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Introduction

In the past few decades considerable interest has been generasted
in the theory of high~energy electron-photon cascade showers because of
its use in analyzing cosmic-ray showers in alr and emulsions. The advent
of the high-energy electron accelerator has placed additional emphasis on
the theory since it has applications in the design of accelerator equip-

ment and experimental apparatus.

Many applications of the theory require extensive information about
the three-dimensional development of the shower. Until recently, however,
the analytic work on the theory dealt only with the longitudinal devel-
opment of the shower. This work has been summarized by Rossi.l Previous
Monte Carlo studies have also been limited to the one~dimensional devel-
opment for simplicity. ZReferences to these calculgtions are given in a

report by Zerby and Moran.2

Kamata and Nishimura? reported equations that could be solved
numerically to obtain the lateral and angular distribution of a shower
as & function of depth in an infinite medium. These equations resulted
from extensive analytic work in which several gpproximations were made.
Most of them introduce inaccuracies in the low~energy components of the

shower.

The present calculation solves the three=dimensional shower prob-
lem by using the Monte Carlo method of computation. It was designed to
have as few approximations as possible so that it would be gpplicable to
relatively low energies (a few Mev). In addition, it was designed to
consider any transporting medium with any elemental mixture in various
geometrical configurations such as slabs, cylinders, and cylindrical
shells. 7To increase its versatility, positrons and electrons are treated

separately in the calculation.

1. B. Rossl, High-Energy Particles, Prentice-Hall, Englewood Cliffs,
New Jersey (1952).

2. C. D. Zerby and H. S. Moran, Studies of the Longitudinal Development
of High=Energy Electron~-Photon Cascade Showers in Copper, ORNL-%%29
{1983). -

B ?. Kg?ata and J. Nishimura, Progr. Theoret. Phys. (Kyoto) 6, 93

1958).







Approximating the Physical Processes

The basic approximations introduced in high-energy shower theory
have been described previouslyl—4 and will not be repeated here. It is
important to note, however, that only a few of the physical processes
possible need be included in the calculation to obtain accurate informa-
tion about the shower. The energy degradation and transport of the
photons are accurately treated if only pair production and Compton
events are allowed. For the electrons and positrons, only radiative col-
lisions and Coulomb collisions with the bound atomic electrons and the
nucleus are required for accuracy. The remaining interactions can be
neglected because the cross sections for their occurrence are small

compared with those for the processes retained in the calculation.

Compton scattering i1s the only mechanism retained in the calcula-
tion by which the photon changes direction and contributes to the lateral
and angular spread of the shower. The charged particles change direc-
tions by Coulomb scattering from the nucleus and the bound atomic
electron and by radiative collisions. As pointed out by Rossl and
Greisen,4 however, the ratio of the root-mean-square angle of deflection
of charged particles by nuclear Coulomb scattering in one radiation length
to the average angle of emission in radistive collisions 1s approximately
40 to 1. Hence, no significant error is introduced if the angular de=-
flections in radiative collisions are neglected, A parallel argument
applies for neglecting the angular spread of thepairs produced in pair .

production by photons.

Cross Sections

The differential and total cross sections for pair production,
Compton scattering, and bremsstrahlung were treated in this calculation
as described by Zerby and Moran.2 In all cases the correct energy
dependence of the cross sections was used, in contrast to the asymptotic

forms used in the analytic studies. 1In addition, screening effects

4, B. Rossi and K. Greisen, Rev. Mod. Phys. 13, 240 (1941).




were included in the expressions for pair production and bremsstrahlung.

o Sy

The Bethe-Heitler cross section for pair production, using the Born
approximation, was modified further to correct for distortion of the
electron wave functions in the electrostatic field of the nucleus. This
correction is most important for the heavy elements at high energies,
where the Bethe-Heitler expression underestimates the true cross sec-

tion by as much as 10%.

The cross sections for each interaction were introduced into the
calculation as equations or tables in such a way that the cross section
could be obtained for any material with an elemental composition of less

than twenty-one elements.

Small-Angle Scattering of the Charged Particles

It is not practical to treat the Coulomb scattering from the
nucleus and the bound atomic electrons by the charged particles in the
shower entirely as individual events in the Monte Carloc calculation. -
The charged particles experience far too many of these interactions as
they travel from one point to another. The method adopted for handling ‘
‘ this problem was to separate the large-angle Coulomb scattering from the
small~angle Coulomb scattering and to treat them independently. Analytic
results for the lateral and angular deflection of a charged particle
caused by multiple small-angle deflections were used to account for the
small~angle Coulomb scattering, while large-angle scatterings were
treated as individual events. One advantage of this approach is that
proper account can be taken of those bound atomic electrons given enough

energy in ionization collisions to become part of the shower.

The angle that separates the small-angle Coulomb scattering from
the large-angle Coulomb scattering was dictated to a certain extent by
the analytic solution used for small-angle multiple scattering. The
demonstration of this dependence first requires a consideration of the

equation used to represent the Coulomb scattering at small angles.

The cross section for positron or electron scattering from the

2

nucleus in the limit E >> mec® and for small angles without screening

is given by
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where N is the nuclear density, r_, is the classical electron radius, and

e
6§ is the polar angle of scattering. This equation must be modified to
include small-angle scabttering from the atomic electrons and scCreening
effects. The scattering from the atomic electrons can be accounted for
approximately by replacing the factor Z° by z(Z + 1) in Eg. 1, and the
screening effects can be accounted for approximately by using

V = Zezrml exp(-r/a), where a = *’ﬁrez-l/s/mcg, for the electrostatic field
of the atom in the modification of the derivation of Egq. 1 as described
by Goudsmit and Saunderson.s The result of both these modifications is

the expression

(

2
2
do = 8aN 7(Z + 1) I‘i (n"% “‘é—;iiﬁgg-)—g R (2)
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/

where 6, = 7' a(mc® /B) and @ = 1/137. Equation 2 applies only for

small angles of scattering, say, O £ 6 = 6.

The root-mean-square angle of scattering from Eg. 2 in the range
0 £ 6 = Oy, vhich will be useful later, is given by

=2

(67) = hnz(zZ + 1) ri <Q%f;f {?n [(5%-2 + l} -1+ E;§~§iggg—-}u (3)
1 m

The analytic solution to the multiple small-angle scattering prob-
lem used in the calculation was the one obtained by Eyge86 as a modifica-

’%  Permi first obtained a solution to

tion of the derivation by Fermi.
an agpproximate charged-particle transport equation that is gpplicable

for small=angle multiple scattering and gives the joint distribution

5. S. A. Goudsmit and J. L. Saunderson, Phys. Rev. 57, 24 (1940) and
Phys. Rev. 58, 36 (19L0).
6. L. Eyges, Phys. Rev. Th, 1534 (1948).
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function for the lateral and angular spread of a charged particle beam
as a function of depth. The basic approximations in the formuwlation of .
the transport equation were that only small angular deviations from the

initial direction of the beam occurred, no energy loss need be considered,

and only scattering interactions took place. In addition, however, the

Tandau approximations was made in the scattering term of the transport

equation. The modification made by Eyges was to obtain the first-order

solution to the same equation ##ich 1Heluded constant energy loss by feni-

zation. collisions. . The joint=distribution function derived by Eyges*
is
dx de A292 + 27 x8 A 2
- X0 = A X -
X X 1 x O
f(z,x,@x) dx 46, = g exp ( 5 ) , (L)
where
z n -
-t 1
Ah(z) = (z - z!) dz forn = 0,1,2 (4a)
Wg(z')
o} .
2
Wi(z) = 4/(6%) , (4o)
2
B(z) = a,(z) A (z) - A (z). (Le)

In Eq. 4 the distance along the z axis, which coincides with the original
direction of the beam, is given by z, and 6 is the projection on the x
axis of a wnit vector along the direction of angular deflection under

the assumption that the polar angle of deflection is small. The

guantity (82) in Eq. 4b is the root-mean-square polar angle of scatter-
ing. The independent distribution function f(z,y,ey) is obtained from
Eg. 4 by replacing x with y. The lateral displacement is given by

r= (¥ + ) 2, and the polar angle by 8 = (ai + 9;)l 2,

*The equations presented by Eygess contained several typographical errors.
These have been corrected in the present paper. .
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There are difficulties with Eyges' solution, however, because of
the use of the lLandau approximation in the transport eguation. The
distribution function for 6,, which is obtained from Eq. 4 by integrat-
ing over all values of x, actually falls below the single=scattering
estimate at thickness z for large values of 0y. This is clearly
impossible. Use of the Landau gpproximation would become more valid,
however, 1f the scattering cross section did not include a large-angle
contribution. This suggests the criteria for separating the large-
angle scattering from smalle-angle scattering that was referred to

previously.

Letting 8y be a small angle forming a boundary between small-angle
and large-angle single scattering, which means it is also the maximum
angle of small-angle scattering considered in Eyges' derivation, then we
expect Eq. 4 to be accurate for angles in the distribution function less
than approximately Gm. For angles greater than 6, the distribution funce-
tion i1s supplemented by the large=angle single-scattering events. For
an average distance traveled of length z at least one largew~angle single
scattering is required to contribute to the distribution function to

assure accuracy. Hence,

N
1<z f ag-de, (5)
8
m

where dﬁ/de is the differential cross section for large-angle scattering.

By using Eq. 1 for the large~angle scattering in Fq. 5,
1/2
< zz_@)
9m - (2 4 (6)

vhere Q = SﬁNza ri(mcz/E)g. The average distance traveled, z, in this
process is approximately the mean free path for bremsstrahlung events,
which can be determined from the asymptotic form of the bremsstrahlung
cross section. When that distance 1s used, an acceptable value for @,

is 2.8 (mc®/E). With the aid of this value of 6y, Eq. 3 now becomes
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where the condition el/em <<'1 was used to simplify the equation, and

-1/3)

P = 2Z(Z + 1) rze(mca)z [4n(2.8 x 137 2 -1/21.

The root-mean-square angle of scattering is made a function of z
by introducing the stopping power. .for ionization :¢ollisions, v, which -

is assumed to be constant over short distances involved, so that

(6%) - —2 . (7a)
(E - vz)

Equation Ta was substituted into Eq. 4a to obtain

mix) -5 [zn 555) - %E} , (8b)
Ao(z) = f_ [22 - VE2 _2(E ; vz) Y <E % vz)ﬂ 5 (8c)

which completely specify the functions needed in the distribution func-

tion given in Eq. k.

The stopping power for ionization collisions required in the above
derivation is not the usual one, because the large-angle scatterings are
treated as individual events in this calculation and therefore should
not make a contribution to the continuous energy degradation charac-

terized by the stopping power v. This is discussed below.

.(?



Large-Angle Scattering of the Charged Particles

It was most convenient to use Eq. 1 for large-angle Coulomb scat-
tering from the nucleus even though it is accurate for small-angle scatter-
ing only. The minumm angle to which it applies is 6 = 2.8 (mc®/E). At
larger angles Eq. 1 must be modified because the structure of the nucleus
affects the scattering, tending to reduce it appreciably as 6 becomes
larger than 6 = 280.1&1/3 (mc®/E). Along with Williams,” we meke the ap-
proximation that the cross section is zero for 8 > 65. IT 85 > n, then

the cross section is set equal to zero for @ > n.

For large-angle charged-particle collisions with the atomic elec~
trons the free electron-electron cross section derived by'M¢ller8 and
the free positron-~electron cross section derived by‘Bhabhas are used.

These cross sections are given by

as _ 2 N7 2 .(..i..i'_l)_f_ [:_L_ - (2e + 1) + 1 + e? ]
dx © 2(e+2) L@ x(1-x)(e+1)2 (1-x2 (e+1)2
x Sxs1/2 (9)

for electrons and

do (e + l) (2¢% + 8¢ + 5)
Eria NZr2 '{(e + 2)(5 + 1) [(e + D - e+ 2 =

. (3e® + 12¢ + 13)(ex)® N 2(e + 1)(ex)® . (ex)% ] },’
(e + 2)2 (e + 2)2 (e + 2)2

x Sx=1, (10)

7. E. J. Williams, Proc. Roy. Soc. Al69, 531 (1939).

. C. Mfller, Ann. th31k , 551 (1932).
. H. J. Bhabha, Proc. ROY. Soc. Alsh, 195 (1936).

O @
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for positrons. In these equations € is the kinetic energy of the incident
particle, in me” wits, and x is the fraction of the incident kinetic
energy transmitted ¥0:. the target particle. The cosines of the polar

angles of ejection in these processes are given by

1/z

By = [ Xi"i‘{"%)‘ } ; (11a)

and

oo | G2 | (120

where p, refers to the electron and p, to the positron in positron-
electron scattering. They both refer to the electrons in electron-

electron scattering.

The smallest value of X allowed in Egs. 9 and 10 is determined
from Eq. 11b by using Qm as the smallest polar angle of scattering. This
results in xm = (2.8)2/26, when em << 1 and € >> 2.8 are employed to
simplify the equation. This means that all atomic electrons given an
energy greater than ~ 2 Mev in electron-electron or positron-electron

collisions are added to the cascade.

Stopping Power for Ionization Collisions

As pointed out previously, since the large-~angle electron-
electron scattering and positron-electron scattering are treated as
individual events, the energy degradation attributed to them must be
subtracted from the usual form of the stopping-power expression for

10
ionization collisions. When this is done and x << 1 is used, then

<
i
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1l
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10. E. A. Uehling, Ann. Rev. Nucl. Sci. 4, 315 (1956).
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for both positrons and electrons, where E is the total energy of the

10
particle and I is the average lonization potential.

The Monte Carlo Procedure

The Monte Carlo procedure for treating the photons was straight-
forward. For each photon that appeared in the cascade the total
macroscopic cross section, Zy, which was the sum of the pair production
and Compton cross sections, was calculated for the medium being studied.
The distance to the next collision point, x, was selected from the
exponential distribution, 27 exp( = Zy;). At the point of interaction
the choice between a pair-production event and a Compton event was made

in the standard way.

If a pair-production event occurred at the point of collision,
then the partition of energy between the positron and the electron was
determined by a random selection technique, and both members were added
to the cascade. These particles were directed along the incident direc-
tion of the photon. If a Compton event took place, the degraded energy
of the photon was selected from the Klein-Nishins distribution function
and the new direction of the degraded photon determined. The Comptone
ejected electron was also added to the cascade, with energy and direc-

tion determined from the kinematics of the collision.

For each charged particle that appeared in the cascade the total
macroscopic cross section, Zc’ which was the sum of the cross sections
for bremsstrahlung, large-angle nuclear Coulomb scattering, and large-
angle Coulomb scattering from the atomic electrons, was calculated from
tables or equations for the medium under study. The distance to the next
collision point, z, was then selected in an appropriate manner, using
that cross section. If the cross sections were constant, then the
selection would be from out of an exponential distribution as in the case
of photons; however, ZC changes with distance as the charged particle
loses energy by lonizatlion collislons, and a special technique had tc be

devised to treat this problem.
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Having selected the distance traveled, z, the lateral and angular
deviation of the charged particle by smalle~angle Coulomb collisions -were
selected from the joint distribution fumctions f(z,x,@x) and f(z,y,ey)
described in Eq. h, and the new particle energy was determined by using
the stopping~power formula for the medium. The collision point of the
particle was then shifted by the distance r = (x° + y°)* 2, and the
direction of the particle was rotated through the polar angle
o= (6 + e‘;{)a.

At the point of interaction the type of interaction was selected
in a standard manner. For a bremsstrahlung event the partition of the
energy between the photon and the charged particle was selected with the
appropriate probability and the two were added to the cascade. The
angular deflection for largew~angle Coulomb scattering from the nucleus
was determined from a selection technigue based on Eq. 1. The selection
techniques for large-angle scattering from the atomic electrons were
based on Egs. 9 and 10. In these processes the incident particle was
allowed to change direction and lose energy. The direction and energy
of the atomic electron were also calculated from the kinematics of the

collision and added to the cascade.

The Computer Program

The present version of the computer program, which was written
for the IBM-T7090, will develop cascades in a homogeneous material with
mixtures of up to 20 elements. The composition is specified by input to
the program, and the cross sections are set up automatically. The
geometrical configuration of the medium can be a slab, cylinder, or
cylindrical shell, as specified by input to the progrém. The cascades
can be initiated by normally incident positrons, electrons, or photons

at any incident energy up to 50 Gev.

One feature of the program is the varisble nature of the energy
bounds for spectral data. It is possible to arbitrarily select up to
15 such bounds other than the source energy, thus dividing the spectral
data into the corresponding number of intervals. In addition, eight

radial bounds can be specified which divide the scattering medium into

.
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cylindrical shells. The depth in the medium is automatically divided
into half-radiation-length-thick layers out to 10 radiation lengths.

The results of the calculation include data on the track length2
for charged particles and for photons in each energy interval, radial
interval, and depth interval. Fluxes of charged particles and of photons
are also given in each energy interval at each radiation length of depth
out to a depth of 10 radiation lengths. The calculation also provides
the energy deposited in each depth interval and radial interval and
provides the energy spectra and angular distribution of the radiation

penetrating the scattering medium if the medium has a finite thickness.

Study Calculations

A series of calculations were performed with this new program to
compare the results with the analytic formula derived by Fermil’4 and
the results reported by Snyder and Scottll and discussed by Rossi.l In
making these comparisons 1t is important to note the differences in the
way the problems were formulated in order to properly evaluate the dif-

ferences that might appear.

Although the Fermi and Snyder-Scott results were both limited to
the case of electron transport without generation and transport of photons
and without energy degradation of the electrons, they differed in two
respects. First, the Fermi approach used the Landau agpproximation while
the Snyder~Scott approach did not. Thus, one would expect differences
in the results from the two studies at large angles of scattering where
the Snyder-Scott solution would usually be more accurate. At these
large angles the Fermi disftribution usually gives an underestimate of
the correct result and, in fact, falls below the single-scattering
estimate, as does Eyges' solution as pointed out previously. Second,
they differ in the way the Coulomb scattering was treated. Fermi used
Eg. 1 for the differential cross section for Coulomb scattering with the
restriction that the cross section was zero for 6 < 61 = zt’'® a(mcg/E)
and for 6 > 65 = 280 A™H'° (mcg/E), and Snyder and Scott used Eq. 2 for
the cross section and placed no restriction on the maximum angle of

scattering.

11. H. S. Snyder and W. T. Scott, Phys. Rev. 75, 220 (1949},
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The Fermi joint distribution function for the lateral and angular

spread of the electrons which corresponds to Eq. U is

ax 46 W /3 - & 3xe 2\
z Z e

2nz

where

2
(") 1 2 2 (ﬁcg 6,
T——;F——QﬂNZI‘e —'E—" ,en-é-;—.

Bquation 14 can be integrated over all values of the lateral

distance x {-oc0 < x < +o) to obtain the angular distribution given by

g(s,n) dn = dn(pESK)"l/g exp(- n°/p°s), (15)
where
n=6,./6,
8 = z/Ks,
1/% = bnN(137 r,)° 24/3}

p° = 2n(6,/6,) = 2n(137 x 280 x atle gls)

«

Alternately, Eg. 14 can be integrated over all values of the angle Qx
(=0 < 8, < +m ) to obtain the lateral distribution given by

k(S,BX) g, = db, < %‘P2Sﬂ> exp (— 3ﬁi/p26> s (16)

where BX = x/zel.
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In the comparisons of the angular distributions from the various
calculations it was of interest to display the distribution function
for single scattering. The required single-scattering function to be
compared with Eq. 15, for example, was obtained from Eq. 1 after multi-
plying by the thickness z. By requiring that the maximum polar angle of
scattering be equal to 6z in the revised Eq. 1, changing variasbles to

Gx and Gy using the substitutions 6 = (8§m+ 82)1 2 and

«

6 dé = (Qﬁ)"l dGX dey, and integrating over the allowed range of Gy,

the required single-scattering function 1s obtained as

n [(92/91)2 - nz}i/é

2

2 1/2

R [ (6,/6,)% = 1 } }_.

2
1

dns

ﬁns (62/91)

g(s,n) dn =

(17)

To make the results of the present czlculation more comparable
with the analytic results of Fermi and Snyder and Scott, the program
was altered so that no bremsstrahlung radiation was produced and the
electrons did not change energy by ilonization collisions. Under the as-
sumption of no energy degradation, Eq. h, which includes only small-
angle scattering, reduces to the form of the Fermi solution given in

Eq. 14 with the exception that

1/3) ) 1/2] .

1/W° = 2z(2Z + 1)r§ [zn(z.B x 137 Z~

Hence, the angular distribution and lateral distribution which include
only smalle-angle scattering are given by Egs. 15 and 16, respectively,

except that

p? oo (2 1) [En(2.8 x 137 z”l/S) - 1/2} .

These solutions will be referred to as Fermi's solutions including only

small-angle scattering.
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Figures 1 and 2 show a comparison of the angular distributions from
the various calculations for the case of 100«-Mev electrons incident on
beryllium (density 1.8). To obtain the distribution functions in the
present work the problem was calculated in three dimensions, and the unit
vector along the direction of the particle at the exit surface of the
slab was projected on to the x axls to obtain ex. Figure 1 is for a
target thickness s = 100 (0.01258 g/cnf), and Fig. 2 is for
s = 84,000 (10.57 g/en®).

In Figs. 1 and 2 it will be noticed that the Snyder-Scott dis-
tribution is greater than the single-scattering distribution at the
larger angles, as the correct distribution should be, while the Fermi
distribution drops below the single-scattering distribution at the larger
angles. In Fig. 1 the Monte Carlo results tend to follow the Fermi
solution which includes only small-angle scattering because the depth in
beryllium 1s small, and large~angle scatterings are very improbable. At
the larger angles in the distribution the Monte Carlo results are above
the Fermi solution including only smell-angle scattering but still seriously
below the correct answer. The difficulty here is that an insufficient
number of samples,(only 2,000) were taken, and in such cases under-

estimates are very likely.

In Fig. 2 where a greater depth in beryllium is considered, the
number of large-angle scatterings is significant and the Monte Carlo
results properly reflect their effect on the distribution function which

approximates the Snyder-Scott results very closely.

In the Monte Carlo calculation for the lateral spread of the beam it
was more convenient to obtain an estimate of the radisl distribution rather
than the x or y distributions. For comparison the radial distribution
can be obtained from the Fermi distribution given in Eg. 16 by noting
that

i

k(s,B) Bap a¥ = k(s,B ) k’(X,By) ae, 4B

-l

BB dy @- pasn) exp (- 352/;923) , (18)

1l
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ionization collisions were not allowed.
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where B = (Bi + and ¥ is the azimuthal angle.

32)1/2
y
Figures % and 4 present comparisons of the Monte Carlo results
with the Ferml distributions for the beryllium cases just discussed.
For the case of a small depth in beryllium shown in Fig. 35, the Monte
Carlo results compare with the Fermi solution including only small-angle
deflections as they did in the corresponding case for the angular dis-
tributions. At the larger depth shown in Fig. h, the Monte Carlo results
approach the Fermi solution. In the latter case, within the limits of
the variable investigated, there is no evidence of the Monte Carlo
distribution becoming greater than the Fermi distribution at large radial

distances as might be suggested by the results shown in Fig. 2.

Figures 5 and 6 present the angular distribution from the various
calculations for the case of 100-Mev electrons incident on lead (density
11.%5). Figure 5 is for a target thickness s = 100 (0.005166 g/cn®),
and Fig. 6 is for s = 84,000 (4.339 g/em®). In Fig. 5 we see the Monte
Carlo results following the Fermi solution including only small-angle
scattering as the angle increases, At the larger angles the large-angle
scattering clearly makes the Monte Carlo results tend toward the Snyder-
Scott solution, although the statistical accuracy is very poor, as can be

seen from the spread of the data points.

In Fig. 6 we see a more interesting situation. In this case the
single=-scattering distribution is cut off at 7 = 92/9l = 1492 for lead
because of the effect of the nucleus on the scattering distribution.

Since the Snyder-Scott solution does not include the cutoff in the maximum
angle of scattering, it is evident that it gives an overestimate of the
large-angle contributions to the distribution function. The Fermi solu=-
tion, on the other hand, does include the cutoff and should be more
accurate. As can be seen in Fig. 6, the Monte Carlo results approximate
the Fermi solution very well, as they should since the Monte Carlo

solution glso includes the cutoff.

A comparison of the Monte Carlo and Fermi radial distributions
in the lead cases indicates an agreement similar to that shown in

Figs. 3 and L.
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g/cm?) Resulting from a Monodirectional, 100-Mev Incident Beam of Electrons.
Bremsstrahlung production and energy degradation by ionization collisions
were not allowed.
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Comparison with an Experiment

It is also of some interest to compare the calculation with one

of the experiments of Kantz and Hofstadter.le’ 18

In these experiments
they obtalned the spatial distribution of the energy deposited in various
materials by 185-Mev electron~initiated showers. There is some doubt
about the accuracy of the experimental data, however, as was pointed out
previously.2 It was shown, for example, that the longitudinal distribu-
tion of the energy deposition which was obtained by integrating over the
measured radial distributions had far too high a maximum in comparison
with the energy deposited at the source plane., Thus one must be careful

not to rely too heavily on these data.

In the experiment the electron beam was collimated by a series of
lead plates with aligned holes ranging up to a maximum diameter of
lﬂ; in. in the last few plates. The collimator apparently did not confine
the beam to a small size, however, as can be seen in Fig. 7, which shows
the measured radial distributions at various depths in tin. The experi-
mental curve at zero depth clearly indicates the incident beam was quite
extensive in comparison with the size of the collimator. For this reason,
in all probability it was also far from normally incident on the slab in

the radial wings.

To match the experiment as closely as possible, the calculation
was performed with a beem with a radial distribution matching the measured
zero depth curve. Since there was no way of choosing other than a mono-
directional angular distribution for the beam from the data available,
the calculation was limited to a normally incident source. This may
account for some of the dlifferences that appeared between the calculation

and experiment.

In the calculation all photons in the shower that degraded below

a cutoff energy of 2 Mev were considered to deposit their remaining

12. A. Kantz and R. Hofstadter, Nucleonics 12, March, p. 36 (1954).
13 A. D. Kantz, Electron-Induced Showers, Stanford University High-~
Energy Laboratory Report No. 17 (May, 1954).
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energy at the point where they dropped below the cutoff. The charged
particles were treated in a similar fashion except that a 6«-Mev cutoff
energy was used. The energy deposited in each one=half radiation length
depth and various radial intervals was calculated for comparison with the
experiment. The calculated data points for the intervals 0 to 0.5,

2.0 to 2.5, and 7.0 to 7.5 radiation lengths are shown in Fig. T vhere
the calculated dsta from the first interval has been normalized to the
experimental data for zero depth. It will be seen that the calculated
data for the first interval falls almost exactly on the zero depth
experimental curve over the complete radius. The other calculated data
are significantly different from the comparable experimental data. The
differences, in part, can be attributed to the fact that the angular
distribution of the source could not be duplicated.
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