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ABSTRACT 

A preliminary nondissipative, incompressible magnetohydrodynamic stability 
analysis against turbulent breakdown of vortex flow.with possible application 
to an ionized gas-phase fission reactor is presented. 

It is found that a vortex flow enclosed within two concentric cylindrical 
walls can be stabilized against possible turbulent breakdown by means of an 
axially applied magnetic field. The magnitude of this magnetic field varies 
with the density of the fluid, the peripheral velocity of the vortex, and the 
radii of the cross sections of the concentric cylindrical walls. 

For an actual vortex heat exchanger, the vortex has a small but finite, 
radial flow throughout the flow region. Analysis shows that there exists a 
possible stationary state of a combination vortex-sink flow with a (~r)­
characteristic. This means that, in prinCiple, a separate analysis should be 
made to consider the stability of such a stationary flow. However, since the 
finite radial flow velocity in an actual vortex heat exchanger is expected to 
be small compared with the transverse velocity, it might be expected that the 
magnitude of the axially applied magnetic field for partial stabilization of 
such vortex-sink flow is of the same order of magnitude as that obtained for 
confined pure vortex flow. 

Forced boundary-layer oscillations and instability due to flow against 
concave walls are not considered in this analysiS, nor is the effect of the 
axial flow in the inner core. These effects will not only intDoduce instabil­
ity in the boundary layer and the inner core but also will control the effec­
tive radii of the inner and outer boundaries containing the vortex-sink flow. 

NOTICE 

This document contains information of a preliminary nature ~nd was prepared 
primarily for intornal use at the Oak Ridge Notional Laboratory. It is subject 
to revision or correction and therefore does no. repr.sent 'a final report. The 
information Is not to be abstracted, reprinted or otherwise given public dis· 
semination without the approval of the ORNL potent branch, Legal and Infqr. 
motion Control Oepartment. ' 
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MAGNETOHYDRODYNAMIC STABILITY OF VORTEX FLOW - A NON­

DISSIPATIVE, INCOMPRESSIBIE ANALYSIS 

* Tien S. Chang 

SUMMARY 

It is found that there exists a class of stationary solutions of non-' 

dissipative, incompressible magnetohydrodynamic flow with cylindrical sym-' 

metry in the presence of an axially applied magnetiC field. Such flow 

consists of a vortex-sink combination of (l/r)-characteristic with a super­

imposed axial flow velocity. 

Stability analysis is given for a pure vortex flow against possible 

turbulent breakdown. The result indicates that the free vortex flow is 

intrinsically unstable without an axially applied magnetic field. An 

axially applied uniform magnetiC field can, in principle, introduce stabil­

i ty against small perturbations for a vortex flow contained wi thin two non­

permeable concentric cylinders. The magnitude of the magnetic field re­

quired for stability in this case is found to vary in proportion with the 

peripheral velocity, the square root of the fluid density, and transcenden­

tally with the inner and outer radii of the concentric cylindrical walls. 

When applied to a vortex heat exchanger, the nonpermeable wall as­

sumption cannot be introduced. Therefore, there exists in addition to the 

perturbation states allowed for nonpe-rmeable walls, boUndary perturbations. 

The vortex flow with permeable walls, is intrinsically unstable against 

radial boundary perturbations. However, it is reasonable to . expect that 

the boundary perturbations will ultimately shift the vortex flow to a new 

stationary state with a finite but small boundary velocity of the (l/r)­

sink type, since such a stationary state is allowed by the basic equations 

of magnetohydrodynamics. Assuming further boundary perturbations from 

this new stationary state are small enough to be neglected when compared 

with the perturbations in other parts of the flow region, an eigenvalue 

stability analysis is again possible with respect to this new stationary 

* Summer employee, present address Department of Engineering Mechanics, 
Virginia Polytechnic Institute, Blacksburg, Virginia. 
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state. However, the radial flow velocity of an actual vortex heat ex~ 

changer is expected to be small when compared with the transverse flow 

velocity, so that the results obtained for the pure vortex flow should 

yield a reasonable estimate of the axially applied magnetic field for 

ultimate stabilization of the vortex-sink stationary state with a (l/r)~ 

characteristic. 

In an actual heat exchanger, the cold gas is injected along the 

periphery of the vortex causing forced oscillations of the boundary layer 

along the peripheral wall. This eff~ct is not considered in the present· 

analys.is. 

A.dditional studies in boundary-layer osciuations and stability 

effects of flow against concave ,walls <should be considered before concrete 
. , I 

conclusions can be reached as to whether the method of magnetic stabiliza= 

tion is feasible or not for a vortex 'heat exchanger, fission reactor. 

The boundary-layer flow along theo~ter 'periphery of the vortex cham= 

ber and the axial flow region in the'inner core"bf the vortex determines 

the .boundary conditions of the vortex~sink flow contained within them. 

These effects should be considered in conjunction with the stability of 

the vortex-sink flow. 

It is also believed that a study comparing the turbulent eddies in 

the vortex flow with and without the magnetic field should be considered. 

Since the method of magnetic stabilization is only partially effective, 

turbulence will probably always set in through the finite boundary pertur= 

battons. This turbulence can probably be controlled by the magnetic field 

but never completely eliminated. 
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1. INTRODUCTION 

* Kerrebrock and Megbreblian {l) have suggested that a gaseous core 

nuclear reactor might be constructed using a vortex flow, heat~exchange 

chamber. In such a proposed reactor configuration, relatively cold, light 

gas is injected tangentially into a cylindrical heat=exchange chamber along 

the periphery of the chamber. This cold gas then circulates and forms a 

vortex within the cylindrical chamber while mixing and exchanging heat with 

an annular cloud of heavy fissionable gas which is suspended stably in the 

vortex flow by the centrifugal and pressure' forces. After absorbing a 

sufficient amount of heat from the fissionable gas, the dissociated and 

partially ionized gas is discharged. 

Due to the high injection velOCity of the gas along the periphery, 

the high pressure necessary for the stabilization of the fissionable cloud, 

the concave surface of the periphery of the cylindrical heat"'excbange cham';: 

ber, and the high Reynolds number in the flow, the vortex flow in all probe 

ability will breakdown into turbulent motion even with the favorable gas 

denSity distribution which exists in a vortex flow. This turbulent break­

down was demonstrated experimentally by Keyes (2). 

~e purpose of this report is to discuss the possible stabilization 

effects of an axially applied magnetic field against turbulent breakdown 

in the free vortex for possible application to the case of a gaseous 

fission reactor operating in the ionization region. 

, stabilization considerations of magnetohydrodynam1c flow between 

rotating coaxial cylinders have been investigated by Reid (3), Chan~ra= ,..... . 
sekhar (4), and Velikhov (5). Rowever, they have not considered the case 

of magnetic stabilization of a vorte~;f1ow with or without secondary flows 

in the radial and axial directions. 

In this report, it is first attempted to search for possible sta-

. tionary solutions of magnetohydrodynamicflow with cylindrical symmetry 

in the presence of an axially applied magnetic fie1do Stability con­

sideration of the simple stationary vortex flow and of the vortex-sink 

* Numerals appearing in parentheses refer to list of references 
appended to this report. 
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flow will then be considered. In this analysis, the fluid is assumed to 

be nondissipative and incompressible. The nondissipative nature of the 

flow cannOt be assumed in the boundary-layer flow along the peripheral 

wall of the vortex chamber. Stability study of flow with dissipation will 

be considered in a subsequent report. 

2. GOVERNING EQUATIONS FOR NONDISSIPATIVE , INCOMPRESSIBLE, 

MAGNETOHYDRODYNAMIC FlOW 

The governing equations for nondissipative, incompressible, magneto-
.. 

hydrodynamic flow are given as follows: 

where 

wbere 

Continuity Equation for Mass Conservation 

qj"j = 0, 

(a) qj is the fluid velocity, and 

(b) the density of ~he fluid is assumed to be a constant. 

Equations of Motion 

= 

(a) p is tbe fluid density, 

(b) p is the fluid pressure, 

(c) £ijk J j Bk is the ponderomotive force, 

(d) J j is the current density, 

(e) Bk is the magnetic induction vector, and 

(f) the viscous stress compone~ts and other body forces 
are neglected. 

(2.1)* 

(2.2) 

* The three small Latin suffixes .ui,j"k" are used as range or summation 
indices.. The symbol u"i" means 
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Maxwell's Equations 

Ei i = 0 , , 
= , 

Eijk Bk,j = ~O J i ' 

(a) Ei is the electric field, 

(b) ~O is the magnetic permeability in vacuum, 

(c) excess charge and Maxwell's displacement current 
are neglected, and 

(d) rationalized MKS system of units is used. 

Ohm's Law 

(a) the fluid is assumed to be perfectly conducting, and 

(b) the Hall current is neglected. 

Continuity Equation of Charge Conservation 

Ji,i = 0, 

(2.3) 

(2.4) 

(2.6) 

(2.7) 

(2.8) 

where the excess charge is again neglected. We note that Eq. (2.8) is a 

direct consequence of Eq. (2.6) and therefore is not.an independent ex­

pression. 

Combining Eqs. (2.2), (2.5), and (2.6), we obtain an alternative form 

of the equations of motion as follows: 

.~p i , 
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where 

= --

is the Maxwell's stress tensor. 

2 ~ o 
(2.10) 

Combining Eqs. (2.1), (2.4), (2.5), and (2.7), we obtain an equation 

governing Bi and ~: 

(2.11) 

Equation (2.11) is called the induction equation. 

Equations (2.1), (2.9), and (2.11) form a complete set of equations 

governing nondissipative, incompressible magnetohydrodynamic flow subject 

to the SOlenoidal condition of Bi give~ by Eq. (2.5). 

Since the study of vortex motion is more conveniently discussed in 

terms of cylindrical geometry, -the--governing equations [(2.l), '(2;5), (2.9), 

and (2.11)] are expressed in cylindriCal coordinates as follows: 

~~ ~ 1. ~~ ~q 
z 0 - + - + + - = . ·(2.12) 

~r r r ~8 ~z 

~Br B 1 ~B9 ~Bz r 0 - + - + - + = . 
~r r r ~9 ~z 

(2.13) 

1 

[( 
~. ~ ~ ) B8

r

2 
] 

B-+B8 -+B- B-
r ~r r ~9 z ~z r 

= 

1 ~ 

p ~r 
(2.14) 

I 

I 

t , 
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o~ '0' 0 o ,. . Q.g"~ . 

()t 
+(~-. +~-' +qz-)'~+' . : 

()r r ()8 ~ r 

1 [ (~ ~ ~ ) De D ] 
= -- Br - + B8 -- + Bz - B8 + r 

P IlO Or . r ()8 OZ . ,r 

1 0 
(p + ~). -- (2.15) 

P r ()8 2 IlO 

oq , o· (). 

+ q ~ ) q z +(~- +~-. -
at or r08 z OZ z 

1 ()" 0 () ] = -[(B -+.B -+B -)B 
r () 8 () z 0 z P IlO r r 9 z 

1 () 

(p ~ ~). - - (2.16) 
I P OZ 2 IlO 

• ()B
r (~~ 0 

+ q ~)B + +~-
ot or r 08 z OZ r 

(D ~ 0 
+B ~ )~. = + B -- . (2.17) 

r ()r 8 r 08 z OZ 

OB8 (<1r .: 
0 o ) ~B8 - + +~- + C!z - B8 -

at ()r r 08 oz r 

(B ~ 0 () ) B q9 
= +, B9 - .. - + Bz - ~ - r (2.18) 

r or r 09 oz r 

oBz (q" ~ 0 
+ q ~ )B ---- + + q --

()t or ,8 r 08 z ()z z 

• CD ~ 
() 

+ Dz :)~ = +B -- . (2.19) 
r ()r 8 r ()8 

• 
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Here r, 9, z. are the usual cylindrical coordinates. "~,~, qz" and 

liB , B9, B " are the cylindrical compOnents of the velocity vector and the r z 
magnetic induction vector, respectively. 

3. A CLASS OF STATIONARY SOLUTIONS WITH CYLINDRICAL SYMMETRY 

Let us assume that there exists a class of stationary solutions with 

cylindrical symmetry of the following type for a nondissipative, incompress­

ible flow of a perfectly conducting fluid in the presence of a uniformly 

applied axial magnetic field: 

~ = Q (r) , (3.l) r 

Cle = Q9(r} , {302} 

qz = Q {r} , (3.3) z 

B = 0 , (3.4) r 

B9 = o· , (3.5) 

B = Bo = constant , (3.6) z 

p = ~(r) (3.7) 

Inserting Eqs. (3,1) through (3.7) into Eqa, (2.12) through (2.19), 
we obtain 

d~ Qr -+- = 0 , (3.8) 
dr r 

0 = 0 , (3.9) 

dQ Q2 1 dP 
Q -!: 9 (3.l0) = -- - , 
rdr r P'i dr 'j. 

dQ'9 Qr Q9 0 (3.11) Q- + = , 
rdr r 

I 

, 

I 

• 

• 

• 
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dQ . z 
0 (3.12) Q = , 

r dr 

0 = 0 , (3.13) 

0 = 0 1 (3.14) 

0 = 0 (3.15) 

This means that there exists stationary states where the applied 

magnetic field has no influential effect when perturbations are not present. 

The general solution satisfying Eqs. (3.8) through (3.12) is: 

~= 

Qe = 

P = K -

" 

Kl. 

r 

K 
2 

r 

where K , K , Ks ' and K are constants. 
12" 

, 

, 

, 

'(3.1'6) 

(3.17.) 

·(3. i8) 

It appears that the only type of flow which has a stationary solution 

of cylindrical symmetry is for Q to be a constant. Actually, the. vortex-z . 
sink solution of (l/r)-characteristic given above has singular points along 

r = O. Therefore, Q is a constant everywhere except at r = 0, where the z . . 
continuity condition demands that Q to be very large when compared with z 
its value in the other parts of the flow region. 

4. SMALL PERTURBATION EQUATIONS FOR THE STATIONARY SOLUTION 

To investigate the stability of the vortex-sink stationary state with 

(l/r)-characteristic given by Eqs. (3.16) through (3.19) and (3.4) through 

(3.7), we shall allow the.flow velocity, the magnetic induction field, and 

the fluid pressure to deviate slightly from their desirable stationary 
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values. If the flow is stabilized by the applied axial magnetic field, 

then the perturbations should be an OSCillatory state about the stationary 

values. We want to find out if such oscilla~ory states 
~::~: ' 

exist. Therefore, ' 

we shall 'assume the following perturbation solutions: 

K1 ... 
(4.1) ~ = + E:~ , 

r 

Q' 
K2 ... 

(4.2) = + E:% , 9 r 
... 

(4.3) qz = E: q , 
Z 

... 
B = E: B , (4.4) r r 

... 
B9 = E: Be , (4.5) 

... 
B = BO + E: B , (4.6) z z 

(p ~) (p + ~) ... if. p* = + - + E: P , (4.7) 
2 I!o 2 I!O 

E: (positive, real constant) « 1 ~ (4.8) , 

where ~ is set equal to zero without loss of generality, since it repre­

sents a rigid body motion along the axis of symmetry. 

'Substituting Eqs. (4.1) through (4.8) into Eqs. (2.12) through (2.19), 
we obtain a set of equations to the zeroth order of E: governing the sta­

tionary flow and a set of equations to the first order of E: governing the 

perturbations. The zeroth order equations are automatically satisfied by 

Eq. (3.19). ,The first order equations 'are a set of linear partial dif­

ferential equations given as follows: 

+ + - + - 0 (4.9) 
or r r 09 

I 

• 

• I 
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.... .... 
OB8 

oB . OBr B 1 

• r z 0 (4.10) + + - + = . 
or r r 08 OZ 

o~ K 0 .... K K 0 .... K 
-l.. ~ ....! .... 2 ~ 2~ 

.... 
+ - ~ + - - q8 

ot or r2 2 08 2 r r r 

0 .... 0""* BO Br 1 p. 

= - - - (4.11) 
p ~O oZ p or 

o~ 0"" 
; 

~ K1 K K .~ 
~ ....! .... 

+ - + + q8 
ot r or r2 08 r2 

..i oB" 1 OP 8 (4.12) = - . 
p ~O oZ p r 08 

• 0"" 5.. 
0 .... K 0"" 

~ qz 2 qz - + + 
ot or 2 08 r r • 

BO oB 1 oP* z (4.13) = - - - -
p ~O oZ p oz 

oB K OBr K OB K1 0 .... 
r ....! ..& r ..., ~ (4.14) - + + + - B = Bo- • 

ot or 2 08 r2 r r r . OZ 

..., 
OB8 OB8 OBe K1 K2 2 K2 ..., K1 .... - + - + - + B B8 

ot or r2 08 r2 r r2 r 

0 .... 
BO 

~ (4.15) = 
oz 

0 .... oB oB 0#0; Bz K1 K2 Z --! BO 
qz 

(4.16) + + = 
at or 2 08 oz • r r 

, • 
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Equations (4.9) through (4.16) together with the boundary conditions 

are equations governing small perturbations from the vortex-sink stationary 

solution with a (l/r)-characteristic given by Eqs. (3.16) through (3.19) 
and (3.4 through (3.7) with K3 arbitrarily set equal to zero. 

5. ANALYSIS OF NORMAL MODES FOR -THE SMALL PERTURBATIONS OF A FREE VORTEX 

For a free-vortex flow, the first-order perturbation equations become: 

OIV IV 0"" oq ~ 1 ~ Cle . ·z 0 (4.9) + + + "" , 
or r r 09 oz 

IV .... .... IV 
oB B 1 OB9 oB r r z 0 (4.10) + + - - + "" , 
or r r 09 oz. 

OIV 0 .... IV 
K2 2 K2 BO oB ~ ~ IV 

--!. -- + - -- ~ "" 
ot r2 09 r2 p ~O oz 

1 op* 
- - - , (5.1) 

p or 

a~ a~ 
.... 

op* K2 Bo aBe 1 
+ "" --- - - - (5.2) J 

ot r2 09 p ~O oZ p r 09 

0'" 0 .... ... 
oP* K2 B OBz 1 qz ~ 0 - + == , (5.3) 

()t r2 ()9 p ~o oz p az 

IV IV IV 
()B K2 ()B o~ r r (5.4) - + = BO , 
()t r2 09 oz 

IV IV a-OB9 K2 OB9 2 K2 IV ~ - + + B == Bo , (5.5) 
at r2 09 r2 r oz 

I 

• 

• 

, 
\ • 
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()"" 
... ()-Bz K2 ()B 

z 
BO 

.~ 
(5.6) - + = , 

()t 2' ()e ()z r 

where K2 1s the only parameter characterizing the free-vortex flow. 

We shall assume that the d1sturbances can be separated into the 

following type of convective normal modes: 

... ~ 1(at + bz) (5.7) ~ = ~e , 

.... /.::. 1 (at + bz) (5.B) ~ = ~e . , 

- 1'\ 1 (at + bz) 
(5.9) ~ = qe, . , z ' . 

.... 
)3 i.(at + bz) B = e , (5.10) r r 

... 1 i(at + bz) 
Be = e e . , (5.11) 

.... ~ 1(at + bz) B 1:1 e e , (5.12) z 

... * ~* i(at + bz) (5.l.3) p = p e , 

where allamp11tudes are assumed to funct10ns of r. 

Inserting Eqs. (5.7) to (5.13) into Eqs. (4.9), (4.10), and (5.1) to 
(5.6), we obtain 

d~ ~ 
1 b~ 0 - + + = , 

dr r 
(5.14) 

~ i'. 
1 b'i' r r 0 + + = , 

dr 
z r 

i a~ 
1 d~ 
- -- = 0 , (5.16) 

P J.10 
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i a ~ 
i b Bo 

:}i' 0 - = , e 
P !-LO 

A i b BO A b 
/'>..* i a qz - B . + i P = 0 , z 

P-!-LO P 

A 
i b Bo ~ i a B . = 0 , r 

"'" 2 K2A .1\ 
0 i a Be + --;- Br . i b BO qe = , (5.20) 

r 

A A 
0 i a B - i b BO qz = . z 

"'~ A..6I"·D ~ These are the equations governing ~, ~, qz' Br , Be' Bz' and p. We 
shall call these amplitude equations. 

6. REDUCTION OF THE GOVERNING EQUATIONS OF THE AMPLITUDE 

FUNCTIONS OF SMALL PERTURBATIONS OF VORTEX FLOW 

Let us define a new set of variables (y y y) such that r' e' z . 
/"t. . 

~ 
v :::: -i - , J r a 

1 

(~+ Ye :::: 

a 
';.!t.i" 

A 
-i ~ yz == . 

a 

2i~ 

~) , 
a r2 

(6.l) 

(6.2) 

(6.3) 

T~sform1ng the amplitude equations given by Eqs. (5.14) through (5.21) 

using Eqs. (6.1) through (6.3), we obtain: 

dy iy 
i r r by 0 + - == , 

dr z r 
(6.4) 

A /'\ 
dBr B 

'i b~z r 0 + +. == , 
dr r 

(6.5) 

• 
• 

• 
• 

• 
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1 d~ 
+ - = 0 , 

P IlO P dr 

i a [i a Ye 
2 K2 

YrJ 
i b BO 

~ + -2 e r P IlO 

i b BO A b 
6* _a2 Y - B + i - P = 0 z z 

P IlO P 

A. 2K2~ [ 
i a Be + ---2-- Br - i b BO i a Ye + 

r . 

+ 

Equations (6.9) through (6.11) state that 

/' 
B = 1 b BO Yr , 

r 
A 
Be = i b BO Ye , 

" i b BO Yz B = z 

= 0 

, 

Therefore, Eqs. (6.4) and (6.5) are identical. They state that 

Yr 
+ + i b Y z = 0 . 

r 

(6.6) 

, 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

(6.15) 

Substituting Eqs'~- (iLi2) through-(6.14) into Eqs. (6.6) through (6.8), 
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2 
4 K2 b2 B2 . K2 

C2 
p ,,: ) 

2 i a . a + - Yr + Ye -
r 4 r2 

1 0.1' 
= 0 , (6.16) 

P dr 

~ 
(a

2 b2 B02) 
2 i a .Yr - - Ye = 0 , 2 r P f.l.o 

(6.17) 

(6.18) 

Combining Eqs. (6.15), (6.16), (6.17), and (6.18) by eliminating Ye' 
A* Yz' and p , we obtain after some manipulation 

b2 B 2 

P "°:2 B02) Yr = 
a 2 _ 

- 4 
P f.l.0 

p f.l.0 

(6.19) 

or, 

x 
2 

a -
P f.l.0 

x (6.20) 

• 
• 

o 

, 
• 

• 

• 
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This is a second-order, ordinary differential equation governing Yr" 

When Eq. (6.20) is solved and the solution evaluated in terms or'the given 

boundary conditions, two simultaneous, homogeneous, algebraic equations 

will be obtained. For nontrivial solutions of these two algebraic equa­

tions, it will be found that (a2 - b2 B02/p ~O) c~n only take on a dis­

crete set of ei~envalues. The stability criterion for BO is then obtained 

by requiring that only those eigenstates of Y r with real, positive "values 

of 8
2 can exist. 

7. INTEGRAL REPRESENTATION OF THE STABILITY CRITERION FOR .. YORTEX FLOW 

Equation (6.19) can be written as 

( dYr 

dr 
(7.1) 

Let us apply the integral operator 

R 

J r Yr [ 

e 

to each term in Eq. (7.1): 
R 

~2 bF J r -
e 

r r -'(dY y), 
dr +;- r yr,dr 

'*'-Y denotes the complex conjugate of y • r r 
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b2.j 
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r y y dr­r r 

4 K'2,2 b4 B02 
.. 

P 110 

R d 

J dr 
e 

.R 

J Yr Yr 
dr 

r3 
e 

fR d dy y' - - - ( ---E. + ..L ) r Yr dr r Y Y dr r r dr dr r e 

1/2 

• (7.4) 

The stability criterionrequ1res a 2 to be real and positive. This gives 
the required magnitude of the applied magnetic field BO for the lowest 

value of b. 

8. STABILITY CRITERION FOR A PURE VORTEX WITH NONPERMEABLE 

CONCENTRIC CYLINDRICAL WALLS 

The integral 

R 

J ( 
dYr 
- + 

dr dr 

d 

e 

can be integrated by parts as follows: 

Yr) r y dr 
r r 

(8.1) 

• 

, 
• 
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R d 

J ~ 
e dr 

(8.2) 

But the boundary conditions for nonpremeable walls are 

Y
r 

=. 0 , at r = R , 

and 

Yr = 0 , at r = e , (8.4) 

where R and e are the rad~i .of the cross sections of the outer and inner 

cylindrical walls containing the vortex flow, respectively. 

Therefore, Eq. (8.2) becomes 

R d 

J dr 
e 

(
dYr Yr) -- + - . r Yr dr = 
dr r 

R 

= - J d 

dr 
( 

dYr Yr )' 
-+- dr= 
dr r e 

* Combining Eqs. (7.4) and (8.5); 

2 b" 2 R 4 K BO Y 2 

2 ':""""'j " ~.;r dr - ... -
. 3 

PlJ.o e r 
± 

b2 fR r Yr2 dr + /r (:r + :r rdr 

e e 

* \ Here the property of Y r = -1 a ' where ~ is real :Ls used. 

(8.6) 
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Since b is real, Eq. (8.6) indicates that the values of a2 is always 

real. The stability requirement restricts a2 to be posl.t3:v.~j:~.i.,e~, ,,- . 
, ~. "", 

(8.7) 
or R y2 

4 P IJ.O K; J r dr 
r3 

B2 > e 
R. R . 

0 

C:r Yr )2 
b2 J r y2 dr J + r + - dr r r e e 

(8.8) 

Equation (8.8) is the criterion for magnetic stabilization against 

turbulent breakdown in a pure vortex bounded by nonpermeable concentric 

cylindrical walls. An upper limit of the magnitude of the magnetic field 

BO for stabflY!!f''S.'tfOn can be estimated without ~engthy numerical c;alcula~ions 

such as those required for a Rayleigh-Ritz procedure. 

Note that any orthogonal function which vanishes at r = e, R should 

apprOximate an eigenstate of y which satisfies the differential equation 
. r 

[Eq. (6.20]. A closer examination also reveals that the upper limit o~ BO 

is attained if dyridr is small. 'This suggests that a sine curve of the 

type 
v 

sin (r - e) (8.9) 
R w. e 

should yield a reasonable estimate of the upper limit of B
O

' where Yro is 

a constant. Next, note that the smallest convective wave numbe~ in a 

cylindrical chamber of length, L, is at least of the order of v/L; i.e., 

(8.10) 

Substituting Eqs. (8.9) and (8.10) into the expression to the right 

of Eq. (8.8), it is immediately noticed that the expression diverges when 

the radius of the inner cylinder is reduced to zero. It is therefore con­

cluded that a vortex flow without an inner boundary cannot be stabilized 

by means of an axially applied magnetic field. The magnitude of the mag­

netic field for a vortex with an inner radius in fact varies transcenden­

tally with the ratiO of the radii of the two concentric cylinders bounding 

(' 

\)...; 

• 

• 

• 
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the vortex flow. 

Equation (8.8) can be written in an alternative form as follows: 

R y2 
4 R2 J r dr 

1 r3 
> 

e 
A2 

, 
R R 

( dYr Y )2 b2 J r y2 +J r - + -!:. dr r dr r e e 

(8.11) 

where 

A = ~/-g 
/' P IlO 

(8.12) 

is called the peripheral Alfv~n number, and 

K 
~ = ~ 

R 
(8.13) 

is the outer peripheral velocity of the vortex. The dependence of the 

lower limit of the reciprocal of the square of the peripheral Al~en num­

ber on the ratio of the radii of the inner and outer cylindrical walls, 

e 
I( = , (8.14) 

R 

is shown in Fig. 8.1. The length of the vortex has a very small effect' 

on the lower limit' oI"~thtr reciprocal of''')the square of the peripheral 

Alfv~n number. This is shown graphically in Fig. 8.2 and is due to the 

'fact that 

(8.15) 

Therefore, an approximate expression for Eq. (8.ll) is: 
" 
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1 
= 

J 
e 

R 

2B 

( 
dy 

r -.!: + 
dr 

which is entirely independent of L or b. 

Y )2 
..L dr 
r 

J 

The over-all size of the vortex tube also has no effect on the 

magnitude of the lower limit of the square of the peripheral All'v~n 

number. This can be deduced directly from Eq. (B.B) or Eq. (B.12) by 

nondimens!onalizing the integrals. 

(B.16) 

For a fluid density of 1 'kgjm3 , the upper limit of the required 

magnitude of the axially applied magnetic field, BO' for stabilization 

is calculated for various values of the peripheral velocity, ~ and K. 

The result is shown in Fig. B.3. The linear relationship between BO and 

~ can be deduced directly from Eq. (B.12), 

(8.17) 

Equation (B.17) also indicates that BO is proportional to the square 

root of the fluid denSity, p. This is shown graphically in Fig. B.4. 

9. DISCUSSION OF THE STABILITY CRITERION FOR A STATIONARY VORTEX FLOW 

WITH FINITE BUT RElATIVELY SMALL STATIONARY SINK FLOW 

Let us consider the actual flow situation which arises in a vortex 

heat-exchange chamber. The vortex flow is sustained by means of peripheral 

jets which supply the cold gas propellent. After absorbing heat from the 

fissionable gas, the propellent is sucked away through the central portion 

of the vortex. Therefore, there exists a small, but finite radial flow 

throughout the flow region. Let us visualize the vortex flow region as 

a portion of the circulatory flow· contained within two permeable walls, 

Fig. 9.1. Th~ outer boundary is formed by the boundary~layer flow due to 
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jet injection and the inner boundary is a core of fluid where the flow 

begins to change into the axial direction. The portion of the flow region 

contained within these premeable walls can be considered as a vortex-sink 

flow with finite but small radial boundary velocities. 

To understand the stability mechanism of such a stationary flow, let 

us consider the buckling behavior of a hinged elastic column, Fig. 9.2. 
,The supports of the column are assumed to be elastic. Therefore, under 

load the column including its supports will deflect and move until it 

reaches a new stationary state which is in general sligh~ly different 

from its initial state. The column may then buckle away from this new 

stationary state. The buckling load of this column can be approximated by 

the stability condition analyzed with respect to the initial stationary 

state, assuming that the supports of the column cannot be deflected, We 

have approximately an analogous situation for the vortex flow. The outer 

boundary layer and the inner core of the axial flow region serve as elastic 

boundaries. A stationary vortex flow will attain a new stationary state 

as a vortex-sink flow due to the'perturbations of these elastic boundaries 

or permeable walls. Stability analysis can then be considered with respect 

to this new stationary state. Since the radial flow velocity is small 

(though finite) when compared with the transverse velocity component, the 

stability criterion of the (l/r) vortex-sink flow can be approximated by .. 

a free vortex with nonpermeab1e walls. The~efore, the stability criterion 

given by Eqs. (8.8), (8.11), or (8.16) can probably be applied to the 

vortex-sink flow region in a vortex heat-exchange chamber without much 

error. 

In an actual vortex heat-exchanger, the boundary layer along the outer 

periphery of the vortex and the inner core of the vortex flow where the 

flow begins to attain an axial velocity component characterize the size 

and the boundary conditions ,of the region of the vortex-sink flow contained 

wi thin them. These and additional effects on the stability behavior of a 

vortex heat exchanger due to .boundary-layer oscillations and flow against 

concave walls will be discussed in subsequent reports where the influence 

of the dissipative terms on the stability property of the vortex-sink flow 

will also be conSidered. 
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10. CONCLUSION 

The following conclusions are reached from the foregoing analysis. 

(a) The basic eq~tions of nondissipative, incompressible magneto­

hydrodynamic flow admit a class of stationa.ry solutions of the (l/r) 

vortex-sink type. 

(b) A pure vortex is intrinsically unstable without an axially 

applied magnetic field. 

(c) A pure vortex without an inner boundary cannot be stabilized by 

means of an axially applied magnetic field. 

(d) A pure vortex enclosed within two nonpermeable concentric cylin­

drical walls can be stabiliz~d by means of an axially applied magnetic 

field. The strength of the magnetic fiel~ is a function of the fluid 

density, the peripheral velocity, and the ratio of inner and outer radii 

of the cylindrical walls [see Eqs. (8.8), (8.11), and (8.16); Figs. 8.1, 
8.2, 8.3, and 8.4]. 

(e) A vortex-sink flow such as the type which probably occurs in a 

vortex heat exchanger can be considered as a vortex flow within two 

permeable walls. If the radial velocity component of such a vortex-sink 

flow with a (l/r)-characteristic is much smaller than the transverse flow 

velocity, then the stability criterion can be approximately estimated in 

terms of the results obtained for a pure vortex flow within nonperme~ble 

walls.' 

(f) Additional studies are needed to consider the effects of boundary-
I .. 

layer oscillations and instability due to flow against concave walls. 

(g) Further studies are also needed to consider the effects of the 

boundary layer and the inner core on the size ana boundary conditions ·of 

the vortex-sink flow contained within them. 
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BO 

Bi 

Br , Be' B z 
.... .... .... 
Br' Be' B z 
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Br' 
A ..6 
Be' Bz 
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b min 

Ei 

e 

i, j, k 
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Kl., ~, 
1<3, K" 
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NOMENCLATURE 

, 
peripheral Alfven number 

constant 

magnitude of the magnetic induction field 

axially applied uniform magnetic induction field 

Cartisian components of the magnetic induction vector 

cylindrical components of the magnetic induction vector 

perturbation cOlllponents of the ~gnetic induction vector 
in cylindrical coordinates 

normal mode amplitudes of the perturbation components of the 
magnetic induction field in cylindrical coordinates 

convective wave number 

minimum convective wave number for stability 

rectangular components of the electric field vector 

inner radius of the cylindrical wall containing the vortex 
flow 

index notation suffixes 

current density vector 

constants 

length of the vortex tube 



p 

p 

* p 

..... * p 

'1)* 

Qr' Q9' Qz 

~ 

~ 

~, ~, qz 
..... ..... -~, ~, qz 

A Cla ,...., qr' , qz 

R 

r, 9, z 

Yr' Y8' yz 

Yr 
0 

Yr 

E: 

It 

p 

36 " 

stationary solution of the fluid pressure with cylindrical 
symmetry 

fluid pressure 

equivalent fluid pressure 

perturbation of the equivalent fluid pressure 

normal mode amplitude of the perturbation of the equivalent 
fluid pressure 

stationary solutions of the cylindrical components of the 
fluid velocity with cylindrical symmetry 

peripheral veloCity of the vortex flow 

veloCity vector 

cylindrical components of the veloCity vector 

perturbation components of the fluid velocity in cylindrical 
coordinates 

.normal mode amplitudes of the perturbation components of" the 
fluid velocity in cylindrical coordinates 

outer radius of the cylindrical wall containing the vortex 
flow 

cylindrical components 

transformed functions related to the amplitude functions ~, 
~, 'Cfz 

complex conjugate of y 
r 

amplitude of the approximate eigenfunction y for stability 
r 

sma1l, real, positive constant 

ratio of the inner and outer radii of the concentric cylin­
drical walls containing the vortex flow 

fluid denSity 

Maxwell's stress tensor 

magnetic permeability 

~" 

r \ . .... , 
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