to

(5.6), we obtain

%,

dr

a8,
—r

o , (5.14)
o, Y (5-15)
ibB 1 gp*
— 8.+ - — =0, (516)
dr



ibB
0 A
1a@ - By = 0, (5.17)
P Mg
ibB b
A N *
iaqz - OBZ~+1—.@ =0 , - - {5.18)
P-Hg P
a N
iaB, - 1bB;q = 0, (5.19)
2K ) '
) . 2 /N N .
ia'By + = Br-ibBoq9=0, (5.20)
A ~
1aB, - 1bBjq = 0 . (5.21)
a)
These are the equations governing @r’ 66’ /&z, /B\r, Be, /B\z, and /1;* We

shall call these amplitude equations.

6. REDUCTION OF THE GOVERNING EQUATIONS OF THE AMPLITUDE
FUNCTIONS OF SMALL PERTURBATIONS OF VORTEX FLOW

let us define a new set of variables (yr, Yo yz) such that

N
ye = -t E | (6.1)
T 21K, , - |

v (e 5 4) ©.2
S, - 12 (6.3)

Transforming the amplitude equations given by Egs. (5.14) through (5.21)
using Egs. (6.1) through (6.3), we obtain:

dy iy
i—r-+—£-byz=0, (6.4)

dr r -
A A
4B B

OA

<+ L 4+ 1vE =0, (6.5)
dr r



2 K2 KE
-a° y -2—[iay +2—y]‘-
r 2 o 2 0T
1b B, 1 a9
- BI‘. + - — = 0 y \ (6«6)
2 K ibB
0 A _ :
ia [i 8y, + > yr] - By = 0 , (6.7)
T
ibB b S
0 A\ *
-aayz- _Bz+1—’p‘ = 0 , (6.8)
P Ky p
A
ia B, + 8 b_Bo Y, = o, - . ' | (6.9)
1aB %y ibB |1
85 * P2 T a 0 8 *
2K2 ' .
* = v, ] = 0 , (6.10)
r .
o ' _ '
iaB, + abB y, = 0 . (6.11)

" Equations (6.9) through (6.11) state that

/\
B, = ib By ¥, (6.12)
A ’ i .

By = 10 By Yo » ' (6.13)
B, = 1vBy, . o (6.18)

Therefore, Eqs. (6.4) and (6.5) are identical. They state that

dy. Yy
-—r + -—r + i b yz = o ° (6015)
dr . r

Substituting Eqs. (6.12) through (6.14) into Eqs. (6.6) through (6.8),



or,

20

242,
bBO) +2ia.-lf£
yr 2y6-
P Hy r
=0 ,
b2 B2
),
P K
b
*
—/P\=0-
p

(6.16)

(6.17)

(6.18)

Combining Egs. (6.15), (6.16), (6.17), and (6.18) by eliminating yé,
* .
yz , and i)\ , we obtain after some manipulation

b2

a

2

v® B2
b2 B2 K2 9
- 0 _ 4 2 P Yo y
P Ky ot ' B02 r
a -
P Ky
. b2 B a2 v, 1 dy, Y,
a" - ' > t T T - =2
o P Mg dr r “dr r
b2 B2 a2 2,2
'BO ) Ir + (aa _ b B0 ) :_L_ dyr
4

P Mo

4 2
2 2 2 bBO
4 2 .2
L) r 2 o BO
a
OHO

(6.20)
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This is a second-order, ordinary differential eguation governing Ve
When Eq. (6.20) is solved and the solution evaluated in terms of the given
boundary conditions, two simultaneous, homogeneous, algebraic'eqﬁations
will be obtained. For nontrivial solutions of these two algebraic equa-
tions, it will be found that (a2 - b2 Bde/b uo) can only take on a dis-
crete set of eigenvalues. The stability criterion for Bo is then obtained
by requiring that only those eigenstates of . with real, positive wvmlues

of a2 can exist.

T. INTEGRAL REPRESENTATION OF THE STABILITY CRITERION FOR.VORTEX FLOW

Equation (6.19) can be written as

2,2
2,2 2 > %o
b“ B K p K
2 0] 2 0
% 8% - -hr4 v2 B2 r =
[o] l-‘-o 2 0
a -
- P My
v B2\ 4 ,dy ¥
= <é2 - O{) b -z + —£‘> - (7.1)
P Mg dr dr r
Let us apply the integral operator
R
- *
u[‘ r Ve [ ] dr
e ' ' ‘
to each term in Eq. (7.1): »2 B2 .
.4‘:{('-
R g b2 B2 k= p po
w y/‘ r(a® - > - b —5' g 2 | 7r §; dr =
e P Ko T, DB
a o
. P Ky
R .
. b® B a say. v\ L
= (a2 - —2 ) x — (—+= )ry.dar , (7.2)
‘ P Ky dr dr r . _

— .
Y. denotes the complex conjugate of Ve
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or,
baBaAa
CRE IR
P Hy .
4K bv*B2 LR ¥
2 0 Jf dr
_ P Mo e ro (7.3)
2 ! = a
b JF ry. y, dr - Jr <-——— += )r y._ dr
r'r dr
e e
Solving for a2,
b2 B2
8.2 = Qi
P Ko
( 4 k2 pt p2 R, 3 1/2
2 0 r
. Jf 3 ar
% , . (7.%)
-..."R
5 _ Ve Y -
.bf ry.vy.d f ( + ryrdr
: dr
e e
The stability criterion requires a® to be real and positive., This gives

the required magnitude of the applied magnetic field

value of b.

8. STABILITY CRITERION FOR A PURE VORTEX WITH NONPERMEABLE

CONCENTRIC CYLINDRICAL WALLS

The integral

f d—r' -——+— ryrdr

can be integrated by parts as follows:

B_. for the lowest

(8.1)



o

e3

a ay,. y.\ - ‘
J'E () - [ s (5]
dr dr r dr
e e
R d _ dy ¥ -
-f — (r yr) —= 4 _r_) dr . (8.2)
dr dr r

e
But the boundary conditions for nonpremeable walls are

y. = 0 , at r = R, (8.3)

and

vy, =0 , 8t r = e , ' (8.4)

where R and e are the radii of the cross sections of the outer and inner

cylindrical walls containing the vortex flow, respectively.

Therefore, Eq. (8.2) becomes

R d dy Y.
r r —
ar \dr r r

e
" oa - 4y, I
- JF — (r yf) ( —_ + ——‘> dr =
dr dr r

e

-er _.+—>(—-+f>u. (8.5)

e

Combining Eqs. (7.4) and (8.5);*

ba B 2
8.2 = 0 b 4
P Ky
- 2 .42 -1/2
‘l» Kg b BO R y 2
— ”“i/ﬁf-?hi dr
°f“o e r
t - © (8.6)
R : R
2 2 dyf Ir -
b ry, dr + r — 4. — | .dr
) ~ e . e dr r
= A =
* 9 N ,
Here the property of ¥, = -1 el where q. is real is used.
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Since b is real, Eq. (8.6) indicates that the values of a® is always
real. The stability requirement restricts aZ to be positive;: i.e., ..

2> 0, (8.7)
or )
R
" 2 u/‘ YE?
yo) “O Ké ;; dr
2 , e . _
B, Z' T ' = e . (8.8)
baf ryradr.+‘/q <——+— dr

e

Equation (8.8) is the criterion for magnetic stabilization against
turbulent breakdown in a pure vortex bounded by nonpermeable concentric
cylindrical walls. An upper limit of the magnitude of the magnefic field
Bo for stabiI1%E€ti6n can be estimated without lengthy numerical calculations
such as those required for a Rayleigh-Ritz procedure.

Note that any orthogonal function which vanishes at r = e, R should
approximate an eigenstaté'pf yf which satisfies the differential equation

[Eq. (6.20]. A closer examination also reveals that the upper limit of B

0
is attained if dyr/dr is small. 'This suggests that a sine curve of the
type

. _ T . _
Y., = y,. sin (r - e) : - (8.9)
r. T R -e

should yield a reasonable estimate of the upper limit of Bo
a constant, Next, note that the smallest convective wave numbex in a
cylindricel chamber of length, L, is at least of the order of E/L; i.e.

s Where y;? is

L

b ~ =, (8.10)
min L

Substituting Egs. (8.9) and (8.10) into the expression to the right
of Eq. (8.8), it is immediately noticed that the expression diverges when
the radius of the inner cylinder is reduced to zero. It is' therefore con-
cluded that a vortex flow without an inner boundary cannot be stabilized
by means of an axially applied magnetic field. The maghitude of the mag-
netic field for a vortex with an inner radius in fact varies transcenden-

tally with the ratio of the radii of the two concentric cylinders bounding

(!
Vo

o
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the vortex flow.

Equation (8.8) can be written in an alternative form as follows:

R
2 [ Ve
4 R — dr
1 e r3
- > - , (8.11)
A , R R dyr yr 2
bv? JF ry? Jr r { — + ——‘) dr
r
: dr r
e e
where
B~ '
A= g 9 (8.12)
P Mo

is. called the peripheral Alfven number, and

" (8.13)

=] lNN

% =

is the outer peripheral velocity of the vortéx. The dependence of the

‘lower limit of the reciprocal of the square of the peripheral Alfven num-

ber on the ratio of the radii of the inner and outer cylindrical‘walls,
e
K = = (8.14)
R ;
is shown in Fig. 8.1. The length of the vbrtex has a very small effect
on the lower limit of“th& Treciprocal of“the square of the peripheral -
Alfven number. This is shown graphically in Fig.'8.2 and is due to the

‘fact that

2

R . R dy ¥ .
b2 f r yr2 dr << f r (_r + = dr . (8.15)
r

; dr .
- e e

Therefore, an approximate expression for Eq. (Q.ll) is:
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e
A2 R dyr y}
[ (2 EYe
dr r

e

which is entirely independent of L or b.

The over-all size of the vortex tube also has no effect on the
magnitude of the lower limit of the square of the peripheral Alfven
number. This can be deduced directly from Eq. (8.8) or Eq. (8.12) by
nondimensionalizing the integrals.

For a fluid density of 1 kg/m®, the upper limit of the required
magnitude of the axially applied magnetic field, BO’ for stabilization
is calculated for various values of the peripheral velocity, QP and k.
The result is shown in Fig. 8.3. The linear relationship between B_ and

0
Qp can be deduced directly from Eq. (8.12),
Bo = QP Y P p’o /A ° ‘ (8"17)

Equation (8.17) also indicates that B, is proportional to the square

root of the fluid density, p. This is shown graphically in Fig. 8.4.

9. DISCUSSION OF THE STABILITY CRITERION FOR A STATIONARY VORTEX FLOW
WITH FINITE BUT RELATIVELY SMALL STATIONARY SINK FLOW

Let us consider the actual flow situation which arises in a vortex
heat-exchange chamber. The vortex flow is sustained by means of peripheral
jets which supply the cold gas propellent. After absorbing heat from the
fissionable gas, the propellent is sucked away through the central portion
of the vortex. Therefore, there exists a small, but finite radial flow
throughout the flow region. Iet us visualize the vortex flow region as
a portion of the circulatory flow contained within two permeable walls,
Fig. 9.1. The outer boundary is formed by the boundary-layer flow due to
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Jet injection and the inner boundary'isAa core of fluid where the flow
begins to change into the axial direction. The portion of the flow region
contained within these premeable walls can be considered as a vortex-sink
flow with finite but small radial boundary velocities.

To understand the stability mechanism of such a stationary flow, let
us consider the buckling behavior of a hinged elastic column, Fig. 9.2.
‘The supports of the column are assumed to be elastic. Therefore, under
load the column including its supports will deflect and move until it
reaches a nevw stationary state which is in general slightly different
from its initial sﬁate. The column may then buckle away from this new
stationary state., The buckling load of this column cen be approximated by
the stability condition analyzed with respect to the initial stationary
state, assuming that the supports of the column cannot be deflected. We
have approximately an analogous situation for the vortex flow. The outer
boundary layer and the inner core of the axial flow region serve as elastic
boundaries. A stationary vortex flow will attain a new stationary state
as a vortex-sink flow due to the perturbations of these elastic boundaries
or permeable walls., Stability analyéis can then be considered with respect
to this new stationary state. Since the radial flow velocity is small
(though finite) when compared with the transverse velocity component, the
stability criterion of the (1/r) vortex-sink flow can be approximated by-
a free Qortex with nonpermeable walls. Therefore, the stability criterion
given by Egs. (8.8), (8.11), or (8.16) can probably be applied to the
vortex-sink flow region in a vortex heat-exchange chamber without much

error.

In an actual vortex heat-exchanger, the boundary layer along the outer
periphery of the vortex and the inner core of the vortex flow where the
flow begins to attain an axial velocity component characterize the size
and the boundary conditions of the region of the vortex-sink flow contained
within them. These and additional effects on the stability behavior of a
vortex heat exchanger due to boundary-layer oscillations and flow against
concave walls will be discussed in subsequent reports where the influence
of the dissipative terms on the stability property of the vortex-sink flow
will also be considered.
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10. CONCLUSION

The following conclusions are reached from the foregoing analysis.

(a) The basic equations of nondissipative, incompressible magneto-
hydrodynsmic flow admit a class of stationary solutions of the (1/r)
vortex-sink type. ‘

(b) A pure vortex is intrinsically unstable without an axially
applied magnetic field.

(¢) A ﬁure vortex without an inner boundary cannot be stabilized by
means of an axially applied magnetic field.

(d) A pure vortex enclosed ﬁithin two nonpermeable concentric ¢ylin-
drical walls can be stabilized by means of an axially applied magnetic
field. The strength of the magnetic field is a function of the fluid
density, the periphefal velocity, and the ratio of inner and outer radii
of the cylindrical walls [see Eqs. (8.8), (8.11), and (8.16); Figs. 8.1, C
8.2, 8.3, and 8.4]. ’ ‘

(e) A vortex-sink flow such as the type which probably occurs in a <
~ vortex heat exchanger can be considered as a vortex flow within two A
permeable walls. If the radial velocity component of such a vortex-sink

flow with a (1/r)-characteristic is much smaller than the transverse flow

velocity, then the stability criterion can be approximately estimated in

terms of the results obtained for a pure vortex flow within nonpermeable

walls.

(f) Additional studies are nqued to consider the effects of boundary-
layer oscillations and instability due to flow against concave walls.

(g) Further studies are also needed to consider the effects of the
boundary layer and the inner core on the size and boundary conditions of
the vortex-sink flow contained within them.
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NOMENCLATURE
A ) peripheral Alfven number
a constant
B magnitude of the magnetic induction field
BO axially applied uniform magnetic induction field
Bi Carfisian components of the magnetic induction vector

Br’ Be, Bz cylindrical components of the magnetic induction vector

B perturbation édﬁponents of the magnetic induction vector
in cylindrical coordinates

’% ,‘%9, 2 normal mode amplitudes of the perturbation components of the
magnetic induction field in cylindrical coordinates

b convective wave number

minimum convective wave number for stability

min

Ei rectangular components of the electric field vector

e -inner radius of the cylindrical wall containing the vortex
flow '

i, j, k index notation suffixes

Ji current density'veétor

Kl} Ka)

Ka» K; constants

L length of the vortex tube
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stationary solution of the fluid pressure with cylindrical
symmetry
fluid pressure
equivalent fluid pressuré
perturbation of the equivalent fluid pressure

normal mode amplitude of the perturbation of the equivalent
fluid pressure '

stationary solutions of the cylindrical components of the
fluid velocity with cylindrical symmetry

peripheral velocity of the vortex flow
velocity vector
cylindrical components of the velocity vector

perturbation components of the fluid. velocity in cylindrical
coordinates

normal mode amplitudes of the perturbation components of the
fluid velocity in cylindrical coordinates

outer radius of the cylindrical wall containing the vortex
flow

cylindrical components

‘Eraqgformed functions related to the amplitude functions G;,
4y, 9,

complex conjugate of V.
amplitﬁde of the approximate eigenfunction Y for stability
small, real, positive constant

ratio of the inner and outer radii of the concentric cylin-
drical walls containing the vortex flow

fluid density
Maxwell's stress tensor

magnetic permeability

*
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