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Abstract 

A description is given of a general-purpose Monte Carlo program 

for study of the three-dimensional development of high-energy electron­

photon cascade showers in a homogeneous medium. The results of several 

study calculations are compared with previous analytic work to 

demonstrate the accuracy of the calculation. Another comparison with 

an experiment which measured the spatial distribution of the energy 

deposition in tin by 185-Mev electron-initiated showers shows a 

discrepancy between calculation and experiment • 
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Introduction 

In the past few decades considerable interest has been generated 

in the theory of high-energy electron-photon cascade showers because of 

its use in analyzing cosmic-ray showers in air and emulsions. The advent 

of the high-energy electron accelerator has placed additional emphasis on 

the theory since it has applications in the design of accelerator equip­

ment and experimental apparatus. 

Many applications of the theory require extensive information about 

the three-dimensional development of the shower. Until recently, however, 

the analytic work on the theory dealt only with the longitudinal devel­

opment of the shower. This work has been summarized by Rossi.
1 

Previous 

Monte Carlo studies have also been limited to the one-dimensional devel­

opment for simplicity. References to these calculations are given in a 
2 

report by Zerby and Moran. 

Kamata and Nishimura3 reported equations that could be solved 

numerically to obtain the lateral and angular distribution of a shower 

as a function of depth in an infinite medium. These equations resulted 

from extensive analytic work in which several approximations were made. 

Most of them introduce inaccuracies in the low-energy components of the 

shower. 

The present calculation solves the three-dimensional shower prob­

lem by using the Monte Carlo method of computation. It was designed to 

have as few approximations as possible so that it would be applicable to 

relatively low energies (a few Mev). In addition, it was designed to 

consider any transporting medium with any elemental mixture in various 

geometrical configurations such as slabs, cylinders, and cylindrical 

shells. To increase its versatility, positrons and electrons are treated 

separately in the calculation. 

1. B. Rossi, High-Energy Particles, Prentice-Hall, Englewood Cliffs, 
New Jersey (1952). 

2. C. D. Zerby and H. S. Moran, Studies of the Longitudinal Development 
of Hiyh-Ener5Y Electron-Photon Cascade-ShOWers !£ Co~er~ ORNL-3329' 
tr962 • 

3. K. Kamata and J. Nishimura, Pro~r. Theoret. Phys. (Kyoto) 6, 93 
(1958). 
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Approximating ~ Physical Processes 

The basic approximations introduced in high-energy shower theory 

have been described previouslyl-4 and will not be repeated here. It is 

important to note, however, that only a few of the physical processes 

possible need be included in the calculation to obtain accurate informa­

tion about the shower. The energy degradation and transport of the 

photons are accurately treated if only pair production and Compton 

events are allowed. For the electrons and positrons, only radiative col­

lisions and Coulomb collisions with the bound atomic electrons and the 

nucleus are required for accuracy. The remaining interactions can be 

neglected because the cross sections for their occurrence are small 

compared with those for the processes retained in the calculation. 

Compton scattering is the only mechanism retained in the calcula­

tion by which the photon changes direction and contributes to the lateral 

and angular spread of the shower. The charged particles change direc­

tions by Coulomb scattering from the nucleus and the bound atomic 

electron and by radiative collisions. As pointed out by Rossi and 

Greisen,4 however, the ratio of the root-mean-square angle of deflection 

of charged particles by nuclear Coulomb scattering in one radiation 

to the average angle of emission in radiative collisions is approximately 

40 to 1. Hence, no significant error is introduced if the angular de­

flections in radiative collisions are neglected. A parallel argument 

applies for neglecting the angular spread of the pairs produced in pair 

production by photons. 

Cross Sections 

The differential and total cross sections for pair productiocl, 

Compton scattering, and bremsstrahlung were treated in this calculation 

as described by Zerby and Moran.
2 

In all cases the correct energy 

dependence of the cross sections was used, in contrast to the asymptotic 

forms used in the analytic studies. In addition, screening effects 

4. B. Rossi and K. Greisen, Rev. Mod. Phys. 13, 240 (1941) • 



were included in the expressions for production and bremsstrahlung. 

The Bethe-Heitler cross section for pair production, using the Born 

approximation, was modified further to correct for distortion of the 

electron wave functions in the electrostatic field of the nucleus. ~~is 

correction is most important for the heavy elements at high energies, 

where the Bethe-Heitler expression underestimates the true cross sec­

tion by as much as 10%. 

The cross sections for each interaction were introduced into the 

calculation as equations or tables in such a way that the cross section 

could be obtained for any material with an elemental composition of less 

than twenty-one elements. 

Small-Angle Scattering of the Charged Particles 

It is not practical to treat the Coulomb scattering from the 

nucleus and the bound atomic electrons by the charged particles in the 

shower entirely as individual events in the Monte Carlo calculation. 

The charged particles experience far too many of these interactions as 

they travel from one point to another. The method adopted for handling 

this problem was to separate the large-angle Coulomb scattering from the 

small-angle Coulomb scattering and to treat them independently. Analytic 

results for the lateral and angular deflection of a charged particle 

caused by multiple small-angle deflections were used to account for the 

Coulomb scattering, while large-angle scatterings were 

treated as individual events. One advantage of this approach is that 

proper account can be taken of those bound atomic electrons 

energy in ionization collisions to become part of the shower. 

enou~~ 

The angle that separates the small-angle Coulomb scattering from 

the large-angle Coulomb scattering was dictated to a certain extent by 

the analytic solution used for small-angle multiple scattering. The 

demonstration of this dependence first requires a consideration of the 

equation used to represent the Coulomb scattering at small angles. 

The cross section for positron or electron scattering from the 

nucleus in the limit E »mc2 and for small angles without screening 

is given by 

t 
'j 
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dO' = 8rcNZ 

2 
r 

e 

5 

(mc
2)2 

\ E 
de 

3 ' e 
( 1) 

where N is the nuclear density, is the classical electron radius, and 

8 is the polar angle of scattering. This equation must be modified to 

include small-angle scattering from the atomic electrons and screening 

effects. The scattering from the atomic electrons can be accounted for 

approximately by replacing the factor Z2 by Z(Z + 1) in Eq. 1, and the 

screening effects can be accounted for/approximatelY by using 
2 -l. 2 -l. 3 2 

V = Ze r exp(-r/a), where a = ~r Z fmc , for the electrostatic field 

of the atom in the modification of the derivation of Eq. 1 as described 
. 5 by Goudsm~t and Saunderson. The result of both these modifications is 

the expression 

dO' 8m; z(z + 1) r~ (~2)2 8de 

( 2 2)2' 
8 + el. 

( 2) 

Equation 2 applies only for 

small angles of scattering, say, 0 ~ e ~ em. 

The root-mean-square angle of scattering from Eq. 2 in the range 

o ~ e ~ 8m, which will be useful later, is given by 

4nNZ(Z + 1) 

The analytic solution to the multiple small-angle scattering prob­

lem used in the calculation was the one obtained by Eyges6 as a modifica­

tion of the derivation by Fermi.l.,4 Fermi first obtained a solution to 

an approximate charged-particle transport equation that is applicable 

for small-angle multiple scattering and gives the joint distribution 

5. 

6 . 

S. A. Goudsmit and J. L. Saunderson, Phls" Rev. 57, 24 (1940) and 
Phls. Rev. 58, 36 (1940). 
L. F;ygeB; Phls. Rev" 74, (1948). 
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function for the lateral and angular spread of a charged particle beam 

as a function of depth. The basic approximations in the for.mulation of 

the transport equation were that only small angular deviations from the 

initial direction of the beam occurred, no energy loss need be considered, 

and only scattering interactions took place. In addition, however, the 

Landau approximationS was made in the scattering ter.m of the transport 

equation. The modification made by Eyges was to obtain the first-order 

solution to the same equation W\f.ch "t:tiall.ided:; constant energy "los's' by' ioni­

zm.ti"on. collisions.. The joint-distribution function derived by Eyges* 

is 

f(z,x,e ) dx de = x x 

where 

dx de x 
4ru3 (4) 

(4a) 

(4b) 

( 4c) 

In Eq. 4 the distance along the z axis, which coincides with the original 

direction of the beam, is given by z, and ex is the projection on the x 

axis of a unit vector along the direction of angular deflection under 

the assumption that the polar angle of deflection is small. The 

quantity (e2
) in Eq. 4b is the root-mean-square polar angle of scatter-

ing. 

Eq. 

r = 

The independent distribution function f(Z,y,ey) is obtained from 

4 by replacing x with y. The lateral displacement is given by 

(x2 + y2)1/2, and the polar angle by e = (~ + ~)1/2. 

*The equations presented by Eyges6 contained several typographical errors. 
These have been corrected in the present paper. 

.. 
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There are difficulties with Eyges' solution, however, because of 

the use of the Landau approximation in the transport equation. The 

distribution function for ex' which is obtained from Eq. 4 by integrat­

ing over all values of x, actually falls below the single-scattering 

estimate at thickness z for large values of ex. This is clearly 

impossible. Use of the Landau approximation would become more valid, 

however, if the scattering cross section did not include a large-angle 

contribution. This suggests the criteria for separating the large­

angle scattering from small-angle scattering that was referred to 

previously. 

Letting 8m be a small angle forming a boundary between small-angle 

and large-angle single scattering, which means it is also the maximum 

angle of small-angle scattering considered in Eyges' derivation, then we 

expect Eq. 4 to be accurate for angles in the distribution function less 

than approximately em. For greater than em the distribution func-

tion is supplemented by the large-angle single-scattering events. For 

an average distance traveled of length z at least one large-angle single 

scattering is required to contribute to the distribution function to 

assure accuracy. Hence, 

l';;z 

00 

J 
e m 

dd 
de de, ( 

where d~/de is the differential cross section for large-~~gle scattering. 

By using Eq. 1 for the large-angle scattering in Eq. 5, 

e 
m 

l/2 
(~Q) , (6) 

2 2 2 2 
where Q 8~NZ r (mc IE) • The average distance traveled, z, in this e 
process is approximately the mean free path for bremsstrahlung events, 

which can be determined from the asymptotic form of the bremsstrahlung 

cross section. When that distance is used, an acceptable value for em 
is 2.8 (mc2 /;&). With the aid of this value of em, Eq. 3 now becomes 
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(fl) == 4p 
2 ' E 

( 1) 

where the condition e11em «1 was used to simplify the equation, and 

2{ 2 2 ( -1/3) 1 P == 2nNZ(Z + 1) r mc) [tn 2.8 x 137 Z - 1 2]. 
e 

The root-mean-square angle of scattering is made a function of z 

by introducing the' stopping powe:rfor ioniZation ,collisions, v,. which 

is assumed to be constant over short distances involved, so that 

2 4p (e ) == --___ 
2 

(E - vz) 

Equation 7a was substituted into Eq. 4a to obtain 

~{z) 
P 

2 
V 

Ao(z) Pz 
== E(E - vz) , 

[
2Z vz2 2(E - VZ) tn ( E )l 

- E - v E vz:J 

(8a) 

(8b) 

( 8e) 

which completely specify the functions needed in the distribution func­

tion given in Eq. 4. 

The stopping power for ionization collisions required in the above 

derivation is not the usual one, because the large-angle scatterings are 

treated as individual events in this calculation and therefore should 

not make a contribution to the continuous energy degradation charac­

terized by the stopping power v. This is discussed below. 

i 

• 

• 
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Large-Angle Scattering of ~ Charged Particles 

It was most convenient to use E~. 1 for large-angle Coulomb scat­

tering from the nucleus even though it is accurate for small-angle scatter­

ing only. The minumum angle to which it applies is e 2.8 (mc2/E). At 
m 

larger angles E~. 1 must be modified because the structure of the nucleus 

affects the scattering, tending to reduce it appreciably as e becomes 

larger than e2 280A1 / S (mc2 /E). Along with Williams,7 we make the ap­

proximation that the cross section is zero for e > e2 • If e2 > n, then 

the cross section is set e~ual to zero for e > n. 

For large-angle charged-particle collisions with the atomic elec­

trons the free electron-electron cross section derived by M~11er8 and 

the free positron-electron cross section derived by Bhabha9 are used. 

These cross sections are given by 

[
1 (2€ + 1) + 1 e2 

] ---- + --..::.-- , 
x2 x(l - x)(€ + 1)2 (1 _ x)2 (€ + 1)2 

for electrons and 

dO' 
dx 

2nNZr2 (e + 1) 
e 

x :'l! x ~ 1/2, m 

x ~ x :'l! 1, 
m 

7. E. J. Williams, ~. ROy): ~. Al69, 531 (1939). 
8. C. M~ller, Ann. Phlsik 1 , 531 (1932). 
9. H. J. Bhabha, Proc. RoW- ~. A154, 195 (1936) • 

(10) 
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for positrons. In these equations € is the kinetic energy of the incident 

particle, in mc
2 

units, and x is the fraction of the incident kinetic 

energy transmi tted to~ the target particle. The cosines of the polar 

angles of ejection in these processes are given by 

and 

1-12 = [ 

x(€ + 2) 
EX + 2 

(1 - x) (E + 2) 
€(l - x) + 2 

, (lla) 

( llb) 

where 1-11 refers to the electron and 1-12 to the positron in positron­

electron scattering. They both refer to the electrons in electron­

electron scattering. 

The smallest value of x allowed in Eqs. 9 and 10 is determined 
m 

from Eq. llb by using e as the smallest polar angle of scattering. This 
2 m 

results in x = (2.8) /2E, when e «1 and E »2.8 are employed to 
m m 

simplify the equation. This means that all atomic electrons given an 

energy greater than ~ 2 Mev in electron-electron or positron-electron 

collisions are added to the cascade. 

Stopping Power for Ionization Collisions 

As pointed out previously, since the large-angle electron­

electron scattering and positron-electron scattering are treated as 

individual events, the energy degradation attributed to them must be 

subtracted from the usual form of the stopping-power expression for 
10 

ionization collisions. When this is done and x «1 is used, then 
m 

dE 2 2{ [ V - - dx = 21tNZre mc .en 

10. E. A. Uehling, Ann. Rev. Nucl. Sci. 4, 315 (1956). 

• I 

• 

• 
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for both positrons and electrons, where E is the total energy of the 

particle and I is the average ionization potential.
10 

The Monte Carlo Procedure 

The Monte Carlo procedure for treating the photons was straight­

forward. For each photon that appeared in the cascade the total 

macroscopic cross section, E , which was the sum of the pair production , 
and Compton cross sections, was calculated for the medium being studied. 

The distance to the next collision point, x, was selected from the 

exponential distribution, E exp(- E x). At the point of interaction , ," 
the choice between a pair-production event and a Compton event was made 

in the standard way. 

If a pair-production event occurred at the point of 

then the partition of energy between the positron and the electron was 

determined by a random selection technique, and both members were added 

to the cascade. These particles were directed along the incident direc­

tion of the photon. If a Compton event took place, the degraded energy 

of the photon was selected from the Klein-Nishina distribution function 

and the new direction of the degraded photon determined. The Compton­

ejected electron was also added to the cascade, with energy and direc­

tion determined from the kinematics of the collision. 

For each charged particle that appeared in the cascade the total 

macroscopic cross section, E , which was the sum of the cross sections c 
for bremsstrahlung, large-angle nuclear Coulomb scattering, and large-

angle Coulomb scattering from the atomic electrons, was calculated from 

tables or equations for the medium under study. The distance to the next 

collision point, z, was then selected in an appropriate manner, 

that cross section. If the cross sections were constant, then the 

selection would be from out of an exponential distribution as in the case 

of photons; however, E 
c with distance as the charged particle 

loses energy by ionization collisions, and a special technique had to be 

devised to treat this problem. 
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Having selected the distance traveled, z, the lateral and angular 

deviation of the charged particle by small-angle Coulomb collisions 1Nere 

selected from the joint distribution functions f(z,x,e ) and f(z,y,e ) 
x y 

described in Eq. 4, and the new particle energy was determined by using 

the stopping-power formula for the medium. 

particle was then shifted by the distance r 

The collision point of the 

( 2 2)~/2 d the x + y , an 

direction of the particle was rotated through the polar angle 

e ~ (e2 + e2
) 
2 

• 
X Y 

At the point of interaction the type of interaction was selected 

in a standard manner. For a bremsstrahlung event the partition of the 

energy between the photon and the charged particle was selected with the 

appropriate probability and the two were added to the cascade. The 

angular deflection for large-angle Coulomb scattering from the nucleus 

was determined from a selection technique based on Eq. 1. The selection 

techniques for large-angle scattering from the atomic electrons were 

based on Eqs. 9 and 10. In these processes the incident particle was 

allowed to change direction and lose energy. The direction and energy 

of the atomic electron were also calculated from the kinematics of the 

collision and added to the cascade. 

The Computer Program 

The present version of the computer program, Which was written 

for the IBM-7090, will develop cascades in a homogeneous material with 

mixtures of up to 20 elements. The composition is specified by input to 

the program, and the cross sections are set up automatically. The 

geometrical configuration of the medium can be a slab, cylinder, or 

cylindrical shell, as specified by input to the program. The cascades 

can be initiated by normally incident positrons, electrons, or photons 

at any incident energy up to 50 Gev. 

One feature of the program is the v.ariable nature of the energy 

bounds for spectral data. It is possible to arbitrarily select up to 

15 such bounds other than the source energy, thus dividing the spectral 

data into the corresponding number of intervals. In addition, eight 

radial bounds can be specified which divide the scattering medium into 

• 

• 

• 

• 
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cylindrical shells. The depth in the medium is automatically divided 

into half-radiation-length-thick layers out to 10 radiation lengths. 

2 
The results of the calculation include data on the track length 

for charged particles and for photons in each energy interval, radial 

interval, and depth interval. Fluxes of charged particles and of photons 

are also given in each energy interval at each radiation length of depth 

out to a depth of 10 radiation lengths. The calculation also provides 

the energy deposited in each depth interval and radial interval and 

provides the energy spectra and angular distribution of the radiation 

penetrating the scattering medium if the medium has a finite thickness. 

Study Calculations 

A series of calculations were performed with this new program to 

compare the results with the analytic formula derived by Fermi
l
,4 and 

II l 
the results reported by Snyder and Scott and discussed by Rossi. In 

making these comparisons it is important to note the differences in the 

way the problems were formulated in order to properly evaluate the dif­

ferences that might appear. 

Although the Fermi and Snyder-Scott results were both limited to 

the case of electron transport without generation and transport of photons 

and without energy degradation of the electrons, they differed in two 

respects. First, the Fermi approach used the Landau approximation while 

the Snyder-Scott approach did not. Thus, one would expect differences 

in the results from the two studies at large angles of scattering where 

the Snyder-Scott solution would usually be more accurate. At these 

large angles the Fermi distribution usually gives an underestimate of 

the correct result and, in fact, falls below the single-scattering 

estimate, as does Eyges' solution as pointed out previously. Second, 

they differ in the way the Coulomb scattering was treated. Fermi used 

Eq. 1 for the differential cross section for Coulomb scattering with the 
. lis ( 2;) restriction that the cross sectlon was zero for 6 < 6l = Z a me E 

-lis ( 21) and for 6 > 62 = 280 A mc E, and Snyder and Scott used Eq. 2 for 

the cross section and placed no restriction on the maximum angle of 

scattering. 

11. H. S. Snyder and W. T. Scott, Phys. Rev. 75, 220 (1949). 



The Fermi joint distribution function for the lateral and angular 

spread of the electrons which corresponds to Eq. 4 is 

dx de t/./3 
f(z,x,e ) dx de = x x 

x --...;.;..---exp 
2 

21CZ 

where 

e 
in e2 

• 
1 

Equation 14 can be integrated over all values of the lateral 

distance x (-00 < x < +00) to obtain the angular distribution given by 

where 

( 2 ) -1/2 ( 21 2 g(s,~) d~ = d~ P S1C exp - ~ p s), 

s == z/x , s 

l/x = 41CN(137 r )2 z4/s 
s e' 

2 (I) ( 8 -lIs -lIs) p = 2.£n e2 el = 2.£n 137 x 2 0 x A Z • 

Alternately, Eq. 14 can be integrated over all values of the angle ex 
(-00 < ex < +00) to obtain the lateral distribution given by 

( 14) 

(16) 

• , 
I 

• 
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In the comparisons of the angular distributions from the various 

calculations it was of interest to display the distribution function 

for single scattering. The required single-scattering function to be 

compared with Eq. 15, for example, was obtained from Eq. 1 after multi­

plying by the thickness z. By requiring that the maximum polar angle of 

scattering be equal to e2 in the revised Eq. 1, changing variables to 

and e using the substitutions e = (e2 <+ e2
) J./2 and 

y x ~y 

(2~)_1 de de. and integrating over the allowed range of e 
x y' y' 

the required single-scattering function is obtained as 

J
i/2 

{ 

11 [( e2 /e 1 )2 - 112 

g( 11) dl1 dT)s -----....,..--- + tan-1 

~113 (e
2

/e
1

):E 
}. 

To make the results of the present calculation more comparable 

with the analytic results of Fermi and Snyder and Scott, the program 

was altered so that no bremsstrahlung radiation was produced and the 

electrons did not change energy by ionization collisions. Under the as­

sumption of no energy degradation, Eq. 4, which includes only small-

scattering, reduces to the form of the Fermi solution given in 

Eq. 14 with the exception that 

Hence, the angular distribution and lateral distribution which include 

only small-angle scattering are given by Eqs. 15 and 16, respectively, 

that 

2 2 (Z + 1) 
p = Z 

These solutions will be referred to as Fermi1s solutions including only 

small-angle scattering. 
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Figures 1 and 2 show a comparison of the angular distributions from 

the various calculations for the case of 100-Mev electrons incident on 

beryllium (density 1.8). To obtain the distribution functions in the 

present work the problem was calculated in three dimenSions, and the unit 

vector along the direction of the particle at the exit surface of the 

slab was projected on to the x axis to obtain e. Figure 1 is for a 
x 

target thickness s :;:;: 100 (0.01258 g/crnf), and Fig. 2 is for 

s :;:;: 84,000 (10.57 g/cm2). 

In • 1 and 2 it will be noticed that the Snyder-Scott dis-

tribution is than the single-scattering distribution at the 

larger angles, as the correct distribution should be, while the Fermi 

distribution drops below the single-scattering distribution at the larger 

angles. In Fig. 1 the Monte Carlo results tend to follow the Ferm~ 

solution which includes only small-angle scattering because the depth in 

beryllium is small, and large-angle scatterings are very improbable. At 

the larger in the distribution the Monte Carlo results are above 

the Fermi solution including only small-angle scattering but still seriously 

below the correct answer. The here is that an insufficient 

number of samples (only 2,000) were taken, and in such cases under­

estimates are very likely. 

In 2 where a greater depth in beryllium is considered, the 

number of -angle scatterings is significant and the Monte Carlo 

results properly reflect their effect on the distribution function which 

approximates the Snyder-Scott results very closely. 

In the Monte Carlo calculation for the lateral spread of the beam it 

was more convenient to obtain an estimate of the radial distribution rather 

than the x or y distributions. For comparison the radial distribution 

can be obtained from the Fermi distribution given in Eq. 16 by noting 

that 

k(E!,~) ~d~ dV :;:;: k(s,~ ) k(x,~ ) d~ d~ 
x Y x Y 

-~ 

:;:;: ~d~ dV (~p2S1() exp (- 3~2 /p2s ) , (18) 

• I 
I 
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• 
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Figq 1. Electron Angular Distribution in Beryllium at s ~ 100 
(0.01258 g/cm2

) Resulting from a Monodirectional, 100-Mev Incident Beam 
of Electrons. Bremsstrahlung production and energy degradation by 
ionization collisions were not allowed. 
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2. Electron Distri1mtion in Beryllium at s = 81+,000 (10.57 
g/cm2 ) Resulting from a Monodirectional, 100-Mev Incident Beam of Electrons. 
Bremsstrahlung production and energy degradation by ionization collisions were 
not allowed. 
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( 2 2)~/2 where ~ = ~ + ~ and ~ is the azimuthal angle. x y 

Figures 3 and 4 present comparisons of the Monte Carlo results 

with the Fer.mi distributions for the beryllium cases just discussed. 

For the case of a small depth in beryllium shown in Fig. 3, the Monte 

Carlo results compare with the Fermi solution including only small-angle 

deflections as they did in the corresponding case for the angular dis­

tributions. At the larger depth shown in Fig. 4, the Monte Carlo results 

approach the Fermi solution. In the latter case, within the limits of 

the variable investigated, there is no evidence of the Monte Carlo 

distribution becoming greater than the Fermi distribution at large radial 

distances as might be suggested by the results shown in Fig. 2. 

Figures 5 and 6 present the angular distribution from the various 

calculations for the case of 100-Mev electrons incident on lead (density 

11.35). Figure 5 is for a target thickness s = 100 (0.005166 g/cm2
), 

and Fig. 6 is for s = 84,000 (4.339 g/cm2
). In Fig. 5 we see the Monte 

Carlo results following the Fermi solution including only small-angle 

scattering as the angle increases. At the larger angles the large-angle 

scattering clearly makes the Monte Carlo results tend toward the Snyder­

Scott solution, although the statistical accuracy is very poor, as can be 

seen from the spread of the data points. 

In Fig. 6 we see a more interesting situation. In this case the 

single-scattering distribution is cut off at ~ = e2/e~ 1492 for lead 

because of the effect of the nucleus on the scattering distribution. 

Since the Snyder-Scott solution does not include the cutoff in the maximum 

angle of scattering, it is evident that it gives an overestimate of the 

large-angle contributions to the distribution function. The Fermi solu­

tion, on the other hand, does include the cutoff and should be more 

accurate. As can be seen in Fig. 6, the Monte Carlo results approximate 

the Fermi solution very well, as they should since the Monte Carlo 

solution also includes the cutoff. 

A comparison of the Monte Carlo and Fer.mi radial distributions 

in the lead cases indicates an agreement similar to that shown in 

Figs. 3 and 4. 
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~=r~~ 

Fig. 3. Electron Radial Distribution in Beryllium at s = 100 (0.01258 
g/cm2 ) Resulting from a Monodirectional, 100-Mev Incident Beam of Electrons. 
Bremsstrahlung production and energy degradation by ionization collisions 
were not allowed. 
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Fig. 4. Electron Radial Distribution in Beryllium at s = 8L-,000 (le.57 
g/cm2 ) Resulting from a Monodirectional, 100-Mev Incident Beam of Electro!cso 
BremsstrahlTh"1.g productior. and energy degradation by ionization collisions 
were not allowed. 



Fig. 5. Electron 
Resulting from a Monodirec 
Bremsstrahlung production and 
not allowed. 

22 

Lead at s = 100 (0.005166 g/cm2 ) 

Beam of ElectrJ:J.s. 
by eollisions were 
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Comparison ~ ~ ExFeriment 

It i~ also of some interest to compare the calculation with one 
. l2,l3 of the experlments of Kantz and Hofstadter. In these experiments 

they obtained the spatial distribution of the energy deposited in various 

materials by 185-Mev electron-initiated showers. There is some doubt 

about the accuracy of the experimental data, however, as was pointed out 
. 2 preVlously. It was shown, for example, that the longitudinal distribu-

tion of the energy deposition which was obtained by integrating over the 

measured radial distributions had far too high a maximum in comparison 

with the energy deposited at the source plane. Thus one must be careful 

not to rely too heavily on these data. 

In the experiment the electron beam waS collimated by a series of 

lead plates with aligned holes ranging up to a maximum diameter of 

lA in. in the last few plates. The collimator apparently did not confine 

the beam to a small size, however, as can be seen in Fig. 7, which shows 

the measured radial distributions at various depths in tin. The experi­

mental curve at zero depth clearly indicates the incident beam was quite 

extensive in comparison with the size of the collimator. For this reason, 

in all probability it was also far from normally incident on the slab in 

the radial wings. 

To match the experiment as closely as possible, the calculation 

was performed with a beam with a radial distribution matching the measured 

zero depth curve. Since there was no way of choosing other than a mono­

directional angular distribution for the beam from the data available, 

the calculation was limited to a normally incident source. This may 

account for some of the differences that appeared between the calculation 

and experiment. 

In the calculation all photons in the shower that degraded below 

a cutoff energy of 2 Mev were considered to deposit their remaining 

12. A. Kantz and R. Hofstadter, Nucleonics 12, March, p. 36 (1954). 
13. A. D. Kantz, Electron-Induced Showers, Stanford University High­

Energy Laboratory Report No. 17 (May, 1954). 
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energy at the point where they dropped below the cutoff. The charged 

particles were treated in a similar fashion except that a 6-Mev cutoff 

energy was used. The energy deposited in each one-half radiation length 

depth and various radial intervals was calculated for comparison with the 

experiment. The calculated data points for the intervals 0 to 0.5, 

2.0 to 2.5, and 7.0 to 7.5 radiation lengths are shown in Fig. 7 where 

the calculated data from the first interval has been normalized to the 

experimental data for zero depth. It will be seen that the calculated 

data for the first interval falls almost exactly on the zero depth 

experimental curve over the complete radius. The other calculated data 

are significantly different from the comparable experime~tal data. ~he 

differences, in part, can be attributed to the fact that the angular 

distribution of the source could not be duplicated. 
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